
Real-Time Low-Complexity Digital Video
Stabilization in the Compressed Domain

Vasileios Avramelos (Author), Glenn Van Wallendael and Peter Lambert
Department of Electronics and Information Systems

Ghent University - imec - IDLab
Technologiepark - Zwijnaarde 19, 9052 Ghent, Belgium

vasileios.avramelos[at]ugent.be

Abstract—Undesired vibration in videos is more and more
common due to the rise of hand-held or vehicle mounted cameras.
Non-indented motion of a video capturing device causes an
unpleasant vibrating effect for the consumer. Therefore, video sta-
bilization has been an extremely active field of research in the past
years. Motion estimation is the most computationally expensive
step of the video stabilization process. Our goal is to circumvent
this expensive step in order to achieve real-time performance.
We do so by using the precomputed motion vectors from the
encoded video streams and thus operate in the compressed
domain. These vectors already contain an approximation of the
needed motion information. A low-level motion model is used
for mitigating complexity, and a low-pass filter performs motion
smoothing before the final motion compensation step which is
used for correcting the video. In many real-time applications
where the video vibration is moderate, the proposed framework
can reach online video stabilization at 30 frames per second
for high definition video and 60 frames per second for lower
resolutions, while retaining satisfactory performance in video
correction, comparable to pixel-based equivalent algorithms.

Index Terms—Digital video stabilization, compressed domain
processing, motion vectors, real-time systems, low-complexity
algorithms.

I. INTRODUCTION

Cameras keep getting smaller and lighter and video cap-
turing has become easier than ever. Some examples are cam-
corders, mobile phone cameras, cameras on unmanned aerial
vehicles or mobile robots, and front car cameras. Using live
video over the network instead of being physically present has
broaden the opportunities for remote operations. In many real
life scenarios corrupted video is transmitted over the network
and video correction is necessary (or desired) at real-time
either for entertaining reasons e.g., live streaming from a sports
action camera, or for more crucial reasons such as remote
surgery or remote heavy machinery operation. For discarding
unindented camera movement from videos in consumer elec-
tronics end products, many video stabilization approaches have
been proposed and commercialized throughout the last years.
Solutions reported in literature are either hardware or soft-
ware solutions. Hardware-based stabilizers such as motorized
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gimbals require the acquisition of additional equipment which
is often designed for a certain camera type, e.g., hand-held
cameras. Software solutions make use of computer algorithms
to align misaligned frames due to camera vibrations in real-
time or on prerecorded video.

The three major steps within a digital video stabilization
pipeline is motion estimation, motion smoothing and motion
compensation, with motion estimation being the most compu-
tationally expensive step. Digital solutions perform stabiliza-
tion mainly in the pixel domain by using techniques such as
feature matching [1], computer vision optical flow fields [2],
edge pattern matching [3], SIFT point matching [4], [5], etc.
Less research has been performed on video correction in the
compressed domain [6], [7]. In the compressed domain, the
encoded motion information is basically block-based motion
vectors which are a result of an optimization of block size
costs, motion vector signaling costs, residual signaling costs,
etc. Therefore, even if the intention of the motion vectors
is to describe the motion in a scene, what they actually do
is minimizing the prediction error for maximizing the com-
pression efficiency [8]. However, the motion information in
those motion vectors is adequate enough to describe decently
the movement in a scene. As such, during video stabilization
the motion estimation step can be avoided and the whole
correction process can be simplified.

Conventionally, for estimating the global camera movement
in order to correct unwanted shakiness, motion models are
utilized for representing the 3D motion of the background in a
scene as it is being projected in two dimensions [9]. The higher
the order of the chosen motion model, the more different
types of motion can be controlled in a scene, i.e., translation,
rotation, sheering, scaling, etc. However, depending on the
application, the motion model can be of a lower order. For
instance, in applications where the camera focuses mainly
in one direction for multiple frames (constant background),
correcting translation and/or rotation is adequate for yielding
a stable video sequence.

