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TRACE THEOREMS: CRITICAL CASES AND BEST CONSTANTS

MICHAEL RUZHANSKY AND MITSURU SUGIMOTO

Abstract. The purpose of this paper is to present the critical cases of the trace
theorems for the restriction of functions to closed surfaces, and to give the asymp-
totics for the norms of the traces under dilations of the surface. We also discuss
the best constants for them.

1. Introduction

It is very well known that if s > 1/2 and Σ ⊂ Rn is a closed hypersurface, n ≥ 2,
then we have the following trace theorem:

(1.1)
∥∥f |Σ

∥∥
L2(Σ ; dω)

≤ C‖f‖Hs(Rn),

where Hs is the Sobolev space over L2 and dω is the induced surface measure on Σ.
It is also known that (1.1) fails for s = 1/2. The purpose of this note is to show how
(1.1) can be modified to still hold for s = 1/2. Moreover, if the origin belongs to
the set bounded by Σ, we investigate the dependence of the constant C in (1.1) on
a parameter ρ → ∞ when we replace (Σ; dω) by its dilation (ρΣ; ρn−1dω). We also
find best constants for some instances of (1.1).
We give a simple proof of such results by deriving estimates for different traces from

the global smoothing estimates for dispersive equations that have been established
by the authors in [15], [16] by the geometric analysis using the methods of canonical
transforms and comparison principles developed for the smoothing estimates. We
note that usually the argument is converse and one derives both the smoothing esti-
mates and the limiting absorption principle from the appropriate trace theorem (see
e.g. Ben-Artzi and Klainerman [4]). However, in this instance, we show how new
arguments and methods in PDEs can be applied to deduce facts about traces.
Let us formulate our results. Let a ∈ C∞(Rn \ 0) be real-valued and satisfy a(ξ) >

0 for all ξ. We will be restricting to the level set of the function a defined by
Σa = {ξ ∈ Rn\0 : a(ξ) = 1}. In order to simplify the exposition, let us modify the
function a outside the set Σa so that a becomes positively homogeneous of order
two, namely, we can assume that a is already positively homogeneous satisfying
a(λξ) = λ2a(ξ) for λ > 0 and ξ 6= 0. The dual hypersurface Σ∗

a is defined by
Σ∗

a = {∇a(ξ) : ξ ∈ Σa}, and the dual function a∗(ξ) can be determined by the relation
Σa∗ = Σ∗

a. We discuss some of its properties in Section 2.
As usual, we denote by Hs(Rn) and Ḣs(Rn) the Sobolev spaces with the norms

‖g‖Hs(Rn) = ‖〈Dx〉sg‖L2(Rn) and ‖g‖Ḣs(Rn) = ‖|Dx|sg‖L2(Rn), respectively. We use the

notation Dx = 1
i
∇x, so that |Dx| =

√
−∆, 〈Dx〉 =

√
1−∆, and for a function c(ξ)

Date: November 11, 2018.
The first author was supported by the EPSRC Leadership Fellowship EP/G007233/1.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/188636229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1208.3200v1


we denote by c(Dx) the Fourier multiplier c(Dx) = F−1c(ξ)F , where F denotes the
Fourier transformation and F−1 its inverse defined by

Ff(ξ) = f̂(ξ) =

∫

Rn

e−ix·ξf(x) dx, F−1f(x) = f̂ ∗(x) =
1

(2π)n

∫

Rn

eix·ξf(ξ) dξ.

Theorem 1.1. Let a(ξ) ∈ C∞(Rn \ 0) be real-valued and satisfy a(ξ) > 0 and a(λξ) =
λ2a(ξ) for λ > 0 and ξ 6= 0. Let Σa = {ξ ∈ Rn\0 : a(ξ) = 1}. Suppose s > 1/2. Then
we have

(1.2)
∥∥f |Σa

∥∥
L2(Σa ; dω)

≤ C‖f‖Hs(Rn).

Moreover, for 1/2 < s < n/2, we have

(1.3)
∥∥f |Σa

∥∥
L2(Σa ; dω)

≤ C‖f‖Ḣs(Rn).

