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Summary

Many �elds of science meet alongside each other in the study of inverse problems.
Problems are of interest for mathematicians, engineers as well as applied scien-
tists across various �elds. The mathematical analysis of inverse problems holds
its rightful place. Mathematicians are concerned with the questions of existence
and uniqueness of a solution, its regularity, ill-posedness, regularization, numerical
algorithms for gaining an approximate solution, the convergence of the numerical
scheme, error estimates and many others.

The term fractional evolution equations is used for equations evolving in time
containing a fractional derivative. We deal with the equations involving the frac-
tional derivative in time and classic derivatives in space. This kind of equations may
be derived from the continuous time random walk assuming the divergent waiting
time and the �nite jump length variance. This results in an equation that follows
power time dependence of the mean square displacement, and it is considered to
be a generalization of Brownian motion. Processes described by the equation don't
follow Gaussian statistics; therefore, the Fick's second law fails to describe their
behavior. The non-linear growth of the mean square displacement which follows
the power-law pattern is an attribute of the anomalous di�usion processes, slow-
di�usion as well as sub-ballistic super-di�usion, found in many complex systems.

In our thesis, we are interested in the inverse source problems in the fractional
di�usion/wave equation, particularly, in the reconstruction of the time-dependent
part of the source term which represents the evolution of the source in time. We
study the existence of a solution together with its regularity. Our approach pro-
duces a numerical algorithm of which convergence is also examined, and numerical
experiments are performed. We address uniqueness of the solution in every case.
The problems we are solving di�er in the considered equation, boundary conditions
and additional measurement.

Our thesis consists of �ve chapters. In the �rst one, the mathematical back-
ground is presented. Subsequent chapters are original work based on four articles
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viii Summary

of which three have been already published, and one has been submitted for pub-
lication, all in well-respected journals. The chapters are organized as follows.

In the �rst chapter, we provide a mathematical background that serves as a
foundation for understanding of the successive chapters. The introduction contains
a short summary of functional analysis used in the thesis. The basic general and
particular functional spaces and concepts are introduced. In addition, the crucial
theorems including various identities and inequalities are formulated. The central
part of the chapter is focused on the notion of a partial di�erential equation and
an inverse source problem. The �nal part is devoted to a concise introduction to
the fractional calculus, the derivation of the fractional di�usion and wave equation,
and the comparison of their solutions with their classical counterparts. We close
the chapter with two preparatory lemmas.

Chapter 2 is devoted to the study of an inverse source problem in a semi-linear
fractional di�usion equation with a non-linearity in the form of an time integral
on the right-hand side of the equation. The interest lies in reconstruction of the
time dependent part of the source term from the integral over-determination. The
weak formulation of the problem is stated and by applying the measurement on the
equation, we gain an additional equation for the solution. The resulting equations
are discretized in time, the existence and uniqueness of the solution along the
time slices is addressed, and a priori estimates are proven. The existence of the
solution is obtained using the Rothe functions which converge to the solution of the
problem. Moreover, the uniqueness of the solution is established. The chapter is
concluded with numerical experiments, also addressing a possibility of noisy data.
The entire chapter is based on the article [119] published in journal Computers and
Mathematics with Applications with impact factor 1.53 in 2016.

In Chapter 3 we study the identi�cation of the time-dependent part of a source
in a fractional wave equation with a nonlinear term on the right hand side of the
equation. The additional measurement is assumed to have the form of an integral
over the part of the domain. The existence and uniqueness of the solution is
obtained using the Rothe method similarly as in Chapter 1. A couple of numerical
experiments is presented at the end of the chapter. The article [130], published in
the journal Applied Numerical Mathematics, with impact factor 1.087 in year 2016,
served as foundation for this chapter.

Chapter 4 deals with the inverse source problem in a linear fractional wave
equation accompanied with a non-standard boundary condition. The condition
is a fractional analogy of the well-known dynamical boundary condition because
it contains a fractional partial derivative with respect to time. The problem is
discretized, and the uniqueness and existence of a solution is addressed. The im-
portant part is the obtained error estimate. To support the theoretical results
some numerical experiments are performed. This chapter is grounded in the arti-
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cle [131] which has been published in the aforementioned journal Computers and
Mathematics with Applications.

The last chapter discusses the reconstruction of the time-dependent source term
in the fractional wave equation where the noninvasive type of measurement is used,
i.e. the measurement is in the form of an integral over a part of the boundary. The
Rothe method is applied to gain the existence of the solution, and the uniqueness is
obtained too. Numerical examples in 2D are provided. The chapter is based on the
article [129], submitted for publication in Journal of Computational and Applied
Mathematics with impact factor 1.357 in 2016.

Our thesis is concluded with the discussion over the results and some possibili-
ties for future work.
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Samenvatting

Veel wetenschapsgebieden ontmoeten elkaar in de studie van inverse problemen.
Deze problemen zijn van belang voor zowel wiskundigen, als ingenieurs en toege-
paste wetenschappers in verschillende onderzoeksdomeinen. De wiskundige ana-
lyse van inverse problemen is een belangrijk onderdeel in hun studie. Wiskundigen
houden zich bezig met belangrijke vragen omtrent het bestaan en uniciteit van een
oplossing, de regulariteit van de oplossing, de slecht-gesteldheid van het vraagstuk,
de ontwikkeling van numerieke algoritmen voor het bekomen van een benaderende
oplossing, de convergentie van de algoritmen en de foutschattingen.

De term fractionele-evolutievergelijkingen wordt gebruikt voor vergelijkingen
die in de tijd evolueren en een fractionele afgeleide bevatten. In dit proefschrift
behandelen we vergelijkingen die een fractionele afgeleide naar de tijd en klassieke
afgeleiden naar de ruimtelijke veranderlijke bevatten. Dit soort van vergelijkingen
kunnen worden afgeleid vertrekkend vanuit een toevalsbeweging in continue tijd,
in de veronderstelling dat de wachttijd divergent is en dat de spronglengte een
eindige variantie heeft. Dit resulteert in een vergelijking die wordt beschouwd als
een veralgemening van de Brownse beweging. Processen die door deze vergelijking
worden beschreven volgen geen normale verdeling en daarom kan Fick's tweede wet
hun gedrag niet beschrijven.

In dit proefschrift zijn we geïnteresseerd in inverse bronproblemen voor zowel de
fractionele di�usie als fractionele golfvergelijking. Meer speci�ek, we focussen op
de reconstructie van het tijdsafhankelijke deel van de bronterm dat de evolutie van
de bron weergeeft in de tijd. We bestuderen het bestaan van een oplossing samen
met de regulariteit ervan. Onze aanpak levert een numeriek algoritme op waarvan
de convergentie wordt onderzocht. Numerieke experimenten worden uitgevoerd.
We behandelen ook de uniciteit van de oplossing voor elk van de bestudeerde
problemen. De problemen verschillen op basis van de beschouwde vergelijking, de
randvoorwaarden en de bijkomende meting die nodig is om de onbekende bronterm
te reconstrueren.

xi



xii Samenvatting

De dissertatie bestaat uit vijf hoofdstukken. In het eerste hoofdstuk wordt de
wiskundige achtergrond gepresenteerd. De andere hoofdstukken bevatten origineel
werk gebaseerd op vier artikels waarvan er al twee zijn gepubliceerd, één is geac-
cepteerd voor publicatie en één is ingediend, dit in hoogstaande tijdschriften. De
hoofdstukken zijn georganiseerd als volgt.

In het eerste hoofdstuk bieden we de wiskundige achtergrond aan die de basis
vormt waarop dit proefschrift is gebaseerd. Deze achtergrond is noodzakelijk om
de volgende hoofdstukken te kunnen begrijpen. Het begin van het hoofdstuk bevat
een kort overzicht van de resultaten uit de functionaalanalyse die in het proefschrift
worden gebruikt. Algemene en speci�eke functieruimten en concepten worden ge-
ïntroduceerd. Cruciale stellingen worden vermeld. Ook belangrijke identiteiten en
ongelijkheden worden behandeld. In het midden van het hoofdstuk bespreken we
kort de begrippen partiële di�erentiaalvergelijking en invers bronprobleem. Het
laatste deel is gewijd aan een beknopte inleiding op de fractionele calculus, de af-
leiding van de fractionele di�usie- en golfvergelijking en het vergelijken van hun
oplossingen met de oplossingen van hun klassieke tegenhangers. We sluiten het
hoofdstuk af met twee technische lemma's die de hoeksteen vormen van de analyse
in de volgende hoofdstukken.

Hoofdstuk 2 is gewijd aan de studie van een invers bronprobleem in een semi-
lineaire fractionele di�usievergelijking met een niet-lineariteit in de vorm van een
tijdsintegraal in het rechterlid van de vergelijking. De interesse ligt in de reconstruc-
tie van het tijdsafhankelijke deel van de bronterm op basis van een integraalmeting
over het volledige domein. De zwakke formulering van het probleem wordt op-
gesteld, en door de meting op de vergelijking toe te passen krijgen we een extra
vergelijking waaraan de oplossing moet voldoen. De resulterende vergelijkingen
worden in de tijd gediscretiseerd, het bestaan en de uniciteit van de oplossing op
de verschillende tijdstippen wordt bestudeerd en er worden apriori afschattingen
berekend. Het bestaan van de oplossing wordt verkregen met behulp van zoge-
naamde Rothefuncties die convergeren naar de oplossing van het probleem. Bo-
vendien wordt ook de uniciteit van een oplossing onderzocht. Het hoofdstuk wordt
afgesloten met numerieke experimenten, waarbij ook de invloed van fouten in de
data op de oplossing wordt onderzocht. Dit hoofdstuk is gebaseerd op het artikel
[119] gepubliceerd in het tijdschrift Computers and Mathematics with Applications
(impactfactor 1,53 in 2016).

In Hoofdstuk 3 bestuderen we de identi�catie van het tijdsafhankelijke deel van
de bron in een fractionele golfvergelijking met niet-lineaire term in het rechterlid.
De extra meting is een integraalmeting over een deel van het domein. Het bestaan
en de uniciteit van de oplossing wordt verkregen met behulp van de Rothemethode.
De analyse is vergelijkbaar met de aanpak gebruikt in Hoofdstuk 2. Aan het einde
van dit hoofdstuk worden een aantal numerieke experimenten gepresenteerd. Het
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artikel [130] gepubliceerd in het tijdschrift Applied Numerical Mathematics (met
impactfactor 1.087 in jaar 2016) diende als basis voor dit hoofdstuk.

Hoofdstuk 4 behandelt een inverse bronprobleem in een lineaire fractionele golf-
vergelijking vergezeld met een niet-klassieke randvoorwaarde. Deze randconditie is
de fractionele analogie van de bekende dynamische randvoorwaarde omdat deze een
fractionele afgeleide bevat met betrekking tot de tijd. Het probleem is gediscreti-
seerd in de tijd en de uniciteit en het bestaan van een oplossing wordt aangetoond.
De belangrijkste bijdrage in dit hoofdstuk is de verkregen foutschatting. Ter on-
dersteuning van de theoretische resultaten worden enkele numerieke experimenten
uitgevoerd. Dit hoofdstuk is gebaseerd op het artikel [131] dat is geaccepteerd voor
publicatie in het tijdschrift Computers and Mathematics with Applications.

Het laatste hoofdstuk bespreekt de reconstructie van een tijdsafhankelijke bron-
term in de fractionele golfvergelijking waarbij een niet-invasieve meting wordt ge-
bruikt, d.w.z. de meting is in de vorm van integraal over een deel van de rand
van het domein. De Rothemethode wordt opnieuw toegepast om het bestaan van
de oplossing te verkrijgen en de uniciteit wordt ook verkregen. Numerieke expe-
rimenten in een tweedimensionale setting worden gepresenteerd. Het hoofdstuk is
gebaseerd op het artikel [129], ingediend voor publicatie in het tijdschrift Journal
of Computational and Applied Mathematics (impactfactor 1.357 in 2016).

Dit proefschrift wordt afgesloten met de discussie van de resultaten en enkele
mogelijke perspectieven voor toekomstig onderzoek.
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Chapter 1

Mathematical background

In this chapter, we summarize mostly without proofs the relevant theory on which
the later chapters are based, and we give a brief introduction to the fractional
calculus. In the �rst section, we have compiled same basic de�nitions from func-
tional analysis, later in the second section, we proceed to the well-known theo-
rems. Section 1.3 deals with the equalities and inequalities used in the proofs
later. Next three sections are devoted to the general notion of partial di�eren-
tial equations, methods used for their inspection and inverse problems connected
to them. In the last section of this chapter, we introduce the concept of frac-
tional derivative and also some preliminary technical results, which are stated and
proved. For most of the mathematical background that we present here, we refer
to [2, 35, 92, 98, 99, 101, 107, 132, 147].

1.1 Basic de�nitions

In this section we de�ne the notions of metric space, convergence, normed space,
Banach and Hilbert space.

De�nition 1.1.1. A function d : M ×M → [0,∞), where M is a set is called a
metric if for all x, y, z ∈M the following is satis�ed

(i) d(x, y) ≥ 0,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) = 0 if and only if x = y,

1



2 Mathematical background

(iv) d(x, y) ≤ d(x, z) + d(z, y).

A couple (M,d) is called a metric space. From now on, let (M,d) be a metric
space.

De�nition 1.1.2. A sequence {xn}∞n=1 ⊂M is called Cauchy, if for every ε > 0,
there exists n0 ∈ N such that for every n,m ≥ n0, it holds

d(xn, xm) < ε.

De�nition 1.1.3. A sequence {xn}∞n=1 ⊂M is said to converge (be convergent)
to x ∈M , denoted as

xn → x,

if
lim
n→∞

d(xn, x) = 0.

De�nition 1.1.4. A metric space M is called complete if every Cauchy sequence
converges in M .

Let X be a real linear space.

De�nition 1.1.5. A map ‖·‖ : X → [0,∞) is called a norm if

(i) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,

(ii) ‖λx‖ = |λ| ‖x‖ for all x ∈ X, λ ∈ R,

(iii) ‖x‖ = 0 if and only if x = 0.

The couple (X, ‖·‖) is called a normed linear space. We will denote a normed
linear space only by the set X if it is clear with which norm it is coupled. For
a better clarity, we will denote the norm a�liated to the space X as ‖·‖X when
necessary. There can be de�ned a metric as d(x, y) = ‖x− y‖ in every normed
space. A normed linear space X is called a Banach space if (X, d) with the metric
de�ned in that way is complete.

De�nition 1.1.6. Let H be a real linear space. A function p·, ·q : H ×H → R is
called an inner product if for every x, y ∈ H

(i) px, yq = py, xq,
(ii) the mapping x 7→ px, yq is linear for each y ∈ H,

(iii) px, xq ≥ 0,
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(iv) px, xq = 0 if and only if x = 0.

With the above de�ned inner product, we may associate the norm

‖x‖ := px, xq 1
2 .

A Banach space endowed with an inner product and its associated norm is called
a Hilbert space.

1.2 Functional analysis

In this section, we de�ne an bounded linear functional, re�exive Banach space,
weak convergence, compact set, absolute and Lipschitz continuity, weak deriva-
tive, Lebesgue and Sobolev spaces, Bochner integral, spaces involving time, and
convolution. We also state the Eberlein-�muljan theorem, Hahn-Banach theorem,
Riesz representation theorem, Lax-Milgram theorem, Arzelà-Ascoli theorem, Trace
theorem, Lebesgue's dominated convergence theorem and some other theorem con-
nected to the de�nitions.

Let X be a Banach space.

De�nition 1.2.1. A mapping f : X → R is called a bounded linear functional
on X i�

(i) sup
‖x‖≤1

|f(x)| ≤ C,

(ii) f(αx+ βy) = αf(x) + βf(y) for every α, β ∈ R and x, y ∈ X.

A set of all bounded linear functionals on a space X, endowed with the norm

‖f‖ = sup
‖x‖≤1

|f(x)| ,

forms again a Banach space which is called the dual space of X and denoted by
X∗. We also introduce the notation 〈f, x〉 = f(x) for f ∈ X∗ and x ∈ X. We
denote a dual space of X∗ (the second dual of the space X) as X∗∗. There exists
a natural map j : X → X∗∗ given by j(x) = x∗∗ where

〈x∗∗, f〉 = 〈f, x〉,

for all f ∈ X∗. This mapping is often called the canonical mapping. Here ‖x∗∗‖ =
‖x‖, in another words j is isometric.
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De�nition 1.2.2. If the canonical mapping j : X → X∗∗ de�ned above is surjec-
tive, then X is called reflexive.

De�nition 1.2.3. We say that a sequence {xn} ⊂ X is weakly convergent (con-
verges weakly) denoted as

xn ⇀ x,

when

〈f, xn〉 → 〈f, x〉

for every f ∈ X∗.

Theorem 1.2.1 (Eberlein-�muljan theorem). For a Banach space X, the following
is equivalent:

(i) X is re�exive.

(ii) Every bounded sequence {xn} ⊂ X contains a weakly convergent subsequence.

Theorem 1.2.2 (Hahn-Banach theorem). Let Y be a a linear subspace of a Banach
space X and

f : Y → R

be a bounded linear functional on Y . Then there exist a bounded linear extension

f : X → R

with
∥∥f∥∥

X∗
= ‖f‖Y ∗ .

Theorem 1.2.3 (Riesz representation theorem). Let H be a real Hilbert space,
with inner product p·, ·q. For every x∗ ∈ H∗ there exists a unique element x ∈ H
such that

〈x∗, y〉 = px, yq for all y ∈ H.

Theorem 1.2.4 (Lax-Milgram theorem). Let H be a real Hilbert space and B :
H × H → R a bilinear mapping, for which there exist constants C1, C2 such that
for every x, y ∈ H, it holds that

(i)

|B[x, y]| ≤ C1 ‖x‖ ‖y‖ ,

(ii)

C2 ‖x‖2 ≤ B[x, x].
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Assume also f : H → R be a bounded linear functional on H. Then, there exists a
unique x ∈ H such that

B[x, y] = 〈f, y〉

for all y ∈ H.

De�nition 1.2.4. A subset M of a normed space X is called compact if every
sequence of points in M has a subsequence converging in X to an element of M .
M is called relatively compact if M is compact set.

De�nition 1.2.5. Let G be a nonempty bounded open set in Rn and (Y, ‖·‖Y )
be a Banach space. By C(G, Y ) we denote the set of all u : G → Y , which are
continuous.

Then, the set C(G, Y ) furnished with the maximum norm de�ned as

‖u‖ = max
x∈G
‖u(x)‖Y

form a Banach space. In the case when Y = R, we write C(G,R) = C(G).

Theorem 1.2.5 (Arzelà-Ascoli theorem). The set M ⊂ C(G, Y ) is relatively com-
pact i�

(i) the set {u(x) : u ∈M} is relatively compact in Y for all x ∈ G,

(ii) for every x ∈ G and every ε > 0 there is a δ(ε, x) > 0, independent of
function u, such that

sup
u∈M

‖u(x)− u(y)‖Y < ε whenever y ∈ G and |x− y| < δ(ε, x).

Remark 1.2.1. In the case when Y = R, the condition (i) in the theorem above
can be changed to: there exists a constant C such that for every u ∈M and x ∈ G,
|u(x)| ≤ C, compactly written sup

u∈M
sup
x∈G

|u(x)| < ∞. Since every bounded sequence

in R has a convergent subsequence in R.

Theorem 1.2.6. Let [a, b] be a �nite interval of R and f : [a, b] → R. Then f
is absolutely continuous on [a, b] if and only if there exist a Lebesgue integrable
function g : [a, b]→ R such that

f(x) = f(a) +

∫ x

a

g(t) dt for x ∈ [a, b].

Then g = f ′ a.e. in [a, b].
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De�nition 1.2.6. Let n ∈ N, and [a, b] be a �nite interval of R. We denote by
AC[a, b] the space of all functions f which are absolutely continuous on [a, b] and by
Ck[a, b] the space of all function which are continuously di�erentiable up to order
k ∈ N ∪ 0. We de�ne

ACn[a, b] =
{
f : [a, b]→ R, f ∈ Cn−1[a, b] and f (n−1) ∈ AC[a, b]

}
.

De�nition 1.2.7. Let X,Y be Banach spaces. We say that a function f : X → Y
is (global) Lipschitz continuous if there exists a real constant C ≥ 0 such that for
all x1, x2 ∈ X it holds that

‖f(x1)− f(x2)‖Y ≤ C ‖x1 − x2‖X .

Next, let Ω ⊆ Rn and n ∈ N be open and nonempty.

De�nition 1.2.8. Let p be a positive real number. The set of all measurable
functions u de�ned on Ω with ∫

Ω

|u(x)|p dx <∞ (1.1)

is denoted by Lp(Ω). In this set, all function that are equal almost everywhere
are identi�ed, so elements of Lp(Ω) are precisely the classes of equivalence. For
convenience this distinction is ignored. For measurable function u, it is written
u ∈ Lp(Ω) if u satis�es (1.1), and u = 0 if u is equal to 0 almost everywhere in Ω.

It is clear that Lp(Ω) is a vector space; moreover, furnished with the norm
de�ned as

‖u‖Lp(Ω) =

�∫
Ω

|u(x)|p dx

 1

p

for 1 ≤ p < ∞, it forms a Banach space. Specially, for p = 2, one can naturally
de�ne a scalar product by

(u, v) =

∫
Ω

u(x)v(x) dx. (1.2)

The set L2(Ω) endowed with this scalar product is a Hilbert space.

De�nition 1.2.9. A measurable function u de�ned on Ω is called essentially
bounded on Ω if there exists a constant C

inf
A∈N

sup
x∈Ω\A

|u(x)| ≤ C,
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where N is a set of all subset of Ω that have zero Lebesgue measure. Then, the
lowest of such a C is called the essential supremum of u on Ω and is denoted by
ess supx∈Ω |u(x)|. Moreover, we denote by L∞(Ω) the set of all essentially bounded
functions on Ω, again we identify all functions that are equal a.e. on Ω in the same
way as above.

The set L∞(Ω) with the norm de�ned as

‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)|

forms a Banach space.

In the next theorem, we use the general notation long-established in the measure
and integration theory, see [30]. Let (Ω,Σ, µ) be a measurable space and L1(µ) =
L1(Ω,Σ, µ).

Theorem 1.2.7 (Lebesgue's dominated convergence theorem). Suppose fn, gn, g ∈
L1(µ), fn → f a.e., |fn| ≤ gn, gn → g a.e. and∫

Ω

gndµ→
∫

Ω

gdµ.

Then f ∈ L1(µ) and ∫
Ω

fdµ = lim
n→∞

∫
Ω

fndµ.

(In most typical applications of this theorem gn = g ∈ L1(µ) for all n.)

De�nition 1.2.10. By L1
loc(Ω) we denote the set of all locally integrable func-

tions, thus, all measurable functions u : Ω→ R such that for every compact subset
M of Ω ∫

M

|u(x)| dx <∞.

De�nition 1.2.11. For u : Ω→ R set

supp u := {x : u(x) 6= 0}

is called a support of u.

De�nition 1.2.12. We denote by C∞0 (Ω) a set of all in�nitely di�erentiable func-
tions u : Ω→ R with a compact support in Ω.

De�nition 1.2.13. Let α = (α1, . . . , αn) where αi are nonnegative integers for
1 ≤ i ≤ n. We call α a multi-index.
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We denote by xα, with multi-index α, the monomial xα1 · · ·xαn , which has
degree |α| =

∑n
i=1 αi. Similarly, if Di = ∂

∂xi
, for 1 ≤ i ≤ n, then Dα = Dα1 · · ·Dαn

is a di�erential operator of order |α|.
De�nition 1.2.14. Let u ∈ L1

loc(Ω) and α be a multi-index. If there exist a
function vα ∈ L1

loc(Ω) satisfying∫
Ω

u(x)Dαϕ(x) dx = (−1)|α|

∫
Ω

vα(x)ϕ(x) dx

for every ϕ ∈ C∞0 (Ω), then we call vα an α-th weak derivative of u.

De�nition 1.2.15. Let k ∈ Z+
0 and 1 ≤ p ≤ ∞. By W k,p(Ω) we denote a set

of all functions u : Ω → R such that for every multi-index α, |α| ≤ k, the weak
derivative Dαu ∈ Lp(Ω).

The set W k,p(Ω) equipped with a norm de�ned as

‖u‖Wk,p(Ω) =

 ∑
0≤|α|≤k

‖Dαu‖pLp(Ω)


1
p

if 1 ≤ p <∞,

‖u‖Wk,∞(Ω) = max
0≤|α|≤k

‖Dαu‖L∞(Ω) if p =∞

forms a Banach space.

De�nition 1.2.16. By W k,p
0 (Ω) we denote the closure of C∞0 (Ω) in W k,p(Ω).

SpacesW k,p(Ω) andW k,p
0 (Ω) endowed with the above norms are called Sobolev

spaces. For p = 2, we denote Hk(Ω) = W k,2(Ω) and Hk
0 (Ω) = W k,2

0 (Ω). Spaces
Hk(Ω) and Hk

0 (Ω) equipped with the scalar product similarly de�ned as in (1.2)
are Hilbert spaces.

Theorem 1.2.8 (Trace theorem). Let Ω ⊂ Rn be open, bounded, with Lipschitz
boundary ∂Ω. If u ∈W 1,p(Ω), 1 ≤ p ≤ ∞, then there exists bounded linear operator
T : W 1,p(Ω)→ Lp(∂Ω) such that

(i) Tu = u|∂Ω for all u ∈W 1,p(Ω) ∩ C(Ω),

(ii) ‖Tu‖Lp(∂Ω) ≤ C ‖u‖W 1,p(Ω), with C = C(p,Ω).

We call Tu the trace of u on ∂Ω.
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Let (I,Σ, µ) be a space with σ-�nite and complete measure, where Σ is a
σ−algebra of measurable sets on I, and µ : Σ → [0,∞) is a measure. Let X
be a Banach space and f : I → X. We call f simple if there exist a �nite col-
lection of disjoint sets with �nite measure M1, ..,Mk ∈ Σ and x1, ..., xk such that
f =

∑k
i=1 χMi

xi. We de�ne the integral of simple function f as
∫
f =

∫
I
fdµ :=∑k

i=1 µ(Mi)xi. It holds
∥∥∫ f∥∥ ≤ ∫

‖f‖, where the integral on the right hand
side (r.h.s.) is the Lebesgue integral of the simple function ‖f‖ : I → [0,∞).
We call f measurable if there exists a sequence of simple functions {fk} such
that fk(t) → f(t) for a.e. t ∈ I. Function f is called integrable if there exist
a sequence of simple functions {fk} such that fk(t) → f(t) for a.e. t ∈ I and∫
I
‖fk − f‖ dµ → 0. We de�ne the Bochner integral for an integrable function f

as
∫
I
fdµ := limk→∞

∫
I
fkdµ.

Theorem 1.2.9. The measurable function f : I → X is (Bochner) integrable if and
only if ‖f‖ is (Lebesgue) integrable. If f is integrable then it holds

∥∥∫ f∥∥ ≤ ∫ ‖f‖.
Theorem 1.2.10. Let f : I → X be an integrable function and Y be a Banach
space. If A : X → Y is a linear, continuous operator, then Af : I → Y is integrable
and

∫
Af = A(

∫
f).

De�nition 1.2.17. Let 1 ≤ p ≤ ∞. The space Lp p(0, T ), Xq consists of all
measurable functions w : [0, T ]→ X such that

‖w‖Lpp(0,T ),Xq =

�∫ T

0

‖w(t)‖pX dt

� 1
p

<∞ if 1 ≤ p <∞,

and
‖w‖L∞p(0,T ),Xq = ess sup

t∈[0,T ]

‖w(t)‖X <∞.

De�nition 1.2.18. The space C p[0, T ], Xq is a space of all continuous functions
w : [0, T ]→ X such that

‖w‖C p[0,T ],Xq = max
t∈[0,T ]

‖w(t)‖X <∞.

Assuming X to be a Banach space, the spaces Lp p(0, T ), Xq and C p[0, T ], Xq
equipped with the norms from the above de�nitions are also Banach spaces.

De�nition 1.2.19. For w ∈ L1 p(0, T ), Xq, we de�ne v ∈ L1 p(0, T ), Xq to be a
weak derivative of w, writing

w′ = v,

if for all test functions ϕ ∈ C∞0 (0, T ), it holds that∫ T

0

ϕ′(t)w(t) dt = −
∫ T

0

ϕ(t)v(t) dt.
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De�nition 1.2.20. We de�ne the Sobolev space W 1,p((0, T ), X), for 1 ≤ p ≤ ∞,
as a space of all w ∈ Lp p(0, T ), Xq such that the weak derivative w′ exists and
belongs to Lp p(0, T ), Xq.

The space W 1,p((0, T ), X) furnished with the norm de�ned as

‖w‖W 1,p((0,T ),X) =

�∫ T

0

�
‖w(t)‖pX + ‖w′(t)‖pX

�
dt

� 1
p

<∞ if 1 ≤ p <∞

and

‖w‖W 1,∞((0,T ),X) = ess sup
t∈[0,T ]

�
‖w(t)‖pX + ‖w′(t)‖pX

�
<∞ if p =∞

is a Banach space. In case when p = 2, we write H1((0, T ), X) = W 1,2((0, T ), X).

Theorem 1.2.11. Let 1 ≤ p ≤ ∞ and w ∈ W 1,p((0, T ), X). Then, the following
is true

(i) w ∈ C p[0, T ], Xq (it might be necessary to rede�ned it on the set of zero
measure),

(ii) w(t) = w(s) +

∫ t

s

w′(r) dr for every s, t ∈ [0, T ], s ≤ t,

(iii) it holds that

‖w‖C p[0,T ],Xq ≤ C(T ) ‖w‖W 1,p((0,T ),X) .

De�nition 1.2.21. Let u, v : Rn → R, n ∈ N. We de�ne a convolution of u and
v at x ∈ Rd as

(u∗ v)(x) :=

∫
Rn

u(x− y)v(y)dy,

if the integral on the right hand side exists.

Notice that for functions u, v : [0,∞] → R, which we additionally de�ne to be
zero outside their de�nition domain, the integration limits in the de�nition of the
convolution reduce so that we obtain

(u∗ v)(x) =

∫ x

0

u(x− y)v(y)dy for x ∈ R,

we call the convolution on the positive half-line also the Laplace convolution.
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1.3 Equalities and inequalities

Theorem 1.3.1 (Young's inequality). Let 1 < p, q < ∞, 1
p + 1

q = 1 and a, b ∈ R
then it holds

ab ≤ εap + Cεb
q

for Cε = (εp)−
q
p q−1.

Theorem 1.3.2 (Hölder's inequality). Let 1 ≤ p, q ≤ ∞, with 1
p + 1

q = 1 and

u ∈ Lp(Ω), v ∈ Lq(Ω), then it holds∫
Ω

|u(x)v(x)| dx ≤ ‖u‖Lp(Ω) ‖v‖Lq(Ω) .

Theorem 1.3.3 (Discrete Hölder's inequality). Let 1 ≤ p, q <∞, with 1
p + 1

q = 1

and a = (a1, ..., an), b = (b1, ..., bn) ∈ Rn then it holds that

n∑
i=1

|aibi| ≤
�

n∑
i=1

|ai|p
� 1

p
�

n∑
i=1

|bi|q
� 1

q

.

Theorem 1.3.4 (Cauchy-Schwarz inequality). Let x, y ∈ H, then it holds

|px, yq| ≤ ‖x‖ ‖y‖ .
Theorem 1.3.5 (Grönwall's inequality (integral form)). Let u(t) be a nonnegative,
summable function on [0, T ] which satis�es the integral inequality

u(t) ≤ C1 + C2

∫ t

0

u(s) ds

for a.e. t, where C1, C2 ≥ 0. Then

u(t) ≤ C1

�
1 + C2te

C2t
�

for a.e. t ∈ [0, T ].

