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Abstract Neuronal excitability is determined in a com-

plex way by several interacting factors, such as mem-

brane dynamics, fibre geometry, electrode configura-

tion, myelin impedance, neuronal terminations,. . . This

study aims to increase understanding in excitability,

by investigating the impact of these factors on differ-

ent models of myelinated and unmyelinated fibres (five

well known membrane models are combined with three

electrostimulation models, that take into account the

spatial structure of the neuron). Several excitability

indices (rheobase, polarity ratio, bi/monophasic ratio,

time constants,. . . ) are calculated during extensive pa-

rametersweeps, allowing us to obtain novel findings on

how these factors interact, e.g. how the dependency of

excitability indices on the fibre diameter and myelin

impedance is influenced by the electrode location and

membrane dynamics.

It was found that excitability is profoundly impacted

by the used membrane model and the location of the

neuronal terminations. The approximation of infinite

myelin impedance was investigated by two implemen-

tations of the spatially extended nonlinear node model.

The impact of this approximation on the time constant

of strength-duration plots is significant, and most im-

portant in the Frankenhaeuser-Huxley membrane model

for large electrode-neuron separations. Finally, a multi-

compartmental model for C-fibres is used to determine

the impact of the absence of internodes on excitability.
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1 Introduction

Two different approaches have been investigated in lit-

erature to model neuronal activity: mathematical IF

(“integrate-and-fire”) models and detailed biophysical

models of the Hodgkin-Huxley (HH) type [12]. The for-

mer type of model has a low computational cost [16], al-

lowing for large scale simulations, such as performed by

Izhikevich and Edelman [17]. It was furthermore noted

in literature that the IF-model is more realistic than

a single-compartment Hodgkin-Huxley model, in which

channel properties are constrained by patch-clamp mea-
surements [3]. However, a multi-compartmental model

of the HH-type has more empirical content (e.g. descrip-

tion of ionic currents) and is potentially more realistic

than IF-models. Furthermore, computational models of

the Hodgkin-Huxley type have biophysical meaning-

ful and measurable parameters. E.g., in the blue brain

project HH-type models are used to reproduce in vivo

and in vitro experiments without parameter tuning [19].

In this paper, multi-compartmental HH-type mod-

els are used to investigate the dependence of excitability

indices on the used equation set for the membrane dy-

namics and on the electrode location. Each membrane

model is combined with one of the multi-compartmental

models listed in Table 1, yielding a total of 15 differ-

ent numerical electrostimulation models. An overview

of the five used membrane models is shown in Table 2.

The Hodgkin-Huxley (HH) model was the first mathe-

matical (physiological) model to describe the excitable

membrane and was obtained from voltage-clamp ex-

periments on the squid giant axon [13]. Since then, var-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/188635909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Thomas Tarnaud et al.

Model Description Applicability
SENN-MA Crank-Nicolson implementation of spatially-extended non-linear node

model [30]. All nodes non-linear. Myelin capacitance and conductance
neglected.

Myelinated axons

SENN-M Compartmental representation of myelin included Myelinated axons
C-FIBRE Unmyelinated fibre model Unmyelinated axons

Table 1 Spatially extended electrostimulation models

ious researchers have derived similar electrodynamical

models from different types of excitable tissue. Franken-

haeuser and Huxley [10] (FH-model), Chiu et al. [7],

and Sweeney et al. [38] (CRRSS-model), Schwarz and

Eikhof [35] (SE-model), and Schwarz et al. [36] (SRB-

model) derived their models from myelinated frog, rab-

bit, rat, and human axons respectively. These mem-

brane models (summarized in Table 2) are selected, be-

cause they are the “classical” models of membrane dy-

namics, that are often used for applications in which no

specialized model exists or is accepted. Because of their

widespread use in computational neuroscience (e.g., in

computational studies of the cochlear nerve [5, 6, 23] or

for modeling conduction block [39, 42, 43]), these mem-

brane models are especially interesting for this study,

which aims to determine the influence of membrane dy-

namics on neuronal excitability.

The first multi-compartmental model (SENN-MA)

listed in Table 1, describes a myelinated axon and is

an implementation of the spatially extended nonlinear

node (SENN) model [30]. It extends the original elec-

trostimulation model proposed by McNeal, by including

non-linear FH-equations for all nodes of Ranvier [22].

The SENN-model has been widely used by researchers

to study electrostimulation of myelinated fibres and is

used by IEEE C95.6 to derive basic restrictions for elec-

tromagnetic exposure [15]. As a consequence, ICNIRP

(International Commission on Non-Ionizing Radiation

Protection) has implicitly adopted results of the SENN

model as well, by using basic restriction parameters

from the IEEE standard [14, 31].

In the context of exposure assessment and electro-

magnetic safety, a comparison between excitability in-

dices obtained by different fibre and membrane models

is especially relevant. A recent publication on the re-

search agenda of the IEEE International Committee on

Electromagnetic Safety has listed 25 issues when using

numerical models to derive electromagnetic basic re-

strictions, one of these on the consistency of excitation

models [31]. Furthermore, a survey has been published,

comparing the excitation thresholds obtained by neu-

rostimulation models of different researchers [28]. As it

was observed that excitation threshold can vary signif-

icantly between different electrostimulation models, a

thorough investigation of the effect of the membrane

dynamics, fibre diameter, myelin impedance, electrode

location and stimulus waveform on excitability indices

(e.g., strength-duration and rheobase) is important.

It was noted by McNeal that the approximation

of negligible conductivity and capacity values of the

myelin layer is the cause of the most serious error in

his model [22]. This assumption, that we will call the

myelin approximation (MA), is implicit to the SENN-

model as proposed by Reilly et al. [30]. One of the goals

of this paper is to assess the impact of the myelin ap-

proximation on excitability indices. To this end, a sec-

ond model (SENN-M) is used that incorporates addi-

tional sets of differential equations to account for the

finite myelin parameters, that are distributed along the

internodes. In this model, the capacity and conductivity

values of myelin reported by Tasaki are used (Appendix

A) [40].

We note that also the SENN-MA model departs

from the original SENN-model in this study, after sub-

stituting the Frankenhaeuser-Huxley equation set with

one of the membrane dynamical models from Table 2.

This procedure was for instance used by Cartee to com-

pare the effect between different membrane models on

the summation and refraction properties of the modeled

neuron [5].

Finally, a model for unmyelinated fibres (termed “C-

FIBRE” in Table 1) is obtained by carefully altering the

geometrical and electrophysiological parameters of the

SENN-M model. Models of unmyelinated fibres, similar

to the C-FIBRE model used in this study, have been

used by researchers to study the excitation properties

of C-fibres [39, 43, 11]. Model equations for the different

fibre and membrane models (Table 1-2) used in this

study are summarized in Appendix A.

Model Abbr. Experiments
Hodgkin-Huxley HH Squid axon
Frankenhaeuser-Huxley FH Frog node
Chiu-Ritchie-Rogart-Stagg-
Sweeney

CRRSS Rabbit node

Schwarz-Eikhof SE Rat node
Schwarz-Reid-Bostock SRB Human nerve

Table 2 Models of membrane channel dynamics and

their corresponding abbreviations (abbr.)
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The first goal of this paper is to investigate the

dependence of excitability indices on the used equa-

tion set for the neuronal membrane, the electrode lo-

cation, and stimulus properties. Simulation results of

the strength-duration relation, rheobase, polarity ratio

and bi/monophasic ratio obtained by the different mod-

els (summarized in Table 1 and Table 2) are presented

and compared in the following sections. Correspondence

of strength-duration (SD) plots, obtained by different

membrane models and electrode locations, with Weiss-

Lapicque and Lapicque-Blair fits is subsequently inves-

tigated. Furthermore, the impact of the presence of neu-

ronal terminations on excitability is considered. The

second goal is to determine the impact of the myelin

approximation in the SENN-model on the excitability

indices, for different electrode locations and models of

membrane dynamics. The third goal is to compare ex-

citability indices among different fibre models (SENN-

MA, SENN-M, and C-FIBRE). The impact of the ab-

sence of internodes in the C-FIBRE model on neuronal

excitability is determined. To this end, all geometrical

and physiological parameters (i.e. all parameters, ex-

cept for the spatial and temporal discretisation step and

simulation time) are first held constant, to allow com-

parison between the SENN-M and C-FIBRE model for

the FH, CRRSS, SE, and SRB membrane models (see

also next section). In a second step, the impact of the

fibre diameter on the rheobase and strength-duration

time constant τe in C-fibres is determined.

