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Abstract

Let H be a hyperbolic quadric in PG(3, q), where q is a prime power. Let E (re-
spectively, T) denote the set of all lines of PG(3, q) which are external (respectively,
tangent) to H. We characterize the minimum size blocking sets in PG(3, q), q 6= 2,
with respect to the line set E ∪ T. We also give an alternate proof characterizing
the minimum size blocking sets in PG(3, q) with respect to the line set E for all odd q.
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1 Introduction

1.1 Hyperbolic quadrics in PG(3, q)

Throughout, q is a prime power. Let PG(3, q) be the three-dimensional Desarguesian
projective space defined over a finite field of order q. Let H be a hyperbolic quadric in
PG(3, q), that is, a non-degenerate quadric of Witt index two. One can refer to [9] for the
basic properties of the points, lines and planes of PG(3, q) with respect to the quadric H.
Every line of PG(3, q) meets H in 0, 1, 2 or q + 1 points. We denote by E (respectively,
T1, S, T0) the set of lines of PG(3, q) that intersect H in 0 (respectively, 1, 2, q + 1)
points. The elements of E are called external lines, those of S secant lines and those of
T := T0 ∪ T1 tangent lines. If l ∈ Ti with i ∈ {0, 1}, then l is also called a Ti-line. The
T0-lines are precisely the lines contained in H.

The quadric H consists of (q + 1)2 points and 2(q + 1) T0-lines. Every point of H lies
on two T0-lines. So, |T1| = (q + 1)2(q − 1) and hence |T| = (q + 1)(q2 + 1). Every point
x of PG(3, q) lies on q2 + q + 1 lines of PG(3, q), and q + 1 of them are tangent to H. If
x is a point of H, then the remaining q2 lines through x are secant to H. If x is a point
of PG(3, q) \ H, then x lies on q(q + 1)/2 secant lines and q(q − 1)/2 external lines. We
have |S| = 1

2
q2(q + 1)2 and |E| = 1

2
q2(q − 1)2.
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With the quadric H, there is naturally associated a polarity ζ which is symplectic if
q is even and orthogonal if q is odd. For a point x of PG(3, q), the plane xζ is called a
tangent plane or a secant plane according as x is a point of H or not. For every point x
of H, the tangent plane xζ intersects H in the union of two T0-lines through x. The q+ 1
tangent lines through x are precisely the lines through x contained in xζ . Now let y be a
point of PG(3, q) \ H. Then the secant plane yζ intersects H in an irreducible conic Cy.
If q is even, then y is a point of yζ and is the nucleus of Cy in yζ . In this case, the q + 1
tangent lines through y are precisely the lines through y contained in yζ . If q is odd, then
y is not a point of yζ . In this case, the tangent lines through y are precisely the lines
through y meeting Cy.

If x is a point of H, then we shall denote by πx the tangent plane xζ . If π is a secant
plane with π = yζ for some point y in PG(3, q) \ H, then we also denote by Cπ the conic
Cy in π = yζ and thus Cπ = π ∩H.

There are (q + 1)2 tangent planes and q3 − q secant planes. Every external line is
contained in q+ 1 secant planes, every secant line is contained in two tangent planes and
q−1 secant planes, every T0-line is contained in q+ 1 tangent planes, and every T1-line is
contained in one tangent plane and q secant planes. Every point of H is in 2q+ 1 tangent
planes and q2 − q secant planes. Every point of PG(3, q) \ H is in q + 1 tangent planes
and q2 secant planes.

An ovoid of H is a set of points intersecting each T0-line in a unique point. Every
ovoid of H has exactly q + 1 points. For every point y of PG(3, q) \ H, the conic Cy in
the secant plane yζ is an ovoid of H.