If we in addition assume that the Gaussian curvature of Σa is non-vanishing, then

we have also the critical cases

(1.4)

∥∥∥∥
( ∇a(x)

|∇a(x)| ∧
Dx

|Dx|

)
f |Σa

∥∥∥∥
L2(Σa ; dω)

≤ C‖f‖Ḣ1/2(Rn)

and

(1.5)

∥∥∥∥
(

x

|x| ∧
∇a∗(Dx)

|∇a∗(Dx)|

)
f |Σa

∥∥∥∥
L2(Σa ; dω)

≤ C‖f‖Ḣ1/2(Rn),

where a∗(x) is the dual function of a(ξ).

Here the outer product p ∧ q of vectors p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn)
is defined by p ∧ q = (piqj − pjqi)i<j. The condition that the Gaussian curvature of
Σa is non-vanishing can be expressed as det∇2a(ξ) 6= 0 for all ξ 6= 0.
The third and fourth estimates (1.4) and (1.5) in Theorem 1.1 say that we can

attain the critical order s = 1/2 in the first and second estimates (1.2) and (1.3)
under a certain structure condition. The operators appearing in (1.4) and (1.5) are
related to the Laplace-Beltrami operator on Σa, but are of order zero in both x and
ξ. The precise geometric meaning of the structure (1.4) and (1.5) will be related to
the Hamiltonian flow of the evolution governed by the defining function a(ξ).
We also get the global version of the estimates, so that Theorem 1.1 follows by

setting ρ = 1 from the following:

Theorem 1.2. Assume conditions of Theorem 1.1. Then we have the uniform trace

estimates

(1.6)
∥∥f|ρΣa

∥∥
L2(ρΣa;ρn−1dω)

≤ C‖f‖Hs(Rn) (s > 1/2),

and

(1.7)
∥∥f|ρΣa

∥∥
L2(ρΣa;ρn−1dω)

≤ Cρs−1/2‖f‖Ḣs(Rn) (n/2 > s > 1/2),

for any ρ > 0. Moreover, in the critical cases, we have∥∥∥∥
( ∇a(x)

|∇a(x)| ∧
Dx

|Dx|

)
f|ρΣa

∥∥∥∥
L2(ρΣa;ρn−1dω)

≤ C‖f‖Ḣ1/2(Rn),(1.8)

∥∥∥∥
(

x

|x| ∧
∇a∗(Dx)

|∇a∗(Dx)|

)
f|ρΣa

∥∥∥∥
L2(ρΣa;ρn−1dω)

≤ C‖f‖Ḣ1/2(Rn),(1.9)
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with constants independent of ρ > 0.

We note that estimates (1.3), (1.4) and (1.5) are equivalent to estimates (1.7),
(1.8) and (1.9) with the same constants C, respectively. Indeed, (1.7), (1.8) and (1.9)
follow from estimates (1.3), (1.4) and (1.5) by just setting f = fρ, where the notation
gρ denotes the dilation gρ(x) = g(ρx). The converse is trivial.
Furthermore, we note that we get Theorem 1.2 with the critical case from the

following generalised result:

Theorem 1.3. Let a(ξ) ∈ C∞(Rn \ 0) be real-valued and satisfy a(ξ) > 0 and

a(λξ) = λ2a(ξ) for λ > 0 and ξ 6= 0. Assume that the Gaussian curvature of

the set Σa = {ξ ∈ Rn\0 : a(ξ) = 1} never vanishes. Let a pseudo-differential operator

σ(X,D) have symbol σ(x, ξ) which is smooth in x 6= 0, ξ 6= 0, and which is positively

homogeneous of order β in x and of order α in ξ, i.e. σ(λx, µξ) = λβµασ(x, ξ) for

all x 6= 0, ξ 6= 0, λ > 0, µ > 0. Suppose also the structure condition

(1.10)

σ(x, λ∇a(x)) = 0 for all x 6= 0 and λ ∈ R,

or

σ(−x, λ∇a(x)) = 0 for all x 6= 0 and λ ∈ R.

Then we have the estimate

(1.11)
∥∥∥(σ(X,D)f)|ρΣa

∥∥∥
L2(ρΣa;ρn−1dω)

≤ Cρβ‖f‖Ḣ1/2+α(Rn),

with a constant C independent of ρ > 0. In particular, if α = β = 0, we obtain the

uniform critical estimate

(1.12)
∥∥∥(σ(X,D)f)|ρΣa

∥∥∥
L2(ρΣa;ρn−1dω)

≤ C‖f‖Ḣ1/2(Rn).