2 Methods

Computational models for a myelinated axon (SENN-

MA, SENN-M) and an unmyelinated axon (C-FIBRE)

are implemented in Matlab. In each of these models,

the corresponding system of equations is discretized by

a Crank-Nicholson scheme (see Appendix A) [8], while

the ends of the neuron are assumed to be sealed (i.e.

no axonal current at the neuronal terminations). An

overview of the used parameter values is shown in Ta-

ble 3. All other parameters, not listed in Table 3, are

obtained from literature and summarized in Appendix

A. Experimental values for the myelin capacitance and

Fig. 1 Schematic representation of the simulation

configuration. A current I is injected by a spherical

electrode into the extracellular fluid. The electrode is

placed at longitudinal distance xE and radial distance

yE

conductance are obtained from Tasaki [40]. Other phys-

iological and geometrical parameters are taken from the

original McNeal publication and the appropriate papers

describing the active membrane models [22, 13, 10, 7,

38, 35, 36].

For all models (A-fibres and C-fibres) a 10µm neu-

ron of length L = 4 cm is used, except when the SD

time constant τe or rheobase Ib are explicitly plotted as

function of the diameter D. As the propagation speed

of action potentials is lower in C-fibres than in A-fibres,

while activation thresholds are higher, a larger (maxi-

mal) temporal discretization step of 10µs could be used

in the C-FIBRE model. For A-fibres, a maximal tempo-

ral discretisation step of 1.26µs was used. Furthermore,

the temporal discretization step is altered for low pulse

durations tp, in order to ensure a minimum of 10, 50,
and 70 samples per pulse in the C-FIBRE, SENN-MA,

and SENN-M model respectively. The total simulation-

time Tsim is at least six times the phase duration (i.e.

Tsim ≥ 6τp, where τp is the duration of a single phase).

Finally, the simulation time is not allowed to be lower

than 1 ms for A-fibres and 5 ms for C-fibres. These re-

quirements are necessary to ensure sufficient simulation

time to allow the propagation of the action potential

and were determined by simulation of generic electrode

configurations. Higher simulation times are required for

Variable Description A-fibre C-fibre
∆x Spatial discretisation step 0.1 mm 0.1 mm
∆t Temporal step 1.26µs 0.01 ms
D Outer radius 10µm 10µm
d Inner radius 0.7D D
L Neuron length 4 cm 4 cm
Tsim Simulation time ≥ max(6τp, 1 ms) ≥ max(6τp, 5 ms)
T Temperature 18.5 ◦C 18.5 ◦C

Table 3 Values and description of parameters of the A-fibre and C-fibre model
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Type Pulse-duration τp Rad. distance yE Long. distance xE
SD-plot I0(τp) 5µs − 5ms (31,log.) 2mm − 1cm 2cm

5µs − 5ms (31,log.) 5mm 0.5cm − 2cm (4,lin.)
Rbm 5µs − 5ms (31,log.) 2mm − 1cm 2cm
Rheobase Ib 5ms 1.5mm − 10mm (10,lin.) 0.5cm − 2cm (4, lin.)
Polarity ratio Rp 5ms 2mm − 1cm 0.5cm − 2cm (10, lin.)

Table 4 Simulation range of electrode and waveform parameters used in different types of plots. The number of

simulation points and the used distribution for these points (linear (lin.) or logarithmic (log.)) is indicated between

brackets. I0 is the threshold current, Rbm is the bi/monophasic ratio, Ib is the rheobase, and Rp is the polarity

ratio

C-fibres due to low propagation speeds of the action po-

tential.

As the Hodgkin-Huxley model was obtained from

an unmyelinated squid nerve, axonal currents are too

weak to sustain the propagation of an action potential

in the framework of the SENN-model [5, 9]. This phe-

nomenon is caused by the higher axonal resistance be-

tween neighbouring compartments in the SENN-model,

as compared with the C-FIBRE model. However, com-

bination of the Hodgkin-Huxley with a myelinated fi-

bre model has proven useful, e.g. in modeling the audi-

tory nerve [23]. Consequentially, the Hodgkin-Huxley

equations were modified to allow compatibility with

the SENN-model. The modifications were performed,

following the procedure used by Cartee [5], which is

based on Fitzhugh [9]. To allow for conduction of an ac-

tion potential when the Hodgkin-Huxley model is com-

bined with the SENN-model, a scaling factor Asc =

0.003mm2 is used. The nodal conductivity and capaci-

tance for the SENN-model with HH membrane dynam-

ics is scaled with Asc/(πdln) and Asc/(20πdln) respec-

tively. Here, ln = 2.5µm is the nodal length. It is noted

that Asc has no physical significance and should be in-

terpreted as a scaling factor to match model parame-

ters with the experimentally measured conductivity and

capacitance. This modification of the Hodgkin-Huxley

equations, when applied to the SENN-model, was the

only deviation of the original membrane parameters

and is only applied when the HH-equations are used

in combination with the SENN-model.

A different phenomenon observed by Rattay and

Aberham is known as “heat block”. Unmodified HH-

equations stop to conduct action potentials for tem-

peratures greater than 31◦C [27]. The modified HH-

equations that are used in the SENN-model will not

be hindered by heat block [5]. However, unmodified

Hodgkin-Huxley equations are still used in this study,

in the C-FIBRE model. Because it is desired to com-

pare all models at the same temperature, a universal

temperature of 18.5◦C is used for all models.

A spherical micro-electrode is used to probe the ex-

citation properties of the model under consideration. A

schematic representation of the simulation configura-

tion, defining the longitudinal and radial electrode dis-

tance xE and yE , is shown in Fig. 1. The minimal stim-

ulation current I required to obtain activation is de-

termined by a titration procedure alternating between

activation and absence of activation [29]. The titration

procedure terminates after reaching an accuracy of 1%

or better. Neuronal activation was defined as depolar-

ization of the active membrane at subsequent active

compartments. Electrode parameters that are varied

are the electrode location, the pulse duration τp and

the sign of the current (anodic or cathodic). Further-

more, both monophasic and biphasic square waves are

used as stimulation pulses.

The excitability indices, used in this study, are now

defined. Strength-duration plots represent the rela-

tion between the pulse duration τp and the threshold

current I0 required for neuronal activation. An empiri-

cal strength-duration relationship was first obtained by

Weiss [41] and by Lapicque [18]. The Weiss-Lapicque

relation between the stimulus strength and the pulse

duration can be formulated as:

I0 = Ib(1 +
τe
τp

) (1)

Here, Ib is the rheobase current and τe is the SD time

constant.

Another strength-duration relation is based on the-

oretical considerations, and was obtained by Lapicque

and Blair [18, 1, 4]. The Lapicque-Blair relation has an

exponential form:

I0 =
Ib

1− exp(− τpτe )
(2)

These equations define the rheobase current as the

threshold current for a square-wave pulse of long du-

ration. The rheobase is obtained in this study by eval-

uating the SD-plots at τp = 5 ms, similarly as is done

in Reilly [28]. This procedure results in a negligible er-

ror on the rheobase, which is defined as the asymptotic

minimum of the SD-plot and will be slightly lower for

longer pulse durations.
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Similarly, the strength-duration time constant

τe was approximated by taking the ratio of the charge

Qe = 5µs · I0(τp = 5µs) with respect to the rheobase

Ib.