Theorem 1.3.6 (Grönwall's inequality (discrete form)). Let {ai}, {Bi} be se-
quences of nonnegative real numbers and C ≥ 0. Let

an ≤ Bn +

n−1∑
i=1

Cai

for n ∈ N. Then,

an ≤ Bn + enC
n−1∑
i=1

CBi

for n ∈ N.
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Theorem 1.3.7 (Abel's summation). Let {ui} be a subset of a Hilbert space, then

2

n∑
i=1

pui, ui − ui−1q = ‖un‖2 − ‖u0‖2 +

n∑
i=1

‖ui − ui−1‖2

for n ∈ N.

In the following theorem, we use the standard notation ∇ = ( ∂
∂x1

, ..., ∂
∂xn

) for

the gradient operator, ∆u =
∑n
i=1

∂2u
∂x2

i
for the Laplace operator applied on u, and

ν denotes the outer normal unit vector on the boundary ∂Ω.

Theorem 1.3.8 (Green's identity). Let u, v ∈ C2(Ω), then it holds that∫
Ω

∇u(x) · ∇v(x) dx = −
∫

Ω

u(x)∆v(x) dx+

∫
∂Ω

u(x)∇u(x) · νdS.

Notice that the identity is valid also for functions from appropriate Sobolev
spaces.

Theorem 1.3.9 (Friedrichs's inequality). Let Ω be a bounded domain with Lips-
chitz boundary. Let Γ ⊂ ∂Ω, |Γ| 6= 0. Then for u ∈W 1,2(Ω), we have that

‖u‖W 1,2(Ω) ≤ C

�∫
Γ

|u(x)|2 dS +

∫
Ω

n∑
i=1

���� ∂u∂xi
����
2

dx

� 1
2

.

Theorem 1.3.10 (Young's inequality for convolutions). Let 1 ≤ p, q, r ≤ ∞ such
that

1

p
+

1

q
=

1

r
+ 1,

and u ∈ Lp(Rn), v ∈ Lq(Rn), n ∈ N. It holds that

‖u∗ v‖Lr(Rn) ≤ ‖u‖Lp(Rn) ‖v‖Lq(Rn) .

1.4 Partial di�erential equations

Many natural phenomena, which are interesting and important to understand,
predict and control, can be described by equations containing physical quanti-
ties and their rate of change in space or time (partial derivative). Such processes
can be found in various �elds of science such as physics, chemistry, �nance, biol-
ogy, etc. From the enormous number of them we name for instance electromag-
netism [56], viscoelasticity [21], deformation of solid bodies [126], heat transfer
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[32], wave propagation [1], chemical kinetics [62], option pricing [14], �uid mechan-
ics [12], etc. Equations containing partial derivatives of quantities are called partial
differential equations (PDEs). The solution to those equations is not a number
as to algebraic equations but a function.

There does not exist the uniform mathematical de�nition of a partial di�erential
equation containing all the possible cases for such an equation. In general, we can
say that a partial di�erential equation is an equation involving an unknown function
u dependent on two or more variables and containing one or more partial derivatives
of u. The following de�nition covers what we said above.

De�nition 1.4.1. Let Ω be an open subset of Rn, n ∈ N, and x = (x1, . . . , xn) ∈ Ω,
next, let's have an unknown function u : Ω→ R that satis�es the following formula

F
�
x1, . . . , xn, u(x), D1u(x), . . . , Dku(x)

�
= 0, for x ∈ Ω (1.3)

where k ≥ 1, Di is a vector containing all i-th order partial derivatives of u and

F : Ω× R× Rn × . . .× Rn
k−1

× Rn
k

→ R.

We call (1.3) a k-th order partial differential equation and u is called a solution
of partial differential equation (1.3).

To �nd a solution of a partial di�erential equation means to �nd all functions u
satisfying the equation, or, if we fail to �nd an explicit prescription, then proving
the existence and other properties of the solution.

Evolution equations

In the case when a natural phenomenon that we model with a partial di�erential
equation evolves in time, the variable which represent the time is denoted by t,
and it is assumed to be bigger or equal to zero. When considered, the �nal time is
denoted as T . The variable representing space and spatial domain are then denoted
by x and Ω, respectively, with Γ = ∂Ω. In literature, this kind of equations are
called evolution equations. Likely, the most known examples are the heat equation

∂tu−∆u = f (1.4)

and the wave equation
∂ttu−∆u = f. (1.5)

One of possible approaches to evolution equations is the change of perspective.
Instead of looking for the value of solution in point (x, t), we may look for the �state�
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Figure 1.1: Space-time domain

of the system at every time t. Thus, in place of searching u : Ω × (0, T ) → R, we
rather look for mapping

u : (0, T )→ X,

where
t→ u(t),

and X is a functional space, usually one of the Sobolev spaces. This change of
perspective will naturally be re�ected in the mathematical analysis of a problem.
Above we have already de�ned spaces involving time which will take a role in the
analysis. This approach also allows to consider regularity di�erent for space and
for time.

Boundary and initial conditions

Often boundary conditions are accompanying an equation. These are conditions
prescribing values which the solution of the equation should hold on the boundary of
Ω. Those conditions restricts the number of allowed solutions. The most standard
boundary conditions are

(i) the Dirichlet boundary condition

u(x) = a(x) on Γ,

(ii) the Neumann boundary condition

−∇u(x) · ν = b(x) on Γ,
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(iii) the Robin boundary condition

λ1u(x) + λ2∇u(x) · ν = c(x) on Γ,

where a, b, c are some functions, ν is an outer normal vector to the boundary Γ, and
λ1, λ2 6= 0 are real numbers. It is clear that by the Dirichlet boundary condition, we
prescribe a value of physical quantity on the boundary, which might be judged as
slightly arti�cial from the physical point of view. The Neumann boundary condition
seems to be more natural as it can be interpreted as the �ux of a quantity coming
from the domain to outside.

Besides the standard boundary conditions, there exists quite a big variety of
others. For instance, there exists nonlinear version of all above boundary condi-
tions. The nonlinear version for the Neumann boundary condition has form

f(x, u,∇u) = 0 on Γ,

where f is a real-valued continuous function, for example

∇u(x) · ν = d(x)

b
1 + ‖∇u‖2 on Γ,

which is also known as the capillary boundary condition, see [11]. Other type of
boundary condition may contain non-local terms such as an integral over the whole
domain, for example

−∇u · ν = αu+ β +

∫
Ω

Kudx on Γ,

see [118].

In the situation when we consider an evolution equation the boundary condition
for t = 0 is called an initial boundary condition and is prescribed separately from
the rest of the boundary. There can exist also boundary conditions which contain a
time-derivative of a solution. This kind of boundary conditions is called dynamical
boundary conditions, for instance

−∂ttu(x, t)−∇u(x, t) · ν = d(x, t) on Γ× (0, T ),

that can be used to model a membrane that is vibrating on the part of the boundary
[40].

Well-posed problem

At �rst, one is naturally motivated to solve the problem for partial di�erential
equation by �nding an explicit formula for a solution which obeys boundary and
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initial conditions, if provided. Unfortunately, that is usually not an easy task.
Therefore, the notion of well-posedness is introduced as it `captures many of the
desirable features of what it means to solve a PDE '[35].

We say that a problem is well − posed in the Hadamard sense if:

(i) the problem has a solution,

(ii) this solution is unique,

(iii) solution is continuously dependent on the data.

If one or more of the above conditions are not ful�lled, then we say that a problem
is ill − posed. Notice that this informal de�nition is very general and might be
applied for various problems not only the one for partial di�erential equations.

Very basic example of the well-posed problem is the integration of a function.
On the other hand the di�erentiation is ill-posed problem as only a �small change�
in data can produce a �big change� in the result.

Classical and weak solution

In the upper section, we have mentioned a solution to a PDE, but we have not
said what we precisely expect from a solution. Let's take the equation (1.4) for
example. It seems unnecessary to ask the solution of that equation to be smooth.
It should be satisfying that all spatial and temporal derivatives mentioned in the
equation exist and are continuous. This solution is then called a classical solution.

Finding the classical solution can not be always achieved. For example, when we
study PDEs modeling formation and propagation of shock waves it is reasonable to
allow solutions that are not continuously di�erentiable or continuous. This brings
us to the notion of a weak solution and weak formulation.

Let's �rstly illustrate these notions on an example. Assume the simple Poisson
equation

−∆u(x) = f(x) for x ∈ Ω, (1.6)

for some function f ∈ C (Ω), and let u(x) = 0 on the boundary Γ. Then a classical
solution of that PDE would be a function u ∈ C(Ω)∩C2(Ω) satisfying (1.6) and the
boundary condition u = 0 on Γ. If we now assume such a solution, multiply (1.6)
with a function ϕ ∈ C∞0 (Ω) and integrate the whole equality over Ω, we obtain

−
∫

Ω

∆u(x)ϕ(x) dx =

∫
Ω

f(x)ϕ(x) dx for ϕ ∈ C∞0 (Ω). (1.7)
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Notice that although we assume the classical solution, the equation above and the
boundary condition make sense also for u ∈ H1

0 (Ω) ∩H2(Ω). If we now apply the
Green identity, Theorem 1.3.8, we gain∫

Ω

∇u(x) · ∇ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx for ϕ ∈ C∞0 (Ω), (1.8)

since ϕ is vanishing on Γ, the boundary integral from the Green identity also
vanishes. Ni, we can see that satisfactory condition for the integrals in the equation
(1.8) to exist is u, ϕ ∈ H1

0 (Ω) and f ∈ L2(Ω). Thus, we can abandon the notion
of the classical solution. Let f ∈ L2(Ω), we say that the function u ∈ H1

0 (Ω) is a
weak solution of (1.6) if the equation (1.8) holds for all ϕ ∈ H1

0 (Ω). We call the
equation (1.8) a weak or variational formulation of (1.6). Functions ϕ ∈ C∞0 (Ω)
are called test functions.

It is immediately clear that every classical solution is also a weak solution and
it can be proven that every weak solution which has su�cient regularity is also a
classical solution.

In general, we obtain the weak formulation of PDE if we follow the next steps
[107]:

1. Multiply the PDE by a test function;

2. Integrate over Ω;

3. Use the Green identity;

4. Involve boundary conditions, either by choosing proper function spaces or by
substituting into the boundary integral appearing after application of Green's
theorem.

Choosing the function space for the solution and for the test functions is highly
dependent on the equation and the boundary conditions, and varies on a case-
by-case basis. The evolution equations undergo the similar process to obtain the
weak formulation, with the additional requirement, that the equation should hold
in almost all (a.a.) t ∈ (0, T ), and additional assumptions on the initial conditions
are needed.

1.5 Methods for solving PDEs

In this section, we brie�y describe methods which we later use for proving the
existence of solution of PDE and for computing the numerical approximation of
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Figure 1.2: Time discretization

the solution. To prove the uniqueness of solution a typical approach is used, which
consist of assuming at least two solutions of a problem and then proving that those
two solutions are equal to each other.

1.5.1 Rothe's Method

To prove the existence of the solution of evolution PDE, we use a method proposed
by Rothe [106], and later adopted and evolved by Ladyzhenskaya [70, 71], Rektorys
[102], Ka£ur [57] and many others. The good description of the method can also
be found in [107]. In this section, we brie�y describe this method, which we later
use on speci�c problems.

The �rst step of the method consists of the time discretization. Assuming n
to be an integer, we divide the domain Ω × [0, T ] into equidistant layers by the
planes t = iτ , i = 1, ..., n, see Figure 1.2. We introduce the equidistant (for the
simplicity of notation) time-partitioning of the interval [0, T ] by the step τ = T

n ,
for any n ∈ N. The notation ti = iτ is used for i = 1, ..., n. For any function z, we
write

zi = z(ti), δzi =
zi − zi−1

τ
.

We apply this discretization on the variational formulation of our problem by re-
placing the time derivative of the solution u in the formulation by δui and all
the time dependent functions z(t) by zi. By this we gain an elliptic equation ap-
proximating our problem at time ti, also called the discretized equation. Then we
proceed in the following steps:
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Figure 1.3: Rothe's functions

(a) Solving elliptic problem.
Applying the time discretization on the variational formulation leaves us with
an elliptic problem on the every time line ti. The existence and uniqueness of
the problem are usually tackled by the Lax-Milgram theorem, see Theorem
1.2.4, or by the theory of monotone operators for nonlinear PDEs.

(b) A priori estimates for ui.
One derives a priori estimates from the discretized variational formulation
by choosing a suitable test function and by using proper inequalities. Those
estimates, often called also the energy estimates serve later for proving the
convergence.

(c) Introduction and convergence of the Rothe functions.
We de�ne the Rothe functions (see Figure 1.3) in the following manner as
the mappings un, un, ũn : [0, T ]→ L2(Ω) with

un : t 7→

{
u0, t = 0

ui−1 + (t− ti−1)δui, t ∈ (ti−1, ti], 1 ≤ i ≤ n,

un : t 7→

{
u0, t = 0

ui, t ∈ (ti−1, ti], 1 ≤ i ≤ n,

ũn : t 7→

{
u0, t ∈ [0, τ ]

un(t− τ), t ∈ (ti−1, ti], 2 ≤ i ≤ n,

(1.9)

Then thanks to a priori estimates, we are able to prove the convergence of
subsequences of above functions to a function in appropriate spaces.
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(d) Convergence of the approximation scheme.
Using the above functions, we are able to rewrite the discretized equation for
the whole time-interval and prove its convergence to the variational formula-
tion.

(e) Regularity of the solution.
With the help of a priori estimates, we can sometimes prove better quality
of the weak solution or that the weak solution is also the classical solution.

There are two advantages of this method: besides getting the existence of the
solution it also proposes an interesting algorithm for obtaining the numerical ap-
proximation, consisting of calculating the numerical solution on every time layer.

The important lemma addressing the convergence of the Rothe functions can
be found in [57, Lemma 1.3.13]. We also state it here.

Lemma 1.5.1. Let V, Y be re�exive Banach spaces and let the imbedding V ↪→ Y
be compact. If the estimates∫

I

∥∥∥∥dun(s)

ds

∥∥∥∥2

Y

ds ≤ C, ‖un(t)‖ ≤ C for all t ∈ I

hold for all n ≥ n0 > 0 then there exist u ∈ C(I, Y )∩L∞(I, V ) with du
dt ∈ L

2(I, Y )
(u is di�erentiable a.e. in I) and a subsequence {unk

}k∈N of {un}n∈N such that

unk
→ u in C(I, Y ),

unk
(t) ⇀ u(t), unk

(t) ⇀ u(t) in V for all t ∈ I,

and
dunk

dt
⇀

du

dt
in L2(I, Y ).

Moreover, if ∥∥∥∥dun(t)

dt

∥∥∥∥
Y

≤ C for all n ≥ n0 and a.e. t ∈ I,

then du
dt ∈ L

∞(I, Y ) and u : I → Y is Lipschitz continuous, i.e.

‖u(t)− u(t′)‖Y ≤ C |t− t′| for all t, t′ ∈ I.

1.5.2 Finite element method

To get the numerical solution at time ti from the elliptic problems mentioned in the
previous section, the �nite element method (FEM) will be applied. The method was
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developed by engineers in the aircraft industry circa in the middle of the previous
century. Since then ,the method was applied to solve various problems in the variety
of scienti�c domains. The method was also intensively studied by mathematicians,
therefore, there exists extensive literature about it; we may mention for example
[15, 22, 41, 63, 90, 148], which is just a small selection.

The main idea of the method is quite straightforward, but there are details
which may be complicated or extensive to write. The FEM is based on the division
of the spatial domain into finite elements and approximating the solution of the
problem by the �nite set of basis functions. Then the original variational formu-
lation problem transforms into a discrete problem where just the �nite number of
unknown coe�cients is sought.

Assume H to be a Hilbert space and V its (closed) subspace. Let consider a
general linear variational problem

a(u, v) = b(v) ∀ v ∈ V, (1.10)

where u ∈ V is an unknown, a is a bilinear form

a : V × V → R,

satisfying the assumptions from the Lax-Milgram theorem 1.2.4 and b is a bounded
linear functional

b : V → R.
Let Vh be a �nite-dimensional subspace of V . Then we discretize the variational
problem (1.10) in the following way: we look for uh ∈ Vh ⊂ V such that

a(uh, v) = b(v) ∀ v ∈ Vh. (1.11)

This formulation is often called the Galerkin approximation problem or discrete
problem. Thanks to the assumptions on a and b, the existence and uniqueness of
the solution to the discrete variational problem is guaranteed by the Lax-Milgram
theorem.

To understand better the relation between u and uh let's subtract the two above
formulations from each other, so, we obtain

a(u− uh, v) = 0 ∀ v ∈ Vh.

The relation is often called Galerkin orthogonality or orthogonality property. The
equality may be simply interpreted when we assume a to be symmetric. Then
(·, ·)a = a(·, ·) de�nes an inner product on V , with an induced norm de�ned by
‖v‖a =

a
a(v, v). Hence, the function uh is an orthogonal projection of u onto the

space Vh. The following theorem estimates the error between u and uh in the space
V .
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Theorem 1.5.1 (Céa). Suppose that u solves the variational problem (1.10). Then
for the discrete problem (1.11) we have

‖u− uh‖V ≤
C1

C2
min
v∈Vh

‖u− v‖V ,

where C1 and C2 are the same constants as in Theorem 1.2.4.

Thus, the above theorem says that approximation error depends directly on the
choice of the space Vh but not on the choice of the basis functions of Vh.

Let {φi}Ni=1 be a basis in the discrete space Vh. We may assume

uh =

N∑
j=1

Ujφj ,

and substituting this together with v = φi for i = 1, ..., N into (1.11) gives us

N∑
j=1

Uja(φj , φi) = b(φi) i = 1, ..., N.

Introducing the notation

Aij = a(φj , φi), i, j = 1, ..., N,
bi = b(φi),

(1.12)

we may rewrite this into
AU = b, (1.13)

where the matrix A = (Aij)i,j=1,...,N , b = (b1, .., bN ) and U = (U1, ..., UN ). Then to
�nd the approximate solution uh means to �nd the solution U to the linear system
of equations (1.13). The matrix A is called the stiffness matrix, its invertibility is
assured by assuming the property (ii) in the Lax-Milgram theorem for the bilinear
form a.

In fact, the method of discretization we describe above is called in general the
Galerkin method. In the method, the space Vh may be chosen in many ways. If we
choose Vh to be the space of piecewise polynomial functions, then we talk about the
�nite element method. The following example shows one of the simplest choices
for such a space.

Example 1.5.1. Assume Ω = (0, 1) and choose n points xi in this interval such
that 0 = x0 < x1 < ... < xn < xn+1 = 1. Then we de�ne

Vh = {v : [0, 1]→ R : v ∈ C([0, 1]),
v|[xi, xi+1] is linear for i = 0, ..., n, and v(0) = v(1) = 0}.
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Notice that in the above example the domain Ω is divided into the smaller
subdomains. This is a common approach. To de�ne Vh the domain Ω is divided
into a �nite set of cells Th = {T} so that Ω = ∪T∈Th

T . The cells are typically
intervals, triangles, quadrilaterals, tetrahedral or another simple polygonal shape.
The division of the domain has its own rules, which is a separate topic, and we will
omit it here. When we have the partitioning of the domain, then we de�ne a local
function space V on each cell T . The cell T with the space V and a set of rules which
describe the functions in V is called a finite element. The function in Vh then can
be locally represented in terms of the local function space V. Next step is to patch
those spaces together with help of so-called local-to-global mapping. Finally, the
global function space Vh is de�ned as a set of functions on Ω satisfying that for
every v ∈ Vh it holds v|T∈ VT for all T in Th and some natural pairing conditions
for the local-to-global mapping. This is a very dense description of how the spaces
Vh are constructed; however, we will omit details due to their extensiveness. One
may �nd them in every book mentioned in the beginning of this section.

FEM solvers

The FEM was developed as an e�cient way how to calculate the numerical solution
to the PDEs with the help of computers. Since �fties there have been implemented
many software packages on many platforms. Among the well established ones we
can �nd for example deal.II, DUNE, FEniCS Project, FreeFem++, GetFEM++,
ADINA, COMSOL Multiphysics, and many others.

The FEniCS Project software will be used in our numerical experiments later in
our thesis. The FeniCS Project is an open-source computing platform for solving
PDEs with high-level Python and C++ interfaces. It consists of a collection of
components such as DOLFIN, FFC, FIAT, Instant, UFC, UFL, etc. each covering
a certain area and together forming a robust tool. For further information visit the
website of the project: www.fenicsproject.org or see [6, 61, 73].

1.6 Inverse problems in PDEs

The notion of inverse problems covers a set of various problems coming from a
variety of science �elds. Considering a partial di�erential equation with all nec-
essary additional conditions, one is naturally interest in the problem of �nding a
solution of the PDE, we call this a direct problem. In the case when the PDE itself
is unknown, then we talk about an inverse problem. Those kind of problems arise
in �elds as optics, radar acoustics, signal processing, medical imaging, computer
vision, geophysics, oceanography, astronomy, machine learning, etc.
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Example 1.6.1 (The inverse problem of gravimetry). Let u be a gravitational �eld,
which can be measured by the gravitational force ∇u and is generated by the mass
distribution f . This �eld is a solution of the Poisson equation

−∆u = f

in R3, where lim|x|→∞ u(x) = 0, we also assume f to be zero outside a bounded
domain Ω. The inverse problem in gravimetry is to �nd the function f given the
gravitational force ∇u on Γ which is a part of the boundary ∂Ω. The problem is
fundamental for gravitational navigation.

Example 1.6.2 (The inverse conductivity problem). Assume the conductivity
equation for electric potential u

−div(c∇u) = 0 in Ω,

with the boundary condition

u = g0 in ∂Ω,

where c is a scalar function. The inverse conductivity problem is to �nd the func-
tion c given g0 on the boundary ∂Ω. The problem is a mathematical foundation
to electrical impedance tomography, mine and rock detention, and the search for
underground water.

Example 1.6.3 (Tomography). The inverse problem is to �nd function f given
the integrals ∫

γ

fdγ

over a family of manifolds.

For a comprehensive summary of inverse problems in PDEs, we refer to [99],
[51].

1.6.1 Inverse source problems

An interesting type of the inverse problem in the PDEs is �nding a source term
function or one of its components. By the source we usually understand the right
side of a di�erential equation. Inverse gravimetry is a classical example of an inverse
source problem. In the evolution equation the source function F is often assumed
to have a speci�c shape, for example

F (x, t) = f(x)h(t)
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or
F (x, t) = f(x)h(x, t) + g(x, t),

where usually only one component is sought. In the �rst case, the function f could
be interpreted as the location of the source in space, and the function h might
describe the evolution of the source in the time.

In the inverse source problem, we are interested in �nding a couple consisting
of a solution of the equation and a source function. To identify both functions,
it is necessary to have some additional information, so-called measurement. The
measurement can take several forms. For �nding a solely space-dependent part
of the source one uses usually a space-dependent measurement, such as a state of
system at the �nal time

u(x, T ) = M(x), x ∈ Ω.

In case when we are interested in the reconstruction of a time-dependent part of the
source, we use a time-dependent measurement too. One may consider two types
of measurement: integral and point. In the integral measurement the solution
is measured with the help of a sensor which makes a certain averaging over the
domain. This can be mathematically represented by an integral∫

Ω

ω(x)u(x, t)dx = m(t), t ∈ [0, T ]

or ∫
∂Ω

ω(x)u(x, t)dS = m(t), t ∈ [0, T ].

The function ω is usually assumed to have a compact support in Ω, respectively,
in Γ. That means we measure only through subdomain of Ω, respectively, Γ. The
measurement over the part of the boundary is called also non-invasive, since it does
not require information from inside the domain. Another type of the measurement
is a point measurement. The function is measured in the speci�c point x0 ∈ Ω, so
we have

u(x0, t) = m(t), t ∈ [0, T ].

There exist several approaches for solving the inverse source problems. The ap-
proaches di�er for di�erent type of measurement and also whether time-dependent
or space-dependent is sought. We will be interested in the recovery of the time-
dependent part of the source. A very common tool used for proving the existence
and uniqueness of the problem is the Banach �xed point theorem, e.g. [133, 138].
We will use a method based on the application of the measurement on the equa-
tion and then on the elimination of the function in which we are interested. This
provides us one more equation that de�nes the problem and change the inverse
problem to a direct one.
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1.7 Fractional derivative

In this section, we will give a brief introduction to the fractional derivative and
fractional calculus. One can �nd a comprehensive summary for example in [28, 58,
89, 98].

The history of fractional calculus goes back to the 17th century; to the period
when Newton and Leibniz were developing the foundation for the di�erential and
integral calculus. Leibniz was the �rst who introduced in his correspondence with
Newton the symbol

dn

dxn
f(x)

for the n − th derivative of function f at a point x, with the implicit assumption
that the n in the symbol belongs to N. But Newton asked Leibniz the following
question

�What does
dn

dxn
f(x) mean if n =

1

2
?� (1695)

to which Leibniz carefully replied:

�This is an apparent paradox from which, one day,
useful consequences will be drawn...�

Form this time on, the concept of fractional derivative was usually ignored or taken
purely as a mathematical toy. This is suggested also by the fact that the �rst book,
by Oldham and Spanier [93], devoted exclusively to the subject of fractional calculus
was published in 1974.

Since then, however, a plethora of applications of fractional calculus appeared
in various �elds of science such as material theory [83, 120], viscoelastic materials
[38, 112], anomalous processes [20, 84, 145], transport processes [10, 13, 52, 96],
�uid �ow phenomena [26], earthquakes [64, 68], solute transport [95, 114], chemistry
[29, 47], wave propagation [36, 42, 43, 115], signal theory [7, 31], image processing
[8, 24], biology [76], relaxation of polymers [39], electromagnetic theory [33, 34],
thermodynamics [23, 121], mechanics [104, 105], astrophysics [72], �nance [59, 69,
82, 137], control theory [18, 88, 97, 125], chaos and fractals [94, 144, 146], human
behavior [5, 123] and many more.

The fractional calculus is based on the idea of generalizing of the derivative
of order n ∈ N to the derivative of order α ∈ R. The name �fractional calculus�
itself is a one of misnomers since it deals with integrals and derivatives of arbitrary
order not just fractional one. There are some expectations from such a generalized
di�erential operator Dα. Among the basic ones belongs additivity of the derivative

DαDβ = Dα+β ,
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then the restriction of the fractional operator on the natural numbers should coin-
cide with the classical derivative, so

Dα =
dα

dxα
for α ∈ N,

and, of course, we expect
Dα = I for α = 0.

The next question is how to construct such an operator. The motivation comes
from the basic integration, as the inverse operation to the di�erentiation, and the
de�nition of the fractional integral. Let's assume that [a, b] is a �nite interval of
the real line R, α ∈ R+ and

n = bαc+ 1,

with b·c being the �oor function. We de�ne

F (x) :=

∫ x

a

f(t)dt,

for f ∈ L1(a, b), then we know that F is di�erentiable and F ′ = f a.e. in [a, b]. By
simple repetition of the above integration, we get∫ x

a

· · ·
∫ t2

a

f(t1) dt1 · · · dtn =
1

(n− 1)!

∫ x

a

(x− τ)n−1f(τ)dτ =: Ina f(x).

Now, we want to replace n ∈ N for α ∈ R+
0 . The factorial in the denominator of

the de�nition is replaced by its generalization, the Gamma function, de�ned as

Γ(z) :=

∫ ∞
0

xz−1e−x dx, z ∈ C,

thus by replacing, we get that

Iαa f(x) :=
1

Γ(α)

∫ x

a

(x− τ)α−1f(τ)dτ,

for α > 0 and we additionally de�ne

I0
a := I.

We call Iαa f a fractional integral of function f .

Lemma 1.7.1. Let f ∈ L1[a, b] and α > 0. Then integral Iαa f(x) exists for almost
every x ∈ [a, b]. Moreover, the function Iαa f itself is also an element of L1[a, b].
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Property 1.7.1. Let f ∈ L1[a, b] and α, β > 0. The following properties hold:

Iαa I
β
a f = Iα+β

a = Iβa I
α
a f a.e. on [a, b],

DnIna f = f for n ∈ N,
Dnf = DmIm−na f for n,m ∈ N,m > n.

Example 1.7.1. Let [a, b] be a �nite interval of the real line, y(t) = (t − a)β−1,
and α, β > 0 then

(Iαa y)(x) =
Γ(β)

Γ(α+ β)
(x− a)β+α−1. (1.14)

With the de�nition of the fractional integral one may proceed to the de�nition
of fractional derivative. The de�nition combines the classical derivative and the
fractional integral. There are two ways how to do it. We can either �rst use the
fractional integration and than derivation or otherwise. Those approaches bring
two slightly di�erent results.

De�nition 1.7.1. We de�ne the Riemann-Liouville fractional derivative of order
α ≥ 0 as

(Dα
a y)(x) := (DnIn−αa y)(x) =

1

Γ(n− α)

�
d

dx


n ∫ x

a

y(t)

(x− t)α−n+1
dt, x > a.

(1.15)

De�nition 1.7.2. The Caputo fractional derivative of order α ≥ 0 is de�ned as

(CDα
a y)(x) := (In−αa Dny)(x) =

1

Γ(n− α)

∫ x

a

y(n)(t)

(x− t)α−n+1
dt, x > a. (1.16)

If α = m ∈ N0, then CDα
a y and Dα

a y coincide with the classical derivative of y,
in particular

(D0
ay)(x) = (CD0

ay)(x) = y(x).

Theorem 1.7.1. Let α ≥ 0. If y ∈ ACn[a, b] then the fractional derivatives Dα
a y

and CDα
a y exist almost everywhere on [a, b]. Moreover, to following relation holds

(CDα
a y)(x) = (Dα

a y)(x)−
n−1∑
k=0

y(k)(a)

Γ(k − α+ 1)
(x− a)k−α. (1.17)

We address the additivity of Riemann-Liouville fractional derivative in the next
theorem. The additivity property is slightly more complicated; therefore, we state
only the basic property for the Riemann-Liouville derivative. For more details look
in [58].
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Property 1.7.2. Assume α, β ≥ 0. Moreover let φ ∈ L1[a, b] and f = Iα+β
a φ,

then
Dα
aD

β
af = Dα+βf.

The existence of the function φ is crucial, otherwise it could happen that
Dα
aD

β
af = Dβ

aD
α
a f 6= Dα+βf or Dα

aD
β
af 6= Dβ

aD
α
a f = Dα+βf .

Example 1.7.2. Let y(t) = (t− a)β−1, β > 0 then

(Dα
a y)(x) =


Γ(β)

Γ(β − α)
(x− a)β−α−1, if α− β /∈ N

or α− β ∈ N and α− β ≥ n,
0, if β = α− j, j ∈ {0, ..., n− 1},

(CDα
a y)(x) =


Γ(β)

Γ(β − α)
(x− a)β−α−1, if β ∈ N and β ≥ n+ 1

or β /∈ N and β > n,

0, if β ∈ {1, ..., n},
(1.18)

in particular, notice the main di�erence in the fractional derivative of a constant

(Dα
a 1)(x) =

1

Γ(1− α)
(x− a)−α,

(CDα
a 1)(x) = 0.

(1.19)

Figure 1.4 shows the function Γ(β)
Γ(β−α) (· − a)β−α−1 for various values of α and β.

There are some basic di�erences between the Riemann-Liouville and the Caputo
de�nition of fractional derivative. As we may see in the above example, the Caputo
fractional derivative of constant is zero, what we would expect from a derivative, on
the contrary, the Riemann-Liouville fractional derivative of a constant is a power
function with a negative real exponent. The relation between both de�nition is
given by (1.17). We can see that the de�nitions coincide if

y(a) = y′(a) = · · · = y(n−1)(a) = 0.

Assume basic fractional di�erential equations

(Dα
a y)(t) = f(t), (CDα

a y)(t) = f(t),

for t ∈ (0, T ) and α > 0. We face di�erent situations when we want to de�ne the
initial conditions for those equations. For the �rst equation the initial conditions
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Figure 1.4: Function Γ(β)
Γ(β−α) (x−a)β−α−1 from Example 1.7.2, for a = 0 and various

values of α and β
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can be set in the terms of the fractional integrals as

(In−αa y)(0) = b0, (D
1In−αa y)(0) = b1, ..., (D

n−1In−αa y)(0) = bn−1.