The target application in this work is video stabilization
under real-time constraints. Video correction is mainly per-
formed on prerecorded video due to the fact that it is an
expensive process to be operated in real-time, i.e, online video
stabilization. However, a number of research efforts presented
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real-time video stabilization [10]–[15]. All of these efforts
are pixel-based and many of them are of high-complexity
with numerous preprocessing steps which are necessary in
order to mitigate the expensive step of motion estimation. As
long as the stabilization performance remains acceptable, the
algorithm’s complexity can be lowered in order to minimize
the overall computational time. That is the main interest of
experimentation in this work. Assume a scenario where cor-
rupted/shaky video is captured, encoded into a bitstream, and
transmitted through a network to be decoded and visualized.
Examples are remote surgery, remote machinery operation,
network-based endoscopy, live streaming, etc. In that case,
conventionally the video is being corrected right after the
decoding step and before the actual playback. Then, a pixel-
based computer vision approach is typically used to correct the
video as a post-processing step. In our proposed method, we
use the encoded motion vectors readily exist in the bitstream
and we perform the correction during decoding and without
the need of any costly preprocessing step. According to our
knowledge, there is no other work on real-time video stabi-
lization without the need of additional expensive preprocessing
steps.

In this paper, we propose and evaluate a low-complexity
video stabilization algorithm, which is performed in the com-
pressed domain by only using the readily available motion vec-
tors. After extracting the motion information during decoding,
the global motion vector is calculated by performing a small
number of non-complex preprocessing actions on the motion
vector flow field. Finally, a motion compensation step for
the correction of the translational misalignment of subsequent
frames is following a motion smoothing technique using a
low-pass filter in the frequency domain. Experiments showed
that the algorithm is very robust for moderate vibration and
constant background video correction scenarios such as front
car camera view, video surveillance, endoscopy, etc., while it
operates in real-time during video decoding.

The rest of the paper is organized as follows. In Section 2
the proposed method is presented, in Section 3 the experi-
mental results are being discussed and finally, in Section 4
we conclude this work, discuss potential applications, and we
recommend improvements which are planned as future work.

II. PROPOSED METHOD

Video stabilization consists of global motion estimation,
motion smoothing, and motion compensation. During the
global motion estimation local (object movement) and global
(camera movement) motion vectors are separated for each
frame, and a global motion vector is calculated, which de-
scribes the undesired camera movement or camera trajectory.
Filtering high frequencies out of the camera trajectory signal,
is the second step of the video stabilization process, while
motion compensation is the step where misaligned frames are
correctly aligned accordingly.

As specified in [17]–[20], perspective or affine transfor-
mation is not always the best suitable model for stabilizing
video. Considering our targeted application (real-time) and

Fig. 1. Example of motion vector field before (left) and after (right)
outlier removal using the Hampel identifier [16]. On the right side it
can be seen the smoothened motion vector flow field which makes the
camera movement approximation easier by mainly discarding motion
vectors corresponding to moving objects.

the nature of the videos we focus (no panning present), we
verified that non-linear similarity transformation is the best
suited motion model for sufficiently correcting videos while
remaining within real-time constraints.

We envision real-time video stabilization at the decoding
level reaching at least 30 corrected/stabilized frames per sec-
ond (fps). To achieve this during decoding, we let a number of
frames, e.g., 25 frames, to be decoded and visualized without
correction and the subsequent frames are being corrected by
taking under consideration only prior frames. As such, the
stabilized video is displayed to the end user with only less than
one second corrupted video at the beginning of the playback.

A. Global motion estimation

For estimating the global motion of the camera in a scene,
the motion from frame to frame, i.e., the pixel movement in
the 2D space, is modeled. The higher the order of the motion
model, the more complex motion can be represented. For
example, an 8-parameter model such as the perspective projec-
tion motion model with four reference points, can accurately
describe a 2D projection of a 3D rigid motion of a point to be
projected [9]. In that case, motion such as translation, rotation,
scaling and sheering can be extracted from the corresponding
transformation matrix. Moving towards lower order models
we observe that they are special cases of the perspective
model. A 4-parameter model for instance, would correspond
to a geometric transformation describing only translation,
rotation and scale. However, in cases where panning is absent
(e.g., when the camera is mounted), unwanted scaling is rare
and most of the vibration to be corrected is due to image
translation, i.e., pixel shifting by a number of pixels in either x-
or y-direction, or both. The corresponding 2-parameter motion
model, also known as non-reflective similarity transformation,
can accurately estimate the translational distortions in images.
The step-by-step global motion estimation used in this work,
is described as follows.