The bi/monophasic ratio Rbm is defined as the

ratio of the biphasic and monophasic threshold current.

To determine these thresholds, a cathodal monophasic

square wave is used, while the biphasic square wave

will start with a cathodal initial phase. Note that the

time τp indicates the duration of the initial phase in a

biphasic square wave and not the duration of the pulse.

Finally, the polarity ratio Rp is the ratio of the

anodic and cathodic rheobase. The polarity ratio was

approximated by evaluating the anodic and cathodic

threshold current at pulse durations of τp = 5 ms [28].

Values of Rp lower than one indicate that anodic stim-

ulation is more effective than cathodic stimulation to

initiate the propagation of an action potential, and vice

versa for Rp > 1.

The simulation range of the electrode and waveform

parameters, that are used to generate the plots in this

paper, is summarized in Table 4. The table also indi-

cates the number of samples in the simulation range and

whether a linear (lin.) or logarithmic (log.) distribution

of points is used.

3 Results

An example of an action potential in the SENN-model

with FH-dynamics is shown in Fig. 2. The anode is

placed at the centre of the axon, at xE = 20 mm. The

activating function f allows for a straightforward inter-

pretation of the location of the excitation node, which is
defined as the first node to reach the voltage threshold

[25]. The activating function is shown in Fig. 2(e)-(f)

and is given by:

f(l) =
1

C∗
m(l)

[
G∗
a,f (l −∆l)(Ve(l −∆l)− Ve(l))+

G∗
a,b(l +∆l)(Ve(l +∆l)− Ve(l))

]
(3)

Here Cm(l)∗ is the membrane capacitance of the com-

partment at x = l. G∗
a,b(l) is the “backward” axial con-

ductance between the compartments at x = l − ∆l

and x = l. Similarly, G∗
a,f (l) is the “forward” axial

conductance between the compartments at x = l and

x = l + ∆l. Equation (3) is valid for all nodes, except

the termination nodes at x = 0 mm and x = 40 mm.

At the neuronal terminals, the activation function f is

given by [26]:

f(0) =
2

C∗
m(0)

[
G∗
a,b(∆l)(Ve(∆l)− Ve(0))

]
(4)

Fig. 2 Illustration of propagation of AP for the SGE-

mode (a,c,e) and NT-mode (b,d,f) of activation (see

text for definitions). The anode is placed at longitudinal

distance xE = 20 mm. (a)-(b) Colour map of membrane

potential. Yellow indicates depolarization, dark blue in-

dicates hyperpolarization. The abscissa represents the

time t passed after the onset of the stimulus, while the

ordinate xl represents the length along the neuron. (c)-

(d) Spatial distribution of membrane voltage along the

neuron for 7 snapshots, equally spaced in time (snap-

shots at the four earliest times are indicated). (e)-(f)

Spatial distribution of activating function f

f(L) =
2

C∗
m(L)

[
G∗
a,f (L−∆l)(Ve(L−∆l)−Ve(L))

]
(5)

Here, the factor 2 is a consequence of the fact that

sealed-end boundary conditions are applied at the cen-

tre of the compartments at the neuronal terminations.

Negative values of the activating function will fa-

vor hyperpolarization of the active membrane, while

the membrane will tend to be depolarized at compart-

ments with positive values of f . It can be observed from

Fig. 2(e)-(f), that the envelope of the activating func-

tion reaches a central minimum at xE = 20 mm and

two maxima at the so-called “virtual cathodes”. These

virtual cathodes are positioned symmetrically, at both

sides of the anode. Furthermore, positive peaks at both

neuronal terminations can be observed.
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Fig. 3 Myelinated (A-fibre) simulation results. (a)

cathodal activation current, (b) anodal activation cur-

rent, (c) cathodal rheobase, (d) anodal rheobase, (e)

bi/monophasic rheobase ratio, (f) polarity ratio. Full

lines indicate the use of the myelin parameters reported

by Tasaki [40], while the stars indicate the use of the

myelin approximation

When the anode is placed closed to the axon, e.g.

at yE = 3 mm in Fig. 2(a),(c),(e), neuronal activation

will be determined by the virtual cathodes. Because the

activating function f is proportional to the spatial gra-

dient of the electric field (SGE) in equation (3), we will

call this case the SGE-mode of activation. The exci-

tation nodes are roughly located at the virtual cath-

odes and the action potential propagates orthodromi-

cally and antidromically. Propagation to the axon cen-

tre (xE = 20 mm) is inhibited by the hyperpolarized

region at the position of the anode.

Conversely, if the anode is placed at larger radial dis-

tance, e.g. at yE = 6 mm in Fig. 2(b),(d),(f), then exci-

tation will be driven by the large peaks of the activating

function f at the neuronal terminations. The action po-

tential in Fig. 2(b),(d) starts at the neuronal termina-

tions and propagates towards the centre (xE = 20 mm).

We will refer to this mode of activation as the neuronal

termination (NT) mode.

For cathodal stimulation the sign of the activating

function f is reversed and the excitation node coincides

with the location of the cathode.
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Fig. 4 Effect of the myelin approximation on excitabil-

ity indices. (a)-(b) Relative error on τe. (c) Relative

error on cathodal threshold current. (d) Absolute error

on cathodal rheobase. Electrode location is xE = 2 cm

in (a)-(d), and yE = 5 mm in (d).

3.1 A-fibres

The effect of the myelin approximation and the mem-

brane channel dynamics on excitability indices in the

SENN-MA and SENN-M model is shown in Fig. 3.

Fig. 3(a) and Fig. 3(b) are the cathodal and anodal SD-

plots obtained by running a parameter sweep over 31

logarithmically distributed pulse-durations in the inter-

val from 5µs to 5 ms. Fig. 3(c)-(d) depict cathodal and

anodal rheobase-distance plots respectively, obtained

by simulation of 10 linearly distributed radial (rad.) dis-

tances, while the longitudinal (long.) distance is kept

constant. Fig. 3(e)-(f) show the bi/monophasic ratio

Rbm and the polarity ratio in 31 logarithmically and 10

linearly distributed points respectively.

Impact of the myelin approximation on excitability in-

dices

The influence of the myelin approximation on excitabil-

ity indices was determined by Richardson et al. [32], for

neurons described by a modification of the Schwarz-

Reid-Bostock model [20]. We expand some of their re-

sults in this subsection, to include the electrode range,

excitability indices and membrane models that are con-

sidered in this study.

Fig. 3 and Fig. 4 are used to illustrate the impact

of the myelin approximation. Strength-duration curves

shift to lower threshold current values, when the myelin

conductance and capacitance are set to zero. This effect

is most significant for shorter time durations (Fig. 3(a)-

(b), Fig. 4(d)). The observation that shorter time du-

rations are associated with greater errors, is a conse-
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Fig. 5 Unmyelinated (C-fibre) simulation results. (a)

cathodal activation current, (b) anodal activation cur-

rent, (c) cathodal rheobase, (d) anodal rheobase, (e)

bi/monophasic rheobase ratio (f) polarity ratio

quence of a decrease in chronaxie or strength-duration

time constant when using a model with infinite myelin

impedance. This decrease in time constant was theoret-

ically predicted by Rubinstein [33].