Although, this is a mathematically correct way there seems to be no proper phys-
ical background for it. The derivative of a fractional integral does not have any
known physical interpretation, therefore its use as the initial conditions is rather
to be avoided. On the other hand, the initial conditions for the second equation,
containing the Caputo fractional derivative, can be set in the form of the classical
derivative as

y(0) = b0, D
1y(0) = b1, ..., D

n−1y(0) = bn−1.

It is one of the reasons why the Caputo fractional derivative occurs more in the
evolutionary fractional di�erential equations.

The Caputo fractional derivative can be also rewritten as a convolution with a
positive de�nite kernel. If we de�ne

gn−α(t) =
tn−α

Γ(n− α)
, t > 0,

we see that gn−α ∈ L1
loc(R), and then the de�nition of the Caputo fractional

derivative can be rewritten as
CDα

a y(t) =
�
gn−α∗ y(n)

	
(t),

where ∗ stands for the convolution on the positive half-line, i.e.

(k∗ v)(t) =

∫ t

0

k(t− s)v(s) ds. (1.20)

We de�ne the partial Caputo fractional derivative of order α ∈ (0, 2) for the
function v de�ned on (0, T )× Rd as

∂αt v(t) :=


(g1−α∗ ∂tv)(t), α ∈ (0, 1),

(g2−α∗ ∂ttv)(t), α ∈ (1, 2),

∂tv(t), α = 1.

The above de�nition is also used for v ∈ H1((0, T ), H) or v ∈ H2((0, T ), H), where
H is a Hilbert space, and the Bochner integral is used in the convolution.

Continuous time random walk

The derivation of the fractional di�usion equation is explained for instance in [3, 86].
The fractional di�usion equation was derived there using the continuous time ran-
dom walk (CTRW) that can be considered to be a generalization of the Brownian
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motion, from which a classical di�usion equation may be derived. The derivation
below is taken from [86].

In the Brownian walk the particle is assumed to jump in the constant discrete
time step of length ∆t to one of its nearest neighbor positions in the square lattice
(in 2D case) with the lattice distance ∆x. The di�usion equation is then derived
from the master equation [86].

In the CTRW model, the so-called jump probability density function (PDF)
ψ(x, t) is assumed. From this PDF the length of a given jump and the time between
two jumps is possible to derive. The jump length PDF is given by

λ(x) =

∫ ∞
0

ψ(x, t) dt,

and the waiting time PDF is obtained as

w(t) =

∫ ∞
−∞

ψ(x, t) dx.

Types of the CTRW processes can be characterized by the jump length variance
and the characteristic waiting time de�ned by

Σ2 =

∫ ∞
−∞

λ(x)x2 dx and T =
∫∞

0
w(t)t dt,

respectively. Assuming the jump length and waiting time to be independent ran-
dom variable, the jump PDF takes the decoupled form

ψ(x, t) = λ(x)w(t).

Assuming this, the CTRW process is given by the equation

η(x, t) =

∫ ∞
−∞

∫ ∞
0

η(x′, t′)ψ(x− x′, t− t′) dt′ dx′ + δ(x)δ(t), (1.21)

where η(x, t) is a PDF of just having arrived at position x at time t, and δ(x)
is chosen to be an initial condition of the random walk. The equation (1.21) is
formally equivalent to the generalized master equation [3]. One is then interested
in the PDF of being in x at the time t which can be described by

W (x, t) =

∫ t

0

η(x, t′)Φ(t− t′) dt′. (1.22)

where Φ(t) is a probability of no jump in the interval (0, t) given by

Φ(t) = 1−
∫ t

0

w(t′) dt′.
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So,W (x, t) is then a PDF of arriving at the position x at the time t′ and not having
moved since. Applying the Fourier transformation on (1.22) in the x−direction and
the Laplace transformation [25] in the t−direction brings

W (k, s) =
1− w(s)

s

W0(k)

1− ψ(k, s)
, (1.23)

where W (k, s) is a transformed W (x, t), with the new variables k and s corre-
sponding to x and t, respectively, and W0(k) is the Fourier transform of the initial
condition.

In the situation that the characteristic waiting time T is divergent and the
jump length variance Σ2 is �nite, one of the possibilities is to consider a long-tailed
waiting time PDF in the form

w(t) ∼ Aα
�τ
t

	1+α

,

where 0 < α < 1, Aα is a constant, τ is a scale with the dimension [τ ] = s−α.
Next, we consider a Gaussian jump length PDF in the form

λ(x) =
1

(4πσ2)
1
2

exp

�
− x2

4σ2



,

where the scale σ has the dimension [σ] = cm2. The corresponding Laplace trans-
formation of w(t) is of the shape

w(s) ∼ 1− (sτ)α,

and the Fourier transformation of λ(x) takes the form

λ(k) ∼ 1− σ2k2 +O
�
k4
�
,

the concrete details are not of the interest here. Assuming this, the equation (1.23)
becomes

W (k, s) =
W0(k)/s

1 +Kαs−αk2

in the (k, s) → (0, 0) di�usion limit, where Kα is the so-called generalized di�u-
sion constant. Applying the Fourier di�erentiation theorem and Laplace fractional
integration theorem [28, 58] on the above algebraic relation give

W (x, t)−W0(x) = Iα0 Kα
∂2

∂x2
W (x, t),
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which contains the fractional integral on the right hand side, and after its di�eren-
tiation with respect to time the fractional di�usion equation is derived

∂

∂t
W (x, t) = D1−α

0 Kα
∂2

∂x2
W (x, t). (1.24)

The above equation may be rewritten as

Dα
0W (x, t)− tα

Γ(1− α)
W0(x) = Kα

∂2

∂x2
W (x, t),

where we can see that the initial condition decays with negative power law, in the
contrary to the exponential law decay in the classical di�usion. The equation may
be rewritten also in terms of the Caputo fractional derivative

CDα
0W (x, t) = Kα

∂2

∂x2
W (x, t). (1.25)

It can be calculated that the mean square displacement, denoted by 〈x2(t)〉, is not
linearly dependent on t, but it follows the power-law

〈x2(t)〉 =
2Kα

Γ(1 + α)
tα,

where the generalized di�usion constant is given by Kα = σ2/τα, with the two
scales τ, σ leading to the dimension [Kα] = cm2s−α.

To conclude, the time fractional derivative appears in the di�usion equation
after assuming that the characteristic waiting time diverges and that the waiting
time distribution has asymptotic behavior. On the other side considering the �nite
T and, for instance, Poisson waiting time PDF would lead the classical di�usion
equation. Also the limit α→ 1 in (1.24) leads to the Fick law as expected [86].

The fractional wave equation, the equation (1.25) for 1 < α < 2, is closely
studied for example in [85, 87, 113, 136]. In [87, 136], the additive two state process
was combined with an asymptotic power-law waiting time distribution resulting in
the fractional wave equation, with the mean square displacement 〈x2(t)〉 ∼ tα.
With the limit α→ 1 the equation reduces to the Brownian motion, with 〈x2(t)〉 ∼
t, and with α→ 2 the wave equation is obtained, with 〈x2(t)〉 ∼ t2.

Numerical comparison of solution for various values of α

The comparison of the solution of a simple partial fractional di�erential equation
containing the Caputo fractional derivative in time for various orders of fractional
derivative is made in [4]. In the article, they study the equation in form

∂αt u = b2∆u, 0 < x < L, t > 0, (1.26)
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where α ∈ (0, 2] is assumed together with the boundary and initial conditions

u(0, t) = u(L, t) = 0, t ≥ 0

u(x, 0) = f(x), 0 < x < L,

∂tu(x, 0) = 0, 0 < x < L, for 1 < α ≤ 2.

The solution of this problem is obtained using the sine transformation and the
Laplace transformation [25]. The explicit formula for the solution is given by

u(t, x) :=
2

L

∞∑
1

Eα(−b2a2n2tα) sin(anx)

∫ L

0

f(s) sin(ans) ds, (1.27)

where a = π
L , and Eα is a special function called Mittag-Le�er function de�ned in

the complex plane by the power series

Eβ :=

∞∑
n=0

zn

Γ(βn+ 1)
, β > 0, z ∈ C,

where E1(−z) = e−z and E2(−z2) = cos z. So, for α = 1, 2, the formula (1.27)
represents the solution of the di�usion and the wave equation. Taking the initial
condition in the form

f(x) :=

{
x, x ∈ [0, 1],

2− x, x ∈ (1, 2],
(1.28)

and b = 1, we depict the solution using the formula (1.27) for various values of α
in Figure 1.5. On the pictures we can see that for α = 1

2 we get the slow di�usion
behavior and for α = 3

2 the solution exhibits the di�usion-wave behavior. For the
details and more numerical examples, see [4].

Technical lemmas

We now prove the crucial technical lemma which will play a central role in the
proofs in the following chapters.

Lemma 1.7.2. Let H be a real Hilbert space with a scalar product p·, ·qH and the
corresponding norm ‖·‖H . Assume T > 0, g ∈ L1(0, T ), g′ ∈ L1,loc(0, T ), g′ ≤
0, g ≥ 0. If v : [0, T ]→ H such that v ∈ H1((0, T ), H) then∫ ξ

0

�
d

dt
pg∗ vq (t), v(t)



H

dt ≥ 1
2

�
g∗‖v‖2H

	
(ξ) + 1

2

∫ ξ

0

g(t) ‖v(t)‖2H dt

≥ g(T )

2

∫ ξ

0

‖v(t)‖2H dt

for any ξ ∈ [0, T ].
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(a) α = 0.5 (b) α = 1

(c) α = 1.5 (d) α = 2

Figure 1.5: The approximate solution of (1.26) for various values of α with the
initial condition (1.28), L = 2, b = 1, the solution is calculated from (1.27) using
the �rst ten terms in the sum
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Proof. Zacher [142, Lemma 2.3.2], [141, 143] has proved the following identity

�
d

dt
(k∗ v)(t), v(t)



H

= 1
2

d

dt

�
k∗‖v‖2H

	
(t) + 1

2k(t) ‖v(t)‖2H +

1
2

∫ t

0

r−k′(s)s ‖v(t)− v(t− s)‖2H ds a.e. t ∈ (0, T ),

which is valid for any k ∈ H1,1([0, T ]) and each v ∈ L2([0, T ], H). Now, we replace
k by gn(s) := min{n, g(s)}. Thanks to the properties of g, it holds that

g′n(s) ≤ 0, gn(s)→ g(s) a.e. in [0, T ].

Integration in time implies that

∫ ξ

0

ppgn∗ ∂tvq (t) + gn(t)v(0), v(t)qH dt

=

∫ ξ

0

�
d

dt
pgn∗ vq (t), v(t)



H

dt

≥ 1
2

�
gn∗‖v‖2H

	
(ξ) + 1

2

∫ ξ

0

gn(t) ‖v(t)‖2H dt.
(1.29)

Due to v(0) ∈ H and ∂tv ∈ L2((0, T ), H), we see that

v(t) = v(0) +

∫ t

0

∂sv(s) ds

=⇒ ‖v(t)‖H ≤ ‖v(0)‖H +

∫ t

0

‖∂sv(s) ds‖H

≤ ‖v(0)‖H +
?
t

d∫ t

0

‖∂sv(s)‖2H ds ≤ C.
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We successively deduce�����
∫ ξ

0

ppgn∗ ∂tvq (t), v(t)qH
����� dt

≤
∫ ξ

0

‖pgn∗ ∂tvq (t)‖H ‖v(t)‖H dt

≤
∫ ξ

0

pgn∗‖∂tv‖Hq (t) ‖v(t)‖H dt

≤

d∫ ξ

0

pgn∗‖∂tv‖Hq2 (t) dt

d∫ ξ

0

‖v(t)‖2H dt

≤
∫ ξ

0

gn(t) dt

d∫ ξ

0

‖∂tv(t)‖2H dt

d∫ ξ

0

‖v(t)‖2H dt

≤
∫ ξ

0

g(t)dt

d∫ ξ

0

‖∂tv(t)‖2H dt

d∫ ξ

0

‖v(t)‖2H dt,

using the Cauchy inequality and Young's inequality for convolution. Applying the
Lebesgue dominated theorem, we may pass to the limit n→∞ in (1.29) to get∫ ξ

0

ppg∗ ∂tvq (t) + v(0)g(t), v(t)qH dt

=

∫ ξ

0

�
d

dt
pg∗ vq (t), v(t)



H

dt

≥ 1
2

�
g∗‖v‖2H

	
(t) + 1

2

∫ ξ

0

g(t) ‖v(t)‖2H dt

≥ g(T )

2

∫ ξ

0

‖v(t)‖2H dt,

which concludes the proof.

The next technical lemma is a discrete analogy of Lemma 1.7.2. It plays a
central role by establishing a priori estimates in the Rothe method further in this
dissertation. Before we state the lemma, we de�ne the discrete convolution by

pK ∗ vqi :=

i∑
k=1

Ki+1−kvkτ, (1.30)

where τ is the time step. Note that by this de�nition we avoid blow up problems
if K has a singularity at t = 0. Then we can calculate a di�erence for the discrete
convolution as follows

δ pK ∗ vqi =
pK ∗ vqi − pK ∗ vqi−1

τ
= K1vi +

i−1∑
k=1

δKi+1−kvkτ, i ≥ 1, (1.31)
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as
pK ∗ vq0 := 0

and we consider the sum to vanish per de�nition if, the upper bound of the sum is
less than the lower bound.

Lemma 1.7.3. Let {vi}i∈N and {Ki}i∈N be sequences of real numbers. Assume
that the sequence decreases, i.e. Ki ≤ Ki−1 for any i. Then

2δ pK ∗ vqi vi ≥ δ
�
K ∗ v2

�
i
+Kiv

2
i , i ∈ N. (1.32)

Proof. We successively deduce that

δ
�
K ∗ v2

�
i
+Kiv

2
i

≤ δ
�
K ∗ v2

�
i
+Kiv

2
i −

i−1∑
k=1

δKi+1−k pvi − vkq2 τ

(1.31)
= K1v

2
i +

i−1∑
k=1

δKi+1−kv
2
kτ +Kiv

2
i −

i−1∑
k=1

δKi+1−k pvi − vkq2 τ

= pK1 +Kiq v2
i +

i−1∑
k=1

δKi+1−k

�
v2
k − pvi − vkq2

�
τ

= pK1 +Kiq v2
i + 2vi

i−1∑
k=1

δKi+1−kvkτ − v2
i

i−1∑
k=1

δKi+1−kτ

= pK1 +Kiq v2
i + 2vi

i−1∑
k=1

δKi+1−kvkτ − (Ki −K1)v2
i

= 2K1v
2
i + 2vi

i−1∑
k=1

δKi+1−kvkτ

(1.31)
= 2δ pK ∗ vqi vi.

Summing up the inequality (1.32) for i = 1, ..., j, j ∈ N, and multiplying by τ ,
we get that

2

j∑
i=1

δ pK ∗ vqi viτ ≥
j∑
i=1

δ
�
K ∗ v2

�
i
τ +

j∑
i=1

Kiv
2
i τ, j ∈ N,

which can be rewritten as

2

j∑
i=1

δ pK ∗ vqi viτ ≥
�
K ∗ v2

�
j

+

j∑
i=1

Kiv
2
i , j ∈ N. (1.33)
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Chapter 2

An inverse source problem in a

semilinear time-fractional

di�usion equation

This chapter is based on the article [119], which has been already published in
Computers and Mathematics with Applications.

2.1 Introduction

Let Ω ⊂ Rd, d ∈ N, be a bounded domain with a Lipschitz boundary Γ , cf. [67].
Consider a linear second order di�erential operator in the divergence form with
space and time dependent coe�cients

L(x, t)u = ∇ · p−A(x, t)∇u− b(x, t)uq + c(t)u,
A(x, t) = pai,j(x, t)qi,j=1,...,d ,

b(x, t) = (b1(x, t), . . . , bd(x, t)).

We deal with a partial di�erential equation (PDE) with a fractional derivative in
time

pg1−β ∗ ∂tu(x)q (t) + L(x, t)u(x, t) = h(t)f(x) +

∫ t

0

F (x, s, u(x, s)) ds, (2.1)

41
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for x ∈ Ω, t ∈ (0, T ), where g1−β denotes the Riemann-Liouville kernel

g1−β(t) =
t−β

Γ(1− β)
, t > 0, 0 < β < 1,

and ∗ stands for the convolution on the positive half-line de�ned by (1.20). Thus,
the convolution term in (2.1) is the Caputo fractional derivative of order β ∈ (0, 1).

The governing PDE (2.1) is accompanied by the following initial and boundary
conditions

u(x, 0) = u0(x), x ∈ Ω,
p−A(x, t)∇u(x, t)− b(x, t)u(x, t)q · ν = g(x, t), (x, t) ∈ Γ× (0, T ),

(2.2)
where the symbol ν denotes the outer normal vector assigned to the boundary Γ.

The integral term in the r.h.s. of (2.1) models memory e�ects with applications
e.g. in elastoplasticity [103] or in the theory of reactive contaminant transport [27].
The solvability of forward fractional di�usion equations have been studied e.g. in
[109, 141]. The Inverse Source Problem (ISP) studied in this chapter consists of
�nding a couple (u(x, t), h(t)) obeying (2.1), (2.2) and∫

Ω

u(x, t) dx = m(t), t ∈ [0, T ]. (2.3)

Determination of an unknown source is one of hot topics in inverse problems
(IPs). There are many papers studying ISPs in parabolic or hyperbolic settings.
If the source exclusively depends on the space variable, one needs an additional
space measurement (e.g. solution at the �nal time), cf. [17, 44, 48, 50, 55, 99,
100, 108, 122, 127, 139]. For the solely time-dependent source a supplementary
time-dependent measurement is needed, cf. [45, 46, 49, 99, 117]. This means
that both kinds of ISPs need totally di�erent additional data. ISPs for fractional
di�usion equations become more popular in the last years. The recovery of a
time dependent source in a fractional di�usion equation has been studied in [54,
109, 135]. Determination of a space dependent function in a fractional di�usion
equation has been addressed in [53, 60, 124, 140]. The uniqueness of a solution to
the inverse Cauchy problem for a fractional di�erential equation in a Banach space
has been studied in [65]. The global existence in time of an ISP for a fractional
integrodi�erential equation by means of a �xed point method has been considered
in [138].

The added value of this chapter relies on the global (in time) solvability of
the ISP (2.1), (2.2), (2.3), and in the proposition of an interesting approximation
scheme. We reformulate the ISP into an appropriate direct (non-local) formulation.
We propose an variational technique based on elimination of h from (2.1) by (2.3),
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which turns out to be possible for a su�ciently smooth solution. Then we prove
the well-posedness of the problem. The proposed numerical scheme is based on
a semi-discretization in time by Rothe's method, see the section 1.5.1. We show
the existence of approximations at each time step of the time partitioning, and we
derive suitable stability results. The convergence of approximations towards the
exact solution is investigated in Theorem 2.3.1 in suitable function spaces. Finally,
we present a numerical example supporting the obtained convergence results.

2.2 Uniqueness

Denote by p·, ·q the standard inner product of L2(Ω) and ‖·‖ its induced norm.
When working at the boundary Γ, we use a similar notation, namely p·, ·qΓ, L2(Γ)
and ‖·‖Γ. In what follows C, ε and Cε denote generic positive constants depending
only on the given data, where ε is a small one and Cε = C

�
1
ε

�
is a large one.

Di�erent values of those constants in the same discussion are allowed.

We associate a bilinear form L with the di�erential operator L as follows

pLu, ϕq = L pu, ϕq + pg, ϕqΓ , ∀ϕ ∈ H1(Ω),

i.e.
L(t) pu(t), ϕq = pA(t)∇u(t) + b(t)u(t),∇ϕq + c(t) pu(t), ϕq .

Throughout the chapter we assume that

(a) ai,j , bi : Ω× [0, T ]→ R, |ai,j | + |bi| ≤ C, i, j = 1, . . . , d,
(b) 0 ≤ c(t) ≤ C, ∀t ∈ [0, T ],

(c) L(t) pϕ,ϕq ≥ C0 ‖∇ϕ‖2 , ∀ϕ ∈ H1(Ω), ∀t ∈ [0, T ].
(2.4)

Integrating (2.1) over Ω, applying the Green theorem and taking into account (2.3)
we obtain

pg1−β ∗m′q (t) + c(t)m(t) = h(t) pf, 1q− pg(t), 1qΓ +

∫ t

0

pF (s, u(s)), 1q ds. (MP)

Assuming that pf, 1q 6= 0 we have

h(t) =

pg1−β ∗m′q (t) + c(t)m(t) + pg(t), 1qΓ −
∫ t

0

pF (s, u(s)), 1q ds
pf, 1q . (2.5)

The variational formulation of (2.1) and (2.2) reads as



44 An inverse source problem in a semilinear time-fractional di�usion equation

ppg1−β ∗ ∂tuq (t), ϕq + L(t) pu(t), ϕq

= h(t) pf, ϕq +

�∫ t

0

F (s, u(s)) ds, ϕ


− pg(t), ϕqΓ (P)

for any ϕ ∈ H1(Ω), a.a. t ∈ [0, T ] and u(0) = u0. The relations (P) and (MP)
represent the variational formulation of (2.1), (2.2) and (2.3).

Now, we are in a position to state uniqueness of solution to the ISP (P), (MP).

Theorem 2.2.1 (uniqueness). Let f, u0 ∈ L2(Ω),
∫

Ω
f 6= 0, m ∈ C1([0, T ]),

F be a global Lipschitz continuous function in all variables. Assume (2.4) and
g ∈ C([0, T ], L2(Γ)).

Then there exists at most one solution (u, h) to the problem (P), (MP) obeying
u ∈ C

�
[0, T ], L2(Ω)

�
∩ L∞

�
(0, T ), H1(Ω)

�
with ∂tu ∈ L2

�
(0, T ), L2(Ω)

�
and h ∈

C([0, T ]).

Proof. Suppose that (ui, hi), for i = 1, 2 solve (P), (MP), and that they obey
ui ∈ C

�
[0, T ], L2(Ω)

�
∩ L∞

�
(0, T ), H1(Ω)

�
with ∂tui ∈ L2

�
(0, T ), L2(Ω)

�
, hi ∈

C([0, T ]). Set u = u1 − u2 and h = h1 − h2. Subtracting the corresponding
variational formulations from each other, we obtain that

ppg1−β ∗ ∂tuq (t), ϕq + L(t) pu(t), ϕq =

h(t) pf, ϕq +

�∫ t

0

rF (s, u1(s))− F (s, u2(s))s ds, ϕ



(2.6)

and

0 = h(t) pf, 1q +

�∫ t

0

rF (s, u1(s))− F (s, u2(s))s ds, 1


. (2.7)

We set ϕ = u(t) in (2.6) and integrate in time over (0, ξ). Taking into account
(2.7), u0 = 0 and pg1−β ∗ ∂tuq (t) = ∂t pg1−β ∗uq (t), we obtain∫ ξ

0

p∂t pg1−β ∗uq (t), u(t)q dt+

∫ ξ

0

L(t) pu(t), u(t)q dt

=

∫ ξ

0

∫ t
0
pF (s, u2(s))− F (s, u1(s)), 1q ds

pf, 1q pf, u(t)q dt

+

∫ ξ

0

�∫ t

0

rF (s, u1(s))− F (s, u2(s))s ds, u(t)



dt.

The lower bound for the left hand side (l.h.s.) can be obtained from Lemma 1.7.2
and (2.4)
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∫ ξ

0

p∂t pg1−β ∗uq (t), u(t)q dt+

∫ ξ

0

L(t) pu(t), u(t)q dt

≥ g1−β(T )

2

∫ ξ

0

‖u(t)‖2 dt+ C0

∫ ξ

0

‖∇u(t)‖2 dt.

The upper bound of the r.h.s. can be achieved using the Cauchy and Young's
inequalities in a standard way∫ ξ

0

∫ t
0
pF (s, u2(s))− F (s, u1(s)), 1q ds

pf, 1q pf, u(t)q dt

+

∫ ξ

0

�∫ t

0

rF (s, u1(s))− F (s, u2(s))s ds, u(t)



dt

≤ ε
∫ ξ

0

‖u(t)‖2 dt+ Cε

∫ ξ

0

∫ t

0

‖u(s)‖2 dsdt.

Assembling these estimates we arrive at�
g1−β(T )

2
− ε


 ∫ ξ

0

‖u(t)‖2 dt+ C0

∫ ξ

0

‖∇u(t)‖2 dt ≤ Cε
∫ ξ

0

∫ t

0

‖u(s)‖2 ds dt.

Fixing a su�ciently small positive ε and applying the Grönwall lemma [9], we
conclude that u = 0 a.e. in Ω × (0, T ). Finally, the relation (2.7) ensures that
h = 0 a.e. in (0, T ).

2.3 Time discretization

Rothe [106] introduced a simple time-discretization method for parabolic problems.
By now it grew up to a powerful technique for solving both linear and nonlinear
evolutionary (scalar or vectorial) equations, cf. e.g. [57, 102, 116]. Using a simple
discretization in time (backward Euler), a time-dependent problem is approximated
by a sequence of elliptic problems, which have to be solved successively with increas-
ing ti. Solutions of these steady-state settings approximate the transient solution
at the points of the time partitioning. The advantage of Rothe's method is twofold:
next to the existence and possible uniqueness of a solution to the original problem,
also a numerical algorithm is contained in this approach.

For ease of explanation, we consider an equidistant time-partitioning of the time
frame [0, T ] with a step τ = T/n, for any n ∈ N. We use the notation ti = iτ and
for any function z we write

zi = z(ti), δzi =
zi − zi−1

τ
. (2.8)
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We remind the reader the de�nition (1.30) de�ning the discretized convolution

pK ∗ vqi :=

i∑
k=1

Ki+1−kvkτ,

and also it holds

δ pK ∗ vqi =
pK ∗ vqi − pK ∗ vqi−1

τ
= K1vi +

i−1∑
k=1

δKi+1−kvkτ, i ≥ 1. (2.9)

Similarly, we may write

δ pK ∗ vqi = Kiv0 +

i∑
k=1

δvkKi+1−kτ = Kiv0 + pK ∗ δvqi , i ≥ 1. (2.10)

Consider a system with unknowns (ui, hi) for i = 1, . . . , n. At time ti we approxi-
mate (P) by

�pg1−β ∗ δuqi , ϕ
�
+Li pui, ϕq = hi pf, ϕq+

�
i∑

k=1

F (tk, uk−1)τ, ϕ

�
−pgi, ϕqΓ (DPi)

and (MP) by

pg1−β ∗m′qi + cimi = hi pf, 1q +

�
i∑

k=1

F (tk, uk−1)τ, 1

�
− pgi, 1qΓ . (DMPi)

Please note that (DMPi) and (DPi) are linear in ui and hi, respectively, and both
relations are decoupled. Thus for a given i ∈ {1, . . . , n}, we �rst determine hi from
(DMPi) and then we solve (DPi). Afterwards, we increase i to i+ 1. The pseudo
algorithm for computing the solution reads as

Require: Ω,L, f, F, g,m
1: i← 1
2: while i ≤ n do
3: hi ← Solve: (DMPi)
4: ui ← Solve: (DPi)
5: i← i+ 1

6: return {h1, u1}, . . . , {hn, un}

In the next lemma, we prove the existence and uniqueness of the solution along
every time line. Decoupling the equations in the system at every time step enables
the e�ective application of the Lax-Milgram lemma on the elliptic problem and
gaining the result.
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Lemma 2.3.1. Let f, u0 ∈ L2(Ω),
∫

Ω
f 6= 0, m ∈ C1([0, T ]), F be a global Lipschitz

continuous function in all variables. Assume (2.4) and g ∈ C([0, T ], L2(Γ)). Then
for each i ∈ {1, . . . , n}, there exists a unique couple (ui, hi) ∈ H1(Ω) × R solving
(DPi) and (DMPi).

Proof. Resolving (DMPi) for hi, we get

hi =
pg1−β ∗m′qi + cimi + pgi, 1qΓ −

�∑i
k=1 F (tk, uk−1)τ, 1

	
pf, 1q ∈ R (2.11)

if uk−1 ∈ L2(Ω) for 0 ≤ k ≤ i. The relation (DPi) can be rewritten as

g1−β(τ) pui, ϕq + Li pui, ϕq = hi pf, ϕq +

�
i∑

k=1

F (tk, uk−1)τ, ϕ

�
− pgi, ϕqΓ

−
i−1∑
k=1

g1−β(ti−k+1) pδuk, ϕq τ + g1−β(τ) pui−1, ϕq .

The l.h.s. represents an elliptic, continuous and bilinear form in H1(Ω)×H1(Ω). If
u0, . . . , ui−1 ∈ L2(Ω), then the r.h.s. is a linear bounded functional on H1(Ω). The
existence and uniqueness of ui ∈ H1(Ω) follows from the the Lax-Milgram lemma
1.2.4.

Energy estimates

Now, we start with a basic energy estimate for ui and hi. Additionally, we introduce
the following notation

�
g1−β ∗‖u‖2

	
j

=

j∑
k=1

g1−β(tj+1−k) ‖uk‖2 τ.

Lemma 2.3.2. Let the assumptions of Lemma 2.3.1 be ful�lled. Then there exist
positive constants C and τ0 such that for any 0 < τ < τ0, we have that

(i) max
1≤j≤n

�
g1−β ∗‖u‖2

	
j

+

n∑
i=1

g1−β(ti) ‖ui‖2 τ +

n∑
i=1

‖ui‖2H1(Ω) τ ≤ C,

(ii) max
1≤j≤n

|hj | ≤ C.
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Proof. Starting from (2.11), we see that

|hi| ≤ C + C

i∑
k=1

‖F (tk, uk−1)‖ τ ≤ C + C

i−1∑
k=0

‖uk‖ τ. (2.12)

Set ϕ = uiτ in (DPi) and sum the result up for i = 1, . . . , j to have

j∑
i=1

�pg1−β ∗ δuqi , ui
�
τ +

j∑
i=1

Li pui, uiq τ

=

j∑
i=1

hi pf, uiq τ +

j∑
i=1

�
i∑

k=1

F (tk, uk−1)τ, ui

�
τ −

j∑
i=1

pgi, uiqΓ τ. (2.13)

Using (2.10) and Lemma 1.7.3, we see that

j∑
i=1

�pg1−β ∗ δuqi , ui
�
τ

(2.10)
=

j∑
i=1

�
δ pg1−β ∗uqi − g1−β(ti)u0, ui

�
τ

=

j∑
i=1

�
δ pg1−β ∗uqi , ui

�
τ −

j∑
i=1

g1−β(ti) pu0, uiq τ

≥ 1
2

�
g1−β ∗‖u‖2

	
j

+ 1
2

j∑
i=1

g1−β(ti) ‖ui‖2 τ −
j∑
i=1

g1−β(ti) pu0, uiq τ

≥ 1
2

�
g1−β ∗‖u‖2

	
j

+ 1
2

j∑
i=1

g1−β(ti) ‖ui‖2 τ −
j∑
i=1

g1−β(ti) ‖u0‖ ‖ui‖ τ

≥ 1
2

�
g1−β ∗‖u‖2

	
j

+
�

1
2 − ε

� j∑
i=1

g1−β(ti) ‖ui‖2 τ − Cε
j∑
i=1

g1−β(ti)τ

≥ 1
2

�
g1−β ∗‖u‖2

	
j

+
�

1
2 − ε

� j∑
i=1

g1−β(ti) ‖ui‖2 τ − Cε

≥ 1
2

�
g1−β ∗‖u‖2

	
j

+

�
1

4
− ε


 j∑
i=1

g1−β(ti) ‖ui‖2 τ +
g1−β(T )

4

j∑
i=1

‖ui‖2 τ − Cε,

where, in the last step, we estimated from below a part of the second term and
gained a suitable estimate for the sum of ‖ui‖2 without the weight function. Next,
by ellipticity assumption, we may write

j∑
i=1

Li pui, uiq τ ≥ C0

j∑
i=1

‖∇ui‖2 τ.
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The �rst term on the r.h.s. of (2.13) can be readily estimated using the Cauchy
and Young's inequalities and taking into account (2.12)�����

j∑
i=1

hi pf, uiq τ
����� ≤ ε

j∑
i=1

‖ui‖2 τ + Cε

j∑
i=1

h2
i τ

≤ ε

j∑
i=1

‖ui‖2 τ + Cε + Cε

j∑
i=1

i−1∑
k=0

‖uk‖2 τ2.