1.2 Blocking sets in PG(3, q)

Let X be a point-line geometry and L a given nonempty subset of the line set of X . A
set B of points of X is called an L-blocking set if each line of L contains at least one
point of B. Blocking sets in various geometries with respect to varying sets of lines have
been studied by several authors. The first step in this regard has been to determine the
smallest cardinality of a blocking set and, if possible, to describe all blocking sets of that
cardinality.

Now consider X = PG(3, q). If L is the set of all lines of PG(3, q) and B is an
L-blocking set, then |B| ≥ q2 + q + 1 and equality holds if and only if B is a plane of
PG(3, q). This follows from a more general result by Bose and Burton [6, Theorem 1].
Biondi et al. characterized the minimum size E-blocking sets in [4, Theorem 1.1] for q ≥ 8
even (also see [11, Section 3] for a different proof which works for all even q) and in [5,
Theorem 2.4] for q ≥ 9 odd. When q > 2 is even, the minimum size (E∪ S)-blocking sets
were determined in [13, Theorem 1.3] using the properties of generalized quadrangles. For
L ∈ {S,T∪S,E∪S}, the minimum size L-blocking sets are described in [12] for all q. We
shall prove the following in this paper.

Theorem 1.1. Let B be an (E ∪ T)-blocking set in PG(3, q), where q ≥ 3. Then |B| ≥
q2 + q with equality if and only if B = πx \ {x} for some point x of H.

2



We note that Theorem 1.1 was proved in [11, Proposition 1.5] for q even, however, the
arguments used in [11] can not be applied for odd q. When q = 2, a similar result holds
with one more class of examples of (E ∪ T)-blocking sets of minimum size six, see [11,
Proposition 1.5(i)(b)]. Here our proof of Theorem 1.1 will work for all q ≥ 3 irrespective
of q odd or even. Along the way, we give an alternate proof to characterize the E-blocking
sets of minimum size q2 − q for q odd, which also includes the three smallest values of q,
namely, q = 3, 5, 7.

2 Revisiting E-blocking sets, q odd

Let C be an irreducible conic in PG(2, q). One can refer to [10] for the following basic
properties. Every line of PG(2, q) meets C in 0, 1 or 2 points. A line of PG(2, q) is called
external (respectively, tangent, secant) with respect to C if it meets C in 0 (respectively, 1,
2) points. Suppose that q is odd. Then every point of PG(2, q) \ C lies on 0 or 2 tangent
lines. Such a point is called interior to C in the first case and exterior to C in the latter.
There are q(q−1)/2 interior points and q(q+1)/2 exterior points in PG(2, q) with respect
to C. Every interior point lies on (q+1)/2 external lines and (q+1)/2 secant lines. Every
exterior point lies on (q − 1)/2 external lines and (q − 1)/2 secant lines. Every external
line contains (q + 1)/2 interior points and (q + 1)/2 exterior points. Every secant line
contains (q − 1)/2 interior points and (q − 1)/2 exterior points.

For q odd, Aguglia and Korchmáros characterized in [3, Theorem 1.1] the minimum
size blocking sets of the external lines in PG(2, q) with respect to the conic C.

Theorem 2.1 ([3]). Let A be a blocking set of the external lines in PG(2, q) with respect
to C, where q is odd. Then |A| ≥ q − 1 and the following hold in case of equality:

(i) If q ≥ 9, then |A| = q− 1 if and only if A = l \ C for some line l of PG(2, q) secant
to C.

(ii) If q ∈ {5, 7}, then |A| = q − 1 if and only if one of the following two cases occurs:

(a) A = l \ C for some line l of PG(2, q) secant to C;
(b) A is a suitable set of q − 1 interior points with respect to C.

(iii) If q = 3, then |A| = 2 if and only if one of the following two cases occurs:

(a) A = l \ C for some line l of PG(2, 3) secant to C;
(b) A consists of any two interior points with respect to C.

When q = 3, the possibility stated in Theorem 2.1(iii)(b) was not included in the
statement of [3, Theorem 1.1]. We give a proof of Theorem 2.1(iii) below.