Richardson et al. reports an increase of εSD = 11%

of the chronaxie when abandoning the myelin approx-

imation, for the electrode configuration and model pa-

rameters used in their study. It can be observed from

Fig. 4(a)-(b) that the error on the strength-duration

time constant is dependent on the electrode position,

polarity and the used membrane model. Both the error

on the time constant, εSD, as the error on the rheobase

εb, due to the myelin approximation, increase with ra-

dial electrode distance (Fig. 4). The error is furthermore

determined by the mode of activation (stimulation at

neural terminations or on the axon), as can be observed

from Fig. 4(b).

These results show that the impact of the myelin

approximation on the SD time constant and rheobase

is most significant in the Frankenhaeuser-Huxley model

at large electrode-neuron separations. For instance, the

time constant τe is increased by 70% and the rheobase
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Fig. 6 C-fibre model simulations with the HH and

CRRSS membrane models. (a)-(b) polarity ratio. (c)-

(f) anodal (+) or cathodal (-) rheobase. (g)-(h) Rbm
ratio. Legend. (g)-(h) (long. distance) xE = 2 cm.

(a)-(b),(g)-(h) (rad. distance): ( ) 2mm, ( ) 4mm,

( ) 6mm, ( ) 8mm, (∗) 1cm. (c)-(f) (long. dis-

tance): ( ) 0.5cm, ( ) 1cm, ( ) 1.5cm, ( ) 2cm

Ib is decreased by −6.6 mA by the myelin approxima-

tion in the Frankenhaeuser-Huxley model, if the radial

electrode distance is equal to 10 mm.

3.2 C-fibres

Simulation results in the C-FIBRE model are shown

in Fig. 5. Subsequently, Fig. 6 and Fig. 7 show more

detail on the effect of the radial and longitudinal elec-

trode position on the excitability indices in the HH and

CRRSS models. Lower computational cost in these two

conditionally linear models, allowed for more extensive

parameter sweeps.

4 Discussion

4.1 Strength-duration relation

Strength-duration relations at constant electrode loca-

tion, but for different membrane models, are shown in

Fig. 3(a)-(b) and Fig. 5(a)-(b) for A-fibres and C-fibres
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Fig. 7 C-fibre anodal (+) and cathodal (-) strength-

duration plots with the HH and CRRSS membrane

models. Legend. (a)-(d) (rad. distance): ( ) 2mm,

( ) 4mm, ( ) 6mm, ( ) 8mm, (∗) 1cm. (long.

distance): xE = 20 mm. (e)-(h) (radial distance): yE =

5 mm. (long. distance): ( ) 0.5cm, ( ) 1cm, ( )

1.5cm, ( ) 2cm

respectively. We observe that both A-fibres and C-fibres

have a fixed order of excitability at long pulse durations.

To compare the relative magnitude of stimulus current

required to initiate an action potential, we introduce

the rheobase ratio (RR). The rheobase ratio of a

model is defined as the ratio of the rheobase calculated
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Fig. 8 Dependence of rheobase C/A multiplier on ra-

dial distance and membrane dynamics. The cathode is

placed at xE = 20 mm

by the model to the rheobase that would be obtained

if the membrane model would be substituted by the

Frankenhaeuser-Huxley system. Consequentially, RR-

values obtained by the FH-system are equal to unity.

An overview of RR-values is presented in Table 5. Mod-

els with RR-values greater than unity are more difficult

to excite than the FH system at long pulse durations,

while models with RR-values smaller than unity are

more easy to excite.

The relative magnitude of required threshold cur-

rent at long pulse durations to initiate an action poten-

tial, as compared to the Frankenhaeuser-Huxley sys-

tem, is dependent on the electrode position, the elec-

trode polarity and the type of multi-compartmental

electrostimulation model (A-fibre or C-fibre). However,

as can be seen from the values in Table 5, this depen-

dency is not strong enough to change the order of ex-

citability of the different models of membrane channel

dynamics. In order of increasing threshold, we find: HH,

FH, SRB, CRRSS and SE. E.g., for cathodal stimula-

tion of A-fibres, we find average RR-values of 0.22, 1,

2.40, 2.94 and 3.35 for the different membrane models

Membrane Model Min. RR Max. RR Average RR

HH
A-fibre (-) 0.20; (+) 0.06 (-) 0.27; (+) 0.25 (-) 0.22; (+) 0.14
C-fibre (-) 0.02; (+) 0.02 (-) 0.04; (+) 0.10 (-) 0.02; (+) 0.08

CRRSS
A-fibre (-) 2.00; (+) 1.84 (-) 3.46; (+) 2.66 (-) 2.94; (+) 2.26
C-fibre (-) 3.31; (+) 1.97 (-) 3.52; (+) 3.44 (-) 3.47; (+) 2.13

SE
A-fibre (-) 2.48; (+) 2.30 (-) 3.83 ;(+) 3.09 (-) 3.35; (+) 2.75
C-fibre (-) 3.69; (+) 2.46 (-) 3.88; (+) 3.80 (-) 3.84; (+) 2.60

SRB
A-fibre (-) 1.94; (+) 1.78 (-) 2.64; (+) 2.23 (-) 2.40; (+) 2.10
C-fibre (-) 2.52; (+) 1.95 (-) 2.60; (+) 2.60 (-) 2.60; (+) 2.02

Table 5 Minimum, maximum and average rheobase ratio (RR) obtained by the different models for cathodal

(-) and anodal (+) stimulation. RR-values are defined by taking the FH-system as reference. A-fibre values are

calculated with the SENN-MA model
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in the aforementioned order of excitation. This order of

excitability is reported as well by Rattay and Aberham

[27], excluding the SRB-system, for a pulse duration

of 100µs and for current directly injected into a single

compartmental neuron. However, the order of excitabil-

ity among the different membrane models is altered at

short pulse durations, as the SRB-model becomes rela-

tively more difficult to excite (Fig. 3 and Fig. 5).

For cathodal stimulation (Fig. 3(c) and Fig. 5(c)),

rheobase ratios first diverge from unity with increasing

radial electrode distance, after which they level off. For

anodal stimulation (Fig. 3(d) and Fig. 5(d)), rheobase

ratios reach a steady level when stimulation at the neu-

ron terminations becomes the dominant mode of exci-

tation.

The impact on threshold current of the presence of

internodes is shown in Fig. 8. Here, the C/A-multiplier

is the ratio of the rheobase obtained by the C-FIBRE

model and the SENN-MA model. The C/A-multiplier

values obtained by the Hodgkin-Huxley model are not

in line with the other models, because the HH param-

eters are altered in the SENN-model (see section 2).

C/A-multiplier values increase with electrode-neuron

separation. At the largest simulated radial electrode

distance, the FH, CRRSS, SE, and SRB model have

similar C/A-multiplier values between 77 and 80.
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Fig. 9 Normalized SD-relations in the Hodgkin-Huxley

and CRRSS models for three generic electrode loca-

tions. Cathodal (-) stimulation at a radial distance of

2 mm, represents the case in which the neuron is stim-

ulated by the gradient of the electric field. Anodal (+)

stimulation at a radial distance of 6 mm represents the

case in which stimulation at neuronal terminations is

dominant. Anodal (+) stimulation at yE = 4 mm is

shown to illustrate an intermediate case

Furthermore, the strength-duration relation was ob-

tained for the Hodgkin-Huxley and CRRSS models,

while performing extensive parameter sweeps of the elec-

trode location and waveform polarity. The result is shown

in Fig. 7, and allows us to determine the dependency

of the SD-relation on the electrode and stimulus pa-

rameters. Fig. 7(a),(c) show the dependence of the SD-

plots on the radial cathode distance yE in the Hodgkin-

Huxley and CRRSS models respectively. Increasing the

cathode-neuron separation, will shift the SD-plot to

higher values. Similarly, Fig 7(b)-(d) shows the impact

of anode-neuron separation on SD-plots. Here, increas-

ing the anode-neuron separation will lead to a tran-

sition from the SGE-mode to the NT-mode of activa-

tion. Consequentially, the strength-duration plot does

not depend on the anode-neuron separation, for y > yc.

