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Gut microbiota dynamics and 
uraemic toxins: one size does 
not fit all

In the recent paper by Chu and 
colleagues,1 the potential role of micro-
biota-related metabolites in the progres-
sion of non-alcoholic fatty liver disease 
is discussed. This topic has been studied 
in the context of chronic kidney disease 
(CKD), characterised by changes in gut 
microbiota composition,2 accumulation 
of microbiota-derived metabolites,3 inter-
ruption of intestinal barrier function and 
chronic inflammation.4 In line with this, 
we focused, in a cohort of 17 patients 
with end-stage kidney disease (ESKD), on 
the role of gut microbiota in the gener-
ation of precursors of specific uraemic 

toxins which are associated with negative 
outcomes in these patients.5 By collecting 
multiple samples over time, assessment of 
variability within and between patients in 
relation to disease progress and clinical 
variables was possible. Faecal and serum 
samples were collected at eight time-
points over a 4-month period (online 
supplementary table 1). Uraemic metab-
olites and microbial profiling were deter-
mined by HPLC and 16S rRNA amplicon 
sequencing, respectively (see Supplemen-
tary data). Variation in microbial profiles 
of patients with ESKD was compared 
with that of 1106 subjects from a popula-
tion-based cohort, the Flemish Gut Flora 
Project (FGFP),6 which have a similar 
genetic and environmental background as 
well as to a subset of age-matched controls 
of comparable health status (n=32).

In this longitudinal study, within-pa-
tient analyses showed that variations in 

peripheral levels of p-cresyl conjugates 
(the composite of p-cresyl sulfate (pCS)/
glucuronide (pCG); pC), indoxyl sulfate 
(IxS), indole acetic acid and creatinine7 
significantly correlated with faecal micro-
bial community dissimilarity (at 0.05 level 
after Benjamini-Hochberg correction). 
Moreover, the composition of the gut 
microbiota was found to be diverse among 
patients with ESKD without a common 
microbial signature. A significantly higher 
variability of the patients’ microbiome 
was observed in comparison to average 
subject-to-subject differences, even when 
matching for age and health status (both 
p<0.0001) (online supplementary figure 
S1). Projecting the patients’ samples on 
the PCoA plot of the FGFP confirmed 
that these patients do not cluster in a 
specific area but rather are dispersed over 
the entire space of the control population 
(online supplementary figure S2).
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Figure 1 Main covariates of the faecal microbiota composition of patients with ESKD. Final selected numeric metadata in addition to top 10 taxa 
correlating with PCoA eigenvectors (ie, with overall community composition). Biplot computed with Bray Curtis dissimilarity on rarefied read counts. 
Length of arrows reflects correlation with overall community composition. Per patient, a different colour is used. CMPF, 3-carboxy-4-methyl-5-propyl-
2-furanpropanoic acid; ESKD, end-stage kidney disease. 
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Covariate analyses of the intestinal 
microbiota composition in ESKD resulted 
in non-redundant parameters that signifi-
cantly correlated with the overall composi-
tion, with length of scaled arrows reflecting 
correlation as depicted in figure 1 (list of 
covariates in online supplementary table 
2 and figure S3). When focusing on the 
relationships between uraemic retention 
molecules and gut microbiota, signifi-
cant correlations of two main uraemic 
toxins, IxS and pC, to the overall bacterial 
community composition (p<0.05 after 
multiple testing correction) stand out. 

Specifically, since they are associated with 
contrasting types of gut microbiota, as the 
arrows for IxS and pC pointed into an 
opposite direction. This, for the first time, 
provides a possible working hypothesis on 
the reported discordant effects of prebi-
otics, probiotics and synbiotics on circu-
lating levels of these two toxins.8–10

When further comparing samples of 
patients with highest pC and lowest IxS 
to samples with lowest pC and highest 
IxS serum concentrations in this cohort, 
the microbial composition of their faecal 
samples differed significantly. Taxon 

proportions that differed between both 
groups are visualised in figure 2A. The 
LEfSe method confirmed that both data-
sets were different and identified in total 
six significantly different taxa together 
with their effect sizes (figure 2B), all six 
overlapping with the top 10 taxa that we 
identified earlier.

Our results illustrate the implications 
of gut microbiota dynamics on chronic 
disease and underscore the potential diffi-
culties with attempts to alter circulating 
levels of intestinally generated uraemic 
toxins and their corresponding toxicity 
through specific microbiota modulation. 
Nevertheless, six taxa are identified and 
can now be explored as microbial targets 
to lower uraemic toxin concentrations 
and to improve outcome of patients with 
CKD.
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Figure 2 Associations between p-cresyl conjugates and indoxyl sulfate and intestinal 
microbiota, subcohort analysis. Faecal microbiota composition of samples with highest p-cresyl 
(pCS+pCG) and lowest IxS concentrations (group 1 in red) was compared with that of samples 
with highest IxS and lowest pC concentrations (group 2 in green). (A): The top 15 taxa with the 
largest difference between the two groups. Group-specific taxon proportion vectors were obtained 
by fitting the Dirichlet Multinomial distribution to each sample set (using R package HMP, function 
DM.MoM). The HMP package function Xmcupo.sevsample (Generalised Wald-type statistics) 
was used to compute whether the difference between the two taxon proportion vectors (highest 
pC/lowest IxS vs lowest pC/highest IxS) was significant (p<0.0001). (B) Effect sizes of genera 
that differed significantly between the datasets using LDA effect size (LEfSe). The length of the 
bar represents a log10 transformed LDA score. The colours represent in which group those taxa 
were found to be more abundant compared with the other group. Absolute values of the effect 
sizes should be used to interpret the scale of the difference between both groups. LDA, linear 
discriminant analysis. 
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