Proof of Theorem 2.1(iii). There are three interior points and three external lines in
PG(2, 3) with respect to C. Every external line in PG(2, 3) contains two interior points.
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So any two interior points will block all the three external lines in PG(2, 3), justifying the
statement in Theorem 2.1(iii)(b).

Conversely, let A = {x, y} be a blocking set of minimum size 2 of the external lines in
PG(2, 3) with respect to C. Then the minimality of |A| implies A∩C = ∅. Let l := xy be
the line of PG(2, q) through x and y. We may assume that l is not secant to C. Suppose
that l is tangent to C. Let z ∈ l be the unique point such that l \ C = {x, y, z}. Then the
unique external line through z would not meet A, a contradiction. So l is external to C.
If at least one of x and y is not interior to C, then there exists a point b ∈ l \ {x, y} which
is interior to C. Then the external line through b, different from l, would be disjoint from
A, again a contradiction. Thus both x and y are interior with respect to C.

We have the following result for the E-blocking sets in PG(3, q) for all q.

Theorem 2.2. Let B be an E-blocking set in PG(3, q). Then |B| ≥ q2 − q, and equality
holds if and only if B = π \ H for some tangent plane π of PG(3, q).

We note that Theorem 2.2 was proved by Biondi et al. in [4, Theorem 1.1] and [5,
Theorem 2.4], with exception of the equality case for some small values of q, namely
q ∈ {2, 3, 4, 5, 7}. In [11, Section 3], a different proof was given to prove the equality case
in Theorem 2.2 for all even q which includes the two smallest values of q (q = 2, 4). In the
rest of this section, our aim is to give an alternate proof of the equality case in Theorem
2.2 which works for all odd q, in particular, for q = 3, 5, 7.

Let B be an E-blocking set in PG(3, q), q odd. As in the proof of [5, Proposition 2.1],
by counting in two ways the cardinality of the set {(x, l) : x ∈ B, l ∈ E, x ∈ l}, it follows
that |B| ≥ q2 − q with equality if and only if B ∩ H = ∅ and each external line contains
exactly one point of B. Suppose now that B has minimum possible size q2 − q.

Lemma 2.3. For any external line l, exactly one of the planes through l contains q points
of B and each of the remaining planes contains q − 1 points of B.

Proof. Let π0, π1, · · · , πq be the q+1 planes through l. Then each πi is a secant plane and
πi ∩B is a blocking set of the external lines in πi with respect to the conic Cπi = πi ∩H.
By Theorem 2.1, |πi ∩B| ≥ q − 1 for each i. Now the lemma follows from the three facts

that B =
q⋃
i=0

(πi ∩B), |l ∩B| = 1 and |B| = q2 − q.

Lemma 2.4. Let π be a secant plane of PG(3, q). Then the following hold:

(i) |π ∩B| ∈ {q − 1, q}.

(ii) If |π ∩B| = q − 1, then π ∩B = l \ Cπ for some secant line l contained in π.

(iii) If |π ∩B| = q, then each point of π ∩B is exterior in π with respect to Cπ.
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Proof. Considering an external line l contained in π, (i) follows from Lemma 2.3. We
prove (ii) and (iii).

Let α (respectively, β) denote the number of points in π ∩ B which are interior (re-
spectively, exterior) with respect to Cπ. Since B ∩ Cπ = ∅, we have α + β = |π ∩ B|.
Consider the following set of point-line pairs:

X = {(x, l) : x ∈ π ∩B, l ∈ E, l ⊆ π, x ∈ l}.

Counting |X| in two ways, we get

α

(
q + 1

2

)
+ β

(
q − 1

2

)
= |X| = q(q − 1)

2
.

This gives
(α + β)q + α− β = q(q − 1). (1)

If |π ∩ B| = q − 1, then putting α + β = q − 1 in (1), we get α = β. Thus, half of
the points of π ∩ B are interior and the other half are exterior with respect to Cπ. Then
(ii) follows from Theorem 2.1, since π ∩B is a blocking set of minimum size q − 1 of the
external lines in π with respect to Cπ.