Here, yc is the critical distance, at which the transition

from SGE-mode to NT-mode of activation occurs. In

Fig. 7(e)-(h) it is shown that the longitudinal electrode

distance will only impact the strength-duration plot for

anodal stimulation. In this case, smaller anode-terminal

separations result in lower threshold current values.

Most of the dependency of the SD-plots in Fig. 7

on electrode location and polarity, can be explained

through the rheobase current Ib and the SD time con-

stant τe. Indeed, both the rheobase and the time con-

stant do depend on the electrode location and wave-

form polarity. Furthermore, it is possible to normalize

the threshold current and pulse duration by using these

excitability indices (rheobase and SD time constant).

Subsequently plotting the I0
Ib

(
τp
τe

)-relation reveals that

all normalized SD-plots coincide, under the constraint

of identical membrane dynamics and dominant mode

of excitation (results not shown). Indeed, it is observed

that the shape of the normalized strength-duration re-

lation is altered, when stimulation at neuronal termina-

tions becomes the dominant mode of excitation. This

is an extension of a result obtained by Šarolić et al.:

it was determined by Šarolić et al. that the normal-

ized strength-duration curve does not depend on the

electrode location and spatial waveform (wire electrode,

bipolar electrode setup or homogeneous E-field) in the

SENN-model [34]. However, the effect of neuronal ter-

minations, waveform polarity, and membrane dynamics

was not yet taken into account.

The observation that, of the studied independent

parameters, normalized SD-plots are only dependent

on membrane dynamics and the dominant mode of ex-

citation, is illustrated in Fig. 9. For both the HH and

the CRRSS models three generic electrode configura-

tions are used. First, a cathode at a radial distance

yE = 2 mm is used to represent stimulation by the spa-

tial gradient of the electric field (SGE-mode). Second,
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Membrane
Weiss-Lapicque Lapicque-Blair

A-fibres C-fibre A-fibre C-fibre
HH 14.5863 93.3663 2.4681 56.3922
FH 3.8529 8.05448 1.0775 0.93236
CRRSS 3.5515 3.31010 1.8848 1.57979
SE 5.1951 7.20470 0.6878 0.76276
SRB 2.8468 2.33073 8.1539 3.78514

Table 6 Sum of squares of residuals (SSres[−]). A-fibre values are calculated with the SENN-MA model

an anode at yE = 6 mm is used, to illustrate stimulation

at neuronal terminations (NT-mode). It is indeed clear

from Fig. 9 that normalized strength-duration curves

do depend on the dominant mode of excitation, as well

as the membrane dynamics. An intermediate case is

represented by an anode at a radial distance yE =

4 mm. For the Hodgkin-Huxley model, the transition

from the SGE-mode to the NT-mode occurs at anodal

radial distances of yE = 4.33 mm(±0.95 mm) in the

used C-FIBRE model. As a consequence, an interme-

diate strength-duration curve is observed, indicating a

continuous transition of the normalized SD-curve with

increasing radial distance. In contrast, this transition

between dominant modes of excitation is observed at

a radial anodal distance of 2.44 mm(±0.95 mm) for all

other membrane models (see also the subsequent sub-

section). Consequentially, the normalized SD-plots for

yE = 4 mm and yE = 6 mm coincide in the CRRSS-

model.

The strength-duration relations, obtained with the dif-

ferent membrane models and by excitation wihin the

SGE-mode, are compared with the Weiss-Lapicque and

Lapicque-Blair equations in Fig. 10. Furthermore, sum

of squares of residuals (SSres) values are summarized in

Table 6. It is observed, that fitting the SD-relation by

the Lapicque-Blair equation is superior for the HH, FH,

CRRSS and SE models. Conversely, SD-plots obtained

by the SRB-model within the SGE-mode of excitation,

are better approximated by the Weiss-Lapicque equa-

tion.

4.2 Dependence on fibre diameter

The dependence of the rheobase current and SD time

constant on the fibre diameter in the C-FIBRE model

is shown in Fig. 11(a)-(b). In Fig. 11(a) the rheobase

multiplier M = Ib(D)/Ib(D = 10µm) is shown for di-

ameters between 1µm and 10µm. Rheobase current is

inversely proportional with fibre diameter. The slope

of the logM -logD plot fluctuates around −1 in the

FH, CRRSS, SE, and SRB model (min: −1.1, max:

−0.9), indicating that approximately Ib ∝ 1/D. In the
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excitation is caused by the spatial gradient of the electric field at the centre of the axon
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Hodgkin-Huxley model the slope in the logM -logD

plot lies between −0.95 and −0.8 for xE = 20 mm and

yE = 5 mm (Fig. 11(a)). Fig. 11(c) investigates the role

of cathode-neuron separation on the rheobase-diameter

relation. In the CRRSS model, a Ib ∝ 1/D relation

is found between rheobase and fibre diameter, for all

simulated radial distances 1.5 cm ≤ yE ≤ 10 cm. It is

observed from Fig. 11(c) that the Ib ∝ 1/D relation

will be valid for the Hodgkin-Huxley model as well, for

large cathode-neuron separations. We conclude that for

C-fibres, a Ib ∝ 1/D relation holds for large radial elec-

trode distances and that the Hodgkin-Huxley model re-

quires a larger radial distance than the other simulated

models. This is in contrast with A-fibres models, for

which the slope in the logM -logD plot decreases with

increasing diameter (McNeal [22]).

Similarly, Fig. 11(b) shows that the SD time con-

stant τe is approximately constant over the simulated

diameter range in the FH, CRRSS, SE, and SRB model.

In the Hodgkin-Huxley model, the time constant de-

creases with diameter. In Fig 11(d) it is shown that the

sensitivity of the time constant on the fibre diameter is

reduced at large cathode-neuron separations.

4.3 Polarity ratio

If the neuron is excited by the spatial gradient of the

electric field rather than at the neuronal terminations,

then cathodal stimulation is more effective than anodal

stimulation and Rp > 1. However, if the radial electrode

distance yE is increased or the longitudinal electrode

distance xE is decreased, stimulation at the neuronal

terminations becomes the dominant mode of excitation.

This is expressed by a decrease in the polarity ratio Rp.

The polarity ratio is shown for A-fibres and C-fibres

in Fig. 3(f) and Fig. 5(f) respectively at (xE , yE) =

(2 cm, 5 mm). The polarity ratio is furthermore shown

for different radial and longitudinal electrode positions

in the C-FIBRE model in Fig. 6(a)-(b). These results

show that the polarity ratio drops as the location of

the virtual electrode approaches the neural terminal.

Furthermore, it can be observed from Fig. 6(a)-(b) that

the minimum in the Rp(xE) plots shifts to higher values

of xE , for greater radial electrode distances.