(2.14)

For the second term on the r.h.s. of (2.13), we again apply the Cauchy and Young's
inequalities to get�����

j∑
i=1

�
i∑

k=1

F (tk, uk−1)τ, ui

�
τ

����� ≤ ε
j∑
i=1

‖ui‖2 τ + Cε + Cε

j∑
i=1

i−1∑
k=0

‖uk‖2 τ2.

The last term of (2.13) can be handled similarly involving the Cauchy and Young
inequalities and the trace theorem�����

j∑
i=1

pgi, uiqΓ τ
����� ≤ ε

j∑
i=1

‖ui‖2Γ τ + Cε ≤ ε
j∑
i=1

‖ui‖2 τ + ε

j∑
i=1

‖∇ui‖2 τ + Cε.

Putting all estimates together we arrive at

1

2

�
g1−β ∗‖u‖2

	
j

+

�
1

4
− ε


 j∑
i=1

g1−β(ti) ‖ui‖2 τ +

�
g1−β(T )

4
− ε


 j∑
i=1

‖ui‖2 τ

+ pC0 − εq
j∑
i=1

‖∇ui‖2 τ ≤ Cε + Cε

j∑
i=1

i−1∑
k=0

‖uk‖2 τ2.

Fixing a su�ciently small 0 < ε < 1 and using Grönwall's argument, we get for
0 < τ < τ0 that

�
g1−β ∗‖u‖2

	
j

+

j∑
i=1

g1−β(ti) ‖ui‖2 τ +

j∑
i=1

‖ui‖2H1(Ω) τ ≤ C.

This together with (2.12) imply
|hi| ≤ C.

We shall need a compatibility condition, i.e. we assume that (2.1) is ful�lled at
t = 0, i.e. (P) holds true for t = 0. Therefore we may also put t = 0 in (MP),

L(0) pu0, ϕq = h0 pf, ϕq− pg0, ϕqΓ , ∀ϕ ∈ H1(Ω) (2.15)
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which allows us to de�ne h0 as follows

h0 =
c0m0 + pg0, 1qΓ

pf, 1q . (2.16)

We adopt the following notation

�
g1−β ∗‖δu‖2

	
j

=

j∑
k=1

g1−β(tj+1−k) ‖δuk‖2 τ.

Lemma 2.3.3. Let the assumptions of Lemma 2.3.1 be ful�lled. Moreover, assume
(2.15),(2.16), u0 ∈ H1(Ω), g ∈ C1([0, T ], L2(Γ)), m ∈ C2([0, T ]), ∂tc ∈ L∞(0, T )
and ∂tai,j , ∂tbi ∈ L∞(Ω × (0, T )) for all i, j = 1, . . . , d. Then there exist positive
constants C and τ0 such that for any 0 < τ < τ0 we have

(i) max
1≤j≤n

�
g1−β ∗‖δu‖2

	
j

+

n∑
i=1

g1−β(ti) ‖δui‖2 τ +

n∑
i=1

‖δui‖2H1(Ω) τ ≤ C,

(ii) |δhi| ≤ C + Ct−βi for any i = 1, . . . , n.

Proof. Subtract (2.16) from (2.11) for i = 1, divide the result by τ to get

δh1 =
h1 − h0

τ
=
m1δc1 + c0δm1 + g1−β(τ)m′(τ) + pδg1, ϕqΓ − pF (τ, u0), 1q

pf, 1q .

Thus, we have |δh1| ≤ C + Ct−β1 .

Now, applying the δ-operation on (2.11) for i ≥ 2, we deduce that

δhi =
1

pf, 1q
�
δ(cimi) + δ pg1−β ∗m′qi + pδgi, 1qΓ − pF (ti, ui−1), 1q�

(2.10)
=

1

pf, 1q
�
miδci + ci−1δmi + g1−β(ti)m

′(0) +

i∑
k=1

δm′kg1−β(ti+1−k)τ

+ pδgi, 1qΓ − pF (ti, ui−1), 1q
	
.

That is why the following relation holds true

|δhi| ≤ Ct−βi + C + C ‖ui−1‖ , ∀i ≥ 1. (2.17)

Clearly
ziwi − zi−1wi−1 = zi pwi − wi−1q + pzi − zi−1qwi−1.

Therefore
δ pLi pui, ϕqq = Li pδui, ϕq + pδLqi pui−1, ϕq ,
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where

pδLqi pu, ϕq = pδAi∇u+ δbiu,∇ϕq + δci pu, ϕq , ∀u, ϕ ∈ H1(Ω).

Taking a di�erence of (DPi), we get

�
δ pg1−β ∗ δuqi , ϕ

�
+ Li pδui, ϕq + pδLqi pui−1, ϕq =

δhi pf, ϕq + pF (ti, ui−1), ϕq− pδgi, ϕqΓ . (2.18)

This di�erence can be taken for i ≥ 2. When i = 1 we subtract (2.15) from (DPi)
for i = 1 (please note that pg1−β ∗ δuq0 = 0). Set ϕ = δuiτ in (2.18) and sum the
result up for i = 1, . . . , j to obtain

j∑
i=1

�
δ pg1−β ∗ δuqi , δui

�
τ +

j∑
i=1

Li pδui, δuiq τ +

j∑
i=1

pδLqi pui−1, δuiq τ

=

j∑
i=1

δhi pf, δuiq τ +

j∑
i=1

pF (ti, ui−1), δuiq τ −
j∑
i=1

pδgi, δuiqΓ τ. (2.19)

Using Lemma 1.7.3, we see that

j∑
i=1

�
δ pg1−β ∗ δuqi , δui

�
τ ≥ 1

2

�
g1−β ∗‖δu‖2

	
j

+ 1
2

j∑
i=1

g1−β(ti) ‖δui‖2 τ

≥ 1
2

�
g1−β ∗‖δu‖2

	
j

+
1

4

j∑
i=1

g1−β(ti) ‖δui‖2 τ +
g1−β(T )

4

j∑
i=1

‖δui‖2 τ.

The ellipticity assumption yields

j∑
i=1

Li pδui, δuiq τ ≥ C0

j∑
i=1

‖∇δui‖2 τ.

We involve Lemma 2.3.2 and u0 ∈ H1(Ω) to get

�����
j∑
i=1

pδLqi pui−1, δuiq τ
����� ≤ C

j∑
i=1

‖ui−1‖H1(Ω) ‖δui‖H1(Ω) τ ≤ ε
j∑
i=1

‖δui‖2H1(Ω) τ+Cε.

The �rst term on the r.h.s. of (2.19) can be readily estimated using the Cauchy
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and Young's inequalities and taking into account (2.17)�����
j∑
i=1

δhi pf, δuiq τ
����� ≤ C

j∑
i=1

|δhi| ‖δui‖ τ

(2.17)

≤ C

j∑
i=1

pg1−β(ti) + 1 + ‖ui−1‖q ‖δui‖ τ

≤ ε
j∑
i=1

g1−β(ti) ‖δui‖2 τ + ε

j∑
i=1

‖δui‖2 τ + Cε.

For the second term on the r.h.s. of (2.19), we again apply the Cauchy and Young's
inequalities to get �����

j∑
i=1

pF (ti, ui−1), δuiq τ
����� ≤ ε

j∑
i=1

‖δui‖2 τ + Cε.

The last term of (2.19) can be handled similarly involving the Cauchy and Young's
inequalities and the trace theorem�����

j∑
i=1

pδgi, δuiqΓ τ
����� ≤ ε

j∑
i=1

‖δui‖2Γ τ + Cε ≤ ε
j∑
i=1

‖δui‖2H1(Ω) τ + Cε.

Collecting all estimates above, we may write

1

2

�
g1−β ∗‖δu‖2

	
j

+

�
1

4
− ε


 j∑
i=1

g1−β(ti) ‖δui‖2 τ

+

�
g1−β(T )

4
− ε


 j∑
i=1

‖δui‖2 τ + (C0 − ε)
j∑
i=1

‖∇δui‖2 τ ≤ Cε.

Fixing a su�ciently small 0 < ε < 1, we obtain that

�
g1−β ∗‖δu‖2

	
j

+

j∑
i=1

g1−β(ti) ‖δui‖2 τ +

j∑
i=1

‖δui‖2H1(Ω) τ ≤ C.

This together with (2.17) imply

|δhi| ≤ Cg1−β(ti) + C + C ‖ui−1‖ ≤ Ct−βi + C.
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Rothes' functions and existence theorem

Now, let us introduce the following piecewise linear Rothe's functions in time
un, un, ũn : [0, T ]→ L2(Ω)

un : t 7→

{
u0, t = 0

ui−1 + (t− ti−1)δui, t ∈ (ti−1, ti], 1 ≤ i ≤ n,

un : t 7→

{
u0, t = 0

ui, t ∈ (ti−1, ti], 1 ≤ i ≤ n,

ũn : t 7→

{
u0, t ∈ [0, τ ]

un(t− τ), t ∈ (ti−1, ti], 2 ≤ i ≤ n.

(2.20)

Analogously, we de�ne hn, hn, Fn, Ln, gn, g1−βn andm
′
n. Now, we can rewrite

(DPi) and (DMPi) on the whole time frame as (for t ∈ (ti−1, ti])��
g1−βn∗ ∂tun

�
(ti), ϕ

�
+ Ln(t) pun(t), ϕq

= hn(t) pf, ϕq +

�∫ ti

0

Fn(s, ũn(s)) ds, ϕ


− pgn(t), ϕqΓ (DP)

and

�
g1−βn∗m′n

�
(ti) = hn(t) pf, 1q+

�∫ ti

0

Fn(s, ũn(s)) ds, 1


− pgn(t), 1qΓ . (DMP)

We are in a position to prove the existence of a variational solution to (P) and
(MP). We do so by showing the convergence of the Rothe functions and also by
showing the convergence of the (DP), (DMP) to (P), (MP).

Theorem 2.3.1 (existence of a solution). Let f ∈ L2(Ω), u0 ∈ H1(Ω),
∫

Ω
f 6= 0,

m ∈ C2([0, T ]), and g ∈ C1([0, T ], L2(Γ)). Suppose that F is a global Lipschitz
continuous function in all variables. Assume (2.4), (2.15), (2.16), ∂tc ∈ L∞[0, T ]
and ∂tai,j , ∂tbi ∈ L∞(Ω× (0, T )) for all i, j = 1, . . . , d.

Then there exists a solution (u, h) to (P), (MP) obeying u ∈ C
�
[0, T ], H1(Ω)

�
with ∂tu ∈ L2

�
(0, T ), H1(Ω)

�
, h ∈ C([0, T ]).

Proof. The estimate from Lemma 2.3.3 (ii) implies for t ∈ (ti−1, ti] that

|h′n(t)| = |δhi| ≤ Ct−βi + C ≤ Ct−β + C.
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Therefore

|hn(t+ ε)− hn(t)| =

����
∫ t+ε

t

h′n(x)dx
���� ≤ C

∫ t+ε

t

�
x−β + 1

�
dx

≤ C
(t+ ε)1−β − t1−β

1− β
+ ε = O

�
ε1−β� ,

which yields the equi-continuity of the sequence {hn}. Lemma 2.3.2 also guarantees
the equi-boundedness of {hn}. By means of the Arzelà-Ascoli theorem 1.2.5, we
get compactness of hn in C([0, T ]).

Lemma 2.3.3 says that ‖un(t)‖H1(Ω) +

∫ T

0

‖∂tun‖2H1(Ω) ≤ C. Due to the com-

pact embeddingH1(Ω) � L2(Ω), we may invoke Lemma 1.5.1 to claim the existence
of u ∈ C

�
[0, T ], L2(Ω)

�
∩ L∞

�
(0, T ), H1(Ω)

�
, which is time-di�erentiable a.e. in

[0, T ], and a subsequence of {un}n∈N (denoted by the same symbol again) such
that 

un → u in C
�
[0, T ], L2(Ω)

�
, (2.21a)

un(t) ⇀ u(t) in H1(Ω), ∀t ∈ [0, T ] , (2.21b)

un(t) ⇀ u(t) in H1(Ω), ∀t ∈ [0, T ] , (2.21c)

∂tun ⇀ ∂tu in L2
�
(0, T ), L2(Ω)

�
. (2.21d)

Re�exivity of the space L2
�
(0, T ), H1(Ω)

�
together with Lemma 2.3.3 also give

∂tun ⇀ ∂tu, in L2
�
(0, T ), H1(Ω)

�
and

u(t)− u(s) =

∫ t

s

∂tu(z) dz =⇒

‖u(t)− u(s)‖H1(Ω) ≤
a|t− s|

b∫ T
0
‖∂tu(z)‖2H1(Ω) dz ≤ C

a|t− s|.

Taking into account u0 ∈ H1(Ω), we get u ∈ C
�
[0, T ], H1(Ω)

�
. Further, it holds∫ T

0

‖ũn − un‖2 = O
�
τ2
�
.

We are allowed to write for t ∈ (ti−1, ti]

���g1−βn∗m′n
�

(ti)−
�
g1−βn∗m′n

�
(t)
��



2.3. Time discretization 55

≤
����
∫ ti

t

g1−βn(ti − s)m′n(s) ds
����

+

����
∫ t

0

�
g1−βn(ti − s)− g1−βn(t− s)

�
m′n(s) ds

����
≤ C

∫ ti

t

g1−βn(ti − s) ds+ C

∫ t

0

��g1−βn(ti − s)− g1−βn(t− s)
�� ds.

The pointwise convergence g1−βn → g1−β andm′n → m′ in (0, T ) and the Lebesgue
dominated theorem yield�

g1−βn∗m′n
�

(ti)→ pg1−β ∗m′q (t) for n→∞.

Based on the considerations above, we may pass to the limit n→∞ in (DMP) to
arrive at (MP). The process is straightforward, therefore we omit further details.

It remains to show that the couple (u, h) also obey (P). We successively deduce
that∥∥∥ �g1−βn∗ ∂tun

�
(ti)−

�
g1−βn∗ ∂tun

�
(t)
∥∥∥

≤
∥∥∥∥∫ ti

t

g1−βn(ti − s)∂tun(s) ds
∥∥∥∥

+

∥∥∥∥∫ t

0

�
g1−βn(ti − s)− g1−βn(t− s)

�
∂tun(s)ds

∥∥∥∥
≤

∫ ti

t

g1−βn(ti − s) ‖∂tun(s)‖ ds

+

∫ t

0

��g1−βn(ti − s)− g1−βn(t− s)
�� ‖∂tun(s)‖ ds.

The �rst term on the r.h.s. can be estimated as follows∫ ti

t

g1−βn(ti − s) ‖∂tun(s)‖ ds

≤

d∫ ti

t

g1−βn(ti − s) ds

d∫ ti

t

g1−βn(ti − s) ‖∂tun(s)‖2 ds

≤
?
τ1−β

d∫ ti

0

g1−βn(ti − s) ‖∂tun(s)‖2 ds

≤ C
?
τ1−β . (Lemma 2.3.3)

Using the Lebesgue dominated theorem, we �nd that

lim
n→∞

∫ t

0

��g1−βn(ti − s)− g1−βn(t− s)
�� ‖∂tun(s)‖ ds = 0.
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By the Cauchy, Hölder and Young's inequalities, we have

�����
∫ ξ

0

��
g1−βn − g1−β

�∗ p∂tun, ϕq� (t) dt

�����
≤
∫ ξ

0

��g1−βn − g1−β
�� dt

d∫ ξ

0

‖∂tun‖2 dt

d∫ ξ

0

‖ϕ‖2 dt ≤ C ‖ϕ‖ .

The pointwise convergence g1−βn → g1−β in (0, T ) and the Lebesgue dominated
theorem imply that

lim
n→∞

�����
∫ ξ

0

��
g1−βn − g1−β

�∗ p∂tun, ϕq� (t) dt

����� = 0.

Using
∂t pg1−β ∗unq (t) = pg1−β ∗ ∂tunq (t) + g1−β(t)un(0),

we see that∫ ξ

0

pg1−β ∗ p∂tun, ϕqq (t)dt = pg1−β ∗ pun, ϕqq (ξ)− pu0, ϕq
∫ ξ

0

g1−β(t) dt.

Passing to the limit for n→∞ and taking into account (2.21a), we obtain

lim
n→∞

∫ ξ

0

pg1−β ∗ p∂tun, ϕqq (t) dt = pg1−β ∗ pu, ϕqq (ξ)−
∫ ξ

0

g1−β(t) dt pu0, ϕq

=

∫ ξ

0

pg1−β ∗ p∂tu, ϕqq (t) dt

=

∫ ξ

0

ppg1−β ∗ ∂tuq (t), ϕq dt.

In order to check that (u, h) solve (P), we start from (DP), which we integrate in
time over (0, ξ). Then (based on considerations above) we may pass to the limit
n→∞ to get∫ ξ

0

[ppg1−β ∗ ∂tuq (t), ϕq + L(t) pu(t), ϕq] dt

=

∫ ξ

0

�
h(t) pf, ϕq +

�∫ t

0

F (s, u(s)) ds, ϕ


− pg(t), ϕqΓ

�
dt. (2.22)

Di�erentiation with respect to ξ brings us to the desired result.
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The convergences of Rothe's functions towards the weak solution (P)-(MP) (as
stated in the proof of Theorem 2.3.1) have been shown for a subsequence. Note
that taking into account Theorem 2.2.1, we see that the whole sequence of Rothe's
functions converge against the weak solution.

Remark 1. Section 2.2 addressed the uniqueness and Section 2.3 showed the exis-
tence of a solution to the inverse source problem (2.1)-(2.3). We would like to point
out that the same technique can be applied for solving a direct problem (2.1)-(2.2)
if h(t) is known.

2.4 Numerical Experiments

In this section, we test the above-mentioned numerical scheme to approximate the
solution of (P)-(MP), which is based on (DPi) and (DMPi). Numerical results are
presented and discussed.

2.4.1 Exact data

We consider problem (P)-(MP) for Ω = (0.5, 3), T = 3 and β = 0.5 with

L pu, ϕq = p∇u,∇ϕq ,
f(x) = sinx,

F (x, t, u) = −4tu exp

�
1− u2

sin2 x



,

along with the initial and boundary conditions

u0(x) = 2 sinx,
g(0.5, t) = (t2 + 2) cos 1

2 ,
g(3, t) = (t2 + 2) cos 3,

where the time-dependent measurement is

m(t) =

�
cos

1

2
− cos 3


�
t2 + 2

�
.

One can easily verify that functions

u(x, t) =
�
t2 + 2

�
sinx

and
h(t) =

8

3
?
π
t
3
2 + t2 − exp p1− (t2 − 2)2q + e−3 + 2
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solve the given problem.

To get a solution of (DPi), the domain Ω is uniformly divided into 50 subin-
tervals. The solution ui is calculated using a �nite element method with Lagrange
polynomials of the second order used as basis functions. Calculations were made
several times for various values of τ . The algorithm was implemented in Python
using the FEniCS Project.

Fig. 2.1 (a), (b) show a numerical approximation of functions h and u(T ) for
τ = 0.01 together with exact h and u(T ), respectively. Fig. 2.1 (c), (d) display
relative error of h and u in time, respectively, for τ = 0.01, which shows that the
numerical accuracy is fair. Please note that the reconstruction of u is more accurate
then the reconstruction of h.

Maximal relative errors in time of h and u for di�erent values of τ are depicted
in Fig. 2.1 (e), (f), respectively. The linear regression lines plotted through data
points are given by 0.39529 log10 τ−0.71487 for the error of h and 0.99983 log10 τ−
0.47112 for the error of u.

2.4.2 Noisy data

As the measured data usually contain some amount of noise, the question of dealing
with noisy data is interesting. The algorithm we proposed in the theoretical part
works with the �rst derivative of the measurement m. When dealing with real
data, the continuous derivative can hardly be expected due to the present noise.
Using for example the �nite di�erence in such a situation for an approximation of
the derivative is practically useless as it might just enlarge the noise, and the result
is often unusable [19]. To avoid this it is necessary to use some kind of �smoothing
or �ltering� of noisy data. In [91] there is a molli�cation used on this purpose,
minimization of an appropriate functional was used in [19]. We use the nonlinear
least square method to get a su�ciently smooth function approximating the noisy
data, and afterwards we deal with this smooth approximation in our algorithm.

We consider the same example as in Section 2.4.1. The noisy measurement has
the following form

mε(t) = m(t) + εδmmax, (2.23)

where ε is a small parameter, δ is the Gaussian distributed noise with the mean and
standard deviation equal to 0 and 1, respectively, and mmax is a maximal value of
m on the interval [0, T ]. First, we look for a function mapp that approximates m
and has the form

mapp(t) = αtβ + γ. (2.24)

We use then the function mapp as the measurement in our algorithm. All other
settings from the previous experiment remain the same. The exact, noisy and
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(a) Reconstruction of h together with exact h. (b) Reconstruction of u(T ) together with exact
u(T ).

(c) Relative error
|happrox(t)−hexact(t)|

|hexact(t)|
. (d) Relative error

||uapprox(t)−uexact(t)||
||uexact(t)||

.

(e) Logarithm of maximal relative error in time
of h for di�erent values of τ . Slope of the line
is 0.39529.

(f) Logarithm of maximal relative error in time
of u for di�erent values of τ . Slope of the line
is 0.99983.

Figure 2.1: The results of the reconstruction algorithm. In (a)-(d) τ = 0.01.
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approximated data computed with the nonlinear least square method can be seen
on Fig. 2.2. The reconstruction of h and u(T ) is presented in Fig. 2.2 (a), (b),
respectively. Finally, the relative errors in time are depicted in Fig. 2.2 (c), (d).
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(a) Exact and noisy data for ε = 0.05. Ap-
proximating curve has the form mapp(t) =
1.8444t2.0234 + 3.5918.

(b) Reconstruction of h together with exact h. (c) Reconstruction of u(T ) together with exact
u(T ).

(d) Relative error
|happrox(t)−hexact(t)|

|hexact(t)|
. (e) Relative error

||uapprox(t)−uexact(t)||
||uexact(t)||

.

Figure 2.2: The result of reconstruction of h and u for noisy data with a various
amount of noise ε and τ = 0.01
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Chapter 3

Recognition of a

time-dependent source in a

time-fractional wave equation

The content of this chapter is based on the article [130], which has been already
published in the journal: Applied Numerical Mathematics.

3.1 Introduction

Consider a partial di�erential equation (PDE) with a fractional derivative in time t

pg2−β ∗ ∂ttu(x)q (t)−∆u(x, t)

= h(t)f(x) + F (x, t, u(x, t)), x ∈ Ω, t ∈ (0, T ), (3.1)

where Ω ⊂ Rd is a bounded domain with a Lipschitz boundary Γ, T > 0, and g2−β
is the Riemann-Liouville kernel given by

g2−β(t) =
t1−β

Γ(2− β)
, t > 0, 1 < β < 2.

We supplement the governing PDE (3.1) with the following initial and boundary
conditions

u(x, 0) = u0(x), x ∈ Ω,
∂tu(x, 0) = v0(x), x ∈ Ω,

−∇u(x, t) · ν = g(x, t), (x, t) ∈ Γ× (0, T ),
(3.2)

63
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where the symbol ν denotes the outer normal vector assigned to the boundary Γ.

The Inverse Source Problem (ISP) studied in this chapter consists of �nding a
couple (u(x, t), h(t)) obeying (3.1), (3.2) and

∫
Ω

u(x, t)ω(x) dx = m(t), t ∈ [0, T ], (3.3)

where the weight function ω is just a space-dependent function. Usually ω is chosen
to be a function with compact support in Ω, and then this type of measurement
represents the weighted average of u on a subdomain of Ω.

The fractional wave equation is used for example to model the propagation
of di�usive waves in viscoelastics solids [77, 81]. The uniqueness and existence
of a solution to the direct Cauchy problem for a fractional di�usion-wave equa-
tion has been studied in [110]. In [80], a fundamental solution of Cauchy problem
is expressed using the Laplace transform. More about the direct fractional wave
problem can be found in [75, 78, 79]. The recovery of a time dependent source in
a fractional integrodi�erential wave equation by means of the Banach �xed point
theorem has been studied in [133, 138]. In [138], the time dependent source is
reconstructed using a time trace at point x0 ∈ Ω. In [133], two measurements in
the form of integral over the subdomain were used to identify the time- dependent
source and convolution kernel. In both articles zero Dirichlet boundary condition
is considered. To the best of the our knowledge, there are no articles considering
the Neumann boundary condition in the problem of time-dependent source iden-
ti�cation in the fractional wave equation. Moreover, we design also a numerical
scheme for reconstruction.

The aim of this chapter is to prove the uniqueness and global existence of the
weak solution of the ISP.

The chapter is organized as follows. In the second section, we introduce vari-
ational formulation of the ISP. In Section 3 we suggest a numerical scheme based
on the Rothe method of in time semi-discretization. We prove the existence of
the approximate solutions along the time slices and prove some a priori estimates.
Convergence of the Rothe functions towards the solution of the ISP is shown in
Section 4. In the last section, we present a numerical experiment to support our
result.
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3.2 Uniqueness

Multiplying (3.1) by the function ω, integrating over Ω, applying the Green theorem
and using (3.3), we obtain

pg2−β ∗m′′q (t) + p∇u(t),∇ωq = h(t) pf, ωq− pg(t), ωqΓ + pF (t, u(t)), ωq . (MP2)

Assuming pf, ωq 6= 0, we get

h(t) =
pg2−β ∗m′′q (t) + p∇u(t),∇ωq + pg(t), ωqΓ − pF (t, u(t)), ωq

pf, ωq . (3.4)

Similarly multiplying (3.1) by a function ϕ ∈ H1(Ω) and using Green's theorem,
we obtain the variational formulation of (3.1) and (3.2), which reads as

ppg2−β ∗ ∂ttuq (t), ϕq+p∇u(t),∇ϕq = h(t) pf, ϕq+pF (t, u(t)), ϕq−pg(t), ϕqΓ , (P2)
for any ϕ ∈ H1(Ω), a.a. t ∈ [0, T ] and u(0) = u0, ∂tu(0) = v0. The relations (P2)
and (MP2) represent the variational formulation of the ISP (3.1), (3.2) and (3.3).

The next theorem deals with the uniqueness of the solution in the appropriate
spaces.

Theorem 3.2.1 (uniqueness). Let f, v0 ∈ L2(Ω), u0, ω ∈ H1(Ω),
∫

Ω
fω 6= 0,

m ∈ C2([0, T ]), F be a global Lipschitz continuous function in all variables and
g ∈ C([0, T ], L2(Γ)). Then there exists at most one solution (u, h) to the (P2),
(MP2) obeying u ∈ C

�
[0, T ], H1(Ω)

�
, ∂tu ∈ C

�
[0, T ], L2(Ω)

�
∩ L2

�
(0, T ), H1(Ω)

�
with ∂ttu ∈ L2

�
(0, T ), L2(Ω)

�
and h ∈ C([0, T ]).

Proof. Assume that there exists two solutions (u1, h1), (u2, h2) of the (P2), (MP2)
obeying assumptions from the theorem. Set u = u1 − u2 and h = h1 − h2. Then
the pair (u, h) solves the following problem

p∇u(t),∇ωq = h(t) pf, ωq + pF (t, u1(t))− F (t, u2(t)), ωq , (3.5)

and

ppg2−β ∗ ∂ttuq (t), ϕq + p∇u(t),∇ϕq
= h(t) pf, ϕq + pF (t, u1(t))− F (t, u2(t)), ϕq , (3.6)

for every ϕ ∈ H1(Ω), a.a. t ∈ [0, T ] and u(0) = 0, ∂tu(0) = 0. Let take ϕ = ∂tu(t)
and integrate the relation (3.6) over the interval (0, ξ), where ξ ∈ (0, T ]. By using
the fact that ∂tu = 0, we get pg2−β ∗ ∂ttuq (t) = ∂t pg2−β ∗ ∂tuq (t) and together
with assumption that

∫
Ω
fω 6= 0, we obtain from (3.5) and (3.6) that
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∫ ξ

0

p∂t pg2−β ∗ ∂tuq (t), ∂tu(t)q dt+
1

2
‖∇u(ξ)‖2

=

∫ ξ

0

p∇u(t),∇ωq− pF (t, u1(t))− F (t, u2(t)), ωq
pf, ωq pf, ∂tu(t)q dt

+

∫ ξ

0

pF (t, u1(t))− F (t, u2(t)), ∂tu(t)q dt.
(3.7)

To gain the lower bound of the l.h.s. we use Lemma 1.7.2∫ ξ

0

p∂t pg2−β ∗ ∂tuq (t), ∂tu(t)q dt+
1

2
‖∇u(ξ)‖2

≥ g2−β(T )

2

∫ ξ

0

‖∂tu(t)‖2 dt+
1

2
‖∇u(ξ)‖2 .

Using the Cauchy and Young inequalities together with the Lipschitz continuity of
F , we acquire the upper bound of the r.h.s. in (3.7)∫ ξ

0

p∇u(t),∇ωq− pF (t, u1(t))− F (t, u2(t)), ωq
pf, ωq pf, ∂tu(t)q dt

+

∫ ξ

0

pF (t, u1(t))− F (t, u2(s)), ∂tu(t)q dt

≤ ε
∫ ξ

0

‖∂tu(t)‖2 dt+ Cε

∫ ξ

0

�
‖u(t)‖2 + ‖∇u(t)‖2

	
dt.

Combination of the both estimates gives us�
g2−β(T )

2
− ε


 ∫ ξ

0

‖∂tu(t)‖2 dt+
1

2
‖∇u(ξ)‖2

≤ Cε
∫ ξ

0

�
‖u(t)‖2 + ‖∇u(t)‖2

	
dt.

We choose a �xed, su�ciently small ε. By the estimate ‖u(ξ)‖2 ≤
∫ ξ

0
‖∂tu(t)‖2 dt,

we get

‖u(ξ)‖2 + ‖∇u(ξ)‖2 ≤ C
∫ ξ

0

�
‖u(t)‖2 + ‖∇u(t)‖2

	
dt.

Now, we can apply Grönwall's lemma and obtain estimate

‖u(ξ)‖2 + ‖∇u(ξ)‖2 ≤ 0, (3.8)

which hold for ξ ∈ [0, T ]. It follows directly from (3.8) that u = 0 a.e. in [0, T ]×Ω.
Moreover, using this together with the Lipschitz continuity of F in (3.5), it is easily
seen that h = 0 a.e. in [0, T ]. So, we get u1 = u2 and h1 = h2.
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3.3 Time discretization

We introduce the equidistant time-partitioning of the interval [0, T ] by the step
τ = T

n , for any n ∈ N. We use notation ti = iτ , for i = 1, ..., n, and zi, δzi for any
function z de�ned in the previous chapter (see (2.8)) as the value at the point ti
and an i-th di�erence, respectively, moreover we write

δ2zi =
δzi − δzi−1

τ
.

On the i−th time-layer, we approximate the solution of (P2), (MP2) by (ui, hi)
that solves��

g2−β ∗ δ2u
�
i
, ϕ
�

+ p∇ui,∇ϕq = hi pf, ϕq + pF (ti, ui−1), ϕq− pgi, ϕqΓ , (DPi)

for ϕ ∈ H1(Ω), with δu0 := v0 and

pg2−β ∗m′′qi + p∇ui−1,∇ωq = hi pf, ωq + pF (ti, ui−1), ωq− pgi, ωqΓ . (DMPi)

To compute the solution of those equations for given i, we �rst �nd hi from
(DMPi) and then calculate ui from (DPi). Afterward, we increase i to i+ 1.

Following lemma deals with the existence and uniqueness of the solution (ui, hi)
on every time-layer.

Lemma 3.3.1. Let f, v0 ∈ L2(Ω), u0, ω ∈ H1(Ω),
∫

Ω
fω 6= 0, m ∈ C2([0, T ]),

g ∈ C([0, T ], L2(Γ)) and F be a global Lipschitz continuous function in all variables.
Then for each i ∈ {1, . . . , n}, there exists a unique couple (ui, hi) ∈ H1(Ω) × R
solving (DPi) and (DMPi) for every ϕ ∈ H1(Ω).