Again we remark that estimates (1.11) and (1.12) are equivalent to themselves with
ρ = 1, with the same constant C, respectively. And we also remark that two types of
conditions in (1.10) which have different sign coincide with each other if a(ξ) is not
only positively homogeneous but homogeneous.
In the next section we explore the geometric meaning of operators in (1.4) and

(1.5) together with that of the structure condition (1.10) in more detail and show how
these estimates can be deduced from the smoothing estimates for suitable evolution
equations. For different results on smoothing estimates we refer to the first papers
[12, 3, 8, 19, 22], and to the authors’ paper [16] for the setting of evolution equations
corresponding to this paper.
Finally, we remark that we can use the argument of this paper to also conclude

some best constants. We give the statement corresponding to the case of the sphere,
a(ξ) = |ξ|2, in (1.3).

Theorem 1.4. Let n/2 > s > 1/2. Then we have the estimate

(1.13)
∥∥f|Sn−1

∥∥
L2(Sn−1;dω)

≤
(
21−2sΓ(2s− 1)Γ(n

2
− s)

Γ(s)2Γ(n
2
− 1 + s)

)1/2

‖f‖Ḣs(Rn),

and the constant in estimate (1.13) can not be improved.

We can also conclude a more general result with a possibility to put different
derivatives and weights.
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Theorem 1.5. Let σ : (0,∞) → R and w : (0,∞) → R be functions such that the

following expression is finite:

(1.14) C1 =


sup

t>0
k∈N

{
1

σ(t)2

∫ ∞

0

Jν(k)(rt)
2 r

w(r)2
dr

}


1/2

< ∞,

where for λ > −1/2 the Bessel function Jλ of order λ is given by

(1.15) Jλ(t) =
tλ

2λΓ(λ+ 1/2)Γ(1/2)

∫ 1

−1

eitr(1− r2)λ−1/2dr,

and ν(k) = n/2 + k − 1. Then we have the estimate

(1.16)
∥∥f|ρSn−1

∥∥
L2(ρSn−1;ρn−1dω)

≤ C1
√
ρ σ(ρ)‖w(|Dx|)f‖L2(Rn),

for all ρ > 0, and the constant in estimate (1.16) can not be improved.

In particular, if we take σ(t) = ts−1 and w(t) = ts, the result is equivalent to
Theorem 1.4. If we take σ(t) = t−1/2 and w(t) = (1 + t2)s/2 (s > 1/2), the result
gives the best constant of estimate (1.6) in Theorem 1.2 in the case a(ξ) = |ξ|2.

2. Smoothing estimates and trace theorems

Let us start with the result that was established by the authors in [15]. This
concerns the critical case (α = 1/2) of the Kato–Yajima’s estimate

(2.1)
∥∥|x|α−1|Dx|αeita(Dx)ϕ(x)

∥∥
L2(Rt×Rn

x )
≤ C‖ϕ‖L2(Rn

x)
,

which holds for 1 − n/2 < α < 1/2 (see [13] for 0 ≤ α < 1/2 and [20] for 1 − n/2 <
α < 1/2 in the case a(Dx) = −∆x. For general a(Dx), see [16, Theorem 5.2]). It was
shown in [16] that this estimate for values of α close to 1/2 implies the same estimate
for smaller α. Thus, the critical case of this estimate with α = 1/2 is important,
especially since it can be applied to the well-posedness problems of the derivative
nonlinear Schrödinger equations (see [17]). However, the estimate fails in the critical
case α = 1/2 (see Watanabe [24], or the authors’ paper [16] for more general negative
results) and it is known that it is necessary to cut-off the radial derivatives for the
estimate to hold in the critical case as well (see [21] or [16]). This can be done by
replacing operator |Dx|α by the Laplace-Beltrami operator on the sphere at the level
α = 1/2. In fact, it turns out one can use any operator as long as its symbol vanishes
on a certain set related to the symbol of the Laplace operator (the sphere is this
case). To explain this precisely, let us formulate it for the equation

(2.2)