If |π ∩B| = q, then we have α+ β = q. Then (1) implies that α− β = −q. It follows
that α = 0 and β = q. Thus, all the points of π ∩ B are exterior with respect to Cπ,
implying (iii).

As a consequence of Lemmas 2.3 and 2.4(ii), we have the following.

Corollary 2.5. There exists a secant line l such that l \ H is contained in B.

We now prove Theorem 2.2 for all odd q.

Proof of Theorem 2.2. Consider a secant line l such that l \ H is contained in B and
the planes through it. Let π be any secant plane through l. By Lemma 2.4(i), we have
|π∩B| ∈ {q− 1, q}. Since half of the points of l \H = l \ Cπ are interior in π with respect
to Cπ, Lemma 2.4(iii) implies that |π∩B| 6= q. So |π∩B| = q−1 and hence π∩B = l\H.
It follows that the points of B \ l are contained in the two tangent planes through l. Since
|B \ l| = q2− q− (q− 1) = (q− 1)2, one of the tangent planes through l, say π0, contains
at least (q−1)2/2 points of B \ l. Then π0 contains at least q−1+(q−1)2/2 = (q2−1)/2
points of B and so |B \ π0| ≤ (q − 1)2/2.

We prove that B = π0 \ H. It is enough to show that each point of π0 \ H is in B.
On the contrary, suppose that there exists a point x ∈ π0 \ H which is not in B. There
are q(q − 1)/2 external lines through x and each of them meets B at a unique point
outside π0. This defines an injective map from the set of external lines through x to the
set B \ π0. But such a map is not possible, since q(q − 1)/2 > (q − 1)2/2 ≥ |B \ π0|, a
contradiction.
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3 Proof of Theorem 1.1

We need two results related to blocking sets in PG(2, q). The first of these results was
proved by Aguglia et al. in [1, Theorem 1.2] for q even and in [2, Theorem 1.1] for q odd.
The second one was proved by Giulietti in [8, Theorems 1 and 2].

Proposition 3.1 ([1, 2]). Let C be an irreducible conic in PG(2, q). If A is a blocking
set of the external and tangent lines in PG(2, q) with respect to C, then |A| ≥ q. Further,
equality holds if and only if one of the following three cases occurs:

(i) A = l \ C for some tangent line l;

(ii) A = (l \ C) ∪ {z} for some secant line l, where z is the pole of l if q is odd and the
nucleus of C if q is even;

(iii) q is a square and A = Π \ (Π ∩ C), where Π is a Baer subplane of PG(2, q) such
that Π ∩ C is an irreducible conic in Π.

Proposition 3.2 ([8]). Let C be an irreducible conic in PG(2, q), q even, and let n be
its nucleus. If A is a blocking set of the external lines in PG(2, q) with respect to C, then
|A| ≥ q − 1. Further, equality holds if and only if one of the following three cases occurs:

(i) A = l \ C for some secant line l;

(ii) A = l \ (C ∪ {n}) for some tangent line l;

(iii) q is a square and A = Π \
(

(Π∩C)∪{n}
)
, where Π is a Baer subplane of PG(2, q)

such that Π ∩ C is an irreducible conic in Π.

From Theorem 2.1 and Proposition 3.2, we are able to prove the following.

Lemma 3.3. Let C be an irreducible conic in PG(2, q), and let k be a secant line to C.
If A is a blocking set of the external and tangent lines to C that is disjoint from k, then
A contains at least q points of C := PG(2, q) \ C.

Proof. Suppose to the contrary that A contains at most q − 1 points of C. Since A ∩ C is
a blocking set with respect to the external lines, Theorem 2.1 and Proposition 3.2 then
imply that |A ∩ C| = q − 1. Moreover, A ∩ C is one of the following.