The transition from the SGE-mode to the NT-mode

of excitation occurs when the polarity ratio Rp begins

to decrease. This transition is dependent on the used

membrane model. For example, consider an electrode

at a longitudinal distance xE = 2 cm of an unmyeli-

nated fibre. We investigate the critical radial distance

of the electrode yc for which the transition between

these two modes of excitation occurs. In Fig. 6(a), dif-

ferent radial distances (2 mm, 4 mm, 6 mm, 8 mm and

0 1 2 3 4 5 6 7 8 9 10

Diameter [µm]

0

2

4

6

8

10

R
h

e
o

b
a

s
e

 m
u

lt
ip

li
e

r 
M

 [
-]

(a)

CRRSS

Reference: D=10 µm

HH

FH

SE
SRB

0 2 4 6 8 10

Diameter [µm]

0

500

1000

1500

τ
e
 [
µ

s
]

(b)

HH

FH CRRSSSESRB

0 2 4 6 8 10

Radial distance y
E

 [mm]

0

2

4

6

8

10

12

R
h

e
o

b
a

s
e

 m
u

lt
ip

li
e

r 
[-

] Reference: D=1 µm (c)

HH

HH

CRRSS

CRRSS

HH CRRSS

0 2 4 6 8 10

Radial distance y
E

 [mm]

0

500

1000

1500

τ
e
 [
µ

s
]

(d)

HH

CRRSS

Fig. 11 Impact of diameter on rheobase ((a),(c)) and

SD time constant ((b),(d)) in C-FIBRE. (a) Rheobase

multipliers (reference indicated in figure) and SD time

constants are plotted against diameter ((a)-(b)) and ra-

dial electrode distance ((c)-(d)). Cathode location is

(xE = 20 mm, yE = 5 mm) in (a)-(b) and xE = 20 mm

in (c)-(d). Legend. (diameter) (c) ( ) 0.5µm, ( )

5µm, ( ) 10µm. (d) (diameter): ( ) 0.5µm, ( )

1µm, ( ) 5µm, ( ) 10µm. Method. Plot was ob-

tained by first order Crank-Nicolson discretisation with

time step ∆t = min(τp/50, 0.01 ms)

1 cm) are represented by five curves. The dependency

of the polarity ratio on the radial distance yE is es-

timated by comparing the values indicated by the five

curves at the constant longitudinal distance xE = 2 cm.

We observe that for the Hodgkin-Huxley membrane

model, the polarity ratio starts to decrease at a radial

distance between 4 mm and 6 mm. In contrast, in the

CRRSS model (Fig. 6(b)) the critical distance lies be-

tween 2 mm and 4 mm. Another procedure to determine

the critical radial electrode distance is by investigating

for the discontinuity in the slope of anodal rheobase-

distance curves, as will be described below.

4.4 Bi/monophasic ratio

If cathodal stimulation is more effective than anodal

stimulation in initiating an action potential (Rp > 1),

then the bi/monophasic ratio Rbm will always be larger

than one. This is the case for the SENN-M and SENN-

MA models at (xE , yE) = (2 cm, 5 mm), see Fig. 3(e). If

the phase duration τp is less than the strength-duration

time constant τe, Rbm-values are significantly greater

than unity. This is due to the fact that the reversed cur-
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rent in the second phase of the biphasic pulse, can stop

the development of the action potential ([29], pp 132-

41). For long pulse durations however, the two phases

of the waveform do not negate each other’s influence,

and Rbm = 1 [28].

This reasoning does not hold true if Rp < 1, see

Fig. 6(g)-(h). It is now possible that the first (cathodal)

phase is not able to initiate an AP, while the subsequent

(anodal) phase is. Consequentially, in this case biphasic

stimulation would be more effective than monophasic

stimulation, resulting in Rbm < 1.

4.5 Rheobase-distance relation and critical electrode

distance

The critical radial electrode distance yc for the tran-

sition between the SGE-mode and NT-mode of excita-

tion, can be obtained from the anodal rheobase-distance

(RD) relations (Fig. 3(d), Fig. 5(d) and Fig. 6(e)-(f)).

This critical distance yc is the abscissa, associated with

the “kink” in the anodal RD-curve. In contrast, catho-

dal RD-relations are smooth and do not exhibit a kink

(Fig. 3(c), Fig. 5(c), Fig. 6(c)-(d)). The discontinuity in

the spatial derivative w.r.t. yE of the anodal RD-curve

at the critical electrode distance yc is a consequence of

the polarity ratio Rp, that starts to decrease at yc. In-

deed, the anodal rheobase I
(+)
b can be expressed as a

function of Rp and the cathodal rheobase I
(−)
b :

I
(+)
b (yE) = Rp(yE)I

(−)
b (yE) (6)

The derivative of I
(−)
b (yE) does not exhibit a disconti-

nuity. Consequentially, the “kink” in the anodal RD-

curve is related with a discontinuity in slope in the

Rp(yE)-curve, i.e. when the polarity ratio drops at the

critical distance yc.

As an example, the critical radial distance yc in C-

fibres at xE = 2 cm is obtained by looking for the dis-

continuity in slope in Fig. 5(d). The uncertainty on yc
is determined by the size of the step in the parameter-

sweep. The critical radial distance yc, that indicates the

transition between the dominant modes of excitation

for stimulation with long pulse durations, is dependent

on the used membrane model. For the Hodgkin-Huxley

model we find yc = 4.33 mm(±0.95 mm), while all other

models have yc = 2.44 mm(±0.95 mm).

5 Limitations

The goal of this study is to compare excitability in

different models of spatially extended neurons, for a

variety of stimulus and electrode parameters. To this

end, simulations are restricted to three different rep-

resentations of a multi-compartmental axon (SENN-

MA, SENN-M and C-FIBRE). A fourth axonal model

(MRG) was developed by Blight, and aims to unravel

the mechanism for depolarising afterpotentials [2]. Only

the MRG-model has the important feature of repro-

ducing the depolarising afterpotential (DAP) and after-

hyperpolarisation (AHP). However, the DAP and AHP

have no direct impact on the excitability indices, which

are determined by the first depolarisation in the ac-

tion potential. Nevertheless, excitability is still influ-

enced by the double cable structure. Several researchers

have used similar models in their computational stud-

ies [37, 32, 21]. However, these double-cable models are

more computationally expensive than the used SENN

and C-FIBRE model. Because of this reason, the impact

of double-cable structures and explicit modeling of the

paranodes and juxtaparanodes on excitability indices

was not included in this study.

Similarly, several specialized models of the active

membrane have been proposed in literature. E.g., at

present, Channelopedia lists 52 different HH-type mod-

els for active currents [24]. Consequentially, we restricted

this comparative study to five often used models, de-

scribing the active membrane.

Finally, a relatively low model temperature of 18.5◦C

was chosen, to prevent heat-block in the unmodified

HH-equation set in the C-FIBRE model. Higher model

temperatures result in faster membrane gate dynam-

ics, leading to shorter action potentials, faster propa-

gation of the action potential, shorter summation, and

excitation time constants, . . . [5]. Because temperature

alters the membrane dynamics (through multiplication
with a temperature dependent factor k of the model-

dependent rate constants α and β, see Eq. (11)-(10))

and because in this study it is observed that membrane

channel dynamics has a significant impact on excitation

threshold, a similar impact of temperature on excitation

is expected. However, modulation of membrane dynam-

ics by changing the model temperature is qualitatively

similar to substituting the model of membrane dynam-

ics. E.g., in a study by Cartee, the temperature is used

to alter the membrane dynamics in order to obtain a

better fit to the summation and refraction properties

of the cochlear nerve [5]. However, changing the tem-

perature will have a more modest impact on the mem-

brane dynamics, than substituting the equation set. As

a consequence of this similarity between substituting

the equation set for membrane dynamics and changing

the temperature, it is expected that the conclusions of

our study will not be qualitatively altered by a different

model temperature. For example, we observed that the

strength-duration time constant is independent of the
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fibre diameter for large electrode-neuron separations.

This result is valid for all studied membrane models,

although larger electrode-neuron separations are neces-

sary for the HH-model. As a consequence, it is unlikely

that a different temperature would have a significant

impact on this result.

6 Conclusion

Threshold currents, rheobase, polarity ratio, bi/mono-

phasic ratio and SD time constants are widely used in

literature to quantize neuronal excitability. In this pa-

per, three multi-compartmental models are combined

with five models of membrane dynamics to generate

plots of these excitability indices for a wide range of

electrode locations and stimulus properties. Excitabil-

ity in different membrane and spatial models is com-

pared by the rheobase ratio RR and C/A-multiplier, de-

fined in this study. Furthermore, SD-plots obtained by

the different computational models are compared with

Weiss-Lapicque and Lapicque-Blair fits. We summarise

the following conclusions (Fig. 3, 5, 7–10, Table 5–6).

