

TEKSCAN PRESSURE MEASUREMENT ACCURACY FOR ORTHOPAEDIC BIOMECHANICAL JOINT CONTACT MEASUREMENTS

Herregodts ,S., ir. ^{1,2} – Verstraete, M.A., PhD ^{1,2} – Victor, J., MD, PhD ¹ – De Baets, P., PhD ² Dept. of Orthopaedics and Traumatology, Ghent University

Dept. of Orthopaedics and Traumatology, Ghent University Dept. of Mechanical Construction and Production, Ghent University

Multi-axial test rig properties Compression testing Biaxial testing Adjustable degrees of freedom of specimens Knee implant mounting

Multi-axial test rig capabilities

Research of the Tekscan sensor characteristics Tekscan sensor automated calibration Evaluation of knee implants: pressure distribution measurement and stability research

Aim of this study: Improve the accuracy and reliability of Tekscan intra-articular contact pressure measurements

Sensor accuracy optimization technique

Automated sensor preconditioning and characterization

Preconditioning cycle improves the sensor output stability

Characterization of the sensor's step response allows for sensor drift compensating post-processing

Sensor fixation to the implant

Sensor position measurement method

Measurement method

Implant specific 3D printed calibration block

Sensor position computation

Automated sensor position computation and visualization

Pressure distribution visualisation

Computation and visualization centres of pressure

Animated and synchronized visualization

Easy interpretation

Optimal contacting surfaces

Automated multipoint calibration

Fully automated and synchronized process

Contact pressure measurements

Automated measurement data post-processing

Based on sensor specific behaviour and calibration data sensor drift is eliminated during post-processing

Drift compensation technique reduces average error during realistic loading from 15,6 % to 3,4 %

Conclusions

Optimized sensor preconditioning, sensor specific characterization and calibration combined with advanced data post-processing results in a 5 times higher measurement accuracy. Sensor position measurement allows for intuitive visualization and interpretation of measurement data.

<u>Corresponding Author</u> Herregodts Stijn Ghent University Stijn.Herregodts@UGent.be