Proof. The requirement on f and ω that
∫

Ω
fω 6= 0 gives us

hi =
pg2−β ∗m′′qi + p∇ui−1,∇ωq + pgi, ωqΓ − pF (ti, ui−1), ωq

pf, ωq ∈ R. (3.9)

The equation (DPi) can be written as

1

τ
g2−β(τ) pui, ϕq + p∇ui,∇ϕq = hi pf, ϕq + pF (ti, ui−1), ϕq− pgi, ϕqΓ

−
i−1∑
k=1

g2−β(ti+1−k)
�
δ2uk, ϕ

�
τ +

1

τ
g2−β(τ) pui−1, ϕq + g2−β(τ) pδui−1, ϕq . (3.10)

The expression on the l.h.s. is a bilinear, elliptic, bounded form de�ned on H1(Ω)×
H1(Ω). If u0, . . . , ui−1, v0 ∈ L2(Ω), then the r.h.s. can be seen as a linear, bounded
functional on H1(Ω). The Lax-Milgram lemma 1.2.4 implies the existence of the
unique solution in H1(Ω) of (3.10).
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The next goal is to establish some estimates of ui, hi in appropriate norms.

Lemma 3.3.2. Under the assumptions of Lemma 3.3.1, if moreover it holds that
g ∈ C1

�
[0, T ], L2(Γ)

�
, then there exist positive constants C (independent of n) such

that

(i) max
0≤i≤n

�
g2−β ∗‖δu‖2

	
i
+

n∑
i=1

g2−β(ti) ‖δui‖2 τ +

n∑
i=1

‖δui‖2 τ

+ max
0≤i≤n

‖ui‖2H1(Ω) +

n∑
i=1

‖∇(ui − ui−1)‖2 ≤ C,

(ii) max
0≤i≤n

|hi| ≤ C.

Proof. We start by estimating hi from (3.9)

|hi| ≤ C p1 + ‖∇ui−1‖+ ‖F (ti, ui−1)‖q ≤ C p1 + ‖∇ui−1‖+ ‖ui−1‖q . (3.11)

Now, setting ϕ = δuiτ in the relation (DPi), we get that

��
g2−β ∗ δ2u

�
i
, δuiτ

�
+ p∇ui,∇δuiτq
= hi pf, δuiτq + pF (ti, ui−1), δuiτq− pgi, δuiτqΓ . (3.12)

We sum equations up over i = 1, . . . , j, j ∈ {1, . . . , n} and use the relation (2.10)
to obtain

j∑
i=1

�
δ pg2−β ∗ δuqi , δui

�
τ +

j∑
i=1

p∇ui,∇ui −∇ui−1q

=

j∑
i=1

hi pf, δuiq τ +

j∑
i=1

pF (ti, ui−1), δuiq τ

−
j∑
i=1

pgi, δuiqΓ τ +

j∑
i=1

g2−β(ti) pv0, δuiq τ.
(3.13)

To gain the lower bound of the l.h.s., we use Lemma 1.7.3 and Abel's summation
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(Theorem 1.3.7) in the following way

j∑
i=1

�
δ pg2−β ∗ δuqi , δui

�
τ +

j∑
i=1

p∇ui,∇ui −∇ui−1q

≥ 1

2

j∑
i=1

δ
�
g2−β ∗‖δu‖2

	
i
τ +

1

2

j∑
i=1

g2−β(ti) ‖δui‖2 τ

+
1

2
‖∇uj‖2 −

1

2
‖∇u0‖2 +

1

2

j∑
i=1

‖∇ui −∇ui−1‖2

≥ 1

2

�
g2−β ∗‖δu‖2

	
j

+
1

4

j∑
i=1

g2−β(ti) ‖δui‖2 τ

+
g2−β(T )

4

j∑
i=1

‖δui‖2 τ +
1

2
‖∇uj‖2 − C +

1

2

j∑
i=1

‖∇ui −∇ui−1‖2 .

(3.14)

To estimate the �rst term of the r.h.s. of (3.13), we use Cauchy's and Young's
inequality�����

j∑
i=1

hi pf, δuiq τ
�����

(3.11)

≤ Cε

j∑
i=1

|hi|2 τ + ε

j∑
i=1

‖δui‖2 τ

≤ Cε + Cε

j−1∑
i=0

p ‖ui‖2 + ‖∇ui‖2 qτ + ε

j∑
i=1

‖δui‖2 τ. (3.15)

The second term can be estimated by employing Cauchy's and Young's inequality
together with Lipschitz's continuity of F�����

j∑
i=1

pF (ti, ui−1), δuiq τ
����� ≤ C

j∑
i=1

p1 + ‖ui−1‖ q ‖δui‖ τ

≤ Cε + Cε

j∑
i=1

‖ui−1‖2 τ + ε

j∑
i=1

‖δui‖2 τ.
(3.16)

We can rewrite third term as follows
j∑
i=1

pgi, δuiqΓ τ = −
j−1∑
i=1

pδgi, uiqΓ τ + pgj , ujqΓ − pg1, u0qΓ ,

then we apply the same inequalities as in the previous estimate and the trace
theorem to obtain the upper bound of this term
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�����
j∑
i=1

pgi, δuiqΓ τ
�����

≤
j−1∑
i=1

‖δgi‖Γ ‖ui‖Γ τ + ‖gj‖Γ ‖uj‖Γ + ‖g1‖Γ ‖u0‖Γ

≤ Cε + C

j−1∑
i=1

‖ui‖2Γ τ + ε ‖uj‖2Γ

≤ Cε + C

j−1∑
i=1

p ‖ui‖2 + ‖∇ui‖2 qτ + ε
�
‖uj‖2 + ‖∇uj‖2

	
.

(3.17)

For the last term in (3.13), we get estimate

�����
j∑
i=1

g2−β(ti) pv0, δuiq τ
����� ≤

j∑
i=1

g2−β(ti) ‖v0‖ ‖δui‖ τ

≤ Cε + ε

j∑
i=1

g2−β(ti) ‖δui‖2 τ.
(3.18)

Putting estimates (3.12)-(3.18) together, using the inequality

‖uj‖2 ≤ C

�
1 +

j∑
i=1

‖δui‖2 τ

�

and choosing su�ciently small ε give us

�
g2−β ∗‖δu‖2

	
j

+

j∑
i=1

g2−β(ti) ‖δui‖2 τ +

j∑
i=1

‖δui‖2 τ + ‖uj‖2

+ ‖∇uj‖2 +

j∑
i=1

‖∇ui −∇ui−1‖2 ≤ C

�
1 +

j−1∑
i=1

p ‖ui‖2 + ‖∇ui‖2 qτ
�
. (3.19)

Finally, we use Grönwall's lemma to obtain

�
g2−β ∗‖δu‖2

	
j

+

j∑
i=1

g2−β(ti) ‖δui‖2 τ

+

j∑
i=1

‖δui‖2 τ + ‖uj‖2 + ‖∇uj‖2 +
1

2

j∑
i=1

‖∇ui −∇ui−1‖2 ≤ C, (3.20)
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and thereby from (3.11), we get that

|hi| ≤ C.

In the next lemma, we will need to assume a so called compatibility condition
at time t = 0 (i.e. the initial condition obeys the boundary conditions and the
equation (3.1)), i.e. we assume that

p∇u0,∇ϕq = h0 pf, ϕq + pF (0, u0), ϕq− pg0, ϕqΓ , ∀ϕ ∈ H1(Ω), (3.21)

which enables us to de�ne h0 as follows

h0 =
p∇u0,∇ωq + pg0, ωqΓ − pF (0, u0), ωq

pf, ωq . (3.22)

Lemma 3.3.3. Under the assumptions of Lemma 3.3.1, if moreover v0 ∈ H1(Ω),
m ∈ C3([0, T ]), g ∈ C2

�
[0, T ], L2(Γ)

�
, and (3.21) holds, then there exist positive

constants C (independent of n) such that

(i) max
0≤i≤n

�
g2−β ∗∥∥δ2u

∥∥2
	
i
+

n∑
i=1

g2−β(ti)
∥∥δ2ui

∥∥2
τ +

n∑
i=1

∥∥δ2ui
∥∥2
τ

+ max
0≤i≤n

‖δui‖2H1(Ω) +

n∑
i=1

‖∇δui −∇δui−1‖2 ≤ C,

(ii) |δhi| ≤ C p1 + g2−β(ti)q .

Proof. Subtracting (3.22) from h1 and dividing by τ , we obtain

δh1 =
1

pf, ωq
�
g2−β(t1)m′′1 + pδg1, ωqΓ −

1

τ
pF (t1, u0)− F (0, u0), ωq



,

and consequently
|δh1| ≤ C(1 + g2−β(t1)). (3.23)

Further, for i ≥ 2

δhi
(2.10)

=
1

pf, ωq

�
g2−β(ti)m

′′
0 + pg2−β ∗ δm′′qi + p∇δui−1,∇ωq

+ pδgi, ωqΓ −
1

τ
pF (ti, ui−1)− F (ti−1, ui−2), ωq

�
,
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which can be estimated as

|δhi| ≤ C p1 + g2−β(ti) + ‖∇δui−1‖+ ‖δui−1‖q . (3.24)

Next, we subtract relations (3.21) and (DPi) for i = 1 from each other to get

�
δ
�
g2−β ∗ δ2u

�
1
, ϕ
�
τ + p∇δu1,∇ϕq τ

= δh1 pf, ϕq τ + pF (t1, u0)− F (0, u0), ϕq− pδg1, ϕqΓ τ, (3.25)

where pg2−β ∗ δuq0 = 0, according to the de�nition. We also take the di�erence of
(DPi) for i ≥ 2 to �nd�

δ
�
g2−β ∗ δ2u

�
i
, ϕ
�
τ + p∇δui,∇ϕq τ

= δhi pf, ϕq τ + pF (ti, ui−1)− F (ti−1, ui−2), ϕq− pδgi, ϕqΓ τ.
(3.26)

We set ϕ = δ2u1 in (3.25) and ϕ = δ2ui in (3.26). By summing up (3.25) and
(3.26) for i = 2, . . . , j, j ∈ {1, . . . , n}, we obtain that

j∑
i=1

�
δ
�
g2−β ∗ δ2u

�
i
, δ2ui

�
τ +

j∑
i=1

�
∇δui,∇δ2ui

�
τ

=

j∑
i=1

δhi
�
f, δ2ui

�
τ +

�
F (t1, u0)− F (0, u0), δ2u1

�

+

j∑
i=2

�
F (ti, ui−1)− F (ti−1, ui−2), δ2ui

�
−

j∑
i=1

�
δgi, δ

2ui
�

Γ
τ.

(3.27)

We estimate �rst term of the l.h.s. in (3.27) using Lemma 1.7.3

j∑
i=1

�
δ
�
g2−β ∗ δ2u

�
i
, δ2ui

�
τ

≥ 1

2

j∑
i=1

δ
�
g2−β ∗ ∥∥δ2u

∥∥2
	
i
τ +

1

2

j∑
i=1

g2−β(ti)
∥∥δ2ui

∥∥2
τ

≥ 1

2

�
g2−β ∗∥∥δ2u

∥∥2
	
j

+
1

4

j∑
i=1

g2−β(ti)
∥∥δ2ui

∥∥2
τ

+
g2−β(T )

4

j∑
i=1

∥∥δ2ui
∥∥2
τ. (3.28)

The second term of the l.h.s in (3.27) can be rewritten as
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j∑
i=1

p∇δui,∇δui −∇δui−1q

=
1

2

�
‖∇δuj‖2 − ‖∇v0‖2 +

j∑
i=1

‖∇δui −∇δui−1‖2
�
. (3.29)

In the following estimations of terms on the r.h.s. of (3.27), we always use com-
bination of Cauchy's and Young's inequalities. Applying them on the �rst term
together with estimates (3.23), (3.24) gives

�����
j∑
i=1

δhi
�
f, δ2ui

�
τ

�����
≤ C

j∑
i=1

p1 + g2−β(ti) + ‖∇δui−1‖+ ‖δui−1‖q
∥∥δ2ui

∥∥ τ
≤ Cε + ε

j∑
i=1

∥∥δ2ui
∥∥2
τ + ε

j∑
i=1

g2−β(ti)
∥∥δ2ui

∥∥2
τ

+Cε

j∑
i=1

p ‖∇δui−1‖2 + ‖δui−1‖2 qτ.

(3.30)

To estimate the terms containing F , we use the Lipschitz continuity to obtain

�
F (t1, u0)− F (0, u0), δ2ui

�
+

j∑
i=2

�
F (ti, ui−1)− F (ti−1, ui−2), δ2ui

�

≤ C
j∑
i=1

p1 + ‖δui−1‖q
∥∥δ2ui

∥∥ τ
≤ Cε + Cε

j∑
i=1

‖δui−1‖2 τ + ε

j∑
i=1

∥∥δ2ui
∥∥2
τ.

(3.31)

The last term in (3.27) is rewritten and estimated using the trace theorem in the
following way

�����
j∑
i=1

�
δgi, δ

2ui
�

Γ
τ

����� =

�����pδgj , δujqΓ − pδg1, v0qΓ −
j−1∑
i=1

�
δ2gi+1, δui

�
Γ
τ

�����
≤ Cε + ε

�
‖δuj‖2 + ‖∇δuj‖2

	
+ C

j−1∑
i=1

�
‖δui‖2 + ‖∇δui‖2

	
τ. (3.32)
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Getting all estimates together, using inequality ‖δuj‖2 ≤ C
�

1 +
∑j
i=1

∥∥δ2ui
∥∥2
τ
	

and choosing a su�ciently small ε, we obtain

�
g2−β ∗∥∥δ2u

∥∥2
	
j

+

j∑
i=1

g2−β(ti)
∥∥δ2ui

∥∥2
τ +

j∑
i=1

∥∥δ2ui
∥∥2
τ + ‖δuj‖2H1(Ω)

+

j∑
i=1

‖∇δui −∇δui−1‖2 ≤ C

�
1 +

j−1∑
i=1

‖δuj‖2H1(Ω) τ

�
. (3.33)

Finally, employing Grönwall's argument, we get

�
g2−β ∗∥∥δ2u

∥∥2
	
j

+

j∑
i=1

g2−β(ti)
∥∥δ2ui

∥∥2
τ +

j∑
i=1

∥∥δ2ui
∥∥2
τ + ‖δuj‖2H1(Ω)

+

j∑
i=1

‖∇δui −∇δui−1‖2 ≤ C,

and consequently
|δhi| ≤ C p1 + g2−β(ti)q .

In the same way as in Section 2.3, we introduce piecewise linear interpolations
in time un, un, ũn : [0, T ] → L2(Ω). Moreover, we de�ne the linear interpolations
for the di�erence of ui as vn, vn : [0, T ]→ L2(Ω)

vn : t 7→

{
v0, t = 0

δui−1 + (t− ti−1)δ2ui, t ∈ (ti−1, ti], 1 ≤ i ≤ n,

vn : t 7→

{
v0, t = 0

δui, t ∈ (ti−1, ti], 1 ≤ i ≤ n,

(3.34)

also known as Rothe's functions. Analogously, we de�ne hn, hn, Fn, gn, g2−βn and
m′′n. The goal is to prove that the corresponding above de�ned Rothe's functions
converge to the solution (u, h). We rewrite (DPi) and (DMPi) for the whole time
frame in terms of Rothe's functions

��
g2−βn∗ ∂tvn

�
(ti), ϕ

�
+ p∇un(t),∇ϕq

= hn(t) pf, ϕq +
�
Fn(t, ũn(t)) ds, ϕ

�
− pgn(t), ϕqΓ , (DP)

and
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�
g2−βn∗m′n

�
(ti) + p∇ũn(t),∇ωq

= hn(t) pf, ωq +
�
Fn(t, ũn(t)), ω

�
− pgn(t), ωqΓ , (DMP)

for t ∈ (ti−1, ti].

Theorem 3.3.1 (existence of a solution). Let f ∈ L2(Ω), u0, v0, ω ∈ H1(Ω),∫
Ω
fω 6= 0, m ∈ C3([0, T ]), and g ∈ C2([0, T ], L2(Γ)). Suppose that F is a global

Lipschitz continuous function in all variables and (3.21) holds true.

Then there exists a solution (u, h) to (P2), (MP2) obeying u ∈ C
�
[0, T ], H1(Ω)

�
with ∂tu ∈ C

�
[0, T ], L2(Ω)

�
∩ L∞

�
(0, T ), H1(Ω)

�
, ∂ttu ∈ L2

�
(0, T ), L2(Ω)

�
and

h ∈ C([0, T ]).

Proof. From Lemma 3.3.3 estimate (ii), we obtain

|h′n(t)| = |δhi| ≤ Ct−βi + C ≤ Ct−β + C,

for t ∈ (ti−1, ti], which leads to

|hn(t+ ε)− hn(t)| =

����
∫ t+ε

t

h′n(s) ds
���� ≤ C

∫ t+ε

t

�
s1−β + 1

�
ds

≤ C (t+ ε)2−β − t2−β

2− β
+ εC = O

�
ε2−β� .

This implies the equi-continuity of the sequence {hn}. The estimate (ii) in Lemma
3.3.2 brings the equi-boundedness of {hn}. The Arzelà-Ascoli theorem 1.2.5 gives
us compactness of {hn} in C([0, T ]).

From Lemma 3.3.2 and Lemma 3.3.3, we get moreover the following estimate

max
t∈[0,T ]

‖un(t)‖2H1(Ω) + max
t∈[0,T ]

‖∂tun(t)‖2 ≤ C.

This together with compact embedding H1(Ω) � L2(Ω) and Lemma 1.5.1 gives us
the existence of a function u ∈ C

�
[0, T ], L2(Ω)

�
∩ L∞

�
(0, T ), H1(Ω)

�
with ∂tu ∈

L∞
�
(0, T ), L2(Ω)

�
and the subsequences of {un}n∈N and {un}n∈N (for simplicity

of notation denoted by the same symbol) such that
un → u, in C

�
[0, T ], L2(Ω)

�
(3.35a)

un(t) ⇀ u(t), in H1(Ω), ∀t ∈ [0, T ] (3.35b)

un(t) ⇀ u(t), in H1(Ω), ∀t ∈ [0, T ] (3.35c)

∂tun ⇀ ∂tu, in L2
�
(0, T ), L2(Ω)

�
. (3.35d)

In addition, the re�exivity of L2
�
(0, T ), H1(Ω)

�
and Lemma 3.3.3 yield

∂tun ⇀ ∂tu, in L2
�
(0, T ), H1(Ω)

�
,
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and then

u(t)− u(s) =

∫ t

s

∂tu(r) dr =⇒

‖u(t)− u(s)‖H1(Ω) ≤
a

|t− s|
d∫ T

0

‖∂tu(r)‖2H1(Ω) dr ≤ C
a

|t− s|.

With the fact that u0 ∈ H1(Ω), we get u ∈ C
�
[0, T ], H1(Ω)

�
. Similarly, we get an

estimate for sequences {vn}n∈N, {vn}n∈N, utilizing Lemma 3.3.3

max
t∈[0,T ]

‖vn(t)‖2H1(Ω) +

∫ T

0

‖∂tvn(t)‖2 dt ≤ C,

which with the same argument as above gives us existence of v ∈ C
�
[0, T ], L2(Ω)

�
∩

L∞
�
(0, T ), H1(Ω)

�
with ∂tv ∈ L2

�
(0, T ), L2(Ω)

�
and the subsequences of {vn}n∈N

and {vn}n∈N (again denoted by the same symbol) such that


vn → v, in C

�
[0, T ], L2(Ω)

�
(3.36a)

vn(t) ⇀ v(t), in H1(Ω), ∀t ∈ [0, T ] (3.36b)

vn(t) ⇀ v(t), in H1(Ω), ∀t ∈ [0, T ] (3.36c)

∂tvn ⇀ ∂tv, in L2
�
(0, T ), L2(Ω)

�
. (3.36d)

Since vn = ∂tun, the relation between u and v is established after passing to the
limit for n→∞ in the identity

pun(t)− u0, ϕq =

∫ t

0

pvn(s), ϕq ds, for ϕ ∈ L2(Ω),

and obtaining

pu(t)− u0, ϕq =

∫ t

0

pv(s), ϕq ds, for ϕ ∈ L2(Ω).

It is immediately clear that v(t) = ∂tu(t) a.e. in [0, T ].

It remains to prove that the pair (u, h) obeys (MP2), (P2) for every ϕ ∈ H1(Ω).
First, it holds that ∫ T

0

‖ũn(t)− un(t)‖2 dt = O
�
τ2
�
.
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Further,���g2−βn∗m′′n
�

(ti)−
�
g2−βn∗m′′n

�
(t)
��

≤
����
∫ ti

t

g2−βn(ti − s)m′′n(s) ds
����

+

����
∫ t

0

�
g2−βn(ti − s)− g2−βn(t− s)

�
m′′n(s) ds

����
≤ C

∫ ti

t

g2−βn(ti − s) ds+ C

∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ds.

As g2−βn → g2−β in (0, T ) pointwise, the Lebesgue dominated theorem gives�
g2−βn∗m′′n

�
(ti)→ pg2−β ∗m′′q (t).

With this we can pass to the limit in (DMP), for n→∞, to obtain (MP2).

Next, we deduce for t ∈ (ti−1, ti]�����
∫ ξ

0

��
g2−βn∗ ∂tvn

�
(ti)−

�
g2−βn∗ ∂tvn

�
(t), ϕ

�
dt

�����
≤
∫ ξ

0

����
∫ ti

t

g2−βn(ti − s) p∂tvn(s), ϕq ds
���� dt

+

∫ ξ

0

����
∫ t

0

�
g2−βn(ti − s)− g2−βn(t− s)

� p∂tvn(s), ϕq ds
���� dt

≤
∫ ξ

0

∫ ti

t

g2−βn(ti − s) ‖∂tvn(s)‖ ‖ϕ‖ ds dt

+

∫ ξ

0

∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂tvn(s)‖ ‖ϕ‖ dsdt.

(3.37)

The �rst term in (3.37) is estimated using Hölder's inequality and Lemma 3.3.3 as
follows ∫ ξ

0

∫ ti

t

g2−βn(ti − s) ‖∂tvn(s)‖ ‖ϕ‖ ds dt

≤ ‖ϕ‖
∫ ξ

0

d∫ ti

t

g2−βn(ti − s) ds

d∫ ti

t

g2−βn(ti − s) ‖∂tvn(s)‖2 ds dt

≤ ‖ϕ‖
?
τ2−β

∫ ξ

0

d∫ ti

0

g2−βn(ti − s) ‖∂tvn(s)‖2 ds dt

≤ C ‖ϕ‖
?
τ2−β .

The upper bound for the second term in (3.37) is obtained by switching the order
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of integration and using Hölder's inequality∫ ξ

0

∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂tvn(s)‖ ‖ϕ‖ dsdt

≤ ‖ϕ‖
∫ ξ

0

∫ ξ

s

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂tvn(s)‖ dt ds

≤ ‖ϕ‖
∫ ξ

0

‖∂tvn(s)‖
∫ ξ

s

��g2−βn(ti − s)− g2−βn(t− s)
�� dt ds

≤ ‖ϕ‖

d∫ ξ

0

‖∂tvn(s)‖2 ds

gffe∫ ξ

0

�∫ ξ

s

��g2−βn(ti − s)− g2−βn(t− s)
�� dt

�2

ds

≤ C ‖ϕ‖ .

Due to the pointwise convergence g2−βn → g2−β in (0, T ) and the Lebesgue's
dominated convergence theorem, we get that

lim
n→∞

�����
∫ ξ

0

��
g2−βn∗ ∂tvn

�
(ti)−

�
g2−βn∗ ∂tvn

�
(t), ϕ

�
dt

����� = 0.

Next, an application of the Cauchy, Hölder and Young inequalities yields�����
∫ ξ

0

��
g2−βn − g2−β

�∗ p∂tvn, ϕq� (t) dt

�����
≤
∫ ξ

0

��g2−βn(t)− g2−β(t)
�� dt

d∫ ξ

0

‖∂tvn(t)‖2 dt

d∫ ξ

0

‖ϕ‖2 dt ≤ C ‖ϕ‖ .

Again, using Lebesgue's dominated convergence theorem brings us to

lim
n→∞

�����
∫ ξ

0

��
g2−βn − g2−β

�∗ p∂tvn, ϕq� (t) dt

����� = 0.

Thanks to�����
∫ ξ

0

pg2−β ∗ p∂tvn, ϕqq (t) dt

�����
≤
∫ ξ

0

g2−β(t) dt

d∫ ξ

0

‖∂tvn(t)‖2 dt

d∫ ξ

0

‖ϕ‖2 dt

≤ C ‖∂tvn‖L2p(0,T ),L2(Ω)q ‖ϕ‖ ,

we can see the estimated integral as the linear bounded functional on the space
L2
�
(0, T ), L2(Ω)

�
, and using (3.36d), we arrive to

lim
n→∞

∫ ξ

0

pg2−β ∗ p∂tvn, ϕqq (t) dt =

∫ ξ

0

pg2−β ∗ p∂tv, ϕqq (t) dt.
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Now, integrating (DP) in time over (0, ξ) and passing to the limit n→∞, we get∫ ξ

0

ppg2−β ∗ ∂ttuq (t), ϕq dt+

∫ ξ

0

p∇u(t),∇ϕq dt

=

∫ ξ

0

h(t) pf, ϕq dt+

∫ ξ

0

pF (t, u(t)), ϕq dt−
∫ ξ

0

pg(t), ϕqΓ dt,
(3.38)

using above estimates, convergences and relations. Di�erentiation of (3.38) with
respect to ξ yields (P2), which concludes the proof.

In the proof in Theorem 3.3.1, we proved that the subsequence of the Rothe
functions converges to the solution of the problem. Theorem 3.2.1 implies that the
whole sequence converges to the solution. Moreover, it can be seen from the proof
that u(·) is also Lipschitz continuous with respect to the norm in H1(Ω).

3.4 Numerical Experiments

3.4.1 Exact data

We present two numerical experiments based on the algorithm presented above.
Experiments di�er in the function ω. While in the �rst experiment, we set ω = 1,
in the second one we choose ω to be a function with compact support in Ω. We
consider 1D model with the domain Ω = (1.6; 4.5), T = 3 and β = 1.3. Further

f(x) = cosx,

F (x, t, u) = −4tu exp

�
1− u2

cos2 x



,

and we set initial and boundary conditions

u0(x) = 2 cosx,
v0(x) = 0,

g(1.6, t) = (t3 + 2) sin 1.6,
g(4.5, t) = −(t3 + 2) sin 4.5.

As mentioned in the beginning of section, �rstly, we consider the additional mea-
surement in form

m(t) =

∫
Ω

u(x, t)ω1(x) dx = psin 4.5− sin 1.6q �t3 + 2
�
,
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where ω1(x) = 1. In the second case, we use

m(t) =

∫
Ω

u(x, t)ω2(x) dx = 2 p− cos 4− cos 2 + sin 4− sin 2q �t3 + 2
�
,

where

ω2(x) =

{
1− (x− 3)2, |x− 3| ≤ 1,

0, |x− 3| ≥ 1.

In both cases, it is easy to verify that functions

u(x, t) =
�
t3 + 2

�
cosx

and

h(t) =
6

(2− β)(3− β)Γ(2− β)
t3−β + t3 − t(t3 + 2) exp p1− (t3 + 2)2q + 2

solve the given problem.

We use Python and the FEniCS Project [73] for the implementation of algo-
rithm. The domain ω is divided in to 50 sub-intervals, and solution ui is found by
using the Lagrange basis functions of order 2. We calculated numerical solution
for several values of τ .

Starting with ω1, on the Fig. 3.1 (a), (b) we can see the exact solution and
numerical approximation of h and u(T ), respectively. Relative errors of h and u
developing in time are showed of Fig. 3.1 (c), (d), respectively. Decay of relative
errors for decreasing τ is depicted on Fig. 3.1 (e), (f). Fig. 3.2 shows the same for
ω2. The linear regression lines plotted through data points in Fig. 3.1 are given
by 0.2665 log2 τ − 4.1607 for the error of h and 1.0259 logτ +0.3968 for the error of
u. In Fig. 3.2, the lines are given by 0.6012 log2 τ − 1.5274 for the error of h and
1.0158 log τ − 0.2128 for the error of u.

3.4.2 Noisy data

The proposed algorithm make use of a second derivative of the measurement, which
seems to be a major limitation. We use the nonlinear least square method on the
noisy data to obtain a function in a speci�c shape which is smooth enough to use
in the algorithm.

Again as in Chapter 3, we model noisy measurement in our experiment by
adding the scaled Gaussian distributed noise, with the mean and standard deviation
equal to 0 and 1, respectively, to the exact measurement m, so that the noisy
measurement takes the form (2.23), where scaling ε will take values 0.05, 0.1, 0.15.
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(a) Reconstruction of h together with exact h. (b) Reconstruction of u(T ) together with exact
u(T ).

(c) Relative error
|happrox(t)−hexact(t)|

|hexact(t)|
. (d) Relative error

||uapprox(t)−uexact(t)||
||uexact(t)||

.

(e) Logarithm of maximal relative error in time
of h for di�erent values of τ . Slope of the line
is 0.266.

(f) Logarithm of maximal relative error in time
of u for di�erent values of τ . Slope of the line
is 1.0259.

Figure 3.1: The results of the reconstruction algorithm for τ = 0.015625 and ω1
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(a) Reconstruction of h together with exact h. (b) Reconstruction of u(T ) together with exact
u(T ).

(c) Relative error
|happrox(t)−hexact(t)|

|hexact(t)|
. (d) Relative error

||uapprox(t)−uexact(t)||
||uexact(t)||

.

(e) Logarithm of maximal relative error in time
of h for di�erent values of τ . Slope of the line
is 0.6012.

(f) Logarithm of maximal relative error in time
of u for di�erent values of τ . Slope of the line
is 1.0158.

Figure 3.2: The results of the reconstruction algorithm for τ = 0.015625 and ω2
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As mention above our `smoothing' consists of using the nonlinear least square
method on mε in order to �nd function in the form (2.24), and then we use it in
the algorithm instead of exact measurement m.

In the experiment, we use the same setting as in Section 3.4.1 with function
ω1 and corresponding measurement. Results can be seen on Fig. 3.3. The exact
measurement together with noisy data and approximation of noisy data is shown
on Fig. 3.3 (a). Comparison of exact and approximated solution can be seen on
Fig. 3.3 (b), (c), and on Fig. 3.3 (d), (e) we see the relative error of that solution.
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(a) Exact and noisy data for ε = 0.1. Ap-
proximating curve has the form mapp(t) =
−2.0801t2.9542 − 3.7789.

(b) Reconstruction of h together with exact h. (c) Reconstruction of u(T ) together with exact
u(T ).

(d) Relative error
|happrox(t)−hexact(t)|

|hexact(t)|
. (e) Relative error

||uapprox(t)−uexact(t)||
||uexact(t)||

.

Figure 3.3: The result of reconstruction of h and u for noisy data with a various
amount of noise ε and τ = 0.015625



Chapter 4

A source identi�cation problem

in a time-fractional wave

equation with a dynamical

boundary condition

This chapter is based on the article [131], which was published in the journal
Computers and Mathematics with Applications.

4.1 Introduction

Let Ω ⊂ Rd be bounded with the Lipschitz boundary Γ and T > 0, we study the
equation

pg2−β ∗ ∂ttu(x)q (t)−∆u(x, t) = h(t)f(x), x ∈ Ω, t ∈ (0, T ), (4.1)

The equation (4.1) is accompanied with the following initial and boundary condi-
tions

u(x, 0) = u0(x), x ∈ Ω,
∂tu(x, 0) = v0(x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ ΓD × (0, T ),

− pg2−β ∗ ∂ttu(x)q (t)−∇u(x, t) · ν = σ(x, t), (x, t) ∈ ΓN × (0, T ),
(4.2)

85
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where we assume ΓD ∩ ΓN = ∅, ΓD ∪ ΓN = Γ, |ΓD| > 0, and ν is a outer normal
vector on Γ. The boundary condition we consider on the part of the boundary ΓN
is called the dynamical boundary condition.