{
(i∂t + a(Dx)) u(t, x) = 0,

u(0, x) = ϕ(x) ∈ L2(Rn
x),

where the real-valued function a = a(ξ) ∈ C∞(Rn \ 0) is elliptic and positively homo-
geneous of order two, that is, it satisfies a(ξ) > 0 and a(λξ) = λ2a(ξ) for λ > 0 and
ξ 6= 0. We remark that under these condition we have the dispersiveness, namely,
∇a(ξ) 6= 0 by the Euler’s identity a(ξ) = 1/2∇a(ξ) · ξ and the ellipticity of a(ξ). The
case a(ξ) = |ξ|2 corresponds to the usual Laplacian a(Dx) = −∆x.
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Let us define {(x(t), y(t)) : t ∈ R} to be the classical orbit, that is, the solution of
the Hamilton-Jacobi ordinary differential equations

{
ẋ(t) = (∇ξa)(ξ(t)), ξ̇(t) = 0,

x(0) = 0, ξ(0) = ξ0,

and consider the set of the paths of all classical orbits

(2.3)
Γa = {(x(t), ξ(t)) : t ∈ R, ξ0 ∈ R

n \ 0}
= {(λ∇a(ξ), ξ) : ξ ∈ R

n \ 0, λ ∈ R}.
Let a pseudo-differential operator σ(X,D) have symbol σ(x, ξ) which is smooth in
x 6= 0, ξ 6= 0, and which is positively homogeneous of order −1/2 with respect to x,
and of order 1/2 with respect to ξ. Suppose also the structure condition

(2.4) σ(x, ξ) = 0 if (x, ξ) ∈ Γa and x 6= 0.

Then it was shown in [15] that the solution u = eita(Dx)ϕ to (2.2) satisfies

(2.5)
∥∥σ(X,Dx)e

ita(Dx)ϕ(x)
∥∥
L2(Rt×Rn

x )
≤ C‖ϕ‖L2(Rn)

if n ≥ 2 and the Gaussian curvature of the hypersurface

(2.6) Σa = {ξ ∈ R
n\0 : a(ξ) = 1}

never vanishes. We note that the set (2.3) and the assumption (2.4) are somehow
related to Sommerfeld’s radiation condition, see [17]. We also note that condition
(1.10) in Theorem 1.3 means that σ̌(x, ξ) or σ̌(x,−ξ) satisfies the structure condition
(2.4), where σ̌(x, ξ) = σ(ξ, x) The typical example for such operator σ(X,Dx) is given
by the elements of

(2.7) Ω1 = |x|−1/2

(
x

|x| ∧
∇a(Dx)

|∇a(Dx)|

)
|Dx|1/2.

Another interesting example is the element of

(2.8) Ω2 = |x|−1/2

( ∇a∗(x)

|∇a∗(x)| ∧
Dx

|Dx|

)
|Dx|1/2,

where a∗(x) is the dual function of a(ξ) which is positively homogeneous of order
two and is characterised by the relation a∗(∇a(ξ)) = 1. We remark that the sum of
the squares of all elements of Ω2 forms the main factor of the homogeneous extension
of the Laplace-Beltrami operator on the dual hypersurface Σ∗

a = {∇a(ξ) : ξ ∈ Σa}.
The dual function a∗(x) can be also determined by the relation Σa∗ = Σ∗

a.
Let us say a few words regarding the dual hypersurfaces as it is shown in [15,

Theorem 3.1]. Suppose n ≥ 2. For the convenience of the formulation, in order to
have the gradient of the function to be homogeneous of order zero, we may consider
an extension of a function from its fixed level set as a positively homogeneous function
of order one. Thus, let p ∈ C∞(Rn \ 0) be a positive and positively homogeneous
function of order one. We assume that the Gaussian curvature of the hypersurface
Σp = {ξ : p(ξ) = 1} never vanishes and we denote Σ∗

p = {∇p(ξ) : ξ ∈ Σp}. Then
there exists a unique positive and positively homogeneous function p∗ ∈ C∞(Rn \ 0)
of order one such that Σ∗

p = Σp∗ , Σ∗
p∗ = Σp, and the Gaussian curvature of the

5



hypersurface Σp∗ never vanishes. Moreover, ∇p : Σp → Σp∗ is a C∞-diffeomorphism
and ∇p∗ : Σp∗ → Σp is its inverse.
The proof of Theorem 1.2 relies on the critical case of the limiting absorption