– The used membrane model has a significant impact

on the observed excitation threshold. In order of

increasing excitation threshold, we found average

cathodal rheobase ratios of 0.22, 1, 2.40, 2.94 and

3.35 for the HH, FH, SRB, CRRSS and SE mod-

els respectively. E.g., this means that for an average

cathode position the SE-model is 3.35 times more

difficult to excite with long pulses than the FH-

model.

– The difference in excitability between the membrane

models becomes more pronounced for larger separa-

tion between the electrode and the neuron, while

the neuron is stimulated by the spatial gradient of

the electric field (SGE-mode).

– The rheobase ratio is independent of the electrode-

neuron separation for neurons stimulated at the ter-

minations (NT-mode).

– Membrane channel dynamics determine the shape

of the strength-duration plot. HH, FH, CRRSS, and

SE models are better approximated by the Lapicque-

Blair formula, while the Weiss-Lapicque equation is

a better fit for the SRB-model. Normalized SD-plots

are independent of the electrode position, stimulus

polarity and waveform.

– Excluding the HH-model, it is observed from com-

parison between the SENN-MA and C-FIBRE model

that for large cathode-neuron separations C-fibre

models are about 77 to 80 times more difficult to

excite than A-fibre models. This C/A-multiplier is

dependent on the membrane channel dynamics, only

for short cathode-neuron separations.

The impact of stimulation at neuronal terminations

is investigated. Sealed-end terminals impact anodal RD

plots (resulting in a discontinuity at the critical elec-

trode distance yc), impact the bi/monophasic ratio and

polarity ratio (Rbm < 1 is possible if the neuron is ac-

tivated by the NT-mode) and lead to a change in the

normalized SD-plots (Fig. 3–6, 9).

We compared the strength-duration and rheobase-

distance plots between the SENN-M and SENN-MA

models, in order to investigate the effect of the myelin

approximation on neuronal excitability. Neglecting the

myelin admittance always leads to a reduction in the

rheobase and SD time constant. However, we found that

the significance of this approximation error is strongly

dependent on several interacting factors (electrode lo-

cation, stimulus polarity, membrane channel dynamics,

etc.). As a consequence, specification of these factors is

necessary when adressing questions about the justifica-

tion of the myelin approximation in a simulation study

or about the effect of demyelination on neuronal ex-

citability. In particular, we found the following (Fig. 4).

– The reduction in rheobase and SD time constant,

due to the myelin approximation, is more significant

for larger electrode-neuron separations

– The impact of the myelin impedance on the

rheobase current is dependent on the selected

membrane model. E.g., a maximal error in rheobase

of 57% was found for a model with Hodgkin-Huxley

dynamics. In contrast, maximal rheobase errors are

smaller than 3.2% for SE or SRB models.

– The impact of the myelin impedance on the

SD time constant is dependent on the selected

membrane model. E.g., a maximal error in time con-

stant of 70% and 20% is observed for a model with

FH-dynamics and HH-dynamics, respectively.

– The error in strength-duration time constant εSD is

independent of the electrode-neuron separation for

neurons in which NT-mode is the dominant (i.e.,

for short neurons or large electrode-neurons separa-

tions).

Finally, the impact of electrode location and mem-

brane dynamics on the Ib(D) and τe(D) relations was

investigated. In our C-FIBRE models, we observed that

(Fig. 11):

– For sufficiently large electrode-neuron separations,

the rheobase Ib is inversely proportional to the fibre

diameter D (i.e., Ib ∝ 1/D). This result is indepen-

dent of the membrane channel dynamics. Further-

more, this result is in contrast with A-fibre models,
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in which the slope of the logM -logD plot decreases

with increasing diameter.

– For sufficiently large electrode-neuron separations,

the SD time constant τSD is independent of the fibre

diameter D.

These proportionalities (Ib ∝ 1/D and τSD ∝ 1) are

valid for sufficiently large electrode-neuron separations.

Consequentially, deviations are found if the electrode is

too close to the neuron. Larger electrode-neuron sepa-

rations are required in the Hodgkin-Huxley model, as

compared to the other simulated membrane models.

A Summary of model equations

Model equations and parameters are summarized in this ap-
pendix. All equations are taken from literature: references are
given in section 2. Systems of equations are discretised accord-
ing to a first (SENN-M) or second (SENN-MA, C-FIBRE)
order staggered Crank-Nicolson scheme (time step ∆t and
spatial step ∆x). Discretisation of the cable equation in the
most general case yields:

2Cm(l)∗

∆t
(V (l, t+

∆t

2
) − V (l, t)) + Is(l, t+

∆t

2
)

= G∗
a,f (l −∆l)(V (l −∆l, t+

∆t

2
) − V (l, t+

∆t

2
))+

G∗
a,b(l +∆l)(V (l +∆l, t+

∆t

2
) − V (l, t+

∆t

2
))+

G∗
a,f (l −∆l)(Ve(l −∆l, t+

∆t

2
) − Ve(l, t+

∆t

2
))+

G∗
a,b(l +∆l)(Ve(l +∆l, t+

∆t

2
) − Ve(l, t+

∆t

2
)) (7)

Here Cm(l)∗ is the membrane capacitance of the compart-
ment at x = l. It is obtained from the capacitance per unit
area cm, which is 0.0073µF/cm2, 1µF/cm2, 2µF/cm2, 2.5
µF/cm2, 2.8µF/cm2, and 2.8µF/cm2 for the myelinated in-
ternodes, HH, FH, CRRSS, SE, and SRB model respectively.
G∗

a,b(l) is the “backward” axial conductance between the

compartments at x = l −∆l and x = l. Similarly, G∗
a,f (l) is

the “forward” axial conductance between the compartments
at x = l and x = l + ∆l. V (l, t) is the transmembranepo-
tential, while Ve stands for the external potential. Finally,
Is is the ionic membrane current. The external potential is
calculated analytically:

Ve =
ρeI

4πr
(8)

Here, ρe = 3Ωm is the extracellular resistivity and r is the
distance from the electrode. The membrane voltage at V (t+
∆t) is then calculated by:

V (t+∆t) = 2V (t+
∆t

2
) − V (t) (9)

The sodium gate parameter is progressed in time by:

m(t+ 3
2
∆t) −m(t+ 1

2
∆t)

∆t

= k
[
αm(t+∆t)(1 −

m(t+ 3
2
∆t) +m(t+ 1

2
∆t)

2
)

− βm(t+∆t)
m(t+ 3

2
∆t) +m(t+ 1

2
∆t)

2

]
(10)

And similar expressions for the other gate parameters n, h,
and p. α and β are model specific rate constants, that de-
pend non-linearly on transmembranevoltage V . Finally, k is
a temperature constant, given by:

k = Q
(T−T0)/10
10 (11)

The temperature T0 is 6.3◦C for the HH-model, 20◦C for the
FH-model, and 37◦C for the other membrane models. The
temperature constant Q10 = 3, except for:

Q10,FH(αm) = 1.8; Q10,FH(αn) = 3.2; Q10,FH(αh) = 2.8

Q10,FH(βm) = 1.7; Q10,FH(βn) = 2.8; Q10,FH(βh) = 2.9

Q10,SE(m) = 2.2; Q10,SE(h) = 2.9

Q10,SRB(m) = 2.2; Q10,SRB(h) = 2.9

Here Q10,I(j) refers to the temperature coefficient for αj

and βj of membrane model I.
Previous equations can be cast in two sets of matrix equa-

tions, in the case of the conditionally linear membrane mod-
els (HH and CRRSS models). Consequentially, a second order
correct solution is obtained without iteration for the Hodgkin-
Huxley and CRRSS model. The other models (FH, SE, and
SRB) are not conditionally linear and iteration of the equa-
tions is necessary, to obtain a solution that is correct to second
order in the discretisation time.