The inverse source problem (ISP) we are interested in here consists of �nding the
couple (u, h). It is necessary to possess an additional measurement to accomplish
this in the following form∫

Ω

u(x, t)ω(x) dx = m(t), t ∈ [0, T ], (4.3)

where the function ω is solely space dependent. Frequently, it is assumed, ω is
with compact support in Ω, then the measurement (4.3) can be interpreted as the
weighted average over the sub-domain of Ω [99].

The equation (4.1) without the source term is studied in [113], where authors
derived explicit expression for solution through the corresponding Green's functions
in terms of Fox functions and provided probabilistic interpretation of the equation
in one-dimensional case. The equation without the source term is also studied in
[85, 87].

The hyperbolic equation accompanied with the dynamical boundary condition
for 1D space can model a viscoelastic rod with a mass attached to its free tip, see
[16]. According [40] such a boundary condition can also occur in modeling a �exible
membrane with boundary a�ected by vibration only in a region. In [37] the dynam-
ical boundary condition is derived including the in�uence of the heavy frame in the
modeling of small vertical oscillation of �exible membrane. The direct problem for
the fractional di�usion equation with the dynamical boundary condition was stud-
ied in [66]. The dynamical boundary condition in (4.2) containing the fractional
derivative is a generalization of the dynamical boundary condition containing the
classical derivative as in [128]. The boundary condition with a convolution term
containing the solution can be found in [74].

The chapter is organized as follows. In the second section, we introduce some
notation used in the chapter and state the variational formulation of our problem.
We reformulate our problem into a direct one by applying the measurement on
the equation (4.1) and gaining the second equation for the couple (u, h). In the
third section, the uniqueness of the inverse problem is addressed in the appropriate
spaces. In the fourth section, the time discretization is introduced, the existence
of the solutions along each of the slices is shown, and the a priori estimates are
proven. We then de�ne the Rothe functions and state the existence theorem in
which we prove the convergence of those functions to the solution of our problem.
The error estimate is presented in the �fth section. In the last part, we present a
couple of numerical experiments. The solution is calculated for various values of
time step and di�erent measurement functions. We also present calculation with a
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possible treatment of the noisy data.

4.2 Reformulation of problem

Next we introduce the functional space

V =
{
ϕ : Ω→ R, ϕ = 0 on ΓD, ‖ϕ‖+ ‖∇ϕ‖+ ‖∆ϕ‖+ ‖∇ϕ · ν‖ΓN

<∞
}
.

The space V furnished with the norm ‖·‖V that is induced by the scalar product
pφ, ψqV = pφ, ψq + p∇φ,∇ψq + p∆φ,∆ψq + p∇φ · ν,∇ψ · νqΓN

is a Hilbert space.

We proceed to the reformulation of the problem. Multiplying (4.1) by ω and
integrating over the domain Ω, we get

pg2−β ∗m′′q (t)− p∆u(t), ωq = h(t) pf, ωq , (MP)

which is called the measured equation or measured problem. If pf, ωq 6= 0, we may
eliminate the time-dependent source and get

h(t) =
pg2−β ∗m′′q (t)− p∆u(t), ωq

pf, ωq . (4.4)

Similarly, we multiply (4.1) by −∆ϕ, where ϕ ∈ V , and use the Green theorem to
obtain

ppg2−β ∗ ∂tt∇uq (t),∇ϕq− ppg2−β ∗ ∂ttuq (t),∇ϕ · νqΓN
+ p∆u(t),∆ϕq

= h(t) pp∇f,∇ϕq− pf,∇ϕ · νqΓq . (4.5)

Since ϕ ∈ V , we cannot say anything about ∇ϕ · ν on ΓD; therefore, the second
term on the right hand side might not be properly de�ned. Hence, we assume
f = 0 on Γ, which can be interpreted as the restriction of the source location on
a interior part of the domain. Using this and the boundary condition on ΓN , we
gain the variational formulation for the strong solution

ppg2−β ∗ ∂tt∇uq (t),∇ϕq + p∇u(t) · ν,∇ϕ · νqΓN
+ p∆u(t),∆ϕq

= h(t) p∇f,∇ϕq− pσ(t),∇ϕ · νqΓN
. (P)

We are looking for the couple (u, h) solving the coupled relations (P) and (MP) for
any ϕ ∈ V , a.a. t ∈ [0, T ] and u(0) = u0, ∂tu(0) = v0.



88 A fractional wave equation with a dynamical boundary condition

4.3 Uniqueness

With this we may proceed to the uniqueness theorem.

Theorem 4.3.1 (uniqueness). Let |ΓD| > 0, f ∈ H1
0 (Ω), u0 ∈ V , v0, ω ∈ L2(Ω),

pf, ωq 6= 0, m ∈ C2([0, T ]), F be a global Lipschitz continuous function in all
variables and σ ∈ C([0, T ], L2(ΓN )). Then there exists at most one solution (u, h)
to the (P), (MP) obeying u ∈ C p[0, T ],V q, ∂tu ∈ C

�
[0, T ], L2(Ω)

�
∩L2 p(0, T ),V q

with ∂ttu ∈ L2
�
(0, T ), H1(Ω)

�
and h ∈ C([0, T ]).

Proof. Let assume that (u1, h1), (u2, h2) are two solution of the (P), (MP), such
that they obey the presumptions from the theorem. De�ne u = u1 − u2 and
h = h1 − h2, which are then a solution of the slightly di�erent problem

− p∆u(t), ωq = h(t) pf, ωq , (4.6)

and

ppg2−β ∗ ∂tt∇uq (t),∇ϕq + p∇u(t) · ν,∇ϕ · νqΓN
+ p∆u(t),∆ϕq

= h(t) p∇f,∇ϕq , (4.7)

for every ϕ ∈ V , a.a. t ∈ [0, T ] and u(0) = 0, ∂tu(0) = 0. Since pf, ωq 6= 0, we
may eliminate h from (4.6) and substitute to (4.7). Next, we set ϕ = ∂tu(t) and
integrate over (0, ξ), for ξ ∈ (0, T ], to obtain∫ ξ

0

p∂t pg2−β ∗ ∂t∇uq (t), ∂t∇u(t)q dt+
1

2
‖∇u(ξ) · ν‖2ΓN

dt+
1

2
‖∆u(ξ)‖2

=

∫ ξ

0

− p∆u(t), ωq
pf, ωq p∇f, ∂t∇u(t)q dt, (4.8)

where for the �rst term on the l.h.s we used the relationship

pg2−β ∗ ∂ttuq (t) = ∂t pg2−β ∗ ∂tuq (t),

as ∂tu(0) = 0. The l.h.s. of (4.8) can be estimated using Lemma 1.7.2, and r.h.s.
of (4.8) is estimated using the Cauchy and Young inequalities so that we gain

g2−β(T )

2

∫ ξ

0

‖∂t∇u(t)‖2 dt+
1

2
‖∇u(ξ) · ν‖2ΓN

+
1

2
‖∆u(ξ)‖2

≤ ε
∫ ξ

0

‖∂t∇u(t)‖2 dt+ Cε

∫ ξ

0

‖∆u(t)‖2 dt. (4.9)
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Choosing an appropriate ε > 0, we get that∫ ξ

0

‖∂t∇u(t)‖2 dt+ ‖∇u(ξ) · ν‖2ΓN
+ ‖∆u(ξ)‖2 ≤ C

∫ ξ

0

‖∆u(t)‖2 dt.

Due to the estimate ‖∇u(ξ)‖2 ≤
∫ ξ

0

‖∂t∇u(t)‖2 dt, we obtain that

‖∇u(ξ)‖2 + ‖∇u(ξ) · ν‖2ΓN
+ ‖∆u(ξ)‖2 ≤ C

∫ ξ

0

‖∆u(t)‖2 dt.

Finally, we apply the Grönwall lemma and get

‖∇u(ξ)‖2 + ‖∇u(ξ) · ν‖2ΓN
+ ‖∆u(ξ)‖2 ≤ 0, (4.10)

which holds for any ξ ∈ [0, T ]. Since |ΓD| > 0, we may use the Friedrichs inequality,
Theorem 1.3.9, ‖u(t)‖ ≤ C ‖∇u(t)‖, which implies that u = 0 a.e. in Ω × [0, T ].
Furthermore, we can conclude from (4.6) that h = 0 a.e. in [0, T ].

4.4 Existence

Let divide the interval [0, T ] by the step τ = T
n , for any n ∈ N. We introduce

ti = iτ , for i = 1, ..., n, and for any function z we de�ne zi, δzi, δ2zi as in the
previous chapters. Using this notation, we may de�ne the approximate solution
along the time slice (ui, hi) as the solution of discretized equation of (P) and (MP).
We get a system of equations

��
g2−β ∗ δ2∇u

�
i
,∇ϕ

�
+ p∇ui · ν,∇ϕ · νqΓN

+ p∆ui,∆ϕq
= hi p∇f,∇ϕq− pσi,∇ϕ · νqΓN

, (DPi)

for all ϕ ∈ V , with u(0) = u0, ∂tu(0) = v0, and

pg2−β ∗m′′qi − p∆ui−1, ωq = hi pf, ωq , (DMPi)

for i ∈ {1, ..., n} with n ∈ N.
The next lemma deals with the existence of the solution of the above coupled

equations for every i.

Lemma 4.4.1. Let u0 ∈ V , v0 ∈ H1(Ω), f ∈ H1
0 (Ω), ω ∈ L2(Ω), pf, ωq 6= 0,

m ∈ C2([0, T ]), σ ∈ C([0, T ], L2(ΓN )). Then for each i ∈ {1, . . . , n} there exists a
unique couple (ui, hi) ∈ V × R solving (DPi) and (DMPi) for every ϕ ∈ V .
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Proof. Since we assume pf, ωq 6= 0, we can eliminate hi from (DMPi) to obtain

hi =
pg2−β ∗m′′qi − p∆ui−1, ωq

pf, ωq .

When ui−1 ∈ V , then hi ∈ R. We can rewrite (DPi) for i = 1 into

1

τ
g2−β(τ) p∇u1,∇ϕq + p∇u1 · ν,∇ϕ · νqΓN

+ p∆u1,∆ϕq

= h1 p∇f,∇ϕq− pσ1,∇ϕ · νqΓN
+

1

τ
g2−β(τ) p∇u0,∇ϕq + g2−β(τ) p∇v0,∇ϕq .

(4.11)

The l.h.s. of this equation can be understood as a bounded bilinear form on V and
it also holds

1

τ
g2−β(τ) p∇u1,∇u1q + p∇u1 · ν,∇u1 · νqΓN

+ p∆u1,∆u1q ≥ C(τ) ‖u1‖2V .

Moreover, the r.h.s. can be seen as the linear bounded functional on V . Therefore,
according the Lax-Milgram theorem 1.2.4, there exist a unique u1 ∈ V solving
(4.11). The similar as above can be done for the rest of i ∈ {1, ..., n}.

Lemma 4.4.2. Under the assumptions of Lemma 4.4.1, if moreover it holds that
σ ∈ C1([0, T ], L2(ΓN )), then there exists a positive constant C (independent of n)
such that

(i) max
0≤i≤n

�
g2−β ∗‖∇δu‖2

	
i
+

n∑
i=1

g2−β(ti) ‖∇δui‖2 τ +

n∑
i=1

‖δui‖2H1(Ω) τ

+ max
0≤i≤n

‖∇ui · ν‖2ΓN
+ max

0≤i≤n
‖∆ui‖2 +

n∑
i=1

‖∆ui −∆ui−1‖2

+

n∑
i=1

‖∇ui · ν −∇ui−1 · ν‖2 ≤ C,

(ii) max
0≤i≤n

|hi| ≤ C.
(4.12)

Proof. We set ϕ = δuiτ in (DPi) and sum it up for 1 ≤ i ≤ j, j ∈ {1, ..., n}, to get

j∑
i=1

��
g2−β ∗ δ2∇u

�
i
,∇δui

�
τ +

j∑
i=1

p∇ui · ν,∇δui · νqΓN
τ +

j∑
i=1

p∆ui,∆δuiq τ
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=

j∑
i=1

hi p∇f,∇δuiq τ −
j∑
i=1

pσi,∇δui · νqΓN
τ. (4.13)

For the �rst term on the l.h.s. in (4.13), we use (2.10) to rewrite it and Lemma
1.7.3 to estimate the lower bound in the following manner

j∑
i=1

��
g2−β ∗ δ2∇u

�
i
,∇δui

�
τ

=

j∑
i=1

g2−β(ti) p∇δu0,∇δuiq τ +

j∑
i=1

�
δ pg2−β ∗ δ∇uqi ,∇δui

�
τ

≥
j∑
i=1

g2−β(ti) p∇δu0,∇δuiq τ

+
1

2

j∑
i=1

δ
�
g2−β ∗‖∇δu‖2

	
i
τ +

1

2

j∑
i=1

g2−β(ti) ‖∇δui‖2 τ

≥
j∑
i=1

g2−β(ti) p∇δu0,∇δuiq τ +
1

2

�
g2−β ∗‖∇δu‖2

	
j

+
1

4

j∑
i=1

g2−β(ti) ‖∇δui‖2 τ +
g2−β(T )

4

j∑
i=1

‖∇δui‖2 τ. (4.14)

On the second and third term on the l.h.s. in (4.13), we apply Theorem 1.3.7. The
Cauchy and Young inequalities are used on the �rst term on the r.h.s in (4.14) and
on the �rst term on the r.h.s in (4.14), coming from the use of (2.10); they are also
used on the second term on the r.h.s in (4.13), after rewriting it as

−
j∑
i=1

pσi,∇δui · νqΓN
τ =

j−1∑
i=1

pδσi+1,∇ui · νqΓN
τ − pσj ,∇uj · νqΓN

+ pσ1,∇u0 · νqΓN
.

By realizing the above steps, we acquire

1

2

�
g2−β ∗‖∇δu‖2

	
j

+
1

4

j∑
i=1

g2−β(ti) ‖∇δui‖2 τ +
g2−β(T )

4

j∑
i=1

‖∇δui‖2 τ

+
1

2
‖∇uj · ν‖2ΓN

+
1

2
‖∆uj‖2+

1

2

j∑
i=1

‖∆ui −∆ui−1‖2+
1

2

j∑
i=1

‖∇ui · ν −∇ui−1 · ν‖2
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≤ C

�
1 + Cε

j∑
i=1

|hi|2 τ + Cε

j−1∑
i=1

‖∇ui · ν‖2ΓN
τ + ε

j∑
i=1

‖∇δui‖2 τ + ε ‖∇uj · ν‖2ΓN

+ ε

j∑
i=1

g2−β(ti) ‖∇δui‖2 τ

�
.

Next, we may estimate hi from (DMPi) by

|hi| ≤ C p1 + ‖∆ui−1‖q ,

then if we choose the appropriate ε > 0, we are prepared to use the discrete
Grönwall lemma and obtain

1

2

�
g2−β ∗‖∇δu‖2

	
j

+
1

4

j∑
i=1

g2−β(ti) ‖∇δui‖2 τ

+
g2−β(T )

4

j∑
i=1

‖∇δui‖2 τ +
1

2
‖∇ui · ν‖2ΓN

+
1

2
‖∆uj‖2 +

1

2

j∑
i=1

‖∆ui −∆ui−1‖2

+
1

2

j∑
i=1

‖∇ui · ν −∇ui−1 · ν‖2 ≤ C.

Since we have ΓD = 0 and |ΓD| > 0, we can use the Friedrich inequality to estimate

j∑
i=1

‖δui‖2 τ ≤ C
j∑
i=1

‖∇δui‖2 τ.

With this we arrive to the estimate (i) from the lemma and consequently also to
(ii).

For the next lemma, we need to additionally de�ne h0 from (MP) as

h0 = − p∆u0, ωq
pf, ωq ,

and assume that the following compatibility condition holds

p∇u0 · ν,∇ϕ · νqΓN
+ p∆u0,∆ϕq = h0 p∇f,∇ϕq− pσ0,∇ϕ · νqΓN

, (4.15)

for every ϕ ∈ V .
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Lemma 4.4.3. Under the assumptions of Lemma 4.4.1, if moreover v0 ∈ V ,
m ∈ C3([0, T ]), σ ∈ C2([0, T ], L2(ΓN )) and (4.15) holds, then there exists a positive
constant C (independent of n) such that

(i) max
0≤i≤n

�
g2−β ∗∥∥∇δ2u

∥∥2
	
i
+

n∑
i=1

g2−β(ti)
∥∥∇δ2ui

∥∥2
τ +

n∑
i=1

∥∥δ2ui
∥∥2

H1(Ω)
τ

+ max
0≤i≤n

‖∇δui · ν‖2ΓN
+ max

0≤i≤n
‖∆δui‖2 +

n∑
i=1

‖∆δui −∆δui−1‖2

+

n∑
i=1

‖∇δui · ν −∇δui−1 · ν‖2 ≤ C,

(ii) |δhi| ≤ C p1 + g2−β(ti)q .
(4.16)

Proof. First we estimate the di�erence of the hi, for i = 1, we get

|δh1| ≤
����g2−β(t1)m′′1τ

pf, ωq
���� ≤ Cg2−β(t1),

and for i ≥ 2, we see that

|δhi| ≤ C
����g2−β(ti)m

′′
0 + pg2−β ∗ δm′′qi − pδ∆ui−1, ωq

pf, ωq
����

≤ C p1 + g2−β(ti) + ‖∆δui−1‖q .

Next, we make the di�erence of two consecutive discretized equations (DPi)

�
δ
�
g2−β ∗ δ2∇u

�
i
,∇ϕ

�
τ + p∇δui · ν,∇ϕ · νqΓN

τ + p∆δui,∆ϕq τ
= δhi p∇f,∇ϕq τ − pδσi,∇ϕ · νqΓN

τ.

We set ϕ = δ2ui and sum those equations up for 1 ≤ i ≤ j, j ∈ {1, ..., n}, to obtain

j∑
i=1

�
δ
�
g2−β ∗ δ2∇u

�
i
,∇δ2ui

�
τ +

j∑
i=1

�
∇δui · ν,∇δ2ui · ν

�
ΓN

τ

+

j∑
i=1

�
∆δui,∆δ

2ui
�
τ =

j∑
i=1

δhi
�
∇f,∇δ2ui

�
τ −

j∑
i=1

�
δσi,∇δ2ui · ν

�
ΓN

τ.

Terms are estimated analogously as in Lemma 4.4.2 except the �rst term on the
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r.h.s., which is estimated in following way

j∑
i=1

δhi
�
∇f,∇δ2ui

�
τ ≤ C

j∑
i=1

|δhi|
∥∥∇δ2ui

∥∥ τ
≤ C

j∑
i=1

p1 + g2−β(ti) + ‖∆δui−1‖q
∥∥∇δ2ui

∥∥ τ
≤ Cε + ε

j∑
i=1

∥∥∇δ2ui
∥∥2
τ + Cε

j∑
i=1

g2−β(ti)τ

+ε

j∑
i=1

g2−β(ti)
∥∥∇δ2ui

∥∥2
τ + Cε

j∑
i=1

‖∆δui−1‖2 τ,

using Cauchy and Young inequalities. Choosing an appropriate ε > 0, using the
Grönwall lemma and Friedrich inequality bring us to the results in the lemma.

In the next step, we de�ne piecewise constant or linear interpolations in time as
un, un, ũn : [0, T ]→ V and vn, vn : [0, T ]→ V with prescription (2.20) and (3.34),
respectively. With those de�nitions, we may rewrite (DPi) and (DMPi) into

��
g2−βn∗∇∂tvn

�
(ti),∇ϕ

�
+ p∇un(t) · ν,∇ϕ · νqΓN

+ p∆un(t),∆ϕq
= hn(t) p∇f,∇ϕq− pσn(t),∇ϕ · νqΓN

, (DP)

and �
g2−βn∗m′′n

�
(ti) + p∆ũn(t), ωq = hn(t) pf, ωq , (DMP)

respectively, for t ∈ (ti−1, ti].

In the following theorem, we prove the convergence of the above sequences of
functions to the function u in the appropriate spaces and the convergence of the
(DP) and (DMP) to the (P) and (MP), respectively.

Theorem 4.4.1 (existence of a solution). Let f ∈ H1
0 (Ω), ω ∈ L2(Ω), u0, v0 ∈ V ,

pf, ωq 6= 0, m ∈ C3([0, T ]), σ ∈ C2([0, T ], L2(ΓN )) and suppose that (4.15) holds
true.

Then there exists a solution (u, h) to the (P), (MP) obeying u ∈ C p[0, T ],V q
with ∂tu ∈ C

�
[0, T ], H1(Ω)

�
∩ L∞ p(0, T ),V q, ∂ttu ∈ L2

�
(0, T ), H1(Ω)

�
and h ∈

C([0, T ]).

Proof. First, we will prove the uniform equi-continuity of the sequence {hn}, using
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Lemma 4.4.3 (ii) we obtain

|hn(t)− hn(s)| =
���∫ ts h′n(r)dr

��� ≤ C

∫ t

s

�
r2−β + 1

�
dr

≤ C
t2−β − s2−β

2− β
+ εC = C(ε2−β + ε),

for s, t ∈ [0, T ], s ≤ t, such that |t− s| ≤ ε, where C is independent from n.
Lemma 4.4.2 (ii) gives us the equi-boundedness of {hn}. Using the Arzelà-Ascoli
theorem 1.2.5, we get the convergence of subsequence of {hn} in C([0, T ]) to some
h ∈ C([0, T ]). For the sequences {un} and {un} the estimate

max
t∈[0,T ]

‖un(t)‖2V + max
t∈[0,T ]

‖∂tun(t)‖2 ≤ C

is obtained from Lemma 4.4.2 and Lemma 4.4.3. According to the compact em-
bedding V � L2(Ω), we can use Lemma 1.5.1, which brings us the existence of u
belonging to C

�
[0, T ], L2(Ω)

�
∩ L∞ p(0, T ),V q with ∂tu ∈ L∞

�
(0, T ), L2(Ω)

�
and

the subsequence of {un}, {un} (indexed again by n) such that
un → u, in C

�
[0, T ], L2(Ω)

�
(4.17a)

un(t) ⇀ u(t), in V , ∀t ∈ (0, T ) (4.17b)

un(t) ⇀ u(t), in V , ∀t ∈ (0, T ) (4.17c)

∂tun ⇀ ∂tu, in L2
�
(0, T ), L2(Ω)

�
. (4.17d)

Since the space L2 p(0, T ),V q is re�exive from the estimate (ii) from Lemma 4.4.3,
we obtain

∂tun ⇀ ∂tu, in L2 p(0, T ),V q ,
and consequently

‖u(t)− u(s)‖V ≤
a

|t− s|
d∫ T

0

‖∂tu(r)‖2V dr ≤ C
a

|t− s|.

Since u0 ∈ V , we obtain u ∈ C p[0, T ],V q. Similarly, as above form Lemma 4.4.3
we obtain the estimate

max
t∈[0,T ]

‖vn(t)‖2V +

∫ T

0

‖∂tvn(t)‖2 dt ≤ C,

which implies existence of v ∈ C
�
[0, T ], L2(Ω)

�
∩ L∞ p(0, T ),V q together with

∂tv ∈ L2
�
(0, T ), L2(Ω)

�
to which a subsequence of {vn}, {vn} (indexed again by
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n) converges in following way
vn → v, in C

�
[0, T ], L2(Ω)

�
(4.18a)

vn(t) ⇀ v(t), in V , ∀t ∈ (0, T ) (4.18b)

vn(t) ⇀ v(t), in V , ∀t ∈ (0, T ) (4.18c)

∂tvn ⇀ ∂tv, in L2
�
(0, T ), L2(Ω)

�
. (4.18d)

Furthermore, the estimate
∫ T

0
‖∂tvn(t)‖2H1(Ω) dt ≤ C from Lemma 4.4.3 and the

re�exivity of the space L2
�
(0, T ), H1(Ω)

�
give

∂tvn ⇀ ∂tv, in L2
�
(0, T ), H1(Ω)

�
,

and then

‖v(t)− v(s)‖H1(Ω) ≤
a

|t− s|
d∫ T

0

‖∂tv(r)‖2H1(Ω) dr ≤ C
a

|t− s|.

So by assuming v0 ∈ H1(Ω), we get v ∈ C
�
[0, T ], H1(Ω)

�
. There is a connection

between u and v which we can see after we pass the limit n→∞ in

pun(t)− u0, ϕq =

∫ t

0

pvn(s), ϕq ds for ϕ ∈ L2(Ω),

and get

pu(t)− u0, ϕq =

∫ t

0

pv(s), ϕq ds for ϕ ∈ L2(Ω).

So, it holds v(t) = ∂tu(t) a.e. in [0, T ].

The next step is to show that the couple (u, h) solves (MP) and (P) for all
ϕ ∈ V . Hence, we need to proof the convergence of (DMP) and (DP) to (MP) and
(P), respectively. We start with (DMP), �rst, we may estimate

���g2−βn∗m′′n
�

(ti)−
�
g2−βn∗m′′n

�
(t)
��

≤
����
∫ ti

t

g2−βn(ti − s)m′′n(s) ds
����+

����
∫ t

0

�
g2−βn(ti − s)− g2−βn(t− s)

�
m′′n(s) ds

����
≤ C

∫ ti

t

g2−βn(ti − s) ds+ C

∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ds.

From the pointwise convergence of g2−βn to g2−β in (0, T ) and the Lebesgue dom-
inated convergence theorem, we obtain convergence�

g2−βn∗m′′n
�

(ti)→ pg2−β ∗m′′q (t).
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Furthermore, the estimate max0≤i≤n ‖∆δui‖2 ≤ C from Lemma 4.4.3 (i) yields∫ T

0

‖∆ũn(t)−∆un(t)‖ dt = O pτq ,

from the same lemma part (ii), we obtain the similar fact that∫ T

0

��hn(t)− hn(t)
�� dt = O pτq .

With the above arguments and convergences, we may proceed to the next step.
Before passing to the limit, we integrate the whole equality (DMP) over (0, ξ), for
ξ ∈ (0, T ]. Next, we pass to the limit n → ∞ and di�erentiate, which bring us to
(MP) for a.a. t ∈ [0, T ].

We advance with limiting to the equality (DP). The most interesting part is
the �rst term on the l.h.s.; to pass the limit the following estimate is needed

�����
∫ ξ

0

��
g2−βn∗ ∂t∇vn

�
(ti)−

�
g2−βn∗ ∂t∇vn

�
(t),∇ϕ

�
dt

�����
≤
∫ ξ

0

����
∫ ti

t

g2−βn(ti − s) p∂t∇vn(s),∇ϕq ds
���� dt

+

∫ ξ

0

����
∫ t

0

�
g2−βn(ti − s)− g2−βn(t− s)

� p∂t∇vn(s),∇ϕq ds
���� dt

≤
∫ ξ

0

∫ ti

t

g2−βn(ti − s) ‖∂t∇vn(s)‖ ‖∇ϕ‖ ds dt

+

∫ ξ

0

∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂t∇vn(s)‖ ‖∇ϕ‖ dsdt.

The �rst term in the inequality above may be estimated using Hölder's inequality
and Lemma 4.4.3 as follows∫ ξ

0

∫ ti

t

g2−βn(ti − s) ‖∂t∇vn(s)‖ ‖∇ϕ‖ dsdt

≤ ‖∇ϕ‖
∫ ξ

0

d∫ ti

t

g2−βn(ti − s) ds

d∫ ti

t

g2−βn(ti − s) ‖∂t∇vn(s)‖2 dsdt

≤ ‖∇ϕ‖
?
τ2−β

∫ ξ

0

d∫ ti

0

g2−βn(ti − s) ‖∂t∇vn(s)‖2 dsdt

≤ C ‖∇ϕ‖
?
τ2−β ,

(4.19)
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The second term is estimated in the following manner∫ ξ

0

∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂t∇vn(s)‖ ‖∇ϕ‖ dsdt

≤ ‖∇ϕ‖
∫ ξ

0

∫ ξ

s

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂t∇vn(s)‖ dt ds

≤ ‖∇ϕ‖
∫ ξ

0

‖∂t∇vn(s)‖
∫ ξ

s

��g2−βn(ti − s)− g2−βn(t− s)
�� dt ds

≤ ‖∇ϕ‖

d∫ ξ

0

‖∂t∇vn(s)‖2 ds

gffe∫ ξ

0

�∫ ξ

s

��g2−βn(ti − s)− g2−βn(t− s)
�� dt

�2

ds

≤ C ‖∇ϕ‖ ,
(4.20)

where switching the order of integration was done, the Hölder inequality and esti-
mate form Lemma 4.4.3 were used. Since g2−βn → g2−β in (0, T ) poitnwise with
the above estimates we obtain

lim
n→∞

�����
∫ ξ

0

��
g2−βn∗ ∂t∇vn

�
(ti)−

�
g2−βn∗ ∂t∇vn

�
(t),∇ϕ

�
dt

����� = 0,

by applying the Lebesgue dominated convergence theorem. Next, with the use of
the Cauchy, Hölder and Young inequalities, we get

�����
∫ ξ

0

��
g2−βn − g2−β

�∗ p∂t∇vn,∇ϕq� (t) dt

�����
≤
∫ ξ

0

��g2−βn(t)− g2−β(t)
�� dt

d∫ ξ

0

‖∂t∇vn(t)‖2 dt

d∫ ξ

0

‖∇ϕ‖2 dt ≤ C ‖∇ϕ‖ ,

which allows us to use the Lebesgue convergence theorem to gain

lim
n→∞

�����
∫ ξ

0

��
g2−βn − g2−β

�∗ p∂t∇vn,∇ϕq� (t)dt

����� = 0.

Last estimate necessary for passing to the limit is

�����
∫ ξ

0

pg2−β ∗ p∂t∇vn,∇ϕqq (t) dt

�����
≤
∫ ξ

0

g2−β(t)dt

d∫ ξ

0

‖∂t∇vn(t)‖2 dt

d∫ ξ

0

‖∇ϕ‖2 dt.
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We consider the estimated integral as a linear bounded functional on the space
L2
�
(0, T ), H1(Ω)

�
, using the weak convergence of ∂tvn to ∂tv in that space brings

us

lim
n→∞

∫ ξ

0

pg1−β ∗ p∂t∇vn,∇ϕqq (t) dt =

∫ ξ

0

pg1−β ∗ p∂t∇v,∇ϕqq (t)dt.

In the �nal step, we integrate (DP) in time over (0, ξ), for ξ ∈ (0, T ], with the
above estimates and convergences we pass to the limit n→∞ to obtain

∫ ξ

0

ppg2−β ∗ ∂tt∇uq (t),∇ϕq dt+
∫ ξ

0

p∇u(t) · ν,∇ϕ · νqΓN
dt+

∫ ξ

0

p∆u(t),∆ϕq dt

=

∫ ξ

0

h(t) p∇f,∇ϕq dt−
∫ ξ

0

pσ(t),∇ϕ · νqΓN
dt.

Di�erentiation with respect to ξ gives us (P).

Note that the estimate
n∑
i=1

g2−β(ti)
∥∥∇δ2ui

∥∥2
τ ≤ C is essential for proving the

convergence of the Rothe function to the solution.

4.5 Error estimate

Theorem 4.5.1 (error estimate). Under the assumptions of Theorem 4.4.1 then
there exists a positive constant C (independent of n) such that∫ T

0

��h(t)− hn(t)
��2 dt ≤ Cτ2−β (4.21)

and

‖∇u(t) · ν −∇un(t) · ν‖2ΓN
+ ‖∆u(t)−∆un(t)‖2

+

∫ T

0

‖∂t∇u(t)−∇vn(t)‖2 dt ≤ Cτ2−β . (4.22)

Proof. First, we state an estimate for some di�erences of Rothe's functions

∫ T

0

‖∆un(t)−∆ũn(t)‖2 dt+

∫ T

0

‖∆un(t)−∆un(t)‖2 dt
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+

∫ T

0

‖∇vn(t)−∇vn(t)‖2 dt+

∫ T

0

‖∇un(t) · ν −∇un(t) · ν‖2ΓN
dt

+

∫ T

0

‖σn(t)− σn(t)‖2 dt ≤ Cτ2.