principle which can be proved by reducing its statement to a model situation by
the canonical transform method combined with weighted estimates for the transform
operators. On the other hand, it can be reduced to a corresponding smoothing
estimate for the Laplace operator with any critical operator, for example to the
homogeneous extension of the Laplace-Beltrami operator on the sphere, recovering,
in particular, the result of [21]. This particular case has been extended to include
small perturbations by Barceló, Bennett and Ruiz [1]. For further details on these
arguments we refer to authors’ paper [15]. At the same time, the set Γa corresponds
to the Hamiltonian flow of a(Dx), which is known to play a role in such problems also
in a more general setting of manifolds. There, non-trapping conditions also enter
(e.g. Doi [9, 10] in the case of Schrödinger operators on manifolds, using Egorov
theorem, or Burq [6] and Burq, Gérard and Tzvetkov [7] in the case of Schrödinger
boundary value problems, using propagation properties of Wigner measures), and
such conditions can be also expressed in terms of properties of the set Γa. In our case
this simply corresponds to the dispersiveness of a(Dx). We also record the result for
non-homogeneous weights, namely,

(2.9)
∥∥〈x〉−s|Dx|1/2eita(Dx)ϕ(x)

∥∥
L2(Rt×Rn

x)
≤ C‖ϕ‖L2(Rn

x )
,

which holds for all s > 1/2. For the Schrödinger case a(ξ) = |ξ|2 and n ≥ 3 this was
shown by Ben-Artzi and Klainerman [4], and it was extended in [16], in particular,
to any homogeneous of order 2 function a(ξ) with ∇a(ξ) 6= 0 for ξ 6= 0, n ≥ 1. We
will now prove Theorem 1.2.

Proof of Theorem 1.2. First note that the formal adjoint T ∗ : S(Rt × Rn
x) → S ′(Rn

x)
of the operator

T = eita(Dx) : S(Rn
x) → S ′(Rt × R

n
x),

the solution operator to equation (2.2), is expressed as

(2.10) T ∗ [v(t, x)] = F−1
ξ [(Ft,xv)(a(ξ), ξ)] .

Then, we claim that for any operator A = A(X,Dx) acting on the variable x, the
estimate

(2.11)
∥∥Aeita(Dx)ϕ

∥∥
L2(Rt×Rn

x)
≤ C0 ‖ϕ ‖L2(Rn

x )

is equivalent to the estimate

(2.12)

∥∥∥Â∗f |ρΣa

∥∥∥
L2(ρΣa ; 2ρn−1dω/|∇a(ω)|)

≤ (2π)n/2√
π

C0
√
ρ ‖f‖L2(Rn)

=
1√
π
C0

√
ρ ‖f̂‖L2(Rn) for all ρ > 0,

6



where dω is the standard surface element of the hypersurface Σa and ρΣa = {ρω :
ω ∈ Σa}. Indeed, by (2.10) and Plancherel’s theorem, we have

(2.13)

‖T ∗A∗v‖2L2(Rn) = (2π)−n‖(Ft,xA
∗v)(a(ξ), ξ)‖2L2(Rn

ξ )

= (2π)−n

∫ ∞

0

(∫

Σa

∣∣(Ft,xA
∗v)
(
ρ2, ρω

)∣∣2 2ρn−1dω

|∇a(ω)|

)
dρ.

Here we have used the change of variables ξ 7→ ρω (ρ > 0, ω ∈ Σa). Then for
v(t, x) = g(t)f(x) we have

‖T ∗A∗v‖2L2(Rn) = (2π)−n

∫ ∞

0

∣∣ĝ(ρ2)√ρ
∣∣2
(∫

Σa

∣∣∣∣
1√
ρ

(
Â∗f

)
(ρω)

∣∣∣∣
2
2ρn−1dω

|∇a(ω)|

)
dρ.

At the same time, by (2.11), we have

‖T ∗A∗v‖2L2(Rn) ≤ C2
0‖v‖2L2(Rt×Rn

x)
= C2

0‖g‖2L2(R)‖f‖
2
L2(Rn).

Note that we have by Plancherel’s theorem

‖g‖2L2(R) =
1

2π
‖ĝ‖2L2(R) =

1

π

∫ ∞

0

∣∣ĝ(ρ2)√ρ
∣∣2 dρ,

if supp ĝ ⊂ [0,∞). Combining all these relations and taking arbitrary g, we obtain
estimate (2.12).