Each model of membrane channel dynamics contains a
loss current expressed by:

iL = gL(V − VL) (12)

Here, gL is the leak conductance and is equal to 0.015mS/cm2,
0.3mS/cm2, 30.3mS/cm2, 128mS/cm2, 86mS/cm2, and 60
mS/cm2 for the myelinated internodes, HH, FH, CRRSS, SE,
and SRB model respectively. Furthermore, the bias voltage
VL is −59.4 mV, −69.974 mV, −80.01 mV, −78 mV, −84 mV
for the HH, FH, CRRSS, SE, and SRB model respectively.
An example of the spatiotemporal response, generated by the
used membrane models, is shown in Fig. 12.

A.1 Hodgkin-Huxley model

The ionic membrane current Is is related to the ionic mem-
brane current per area, by the expression isπd∆l = Is. The
Hodgkin-Huxley model consists of a natrium current iNa,
potassium current iK , and a loss current iL:

iNa = gNam
3h(V − VNa) (13)

iK = gKn
4(V − VK) (14)

gK = 36mS/cm2 and gNa = 120mS/cm2 are maximal con-
ductances per area. VNa = 45 mV and VK = −82 mV are
Nernst-potentials for sodium and potassium respectively. The
Hodgkin-Huxley rest potential is Vr = −70 mV.

The rate coefficients are given by (with V in millivolts):

Ṽ = V − Vr

αm =
2.5 − 0.1Ṽ

exp (2.5 − 0.1Ṽ ) − 1
; βm = 4 exp

(
−
Ṽ

18

)
αn =

0.1 − 0.01Ṽ

exp (1 − 0.1Ṽ ) − 1
; βn = 0.125 exp

(
−
Ṽ

80

)
αh = 0.07 exp

(
−
Ṽ

20

)
; βh = (exp (3 − 0.1Ṽ ) + 1)−1
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A.2 Chiu-Ritchie-Rogert-Stagg-Sweeney model

The CRRSS model consists of a sodium and loss current:

is = gNam
2h(V − VNa) + gL(V − VL) (15)

Here, gNa = 1445mS/cm2, VNa = 35 mV, and Vr = −80 mV.

The equations for the rate coefficients are:

αm =
97 + 0.363Ṽ

1 + exp
(

31−Ṽ
5.3

) ; βh =
15.6

1 + exp
(

24−Ṽ
10

)

αh =
15.6[

1 + exp
(

24−Ṽ
10

)][
exp

(
Ṽ −5.5

5

)]
βm =

97 + 0.363Ṽ[
1 + exp

(
31−Ṽ
5.3

)][
exp

(
Ṽ −23.8

4.17

)]

A.3 Frankenhaeuser-Huxley model

The Frankenhaeuser-Huxley model contains a sodium, potas-
sium, non-specific and loss current. The rest potential is Vr =
−70 mV.

iNa = PNam
2h
V F 2

RT

[Na]0 − [Na]i exp V F
RT

1 − exp V F
RT

(16)

iK = PKn
2 V F

2

RT

[K]0 − [K]i exp V F
RT

1 − exp V F
RT

(17)

ip = Ppp
2 V F

2

RT

[Na]0 − [Na]i exp V F
RT

1 − exp V F
RT

(18)

αm =
0.36(Ṽ − 22)

1 − exp
(

22−Ṽ
3

) ; βm =
0.4(13 − Ṽ )

1 − exp
(

Ṽ −13
20

)

αn =
0.02(Ṽ − 35)

1 − exp
(

35−Ṽ
10

) ; βn =
0.05(10 − Ṽ )

1 − exp
(

Ṽ −10
10

)
αh = −

0.1(Ṽ + 10)

1 − exp
(

Ṽ +10
6

) ; βh =
4.5

1 + exp
(

45−Ṽ
10

)
αp =

0.006(Ṽ − 40)

1 − exp
(

−Ṽ +40
10

) ; βp = −
0.09(Ṽ + 25)

1 − exp
(

Ṽ +25
20

)
Here, the constants are:

Pna = 0.008 cm/s; PK = 0.0012 cm/s; PP = 0.00054 cm/s

[
Na
]
0

= 114.5 mmol/l;
[
Na
]
i

= 13.7 mmol/l[
K
]
0

= 2.5 mmol/l;
[
K
]
i

= 120 mmol/l

A.4 Schwarz-Eikhof model

The SE-model constains a sodium, potassium and loss cur-
rent:

iNa = PNam
3h
V F 2

RT

[Na]0 − [Na]i exp V F
RT

1 − exp V F
RT

(19)

iK = PKn
2 V F

2

RT

[K]0 − [K]i exp V F
RT

1 − exp V F
RT

(20)

αm =
1.87(Ṽ − 25.41)

1 − exp
(

25.41−Ṽ
6.06

) ; βm =
3.97(21 − Ṽ )

1 − exp
(

Ṽ −21
9.41

)
αn =

0.13(Ṽ − 35)

1 − exp
(

35−Ṽ
10

) ; βn =
0.32(10 − Ṽ )

1 − exp
(

Ṽ −10
10

)
αh = −

0.55(Ṽ + 27.74)

1 − exp
(

Ṽ +27.74
9.06

) ; βh =
22.6

1 + exp
(

56−Ṽ
12.5

)
The rest potential of the SE-model is Vr = −78 mV. The
other constants are:

Pna = 0.00328 cm/s; PK = 0.000134 cm/s[
Na
]
0

= 154 mmol/l;
[
Na
]
i

= 8.71 mmol/l[
K
]
0

= 5.9 mmol/l;
[
K
]
i

= 155 mmol/l

A.5 Schwarz-Reid-Bostock model

The SRB-model contains a sodium, fast and slow potassium
and loss current:

iNa = PNam
3h
V F 2

RT

[Na]0 − [Na]i exp V F
RT

1 − exp V F
RT

(21)

iK,f = gK,fn
4(V − VK) (22)

iK,s = gK,sp(V − VK) (23)

Here, gK,f = 30mS/cm2, gK,s = 60mS/cm2, VK = −84 mV
and Vr = −84 mV.

αm =
4.6(Ṽ − 65.6)

1 − exp
(

−Ṽ +65.6
10.3

) ; βm =
0.33(61.3 − Ṽ )

1 − exp
(

Ṽ −61.3
9.16

)
αn =

0.0517(Ṽ + 9.2)

1 − exp
(

−Ṽ −9.2
1.1

) ; βn =
0.092(8 − Ṽ )

1 − exp
(

Ṽ −8
10.5

)
αh =

−0.21(Ṽ + 27)

1 − exp
(

Ṽ +27
11

) ; βh =
14.1

1 + exp
(

55.2−Ṽ
13.4

)
αp =

0.0079(Ṽ − 71.5)

1 − exp
(

71.5−Ṽ
23.6

) ; βp =
−0.00478(Ṽ − 3.9)

1 − exp
(

Ṽ −3.9
21.8

)
The other constants are:

Pna = 0.00704 cm/s[
Na
]
0

= 154 mmol/l;
[
Na
]
i

= 30 mmol/l
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Fig. 12 Example of propagating action potentials gen-

erated by cathode-make stimulation in the studied

membrane models. Membrane voltage plots at subse-

quent nodes of Ranvier are shown. The action potential

slows down at the hyperpolarized region close the the

virtual anodes, and speeds up at the neural termina-

tions.
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