We also remind that vn = ∂tun a.e. in (0, T ). It holds for the convolution kernel
g2−β that ∥∥g2−β − g2−βn

∥∥
L1(0,T )

≤ Cτ2−β .

Above estimates will be used through the whole proof; we will also assume τ small
enough. Next, from the equations (MP) and (DMP), we calculate∫ ξ

0

��h(t)− hn(t)
��2 dt

≤
∫ ξ

0

����� pg2−β ∗m′′q (t)−
�
g2−βn∗m′′n

�
(ti)− p∆u(t)−∆ũn(t), ωq

pf, ωq

�����
2

dt

≤ C

�∫ ξ

0

���g2−β ∗(m′′ −m′′n)
�

(t)
��2 dt

+

∫ ξ

0

���(g2−β − g2−βn)∗m′′n� (t)
��2 dt

+

∫ ξ

0

���g2−βn∗m′′n
�

(t)−
�
g2−βn∗m′′n

�
(ti)

��2 dt

+

∫ ξ

0

‖∆u(t)−∆ũn(t)‖2 dt

�

≤ C

�
‖g2−β‖2L1(0,T )

∥∥m′′ −m′′n∥∥2

L2(0,T )

+
∥∥g2−β − g2−βn

∥∥2

L1(0,T )

∥∥m′′n∥∥2

L2(0,T )

+

∫ ξ

0

�∫ ti

t

g2−βn(ti − s) ds

2

dt

+

∫ ξ

0

�∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ds
2

dt

+

∫ ξ

0

‖∆u(t)−∆ũn(t)‖2 dt

�

≤ C

�
τ2 + τ (2−β)2 +

∫ ξ

0

‖∆u(t)−∆ũn(t)‖2 dt

�
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≤ C

�
τ (2−β)2 +

∫ ξ

0

‖∆u(t)−∆ũn(t)‖2 dt

�
,

where we used∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ds

=

∫ ti−1

0

�
g2−βn(t− s)− g2−βn(ti − s)

	
ds

+

∫ t

ti−1

�
g2−βn(t− s)− g2−βn(ti − s)

	
ds

≤
∫ ti−1

0

�
g2−βn(ti−1 − s)− g2−βn(ti − s)

	
ds+ C

∫ t

ti−1

g2−βn(t− s) ds

≤ C
∫ ti−1

0

(ti−1 − s)1β − (ti+1 − s)1β ds+ C

∫ t

ti−1

g2−βn(t− s) ds

≤ C(t2−βi−1 − t
2−β
i+1 + τ2−β) + C(ti − ti−1)2−β

≤ Cτ2−β ,

for t ∈ (ti−1, ti]. We can estimate∫ ξ

0

‖∆u(t)−∆ũn(t)‖2 dt

≤ C
∫ ξ

0

‖∆u(t)−∆un(t)‖2 dt+ C

∫ ξ

0

‖∆un(t)−∆ũn(t)‖2 dt

≤ C

�
τ2 +

∫ ξ

0

‖∆u(t)−∆un(t)‖2 dt

�
,

so �nally we get∫ ξ

0

��h(t)− hn(t)
��2 dt ≤ C

�
τ (2−β)2 +

∫ ξ

0

‖∆u(t)−∆un(t)‖2 dt

�
. (4.23)

Subtracting (DP) from (P), we obtain�pg2−β ∗ ∂tt∇uq (t)−
�
g2−βn∗∇∂tvn

�
(ti),∇ϕ

�
+ p∇u(t) · ν −∇un(t) · ν,∇ϕ · νqΓN

+ p∆u(t)−∆un(t),∆ϕq
=
�
h(t)− hn(t)

� p∇f,∇ϕq− pσ(t)− σn(t),∇ϕ · νqΓN
, (4.24)

choosing ϕ = ∂t(u(t) − un(t)) and integrating the whole equation over (0, ξ), ξ ∈
(0, T ], we get
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∫ ξ

0

�pg2−β ∗ ∂tt∇uq (t)−
�
g2−βn∗∇∂tvn

�
(ti),∇(∂t(u(t)− un(t)))

�
dt

+

∫ ξ

0

p∇u(t) · ν −∇un(t) · ν,∇(∂t(u(t)− un(t))) · νqΓN
dt

+

∫ ξ

0

p∆u(t)−∆un(t),∆(∂t(u(t)− un(t)))q dt

=

∫ ξ

0

�
h(t)− hn(t)

� p∇f,∇(∂t(u(t)− un(t))q dt

−
∫ ξ

0

pσ(t)− σn(t),∇(∂t(u(t)− un(t))) · νqΓN
dt.

(4.25)

The third term on the l.h.s of (4.25) can be rewritten as∫ ξ

0

p∆u(t)−∆un(t),∆(∂t(u(t)− un(t)))q dt

=

∫ ξ

0

p∆u(t)−∆un(t),∆(∂t(u(t)− un(t)))q dt

+

∫ ξ

0

p∆un(t)−∆un(t),∆(∂t(u(t)− un(t)))q dt

=
1

2
‖∆u(ξ)−∆un(ξ)))‖2 +

∫ ξ

0

p∆un(t)−∆un(t),∆(∂t(u(t)− un(t)))q dt.

Next, we can estimate by Lemma 4.4.3∫ ξ

0

p∆un(t)−∆un(t),∆(∂t(u(t)− un(t)))q dt

≤
∫ ξ

0

‖∆un(t)−∆un(t)‖ ‖∆(∂t(u(t)− un(t)))‖ dt ≤ Cτ. (4.26)

We can estimate the second term on the l.h.s. and the second term on the r.h.s. of
(4.25) in a similar manner. The �rst term on the l.h.s. in (4.25) may be rewritten
as ∫ ξ

0

�pg2−β ∗ ∂tt∇uq (t)−
�
g2−βn∗∇∂tvn

�
(ti), ∂t∇u(t)− ∂t∇un(t)

�
dt

=

∫ ξ

0

ppg2−β ∗ ∂tt∇uq (t)− pg2−β ∗∇∂tvnq (t), ∂t∇u(t)− ∂t∇un(t)q dt

+

∫ ξ

0

�pg2−β ∗∇∂tvnq (t)−
�
g2−βn∗∇∂tvn

�
(t), ∂t∇u(t)− ∂t∇un(t)

�
dt
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+

∫ ξ

0

��
g2−βn∗∇∂tvn

�
(t)−

�
g2−βn∗∇∂tvn

�
(ti), ∂t∇u(t)− ∂t∇un(t)

�
dt.

(4.27)

Here, the �rst term in (4.27) can be rewritten and then estimated by using Lemma
1.7.2 as

∫ ξ

0

ppg2−β ∗ ∂tt∇uq (t)− pg2−β ∗∇∂tvnq (t), ∂t∇u(t)− ∂t∇un(t)q dt

=

∫ ξ

0

p∂t pg2−β ∗(∂t∇u−∇vn)q (t), ∂t∇u(t)−∇vn(t)q dt

+

∫ ξ

0

ppg2−β ∗(∂tt∇u− ∂t∇vn)q (t),∇vn(t)− ∂t∇un(t)q dt

≥ C
∫ ξ

0

‖∂t∇u(t)−∇vn(t)‖2 dt

+

∫ ξ

0

ppg2−β ∗(∂tt∇u− ∂t∇vn)q (t),∇vn(t)− ∂t∇un(t)q dt,

where the second term is estimated as

∫ ξ

0

ppg2−β ∗(∂tt∇u− ∂t∇vn)q (t),∇vn(t)− ∂t∇un(t)q dt

≤

�∫ ξ

0

‖pg2−β ∗(∂tt∇u− ∂t∇vn)q (t)‖2 dt

� 1
2
�∫ ξ

0

‖∇vn(t)− ∂t∇un(t)‖2 dt

� 1
2

≤ Cτ.

The upper bound of the second term in (4.27) is obtained by using Young's in-
equality for convolutions in the following way

∫ ξ

0

�pg2−β ∗∇∂tvnq (t)−
�
g2−βn∗∇∂tvn

�
(t), ∂t∇u(t)− ∂t∇un(t)

�
dt
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=

∫ ξ

0

��
(g2−β − g2−βn)∗∇∂tvn� (t), ∂t∇u(t)− ∂t∇un(t)

�
dt

≤ Cε
∫ ξ

0

∥∥�(g2−β − g2−βn)∗∇∂tvn� (t)
∥∥2

dt

+ε

∫ ξ

0

‖∂t∇u(t)− ∂t∇un(t)‖2 dt

≤ Cε
∥∥g2−β − g2−βn

∥∥2

L1(0,T )
‖∇∂tvn‖2L2((0,T ),L2(Ω))

+ε

∫ ξ

0

‖∇∂tu(t)−∇vn(t)‖2 dt

+ε

∫ ξ

0

‖∇vn(t)−∇∂tun(t)‖2 dt

≤ Cετ (2−β)2 + ε

∫ ξ

0

‖∇∂tu(t)−∇vn(t)‖2 dt

We get the estimate for the last term in (4.27) similarly as estimates (4.19), (4.20)
in the proof of Theorem 4.4.1

∫ ξ

0

��
g2−βn∗∇∂tvn

�
(t)−

�
g2−βn∗∇∂tvn

�
(ti), ∂t∇u(t)− ∂t∇un(t)

�
dt

≤
∫ ξ

0

�∫ ti

t

g2−βn(ti − s) ‖∂t∇vn(s)‖ ds

+

∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂t∇vn(s)‖ ds

�
‖∂t∇u(t)− ∂t∇un(t)‖ dt

≤ Cε
∫ ξ

0

�∫ ti

t

g2−βn(ti − s) ‖∂t∇vn(s)‖ ds

2

dt

+Cε

∫ ξ

0

�∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂t∇vn(s)‖ ds


2

dt

+ε

∫ ξ

0

‖∂t∇u(t)− ∂t∇un(t)‖2 dt

≤ Cετ2−β + ε

∫ ξ

0

‖∇∂tu(t)−∇vn(t)‖2 dt+ ε

∫ ξ

0

‖∇vn(t)−∇∂tun(t)‖2 dt

≤ Cετ2−β + ε

∫ ξ

0

‖∇∂tu(t)−∇vn(t)‖2 dt.

The �rst term on the r.h.s of (4.25) is estimated from above as

∫ ξ

0

�
h(t)− hn(t)

� p∇f,∇(∂t(u(t)− un(t)))q dt
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≤ Cε
∫ ξ

0

��h(t)− hn(t)
��2 dt+ ε

∫ ξ

0

‖∇∂tu(t)−∇vn(t)‖2 dt

+ε

∫ ξ

0

‖∇vn(t)−∇∂tun(t)‖2 dt

≤ Cετ (2−β)2 + Cε

∫ ξ

0

‖∆u(t)−∆un(t)‖2 dt+ ε

∫ ξ

0

‖∇∂tu(t)−∇vn(t)‖2 dt.

With the above estimates and choosing an appropriate ε > 0, we arrive at∫ ξ

0

‖∂t∇u(t)−∇vn(t)‖2 dt+ ‖∇u(ξ) · ν −∇un(ξ) · ν‖2ΓN
+ ‖∆u(ξ)−∆un(ξ)‖2

≤ C

�
τ2−β +

∫ ξ

0

‖∆u(t)−∆un(t)‖2 dt

�
,

�nally, applying the Grönwall lemma, we get∫ ξ

0

‖∂t∇u(t)−∇vn(t)‖2 dt+ ‖∇u(ξ) · ν −∇un(ξ) · ν‖2ΓN

+ ‖∆u(ξ)−∆un(ξ)‖2 ≤ Cτ2−β .

4.6 Numerical Experiments

We present here a couple of numerical experiments. The �rst two calculate the
solution from the exact measurement. They di�er in the measurement function.
More concrete, we take two di�erent choices for the function ω, which will represent
either measurement trough the whole domain or just trough its part. The second
experiment is a possible approach to the noisy measurement.

We use the algorithm arising from the time discretization. The solution couple
(ui, hi) on the i−th time layer is calculated from (DMPi) and (DPi), in this order,
and then we move to the next time level.

In the experiment, we assume x ∈ Ω = (0, π), T = 3 and β = 1.3, ΓD = {π},
ΓN = {0}, next

f(x) = sinx,

accompanying boundary and initial conditions take the form

u0(x) = sinx,
v0(x) = 0,
σ(0, t) = t3 − t2 + 5.
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The �rst measurement is given by

m1(t) =

∫
Ω

u(x, t)ω1(x) dx = 12t− 4,

where
ω1(x, y) = 1,

in the second we assume

m2(t) =

∫
Ω

u(x, t)ω2(x) dx = 6t− 2,

with

ω2(x, y) =

{
1, x ∈ [0, π2 ],

0, otherwise.

One can easily calculate that

u(x, t) = (t3 − t2 + 5) sinx,

h(t) =
6

(2− β)(3− β)Γ(2− β)
t3−β − 4

(2− β)Γ(2− β)
t2−β + t3 − t2 + 5

are the exact solution of the problem given by above data.

The algorithm is implemented in Python, where we use the �nite element library
DOLFIN from the FEniCS Project [73]. The domain is divided into 50 cells and
we use Lagrange basis functions of order 2. To avoid numerical complications we
formulate the problem as the mixed one de�ning the new unknown v = ∇u.

4.6.1 Exact data

For both measurements, we calculate the solution for a couple of time steps τ . On
the Fig. 4.1 (a)-(e) we see the reconstruction of h for τ = 0.015625, the evolution
of relative errors and the decay of relative errors for decreasing τ for ω1. The
interpolating lines in (d) and (e) take the shape 1.0103log2τ − 0.5738 for error of
u and 0.6871 log2 τ − 1.9117 for h. The same is depicted on Fig. 4.2 for ω2. The
interpolating lines in (d) and (e) take shape 0.9952log2τ −0.5145 for error of u and
0.6942 log2 τ − 1.7849 for h. The relative errors depicted in Figures 4.1, 4.2(d), (e)
are calculated as

erroru =
max
t
‖uexact(t)− uapp(t)‖L2(Ω)

max
t
‖uexact(t)‖L2(Ω)

,
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for the relative error of u and

errorh =

b∫ T
0

|hexact(t)− happ(t)|2 dtb∫ T
0

|hexact(t)|2 dt
,

for the relative error of h.

We assumed β = 1.3 in the calculations. Theorem 4.5.1 implies that error2
u ≤

Cτ0.7 and error2
h ≤ Cτ0.7. The slopes of the interpolation lines in the error decay

pictures should correspond to (2−β)
2 . The reason is that the errors from the theorem

are squared. The denominators in the calculated errors in�uence just the intercept
value in the interpolation line. Then, according the calculations for ω1, it should
hold that

‖uexact(t)− uapp(t)‖2L2(Ω) ≤ Cτ
2.0206,

and ∫ T

0

|hexact(t)− happ(t)|2 dt ≤ Cτ1.3742,

which agree with the error estimate form Theorem 4.5.1 since τ2.0206 and τ1.3742

is smaller then τ0.7 for small τ .

4.6.2 Noisy data

The noisy measurement for this calculation is modeled as previously. We apply the
least square method on mε(t) to obtain a function in the form

mapp(t) = at3 + bt2 + ct+ d,

which approximate mε(t) and is smooth enough to be used in the algorithm.

We can see the original function m, the noisy measurement mε(t) and its ap-
proximation on the Fig. 4.3 (a). The reconstruction of the source term for several
values of ε can be seen on the Fig. 4.3 (b). We see the corresponding relative error
in time for h and u on the Fig. 4.3 (c), (d).
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(a) Reconstruction of h together with exact h.

(b) Relative error
|happrox(t)−hexact(t)|

|hexact(t)|
. (c) Relative error

||uapprox(t)−uexact(t)||
||uexact(t)||

.

(d) Logarithm of integral relative error in time
of h for di�erent values of τ . Slope of the line
is 0.6871.

(e) Logarithm of maximal relative error in time
of u for di�erent values of τ . Slope of the line
is 1.0103.

Figure 4.1: The results of the reconstruction algorithm for τ = 0.015625 and ω1.
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(a) Reconstruction of h together with exact h.

(b) Relative error
|happrox(t)−hexact(t)|

|hexact(t)|
. (c) Relative error

||uapprox(t)−uexact(t)||
||uexact(t)||

.

(d) Logarithm of integral relative error in time
of h for di�erent values of τ . Slope of the line
is 0.6942.

(e) Logarithm of maximal relative error in time
of u for di�erent values of τ . Slope of the line
is 0.9952.

Figure 4.2: The results of the reconstruction algorithm for τ = 0.015625 and ω2
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(a) Exact and noisy data for ε = 0.1. Ap-
proximating curve has the form mapp(t) =
1.9777t3 − 2.0064t2 + 7.4573t+ 1.0013.

(b) Reconstruction of h together with exact h.

(c) Relative error
|happrox(t)−hexact(t)|

|hexact(t)|
. (d) Relative error

||uapprox(t)−uexact(t)||
||uexact(t)||

.

Figure 4.3: The results of the reconstruction algorithm for noisy data for various
amount of noise ε and τ = 0.015625.



Chapter 5

Identi�cation of a source in a

fractional wave equation from

a boundary measurement

This chapter is based on the article [129], which has been already submitted to
Journal of Computational and Applied Mathematics for publication.

5.1 Introduction

In this article, we are interested in the following fractional wave equation accom-
panied with standard initial condition and the Neumann boundary condition

pg2−β ∗ ∂ttu(x)q (t)−∆u(x, t) = h(t)f(x) + F (x, t), x ∈ Ω, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ Ω,

∂tu(x, 0) = v0(x), x ∈ Ω,
−∇u(x, t) · ν = γ(x, t), (x, t) ∈ Γ× (0, T ),

(5.1)
where Ω ⊂ Rd is bounded with the Lipschitz boundary Γ, T > 0 and g2−β is the
Riemann-Liouville kernel.

The Inverse Source Problem (ISP) we are interested in here consists of identi-
fying a couple (u(x, t), h(t)) obeying (5.1) and∫

Γ

u(x, t)ω(x)dS = m(t), t ∈ [0, T ], (5.2)

111
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where ω is a solely space-dependent function, many times chosen to have a compact
support in Γ. This type of measurement is often called non-invasive as opposed to
the measurements which take place inside the considered domain.

In Chapter 3, we have dealt with the similar equation but the measurement
was taken over a subset of Ω. The added value of this chapter relies on using the
non-invasive measurement in the form of the integral over the part of the boundary.
The approach, we take, will demand the estimates for the Laplacian of u on the
boundary, which was not necessary in Chapter 3.

This chapter is organized as follows. In the short second section, we reformulate
our problem. In the third section we introduce the time-discretization, prove some
useful a priori estimates, introduce the Rothe functions and at the end prove the
existence of a solution. The last section deals with the uniqueness of the solution
in appropriate spaces.

5.2 Reformulation of the problem

Without the loss of generality, we may assume that F = 0 and γ = 0. This follows
from the superposition principle, which is valid for all linear systems. Then the
solution of (5.1) can be written as u = v + w, where


pg2−β ∗ ∂ttv(x)q (t)−∆v(x, t) = F (x, t), x ∈ Ω, t ∈ (0, T ),

v(x, 0) = u0(x), x ∈ Ω,
∂tv(x, 0) = v0(x), x ∈ Ω,

−∇v(x, t) · ν = γ(x, t), (x, t) ∈ Γ× (0, T ),

(5.3)

and
pg2−β ∗ ∂ttw(x)q (t)−∆w(x, t) = h(t)f(x), x ∈ Ω, t ∈ (0, T ),

w(x, 0) = 0, x ∈ Ω,
∂tw(x, 0) = 0, x ∈ Ω,

−∇w(x, t) · ν = 0, (x, t) ∈ Γ× (0, T ).
(5.4)

Thus, instead of (u, h) the new couple (w, h) has to be found and measurement
needs to be modi�ed to∫

Γ

w(x, t)ω(x)dS = m(t)−
∫

Γ

v(x, t)ω(x)dS =: m̃(t), t ∈ [0, T ]. (5.5)

From now on, we will denote the new sought couple (w, h) and the measurement
function m̃ again by (u, h) and m, respectively.



5.3. Existence 113

Next, we reformulate our problem into two coupled equations using the mea-
surement and the variational formulation of (5.4). Taking the �rst equation of (5.4)
and multiplying it by ω and integrating over the boundary Γ we get

pg2−β ∗m′′q (t)− p∆u(t), ωqΓ = h(t) pf, ωqΓ . (MP)

if we assume that pf, ωqΓ 6= 0, we may eliminate h in the following manner

h(t) =
pg2−β ∗m′′q (t)− p∆u(t), ωqΓ

pf, ωqΓ
. (5.6)

By multiplying the �rst equation of (5.4) by ϕ ∈ H1(Ω) integrating over Ω and
using the Green theorem, we obtain the weak formulation, thus, it holds

ppg2−β ∗ ∂ttuq (t), ϕq + p∇u(t),∇ϕq = h(t) pf, ϕq , (P)

for any ϕ ∈ H1(Ω), a.a. t ∈ [0, T ]. Hence, in the reformulated inverse source
problem, we are interested in �nding a couple (u, h) which solves the equations (P)
and (MP) with u(0) = 0, ∂tu(0) = 0.

5.3 Existence

We divide the interval [0, T ] into n equidistant pieces, for n ∈ N, and de�ne a time
step as τ = T

n , for i = 1, ..., n, then for any function z we de�ne notation for the
value at point ti and the �rst and second di�erence as in the previous chapters.

We approximate the solution of (P), (MP) on the i−th time-layer, for i ≥ 1, by
(ui, hi) which solves��

g2−β ∗ δ2u
�
i
, ϕ
�

+ p∇ui,∇ϕq = hi pf, ϕq , (DPi)

for ϕ ∈ H1(Ω), with δu0 := 0 and

pg2−β ∗m′′qi − p∆ui−1, ωqΓ = hi pf, ωqΓ . (DMPi)

Next, we de�ne set

V = {ϕ : Ω→ R; ‖ϕ‖+ ‖∇ϕ‖+ ‖∆ϕ‖+ ‖∇∆ϕ‖ <∞}

which equipped with the norm ‖ϕ‖V =
�
‖ϕ‖2 + ‖∇ϕ‖2 + ‖∆ϕ‖2 + ‖∇∆ϕ‖2

	 1
2

is

Hilbert space compactly embedded in L2(Ω). Since there occurs ∆ui in (DMPi),
we need to control it on the boundary which leads us in looking for the solution in
the space V . Following lemma handles the existence of the unique couple (ui, hi)
on every time slice.
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Lemma 5.3.1. Let f ∈ H1(Ω), ω ∈ L2(Γ), pf, ωqΓ 6= 0 and m ∈ C2([0, T ]). Then
for each i ∈ {1, . . . , n}, there exists a unique couple (ui, hi) ∈ V ×R solving (DPi)
and (DMPi) for every ϕ ∈ H1(Ω).

Proof. Assuming pf, ωqΓ 6= 0 and ui ∈ V , we can write

hi =
pg2−β ∗m′′qi − p∆ui−1, ωqΓ

pf, ωqΓ
∈ R.

The equation (DPi) can be rewritten such that all uk's with k ≤ i − 1 are placed
on the right hand side of the equation, so we get

1

τ
g2−β(τ) pui, ϕq + p∇ui,∇ϕq = hi pf, ϕq−

i−1∑
k=1

g2−β(ti+1−k)
�
δ2uk, ϕ

�
τ

+
1

τ
g2−β(τ) pui−1, ϕq + g2−β(τ) pδui−1, ϕq . (5.7)

When u1, ..., ui−1 ∈ L2(Ω), then, with the assumptions on f , u0 and v0, the r.h.s.
of the equation can be seen as a linear bounded functional on H1(Ω), moreover,
the l.h.s. of the equation is a bounded bilinear form

B[ui, ϕ] :=
1

τ
g2−β(τ) pui, ϕq + p∇ui,∇ϕq ,

on H1(Ω) × H1(Ω) with B[ϕ,ϕ] ≥ C ‖ϕ‖2H1(Ω). Using the Lax-Milgram lemma
iteratively, we can conclude that there exist unique ui ∈ H1(Ω) solving (DPi).
Now, we want to prove that ui ∈ V . Looking again at the equation (DPi), the
term p∇ui,∇ϕq can be understood as a realization of a linear bounded functional on
H1(Ω). From the Hahn-Banach theorem there exists an extension of that functional
on L2(Ω) with the same norm. The Riesz theorem says that this extension can be
represented uniquely by a function from L2(Ω), we denote this function as −∆ui.
We may write

− p∆ui, ϕq = hi pf, ϕq−
��
g2−β ∗ δ2u

�
i
, ϕ
�
, (5.8)

for every ϕ ∈ L2(Ω), so,

−∆ui = hif −
�
g2−β ∗ δ2u

�
i
∈ L2(Ω),

and using the assumptions of the lemma and applying the gradient on this equality
leads to

−∇∆ui = hi∇f −
�
g2−β ∗∇δ2u

�
i
∈ L2(Ω). (5.9)
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Now, we can work properly with (ui, hi). Our next aim is to gain some estimates
of them.

Lemma 5.3.2. Under the assumptions of Lemma 5.3.1 there exists a positive
constant C (independent of n) such that

�
g2−β ∗‖δu‖2

	
j

+

j∑
i=1

g2−β(ti) ‖δui‖2 τ +

j∑
i=1

‖δui‖2 τ + ‖uj‖2H1(Ω)

+

j∑
i=1

‖∇ui −∇ui−1‖2 ≤ C
j∑
i=1

h2
i τ, (5.10)

for every j ∈ 1, ..., n, n ∈ N.

Proof. Let ϕ = δui in (DPi), using the equality (2.10) we get that�
δ pg2−β ∗ δuqi , δui

�
+ p∇ui,∇δuiq = hi pf, δuiq .

Multiplying the equality by τ and summing it up for i = 1...j, we obtain

j∑
i=1

�
δ pg2−β ∗ δuqi , δui

�
τ +

j∑
i=1

p∇ui,∇ui −∇ui−1q =

j∑
i=1

hi pf, δuiq τ. (5.11)

Next, we use Lemma 1.7.3 for the �rst term on the l.h.s. of (5.11) and the Abel
summation 1.3.7 for the second term. Moreover, the Young inequality is used on
the r.h.s. in (5.11), hence, we get

1

2

�
g2−β ∗‖δu‖2

	
j

+
1

4

j∑
i=1

g2−β(ti) ‖δui‖2 τ +
g2−β(T )

4

j∑
i=1

‖δui‖2 τ +
1

2
‖∇uj‖2

+
1

2

j∑
i=1

‖∇ui −∇ui−1‖2 ≤ Cε
j∑
i=1

h2
i τ + ε

j∑
i=1

‖δui‖2 τ.

Choosing suitable ε > 0, we derive

�
g2−β ∗‖δu‖2

	
j

+

j∑
i=1

g2−β(ti) ‖δui‖2 τ +

j∑
i=1

‖δui‖2 τ + ‖∇uj‖2

+

j∑
i=1

‖∇ui −∇ui−1‖2 ≤ C
j∑
i=1

h2
i τ.
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Lemma 5.3.3. Under the assumptions of Lemma 5.3.1 there exists a positive
constant C (independent of n) such that

�
g2−β ∗‖∇δu‖2

	
j

+

j∑
i=1

g2−β(ti) ‖∇δui‖2 τ +

j∑
i=1

‖∇δui‖2 τ + ‖∆uj‖2

+

j∑
i=1

‖∆ui −∆ui−1‖2 ≤ C
j∑
i=1

h2
i τ,

for every j ∈ 1, ..., n, n ∈ N.

Proof. To gain the estimate from the lemma we start with the equation (5.8) from
the proof of Lemma 5.3.1. We set ϕ = −∆δui, which is justi�ed since ui ∈ V , for
0 ≤ i ≤ j, ��

g2−β ∗ δ2u
�
i
,−∆δui

�
+ p∆ui,∆δuiq = hi pf,−∆δuiq .

This can be rewritten as�
δ pg2−β ∗∇δuqi ,∇δui

�
+ p∆ui,∆δuiq = hi p∇f,∇δuiq ,

multiplying by τ and summing up for 1 ≤ i ≤ j, we get

j∑
i=1

�
δ pg2−β ∗∇δuqi ,∇δui

�
τ +

j∑
i=1

p∆ui,∆δuiq τ =

j∑
i=1

hi p∇f,∇δuiq τ.

This can be estimated in the similar way as in the previous lemma, with the help of
Lemma 1.7.3, the Abel summation, the Cauchy and Young inequalities, we obtain
that

�
g2−β ∗‖∇δu‖2

	
j

+

j∑
i=1

g2−β(ti) ‖∇δui‖2 τ +

j∑
i=1

‖∇δui‖2 τ + ‖∆uj‖2

+

j∑
i=1

‖∆ui −∆ui−1‖2 ≤ Cε
j∑
i=1

h2
i τ + ε

j∑
i=1

‖∇δui‖2 τ,

the estimate from the lemma is acquired by choosing an appropriate ε > 0.

Lemma 5.3.4. Under the assumptions of Lemma 5.3.1, if moreover f ∈ H2(Ω)
and ∇f · ν = 0 on Γ then there exists a positive constant C (independent of n)
such that
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�
g2−β ∗‖∆δu‖2

	
j

+

j∑
i=1

g2−β(ti) ‖∆δui‖2 τ +

j∑
i=1

‖∆δui‖2 τ + ‖∇∆uj‖2

+

j∑
i=1

‖∇∆ui −∇∆ui−1‖2 ≤ C
j∑
i=1

h2
i τ,

for every j ∈ 1, ..., n, n ∈ N.

Proof. Starting from (5.9), we multiply the equality by −∇δ∆ui, integrate over
the domain Ω and get

��
g2−β ∗∇δ2u

�
i
,−∇δ∆ui

�
+ p∇∆ui,∇δ∆uiq = hi p∇f,−∇δ∆uiq .

The equalities for 1 ≤ i ≤ j, j ∈ 1, ..., n, are multiplied by τ and summed up to
obtain

j∑
i=1

��
g2−β ∗∇δ2u

�
i
,−∇δ∆ui

�
τ+

j∑
i=1

p∇∆ui,∇δ∆uiq τ =

j∑
i=1

hi p∇f,−∇δ∆uiq τ.
(5.12)

Next, the �rst term on the l.h.s. of (5.12) is rewritten using the Green theorem and
(2.10), then Lemma 1.7.3 is applied. For the second term on the l.h.s. the Abel
summation is used. For the r.h.s of the equality (5.12), �rst the Green theorem is
applied, and then the Cauchy and Young inequality are used to acquire

�
g2−β ∗‖δ∆u‖2

	
i
+

j∑
i=1

g2−β(ti) ‖δ∆ui‖2 τ +

j∑
i=1

‖δ∆ui‖2 τ + ‖∇∆uj‖2

+

j∑
i=1

‖∇∆ui −∇∆ui−1‖2 ≤ Cε
j∑
i=1

h2
i τ + ε

j∑
i=1

‖δ∆ui‖2 τ, (5.13)

choosing the appropriate ε > 0 leads us to the estimate from the lemma.

The next lemma aggregates the results of Lemma 5.3.2, Lemma 5.3.3 and
Lemma 5.3.4 in to the �nal estimate.

Lemma 5.3.5. Under the assumptions of Lemma 5.3.4, there exists a positive
constants C (independent of n) such that
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(i) max
0≤i≤n

�
g2−β ∗‖δu‖2

	
i
+

n∑
i=1

g2−β(ti) ‖δui‖2 τ +

n∑
i=1

‖δui‖2 τ

+ max
0≤i≤n

‖ui‖2H1(Ω) +

n∑
i=1

‖∇ui −∇ui−1‖2 + max
0≤i≤n

�
g2−β ∗‖∇δu‖2

	
i

+

n∑
i=1

g2−β(ti) ‖∇δui‖2 τ +

n∑
i=1

‖∇δui‖2 τ + max
0≤i≤n

‖∆ui‖2H1(Ω)

+

n∑
i=1

‖∆ui −∆ui−1‖2 + max
0≤i≤n

�
g2−β ∗‖∆δu‖2

	
i
+

n∑
i=1

g2−β(ti) ‖∆δui‖2 τ

+

n∑
i=1

‖∆δui‖2 τ +

n∑
i=1

‖∇∆ui −∇∆ui−1‖2 ≤ C.