Conversely, noting that (Ft,xA
∗v)(ρ2, ρω) = Â∗f |ρΣa

, where f( · ) = Ftv(ρ
2, · ), the

right hand side of equality (2.13) can be estimated by using the first line of (2.12),
and we actually have

‖T ∗A∗v‖2L2(Rn) ≤
C2

0

π

∫ ∞

0

∫

Rn

∣∣(Ftv)
(
ρ2, x

)∣∣2 ρ dρdx

=
C2

0

2π

∫ ∞

0

∫

Rn

|(Ftv)(ρ, x)|2 dρdx

≤ C2
0

2π
‖Ftv‖2L2(Rt×Rn

x)
= C2

0 ‖v‖2L2(Rt×Rn
x )

for any v(t, x) ∈ L2(Rt × Rn
x), which implies estimate (2.11). We remark that (2.12)

implies a corresponding version of the limiting absorption principle for a(Dx), which,
in turn, means that A is a(Dx)-supersmooth, see e.g. Kato [11] or Ben-Artzi and
Devinatz [2]. We will not discuss further details of this here as we do not need it in
this paper.
We have already reviewed examples of operators A which satisfy smoothing esti-

mate (2.11), hence the Fourier restriction estimate (2.12). For example, using (2.9)
and (2.1), we can take

(2.14)
A1 = 〈x〉−s|Dx|1/2 (s > 1/2),

A2 = |x|α−1|Dx|α (1− n/2 < α < 1/2).

We can also take A = σ(X,Dx) which appeared in estimate (2.5), especially the
elements of the operators Ω1 or Ω2 defined by (2.7) or (2.8), but in this case we
also need the non-degenerate Gaussian curvature condition on the hypersurface Σa

7



defined by (2.6), which is equivalent to det∇2a(ξ) 6= 0 (ξ 6= 0) (see Miyachi [14], for
example). Their formal adjoints are given by

A∗
1 = |Dx|1/2〈x〉−s (s > 1/2),

A∗
2 = |Dx|1−s|x|−s (n/2 > s > 1/2)

(here we take s = 1− α for A2), and also

Ω∗
1 = |Dx|1/2

( ∇a(Dx)

|∇a(Dx)|
∧ x

|x|

)
|x|−1/2,

Ω∗
2 = |Dx|1/2

(
Dx

|Dx|
∧ ∇a∗(x)

|∇a∗(x)|

)
|x|−1/2.

Note that we have |∇a(ξ)| ≥ C > 0 on Σa since ∇a(ξ) 6= 0 (ξ 6= 0) in our case.
From the construction, we have the same property for a∗, as well. We also note

that ‖f‖L2
s(R

n) = (2π)−n/2‖f̂‖Hs(Rn) and ‖f‖L̇2
s(R

n) = (2π)−n/2‖f̂‖Ḣs(Rn), for weighted

L2-spaces L2
s(R

n) and L̇2
s(R

n) defined by the norms ‖f‖L2
s(R

n) = ‖〈x〉sf‖L2(Rn) and

‖f‖L̇2
s(R

n) = ‖|x|sf‖L2(Rn), respectively.

Now, first, using (2.9), we get (2.11) with operator A1 in (2.14), from which, on
account of (2.12), we can conclude the following trace result:

∥∥f|ρΣa

∥∥
L2(ρΣa;ρn−1dω)

≤ C‖f‖Hs(Rn) (s > 1/2).

Here we remark that ∇a 6= 0 because of Euler’s identity a(ξ) = (1/2)ξ · ∇a(ξ) > 0.
If we use A2 in (2.14) instead, and estimate (2.1), we get

∥∥f|ρΣa

∥∥
L2(ρΣa;ρn−1dω)

≤ Cρs−1/2‖f‖Ḣs(Rn) (n/2 > s > 1/2).

In the critical cases, using estimate (2.5) with operators Ω1 or Ω2 defined by (2.7) or
(2.8), and formulae for their adjoints, we obtain

∥∥∥∥
( ∇a(x)

|∇a(x)| ∧
Dx

|Dx|

)
f|ρΣa

∥∥∥∥
L2(ρΣa;ρn−1dω)

≤ C‖f‖Ḣ1/2(Rn),

∥∥∥∥
(

x

|x| ∧
∇a∗(Dx)

|∇a∗(Dx)|

)
f|ρΣa

∥∥∥∥
L2(ρΣa;ρn−1dω)

≤ C‖f‖Ḣ1/2(Rn).