In the first step, we rearrange the motion vector flow field
acquired from the encoded bitstream in the 2D space for
better visualization. Then, the motion vectors are divided into
m × n blocks or grid cells. The smaller the block size the
more accurate separation of local vs. global motion can be



reached and therefore better stabilization results. However,
processing the flow field by using larger blocks can accelerate
the block processing procedure (due to the sequential nature
of the algorithm) which is useful for reducing computational
time. Therefore, we mainly used blocks of sizes up to 64×64
depending on the video resolution and the desired frame rate
we wanted to reach. The median of all x and y components
of the flow field is calculated for every block. Outlier removal
techniques were tested for removing vectors indicating too
large translation. At the presence of camera shakiness, every
decent outlier removal algorithm will mainly differentiate
local movement and global movement. We tested a Hampel
identifier or Hampel filter [16] to detect and remove outliers.
For each x and y component of the motion vectors, the
Hampel filter computes the median of a window composed
of the actual vector and its six surrounding vectors, three per
side. It also estimates the standard deviation of each vector
about its window median using the Median Absolute Deviation
(MAD). If a vector differs from the median by more than
a given number of MADs, it is replaced with the median
(see Fig. 1). More specifically, given a signal with samples
x1, x2, ..., xn and a sliding window of length k, the median
absolute deviation is calculated as in the following [16]:

MAD = median(|xi −mi|, ..., |xn −mn|), (1)

with mi being the local median

mi = median(xi−k, ..., xi, ..., xi+k). (2)

If a sample xi is such that

|xi −mi| > nσMAD, (3)

for a given threshold nσ (default is nσ = 3), then the Hampel
identifier declares xi an outlier and replaces it with mi.

Finally, from the resulted downscaled global motion vector
field we calculate the global motion vector. For the remaining
inlier x and y translational values, the median is calculated
and it represents a single motion vector, namely the global
motion vector for the corresponding frame.

B. Motion smoothing

For motion smoothing, we transform our global motion
signal into the frequency domain by using a fast Fourier
transform, where we apply a low-pass filter for removing high
frequencies from the camera trajectory both in the x- and
y-direction. The cut-off frequency is set to 1 Hz and only
frequencies lower than that are not filtered. In that way high-
frequency jitter is also being attenuated for avoiding so-called
“jumps” that are frequently found in stabilized videos due to
powerful vibrations.

C. Motion compensation

Motion compensation is being used for correcting the
frames according to the smoothened curve (see Fig. 2). The
corrected frame is aligned accordingly in the x and y direction:

ˆGMV Xi = GMVXi −DiffXi (4)

ˆGMV Y i = GMVY i −DiffY i (5)

where ˆGMV and GMV is the corrected and actual global
motion vector respectively, and Diff is the difference be-
tween the raw camera trajectory and the smoothened camera
trajectory in the x and y directions for the corresponding ith

frame.
Corrected frames are cropped according to the maximum

difference between the actual and smoothened camera tra-
jectory in both axes. In that way, the stabilized video is
absent of black borders which are a result of moving frames
due to translation correction. An adaptive cropping technique
decides the size of the border to be cropped depending on the
maximum global motion vector of a corresponding group of
pictures.

Fig. 2. Example of camera trajectories in the x− and y−direction
and the corresponding smoothened trajectories after reaching the end
of the video. Smoothing filter used for this example is a fast Fourier
transform filter with cutoff frequency of 1 Hz.

III. EXPERIMENTAL RESULTS

For the experimental part of this work we used three
datasets. The fisrt video sequence is shaky car found in [1]
and in the MATLAB’s Computer Vision Toolbox [21], [22].
It shows distorted material taken from a car front camera with
resolution 320x240 at 30 fps. A second test sequence is a
YouTube video [23] which suffers from heavy shakiness and it
has been a test subject for video stabilization. It shows material
from a mounted, but not stable camera filming a moving
train. Framerate here is 25 fps with a resolution of 720x480
(SD). For this work we name the sequence train. Lastly, we
used a more application specific endoscopic video which was
explicitly recorded within the context of the HELP Video!
project and it consists of a video crop of an endoscopic surgery
which suffers from common endoscopic camera vibrations.
Here, the video is captured at 30 fps with a resolution of
1920x1080 (HD).



The software we used was MATLAB on an Intel CoreTMi7-
6700K CPU machine. No hardware acceleration techniques
were used for a potential parallel implementation of our block-
based function. All experiments presented here are serially
conducted on the CPU. The motion vectors were extracted
from High Efficiency Video Coding (HEVC) [8] bitstreams
created by the HEVC reference coder HM-16.5 on a low-delay
IPPP setting, which is suitable for real-time applications [24].