(ii) max
0≤i≤n

|hi| ≤ C

Proof. Starting from the equation (DMPi), we can estimate

|hi| = C p1 + ‖∆ui−1‖Γq ≤ C p1 + ‖∆ui−1‖+ ‖∇∆ui−1‖q , (5.14)

where the inequality comes from the trace theorem. By summing all estimates from
Lemma 5.3.2- Lemma 5.3.4 up and using (5.14), we are prepared to use the discrete
Grönwall lemma to obtain the inequality (i) and consequently also (ii).

In following set of a priori estimates, we will work with a di�erence of the
discretized equations; therefore, we additionally need to de�ne

h0 = 0. (5.15)

Lemma 5.3.6. Under the assumptions of Lemma 5.3.1 there exists a positive
constant C (independent of n) such that

�
g2−β ∗∥∥δ2u

∥∥2
	
j

+

j∑
i=1

g2−β(ti)
∥∥δ2ui

∥∥2
τ +

j∑
i=1

∥∥δ2ui
∥∥2
τ

+ ‖δuj‖2H1(Ω) +

j∑
i=1

‖∇δui −∇δui−1‖2 ≤ C
j∑
i=1

|δhi|
∥∥δ2ui

∥∥ τ,
for every j ∈ 1, ..., n, n ∈ N.

Proof. Subtracting equation (DPi) for i − 1 from the one for i and dividing by τ
gives us �

δ
�
g2−β ∗ δ2u

�
i
, ϕ
�

+ p∇δui,∇ϕq = δhi pf, ϕq .
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Notice that for i = 1 the above di�erence is the equation itself as
�
g2−β ∗ δ2u

�
0

= 0,
u0 = 0 and h0 = 0. We set ϕ = δ2uiτ and sum up equations for 1 ≤ i ≤ j. By using
Lemma 1.7.3, the Abel summation and Cauchy inequality, we gain the estimate
from the lemma for j ∈ {1, ..., n}.

Lemma 5.3.7. Under the assumptions of Lemma 5.3.1 there exists a positive
constant C (independent of n) such that

�
g2−β ∗∥∥∇δ2u

∥∥2
	
j

+

j∑
i=1

g2−β(ti)
∥∥∇δ2ui

∥∥2
τ +

j∑
i=1

∥∥∇δ2ui
∥∥2
τ

+ ‖∆δuj‖2 +

j∑
i=1

‖∆δui −∆δui−1‖2 ≤ C
j∑
i=1

|δhi|
∥∥∇δ2ui

∥∥ τ
for every j ∈ 1, ..., n, n ∈ N.

Proof. Similarly as in the previous lemma, we make an di�erence, now, for ∆ui,
using (5.8) we get that�

δ
�
g2−β ∗ δ2u

�
i
, ϕ
�
− p∆δui, ϕq = δhi pf, ϕq .

Setting ϕ = −∆δ2uiτ , using the Green theorem and summing up for 1 ≤ i ≤ j, we
obtain

j∑
i=1

�
δ
�
g2−β ∗∇δ2u

�
i
,∇δ2ui

�
τ +

j∑
i=1

�
∆δui,∆δ

2ui
�
τ =

j∑
i=1

δhi
�
∇f,∇δ2ui

�
τ.

Using Lemma 1.7.3, the Abel summation and Cauchy inequality leads us to the
estimate in the lemma.

Lemma 5.3.8. Under the assumptions of Lemma 5.3.4, there exists a positive
constant C (independent of n) such that

�
g2−β ∗∥∥∆δ2u

∥∥2
	
j

+

j∑
i=1

g2−β(ti)
∥∥∆δ2ui

∥∥2
τ +

j∑
i=1

∥∥∆δ2ui
∥∥2
τ

+ ‖∇∆δuj‖2 +

j∑
i=1

‖∇∆δui −∇∆δui−1‖2 ≤ C
j∑
i=1

|δhi|
∥∥∆δ2ui

∥∥ τ,
for every j ∈ 1, ..., n, n ∈ N.
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Proof. First, we make an di�erence from (5.9) to get

δ
�
g2−β ∗∇δ2u

�
i
−∇∆δui = δhi∇f,

then we multiply by −∇∆δ2uiτ and integrate over Ω to obtain�
δ
�
g2−β ∗∇δ2u

�
i
,∇∆δ2ui

�
τ +

�
∇∆δui,∇∆δ2ui

�
τ = δhi

�
∇f,∇∆δ2ui

�
τ.

Using the Green theorem for the �rst term on the l.h.s. and for the term on the
r.h.s, and then summing up for 1 ≤ i ≤ j we get

j∑
i=1

�
δ
�
g2−β ∗∆δ2u

�
i
,∆δ2ui

�
τ+

j∑
i=1

�
∇∆δui,∇∆δ2ui

�
τ =

j∑
i=1

δhi
�
∆f,∆δ2ui

�
τ.

We acquire the estimate from the lemma by the same manner as we did in the last
step of the proof of Lemma 5.3.7.

Lemma 5.3.9. Under the assumptions of Lemma 5.3.4, if moreover it holds that
m ∈ C3([0, T ]), then there exists a positive constant C (independent of n) such that

(i) max
0≤i≤n

�
g2−β ∗∥∥δ2u

∥∥2
	
i
+

n∑
i=1

g2−β(ti)
∥∥δ2ui

∥∥2
τ +

n∑
i=1

∥∥δ2ui
∥∥2
τ

+ max
0≤i≤n

‖δui‖2H1(Ω) +

n∑
i=1

‖∇δui −∇δui−1‖2 + max
0≤i≤n

�
g2−β ∗∥∥∇δ2u

∥∥2
	
i

+

n∑
i=1

g2−β(ti)
∥∥∇δ2ui

∥∥2
τ +

n∑
i=1

∥∥∇δ2ui
∥∥2
τ + max

0≤i≤n
‖∆δui‖2H1(Ω)

+ max
0≤i≤n

�
g2−β ∗∥∥∆δ2u

∥∥2
	
i
+

n∑
i=1

g2−β(ti)
∥∥∆δ2ui

∥∥2
τ +

n∑
i=1

∥∥∆δ2ui
∥∥2
τ

+

n∑
i=1

‖∆δui −∆δui−1‖2H1(Ω) ≤ C

(ii) |δhi| ≤ C p1 + g2−β(ti)q .
(5.16)

Proof. First, we estimate the di�erence of hi. We get from (5.15) and (DMPi)

δ pg2−β ∗m′′qi − p∆δui−1, ωqΓ = δhi pf, ωqΓ ,
eliminating δhi from it and estimating the absolute value of it using the trace
theorem and (2.10) gives us

|δhi| ≤ C
�
g2−β(ti)m

′′
0 + pg2−β ∗ |δm′′|qi + ‖∆δui−1‖Γ

�
≤ C p1 + g2−β(ti) + ‖∆δui−1‖+ ‖∇∆δui−1‖q .
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Next, we sum all the results from Lemma 5.3.6 to Lemma 5.3.8 up, and on the
r.h.s we can use the above estimate and the Young inequality to obtain

j∑
i=1

|δhi|
�∥∥δ2ui

∥∥+
∥∥∇δ2u

∥∥+
∥∥∆δ2ui

∥∥� τ
≤

j∑
i=1

p1 + g2−β(ti) + ‖∆δui−1‖+ ‖∇∆δui−1‖q
� ∥∥δ2ui

∥∥+
∥∥∇δ2u

∥∥
+
∥∥∆δ2ui

∥∥	τ
≤

j∑
i=1

g2−β(ti)
�∥∥δ2ui

∥∥+
∥∥∇δ2u

∥∥+
∥∥∆δ2ui

∥∥� τ
+

j∑
i=1

p1 + ‖∆δui−1‖+ ‖∇∆δui−1‖q
�∥∥δ2ui

∥∥+
∥∥∇δ2u

∥∥+
∥∥∆δ2ui

∥∥� τ
≤ Cε

j∑
i=1

g2−β(ti)τ + ε

j∑
i=1

g2−β(ti)
�∥∥δ2ui

∥∥2
+
∥∥∇δ2u

∥∥2
+
∥∥∆δ2ui

∥∥2
	
τ

+Cε

j∑
i=1

�
1 + ‖∆δui−1‖2 + ‖∇∆δui−1‖2

	
τ

+ε

j∑
i=1

�∥∥δ2ui
∥∥2

+
∥∥∇δ2u

∥∥2
+
∥∥∆δ2ui

∥∥2
	
τ.

Now, we choose the appropriate ε > 0 on the r.h.s and move the terms to the l.h.s,
then we are prepared to use the discrete Grönwall lemma to get (i), consequently,
we obtain also (ii).

Next step is to introduce functions which helps us to de�ne the approximate
solution on the whole time frame. We de�ne them as un, un, ũn : [0, T ] → V and
vn, vn : [0, T ]→ V with the prescription de�ned in the previous chapters, assuming
u0 = 0, v0 = 0. In the similar way we also de�ne functions hn, hn, g2−βn,m

′′
n. As

we told before, with those de�nitions we can extend the discretized solution to the
whole interval [0, T ], so we rewrite (DPi) and (DMPi) to��

g2−βn∗ ∂tvn
�

(ti), ϕ
�

+ p∇un(t),∇ϕq = hn(t) pf, ϕq , (DP)

and �
g2−βn∗m′′n

�
(ti) + p∆ũn(t), ωqΓ = hn(t) pf, ωqΓ , (DMP)

for t ∈ (ti−1, ti]. With the above de�nition and all the estimates we have, we may
proceed to the existence theorem. We will prove that the subsequences of Rothe
functions converge to a functions u and h, and that (DP) and (DMP) converge to
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(P) and (MP), respectively, so the functions u and h are then a solution of our
problem.

Theorem 5.3.1 (existence of a solution). Let ω ∈ L2(Γ), f ∈ H2(Ω) with ∇f ·ν =
0 on Γ, pf, ωqΓ 6= 0 and m ∈ C3([0, T ]).

Then there exists a solution (u, h) to the (P), (MP) obeying u ∈ C p[0, T ],V q
with ∂tu ∈ C

�
[0, T ], L2(Ω)

�
∩ L2 p(0, T ),V q, ∂ttu ∈ L2

�
(0, T ), H1(Ω)

�
, ∂tt∆u ∈

L2
�
(0, T ), L2(Ω)

�
and h ∈ C([0, T ]).

Proof. Based on the estimate (ii) of Lemma 5.3.9, we get

|h′n(t)| = |δhi| ≤ Ct1−βi + C ≤ Ct1−β + C,

for t ∈ (ti−1, ti]. Then for t, s ∈ [0, T ], such that |t− s| ≤ ε, for ε > 0, it holds

|hn(t)− hn(s)| ≤
����
∫ t

s

|h′n(r)| dr
���� ≤ C

����
∫ t

s

�
r1−β + 1

�
dr
����

= C

��t2−β − s2−β
��

2− β
+ εC = C(ε2−β + ε),

which means that sequence {hn} is uniform equi-continuous. The equi-boundedness
of the sequence is obtained from the estimate (ii) of Lemma 5.3.5. The Arzelà-
Ascoli theorem 1.2.5 gives us the existence of h ∈ C([0, T ]) to which the subsequence
{hnk

} (from now on denoted as {hn}) converges in C([0, T ]).

From Lemma 5.3.5(i), we obtain the estimate of the Rothe functions un, un

max
0≤t≤T

‖un(t)‖2V + max
0≤t≤T

‖∂tun(t)‖2 ≤ C,

since V � L2(Ω), we can use Lemma 1.5.1, which says that there exist u ∈
C
�
[0, T ], L2(Ω)

�
∩ L∞ p(0, T ),V q such that ∂tu ∈ L2

�
(0, T ), L2(Ω)

�
and subse-

quences {unk
}k∈N, {unk

}k∈N (from now on indexed by n, for the sake of simplicity)
for which it holds 

un → u, in C
�
[0, T ], L2(Ω)

�
(5.17a)

un(t) ⇀ u(t), in V , ∀t ∈ [0, T ] (5.17b)

un(t) ⇀ u(t), in V , ∀t ∈ [0, T ] (5.17c)

∂tun ⇀ ∂tu, in L2
�
(0, T ), L2(Ω)

�
. (5.17d)

Moreover, for ∂tu we have the estimate maxt∈[0,T ] ‖∂tu(t)‖V ≤ C also from
Lemma 5.3.9(i). The estimate gives us the boundedness of ∂tu in the re�exive
space L2 p(0, T ),V q. Therefore, for a subsequence of {∂tun}, we get that

∂tun ⇀ ∂tu in L2 p(0, T ),V q ,
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and, consequently,

u(t)− u(s) =

∫ t

s

∂tu(r) dr

⇒ ‖u(t)− u(s)‖V ≤ |t− s| 12
�∫ T

0

‖∂tu(r)‖2V dr

� 1
2

≤ C |t− s| 12 ,

so we have u ∈ C p[0, T ],V q.
Furthermore, from Lemma 5.3.9(i) we gain

max
0≤t≤T

‖vn(t)‖2V +

∫ T

0

‖∂tvn(t)‖2 ≤ C,

using the Lemma 1.5.1 we are obtaining v ∈ C
�
[0, T ], L2(Ω)

�
∩ L∞ p(0, T ),V q

with ∂tv ∈ L2
�
(0, T ), L2(Ω)

�
and subsequences {vnk

}k∈N, {vnk
}k∈N (from now on

indexed by n) such that
vn → v, in C

�
[0, T ], L2(Ω)

�
(5.18a)

vn(t) ⇀ v(t), in V , ∀t ∈ [0, T ] (5.18b)

vn(t) ⇀ v(t), in V , ∀t ∈ [0, T ] (5.18c)

∂tvn ⇀ ∂tv, in L2
�
(0, T ), L2(Ω)

�
. (5.18d)

To see the connection between u and v, we start with the equality

pun(t)− u0, ϕq =

∫ t

0

pvn(s), ϕq ds, for ϕ ∈ L2(Ω),

since ∂tun = vn, by passing the limit for n→∞ it is obtained

pu(t)− u0, ϕq =

∫ t

0

pv(s), ϕq ds, for ϕ ∈ L2(Ω).

From this we see that v(t) = ∂tu(t) in L2(Ω) for a.a. t ∈ [0, T ].

Next, from Lemma 5.3.9 (i) we have the estimate
∑n
i=1

∥∥∆δ2ui
∥∥2
τ ≤ C that

can be rewritten as ∫ T

0

‖∆∂tvn(t)‖2 dt ≤ C,

and that together with the re�exivity of L2
�
(0, T ), L2(Ω)

�
imply the weak conver-

gence of a subsequence of {∆∂tvn} (indexed again by n) to z ∈ L2
�
(0, T ), L2(Ω)

�
.

Since it holds that ∫ T

0

p∆∂tvn(t), ϕq dt =

∫ T

0

p∂tvn(t),∆ϕq dt,
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for every ϕ ∈ C∞0 (Ω), by passing to the limit n→∞ we obtain

∫ T

0

pz(t), ϕq dt =

∫ T

0

p∂tv(t),∆ϕq dt =

∫ T

0

p∆∂tv(t), ϕq dt,

for all ϕ ∈ C∞0 (Ω), so ∆∂ttu = z ∈ L2
�
(0, T ), L2(Ω)

�
. Analogously we get similar

result for ∇∂ttu.
The rest of the proof will consist of proving the convergence of (DMP) and

(DP) to (MP) and (P), respectively. First,

���g2−βn∗m′′n
�

(ti)−
�
g2−βn∗m′′n

�
(t)
��

≤
����
∫ ti

t

g2−βn(ti − s)m′′n(s) ds
����+

����
∫ t

0

�
g2−βn(ti − s)− g2−βn(t− s)

�
m′′n(s) ds

����
≤ C

∫ ti

t

g2−βn(ti − s) ds+ C

∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ds.

As g2−βn → g2−β in (0, T ) pointwise, the Lebesgue dominated theorem gives

�
g2−βn∗m′′n

�
(ti)→ pg2−β ∗m′′q (t).

Next, notice that since max0≤i≤n ‖∆δui‖2H1(Ω) ≤ C, we get∫ T

0

‖∆ũn(t)−∆un(t)‖Γ dt ≤
∫ T

0

‖∆ũn(t)−∆un(t)‖H1(Ω) dt = O pτq .

Thanks to Lemma 5.3.9 (ii), it also holds that

∫ T

0

��hn(t)− hn(t)
�� dt = O pτq .

We next integrate (DMP) for ξ ∈ [0, T ], and, thanks to the above facts and the
convergences we got, we can pass to the limit n→∞. Then by the di�erentiation
with respect to ξ we obtain (MP).

The problematic term in (DP) is the �rst one on the l.h.s., several estimates
need to be done to be able to pass the limit, we start with

�����
∫ ξ

0

��
g2−βn∗ ∂tvn

�
(ti)−

�
g2−βn∗ ∂tvn

�
(t), ϕ

�
dt

�����
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≤
∫ ξ

0

����
∫ ti

t

g2−βn(ti − s) p∂tvn(s), ϕq ds
���� dt

+

∫ ξ

0

����
∫ t

0

�
g2−βn(ti − s)− g2−βn(t− s)

� p∂tvn(s), ϕq ds
���� dt

≤
∫ ξ

0

∫ ti

t

g2−βn(ti − s) ‖∂tvn(s)‖ ‖ϕ‖ dsdt

+

∫ ξ

0

∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂tvn(s)‖ ‖ϕ‖ dsdt.

(5.19)

We use Hölder's inequality and Lemma 5.3.9 for the �rst term on the r.h.s. to get∫ ξ

0

∫ ti

t

g2−βn(ti − s) ‖∂tvn(s)‖ ‖ϕ‖ ds dt

≤ ‖ϕ‖
∫ ξ

0

d∫ ti

t

g2−βn(ti − s) ds

d∫ ti

t

g2−βn(ti − s) ‖∂tvn(s)‖2 ds dt

≤ ‖ϕ‖
?
τ2−β

∫ ξ

0

d∫ ti

0

g2−βn(ti − s) ‖∂tvn(s)‖2 dsds

≤ C ‖ϕ‖
?
τ2−β .

The second term in (5.19) is estimated after switching the order of integration and
using Hölder's inequality, as follows∫ ξ

0

∫ t

0

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂tvn(s)‖ ‖ϕ‖ dsdt

≤ ‖ϕ‖
∫ ξ

0

∫ ξ

s

��g2−βn(ti − s)− g2−βn(t− s)
�� ‖∂tvn(s)‖ dt ds

≤ ‖ϕ‖
∫ ξ

0

‖∂tvn(s)‖
∫ ξ

s

��g2−βn(ti − s)− g2−βn(t− s)
�� dt ds

≤ ‖ϕ‖

d∫ ξ

0

‖∂tvn(s)‖2 ds

gffe∫ ξ

0

�∫ ξ

s

��g2−βn(ti − s)− g2−βn(t− s)
�� dt

�2

ds

≤ C ‖ϕ‖ .

The fact that g2−βn → g2−β in (0, T ) pointwise enables using of Lebesgue's con-
vergence theorem and brings

lim
n→∞

�����
∫ ξ

0

��
g2−βn∗ ∂tvn

�
(ti)−

�
g2−βn∗ ∂tvn

�
(t), ϕ

�
dt

����� = 0.

Next, we apply the Cauchy, Hölder and Young inequalities to get
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�����
∫ ξ

0

��
g2−βn − g2−β

�∗ p∂tvn, ϕq� (t) dt

�����
≤
∫ ξ

0

��g2−βn(t)− g2−β(t)
�� dt

d∫ ξ

0

‖∂tvn(t)‖2 dt

d∫ ξ

0

‖ϕ‖2 dt ≤ C ‖ϕ‖ , (5.20)

and by using Lebesgue's convergence theorem, we acquire

lim
n→∞

�����
∫ ξ

0

��
g2−βn − g2−β

�∗ p∂tvn, ϕq� (t) dt

����� = 0.

Furthermore,

�����
∫ ξ

0

pg2−β ∗ p∂tvn, ϕqq (t) dt

����� ≤
∫ ξ

0

g2−β(t) dt

d∫ ξ

0

‖∂tvn(t)‖2 dt

d∫ ξ

0

‖ϕ‖2 dt

≤ C ‖∂tvn‖L2p(0,T ),L2(Ω)q ‖ϕ‖ ,

which means that the estimated term can be seen as the linear bounded functional
on L2

�
(0, T ), L2(Ω)

�
, and using (5.18d), we arrive to

lim
n→∞

∫ ξ

0

pg2−β ∗ p∂tvn, ϕqq (t) dt =

∫ ξ

0

pg2−β ∗ p∂tv, ϕqq (t) dt.

In the last step we integrate (DP) over (0, ξ) and pass to the limit n→∞ to obtain∫ ξ

0

ppg2−β ∗ ∂ttuq (t), ϕq dt+

∫ ξ

0

p∇u(t),∇ϕq dt =

∫ ξ

0

h(t) pf, ϕq dt, (5.21)

where we used the estimates, convergences and relations above. Di�erentiation of
the equality (5.21) with respect to ξ brings (P).

5.4 Uniqueness

In this section we will prove the uniqueness of the solution in the appropriate
spaces.

Theorem 5.4.1 (uniqueness). Let f ∈ H2(Ω) with ∇f · ν = 0 on Γ, ω ∈
L2(Γ), pf, ωqΓ 6= 0, m ∈ C2([0, T ]). Then there exists at most one solution
(u, h) to (P), (MP) which obeys u ∈ C p[0, T ],V q, ∂tu ∈ C

�
[0, T ], L2(Ω)

�
∩

L2
�
(0, T ), H1(Ω)

�
, ∂t∆u ∈ L2((0, T ), L2(Ω)), ∂ttu ∈ L2

�
(0, T ), H1(Ω)

�
, ∂tt∆u ∈

L2
�
(0, T ), L2(Ω)

�
and h ∈ C([0, T ]).
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Proof. We prove this in the classical way by contradiction. Let there be two so-
lutions (u1, h1), (u2, h2) of the (P), (MP) belonging to the spaces written in the
theorem. We de�ne u = u1 − u2 and h = h1 − h2 which then obey

p∆u(t), ωqΓ = h(t) pf, ωqΓ , (5.22)

and
ppg2−β ∗ ∂ttuq (t), ϕq + p∇u(t),∇ϕq = h(t) pf, ϕq , (5.23)

for every ϕ ∈ H1(Ω), a.a. t ∈ [0, T ] and u(0) = 0, ∂tu(0) = 0. We can eliminate h
from (5.22) and using the trace theorem estimate as

|h(t)| ≤
���� p∆u(t), ωqΓ

pf, ωqΓ

���� ≤ C p‖∆u(t)‖+ ‖∇∆u(t)‖q .

We put ϕ = ∂tu(t) in (5.23), integrate over (0, ξ) with ξ ∈ (0, T ], and for the �rst
term on the l.h.s. we use the relationship pg2−β ∗ ∂ttuq (t) = ∂t pg2−β ∗ ∂tuq (t),
which is true since ∂tu = 0, to obtain that∫ ξ

0

p∂t pg2−β ∗ ∂tuq (t), ∂tu(t)q dt+
1

2
‖∇u(ξ)‖2 =

∫ ξ

0

h(t) pf, ∂tu(t)q dt.

Using Lemma 1.7.2, the Cauchy, the Young inequalities and choosing the appro-
priate ε lead us to the estimate∫ ξ

0

‖∂tu(t)‖2 dt+ ‖∇u(ξ)‖2 ≤ C
∫ ξ

0

|h(t)|2 dt,

similar to the one in the Lemma 5.3.2. Thanks to the assumption from the theo-
rem, we may use the Green identity p∇u(t),∇ϕq = p∆u(t), ϕq in (5.23), then in a
comparable manner as in Lemma 5.3.3 and 5.3.4, we derive that∫ ξ

0

‖∂t∇u(t)‖2 dt+ ‖∆u(ξ)‖2 ≤ C
∫ ξ

0

|h(t)|2 dt,

and ∫ ξ

0

‖∂t∆u(t)‖2 dt+ ‖∇∆u(ξ)‖2 ≤ C
∫ ξ

0

|h(t)|2 dt.

Summing the last three estimates up and using estimate ‖u(ξ)‖2 ≤
∫ ξ

0
‖∂tu(t)‖2 dt,

we obtain

‖u(ξ)‖2+‖∇u(ξ)‖2+‖∆u(ξ)‖2+‖∇∆u(ξ)‖2 ≤ C
∫ ξ

0

�
‖∆u(t)‖2 + ‖∇∆u(t)‖2

	
dt.

The Grönwall's argument is applied to get

‖u(ξ)‖2 + ‖∇u(ξ)‖2 + ‖∆u(ξ)‖2 + ‖∇∆u(ξ)‖2 ≤ 0, (5.24)

which is true for any ξ ∈ [0, T ]. This imply that u = 0 a.e. in Ω× [0, T ], and then
also h = 0 a.e. in [0, T ].
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5.5 Numerical Experiments

In the section two numerical experiments are presented. The �rst one is a demon-
stration of the algorithm arising from the above time discretization. On the i−th
time layer hi is calculated from (DMPi) and ui from (DPi), then we move to the
next time level. In the second experiment we propose a way how to deal with the
data containig some percentage of noise.

Both experiments have the following setting. We assume (x, y) ∈ Ω = (0, π)×
(0, π), T = 3 and β = 1.3, next

f(x, y) = cosx+ cos y,

and the equation is accompanied with the initial and boundary condition

u0(x, y) = 5(cosx+ cos y),
v0(x, y) = 0,

−∇u(x, y, t) · ν = 0.

The measurement function takes form

m(t) =

∫
Γ

u(x, y, t)ω(x, y)dS =
�π

2
+ 1

	 �
t3 − 2t2 + 5

�
,

where

ω(x, y) =

{
1,

��y − π
4

�� ≤ π
4 , x = 0,

0, otherwise.

It can be easily showed that the functions

u(x, y, t) =
�
t3 − 2t2 + 5

�
(cosx+ cos y),

h(t) =
6

(2− β)(3− β)Γ(2− β)
t3−β − 4

(2− β)Γ(2− β)
t2−β + t3 − 2t2 + 5

are the solution of the inverse problem with the above settings. We implement the
algorithm in Python using the �nite element library DOLFIN from the FEniCS
Project [73]. The domain is divided into 50 cells in each x− and y− direction. In
each time step the Lagrange basis function are used which leads to the system with
10201 degrees of freedom.

5.5.1 Exact data

Using the above setting, we calculate the approximate solution for several values of
time step τ . On Fig. 5.1(a) the reconstruction of h is depicted. The development
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of relative error of h and u in time can be seen on Fig. 5.1(b) and (c), respectively.
The decay of maximal relative error of h and u for various values of τ is shown on
Fig. 5.1(d) and (e), respectively. The graph of the solid line in (d) and (e) is given
by 0.9899 log2 τ + 0.1965 for the error of h and 1.0121 log2 τ + 0.6473 for the error
of u, respectively.

5.5.2 Noisy data

In this experiment, we model a noisy measurement in the following way

mε(t) = m(t) + εδmmax,

where δ is the Gaussian distributed noise with mean and standard deviation equal
to 0 and 1, respectively, mmax is the maximum value of measurement m and ε is
a scale representing the amount of the noise.

Since our algorithm requires the continuous second derivative of the measure-
ment, we need to apply some kind of smoothing on the data. We use the least
square method to obtain a function of the form

mapp(t) = at3 + bt2 + ct+ d

which is smooth enough. This function is then used instead of m in the algorithm.
We use the same setting as in the previous experiment. On the Fig. 5.2(b) we can
see reconstruction of source term for the several various amount of noise and on
the Fig. 5.2(c) and (d) the corresponding relative error in time can be seen for h
and u, respectively.
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(a) Reconstruction of h together with exact h.

(b) Relative error
|happrox(t)−hexact(t)|

|hexact(t)|
. (c) Relative error

||uapprox(t)−uexact(t)||
||uexact(t)||

.

(d) Logarithm of maximal relative error in time
of h for di�erent values of τ . Slope of the line
is 0.9899.

(e) Logarithm of maximal relative error in time
of u for di�erent values of τ . Slope of the line
is 1.0121.

Figure 5.1: The results of the reconstruction algorithm τ = 0.015625
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(a) Exact and noisy data for ε = 0.05. Approxi-
mating curve has the form mapp(t) = 2.529t3 −
5.0772t2 + 0.0143t+ 12.7607.

(b) Reconstruction of h together with exact h
for τ = 0.015625 and for the di�erent amount
of noise.

(c) Relative error
|happrox(t)−hexact(t)|

|hexact(t)|
. (d) Relative error

||uapprox(t)−uexact(t)||
||uexact(t)||

.

Figure 5.2: The results of the reconstruction algorithm for the noisy data and
various amount of noise
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Chapter 6

Conclusion

In this thesis, we were studying several inverse source problems for the time-
fractional PDEs. The order of the fractional derivative ranged between zero and
two, which corresponds to the fractional di�usion-wave equation. On a simple ex-
ample, it has been illustrated that for the order between zero and one the solution
displays the slow-di�usion behavior while for the order between one and two the
behavior of the solution carries signs both of the di�usion and the wave trans-
port. The equations themselves can be derived as a generalization of the Brownian
motion.

In the �rst chapter, we provided the necessary mathematical background re-
quired for good understanding of the later chapters. At the end of the chapter,
two important lemmas have been formulated and proved, enabling the convenient
estimation of the integrals and sums containing the fractional derivative and its
discretized version.

The second chapter addressed the inverse problem of determining a solely time-
dependent source for a fractional di�usion equation with a nonlinear term on the
right hand side. The well-posedness of the solution was studied; the uniqueness
and the existence of the solution were established.

The next three chapters dealt with the recognition of the time-dependent part
of the source term in the fractional wave equation. Firstly, the nonlinear term
on the right hand side was considered. The measurement was in the form of the
integral over the domain which can be restricted to the integral over a subdomain.
Secondly, we assumed the dynamical boundary conditions; those conditions are
often used to gain more physically corresponding models. The considered mea-
surement is in the form of the integral over the subdomain. With the fractional

133



134 Conclusion

derivative in the boundary condition, we needed to follow a di�erent approach to
the weak formulation where a test function was chosen in the form of the Laplacian
of a function from the suitable space which contains functions properly de�ned on
the boundary. Lastly, we assumed the noninvasive measurement in the form of
a boundary integral. Assuming this kind of a measurement caused complications
in a priori estimates since the controllability of the Laplacian on the boundary is
required. In all cases the uniqueness of the solution was addressed and the exis-
tence of the solution was proved using the Rothe method. We performed simple
numerical experiments to illustrate the algorithm and the convergence of the algo-
rithm for the decreasing time-step in each case. The treatment of the noisy data
was suggested and performed for all cases. The error estimate was calculated in
the case of the dynamical boundary conditions. The interesting results is that the
rate of the convergence was shown to be dependent on the order of the fractional
derivative.

The unsolved problem, which might be of a future interest and research, is the
identi�cation of the time-dependent part of the source term in the fractional dif-
fusion equation considering the boundary measurement. This problem was partly
solved in [134] where the uniqueness of the solution was addressed and Tikhonov
regularization was used for the calculation of the approximate solution. However,
the existence of the solution was not proved, yet, and it remains an open question.
The main issue in this case is the estimation of the Laplacian of a solution on the
boundary of the domain that is not possible to handle in the same way as for the
fractional wave equation case.

Other possibility of future research might be equations containing a so-called
distributed order fractional derivative [111] where the term with the fractional
derivative is multiplied by the weight function and integrated over the order of the
fractional derivative. Such an equation is used to model decelerating anomalous
di�usion and ultra slow di�usive processes.

Among another naturally rising questions are the reconstruction of the space-
dependent part of a source and the reconstruction of a source in equations contain-
ing fractional derivatives in a space direction. In our thesis we also presented simple
numerical experiments. An interesting question to ponder could be the quality of
the reconstruction for di�erent shapes of the domain and for di�erent treatments
of the noise.
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