This completes the proof. �

We now show that, in fact, the same argument yields a more general result.

Proof of Theorem 1.3. Let us assume the first part of condition (1.10). As for the
case when we assume the second part, the result is obtained straightforwardly from
the relation

(σ(X,D)f)(x) = (σ(−X,D)(f(−x)))(−x).

Let us define A(X,D) = |X|−1/2−ασ̌(X,D)|Dx|1/2−β, where σ̌(x, ξ) = σ(ξ, x) Then
its symbol A(x, ξ) = |x|−1/2−ασ̌(x, ξ)|ξ|1/2−β satisfies A(x, ξ) = 0 if (x, ξ) ∈ Γa and
x 6= 0, ξ 6= 0. Moreover, the symbol A(x, ξ) is homogeneous of order −1/2 in x and
of order 1/2 in ξ. Consequently, the operator A(X,D) satisfies (2.4) and (2.5). The
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argument in the proof of Theorem 1.2 yields the estimate (2.12). Taking g so that
F−1g(x) = |x|−1/2−αf(x), we obtain

(2.15) ρ1/2−β
∥∥F(σ̌(X,D)∗F−1g)|ρΣa

∥∥
L2(ρΣa ; ρn−1dω/|∇a|)

≤ C
√
ρ ‖g‖Ḣ1/2+α(Rn

x )
.

We can now readily check that

(2.16) F(σ̌(X,D)∗F−1g)(x) = (σ(X,D)g)(x).

Indeed, writing formally

(σ̌(X,D)∗h)(x) = F−1
ξ

(∫

Rn

e−iy·ξσ̌(y, ξ) h(y)dy

)
(x),

we get

F
(
σ̌(X,D)∗F−1g

)
(η) =

∫

Rn

e−iy·ησ(η, y)F−1g(y)dy,

yielding (2.16). Consequently, from estimate (2.15) and equality (2.16) we obtain
(1.11).

�

On account of the argument in the proof of Theorem 1.2, it is apparent that the best
constants of trace theorems for the sphere Sn−1 are obtained from those of smoothing
estimates for Schrödinger case a(ξ) = |ξ|2.
Proof of Theorem 1.4. The best constant C0 of estimate (2.11) with A = A2 in (2.14)
is

C0 =

(
π22α−1Γ(1− 2α)Γ(n

2
+ α− 1)

Γ(1− α)2Γ(n
2
− α)

)1/2

=

(
π21−2sΓ(2s− 1)Γ(n

2
− s)

Γ(s)2Γ(n
2
− 1 + s)

)1/2

,

where s = 1 − α (see [5]). We remark that this constant with α = 0, that is,

C0 =
√

π/(n− 2) was given by an earlier work of Simon [18]. Then by the argument
of the proof of Theorem 1.2, we have estimate (2.12) with the same C0 as the best
one. Since it is equivalent to itself with ρ = 1, we have the conclusion. �

Proof of Theorem 1.5. We recall that in general that if n ≥ 2 and g is injective and
differentiable on (0,∞), the best constant C0 in the inequality

(2.17)
∥∥w(|x|)−1σ(|Dx|)−1eitg(|Dx|)ϕ(x)

∥∥
L2(Rt×Rn

x)
≤ C0‖ϕ‖L2(Rn

x )

is given by

C0 =


2π sup

ρ>0

k∈N

{
ρ

σ(ρ)2g′(ρ)

∫ ∞

0

Jν(k)(rρ)
2 r

w(r)2
dr

}



1/2

,

where for λ > −1/2 the Bessel function Jλ of order λ is given by (1.15) (see also
[5]). This expression for the best constants was obtained by Walther [23], and it can
be used to analyse estimates for radially symmetric equations by carefully looking
at the asymptotic behaviour of Bessel functions and subsequent integrals. We now
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take g(ρ) = ρ2 and A = w(|x|)−1σ(|Dx|)−1. Estimate (2.17) now implies (2.12) with
A∗ = σ(|Dx|)−1w(|x|)−1. Consequently, we get

∥∥σ(|x|)−1w(|D|)−1f|ρSn−1

∥∥
L2(ρSn−1;ρn−1dω)

≤ 1√
π
C0

√
ρ‖f‖L2(Rn),

which implies (1.16). �
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