Fig. 3. Example of video stabilization performance of the proposed
method for the sequence train [23]. We compare the mean of the
raw (left) vs. the corrected (right) frames for random groups of ca.
10 luminance frames.

We evaluated the performance of the video stabilizer sub-
jectively (see Fig. 3) and compared to a pixel-based approach
of higher complexity (see Fig. 4). As it can be seen in Fig.
3 and 4, we calculated the mean of consecutive frames for
visualizing the actual correction on the stabilized video in
comparison to the unstabilized one, similarly to [1]. We imple-
mented an example of a feature-matching approach for video
stabilization in the pixel domain, which uses a higher order
affine transformation [1], [22] for correcting scaling, rotation
and translation. From Fig. 3, 4 and 5 it can be seen that in cases
with moderate vibration and relatively constant background,
vibration can be corrected using the proposed low-complexity
method with similar results to higher complexity and more
sophisticated approaches that operate exclusively in the pixel-
domain. After the subjective evaluation we also assessed the
stabilizer objectively. Table I also shows a comparison between
the proposed method (with and without the use of the Hampel
identifier) and the pixel-based method in terms of Peak Signal
to Noise Ratio (PSNR) between consecutive frames, which is
a common way for measuring video stabilization performance.

In terms of speed, we calculated the time needed to apply
the whole stabilization process per frame, and we present the
results in Table II. For block sizes of 16x16, 32x32, and 64x64
we measured the corrected fps for different video resolutions.
Results showed that in every case we exceed with ease the

limit of 60 fps for smaller resolutions without significant code
optimization or hardware acceleration, while for HD video, 30
fps can be reached with the use of blocks of size 64x64 or
larger. Note here, that the higher the resolution the less we
suffer from stabilization accuracy decrease due to larger block
sizes.

Fig. 4. Example of video stabilization performance of the proposed
method (top) vs. a pixel-based method (bottom) [1], [22]. We
compare the mean of the raw (left) vs. the corrected (right) frames
for a random group of ca. 10 luminance frames.

Fig. 5. Example of video stabilization performance of the proposed
method on endoscopic video. We compare the mean of the raw
(left) vs. the corrected (right) frames for a random group of ca. 10
luminance frames.

Raw Pixel-based Proposed
Sequence - - w/ Hampel filter w/o Hampel filter
shaky car 22.01 dB 29.61 dB 29.54 dB 29.41 dB

train 23.95 dB 30.94 dB 31.99 dB 31.82 dB
endoscopic 20.15 dB 27.06 dB 26.77 dB 26.32 dB

TABLE I
MEAN PSNR BETWEEN CONSECUTIVE FRAMES FOR EVALUATING

STABILIZATION PERFORMANCE.

IV. CONCLUSIONS

We proposed a low-complexity video stabilization method
working exclusively in the compressed domain and aiming



Block sizes
Sequence 16x16 32x32 64x64

shaky car (320x240) 149.78 fps 195.90 fps 215.18 fps
train (720x480) 61.30 fps 106.08 fps 130.24 fps

endoscopic (1920x1080) 13.06 fps 26.57 fps 34.47 fps

TABLE II
TIMINGS OF THE PROPOSED VIDEO STABILIZATION METHOD IN
TERMS OF FRAMES PER SECOND (FPS) FOR DIFFERENT BLOCK

SIZES.

real-time applications (real-time video correction at the de-
coder’s side) at cases where video is transmitted over the
network and only input is the encoded bitstream. The key
contribution is the simplicity of the algorithm, which allows
implementation of video correction under real-time constraints
and with low-computational complexity, during the decoding
process. Results showed that satisfactory results in terms of
video stabilization can be reached with the proposed method,
while in terms of speed, framerates of 60 and 30 fps can be
easily reached for SD and HD video respectively without any
hardware acceleration. For mounted cameras with relatively
constant background and moderate to intense vibration, in the
presence of crucial real-time constraints, the proposed method
is an excellent solution for video correction applications.

Future work would be a parallel implementation for the
proposed method due to the fact that the algorithm is block-
based without any dependencies between blocks. Therefore, an
attractive speedup factor is expected from a straight-forward
GPU acceleration of the algorithm. Additionally, the algorithm
can be expanded with the option to use more sophisticated
motion models for recognizing more complicated motion
present in video and being able to correct more types of shaky
video, by only increasing the complexity to an acceptable
range.
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