(1) A ∩ C = l \ C for some secant line l. If we put l ∩ C = {x1, x2}, then the fact that
k ∩ A = ∅ implies that k ∩ l = {xi} for some i ∈ {1, 2}. The tangent line through the
point xi 6∈ A would then be disjoint from A, a contradiction.

(2) q ∈ {3, 5, 7} and A ∩ C is a suitable set of q − 1 interior points. But then the
tangent line through a point of k ∩ C (which cannot contain interior points) would be
disjoint from A, a contradiction.

(3) q is even and there exists a tangent line l such that A∩C = l\ (C∪{n}), where n is
the nucleus of C. As k is a secant line, the nucleus n cannot belong to it. As the line k is
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disjoint from A, the unique point x of C on l belongs to k. If y denotes the other point of
C on the line k, then the tangent line through y would be disjoint from A, a contradiction.

(4) q is an even square and A∩ C = Π \
(

(Π∩ C)∪ {n}
)

, where Π is a Baer subplane

of PG(2, q) such that Π∩C is an irreducible conic in Π. Here, n is again the nucleus of C.
Since k is a secant line, we have n 6∈ k. Every line of Π contains a point of A, implying
that k cannot intersect Π in a Baer subline. So, k intersects Π in a unique point, say x.
Since k is disjoint from A, we have that x ∈ Π ∩ C. If y denotes the other point of C on
the line k, then the tangent line through y would intersect Π in the point n and hence be
disjoint from A, which is again impossible.

We now proceed to prove Theorem 1.1. Let B be an (E ∪ T)-blocking set of PG(3, q)
of minimum possible size, where q ≥ 3. Observe that, for every point x of H, the set
πx \ {x} is an (E ∪ T)-blocking set of size q2 + q. So

|B| ≤ q2 + q. (2)

Since B ∩ H blocks every T0-line, we have |B ∩ H| ≥ q + 1. Every external line meets
B outside H. So B \ H is an E-blocking set of PG(3, q) and hence |B \ H| ≥ q2 − q by
Theorem 2.2. Thus, we have

q2 − q ≤ |B \ H| ≤ q2 − 1 (3)

and
q + 1 ≤ |B ∩H| ≤ 2q. (4)

Lemma 3.4. Let π be any plane of PG(3, q). Then the following hold:

(i) If π is a secant plane, then |π ∩B| ≥ q.

(ii) If π = πx is a tangent plane for some point x in H \B, then |π ∩B| ≥ q + 1.

Proof. (i) The set π ∩ B is a blocking set of the external and tangent lines in π with
respect to the conic Cπ. So |π ∩B| ≥ q by Proposition 3.1.

(ii) This follows from the facts that x /∈ B and that each of the q + 1 tangent lines
through x in πx meets B.

For a given T1-line l, we denote by xl the tangency point of l in H, that is, the unique
point of l contained in H. Let T denote the set of all T1-lines l such that |l ∩B| = 1 and
xl 6∈ B.

Lemma 3.5. T is nonempty.

Proof. Let R be the set of all T1-lines l for which xl 6∈ B. Using the upper bound for
|B ∩H| given in (4), we get |R| = [(q + 1)2 − |B ∩H|] (q − 1) ≥ (q2 + 1)(q − 1).

If each line of R meets B in at least two points, then counting the cardinality of the set
Z = {(x, l) : x ∈ B, l ∈ T, x ∈ l} in two ways, we get |B|(q+ 1) = |Z| ≥ 2|R|+ |T \R| =
|R| + |T|. Since |B| ≤ q2 + q and |T| = (q + 1)(q2 + 1), it follows that |R| ≤ q2 − 1, a
contradiction.

7



Lemma 3.6. For every l ∈ T, there exists a secant plane through l containing exactly q
points of B.

Proof. Suppose that this is not the case. By Lemma 3.4, we then know that each of the
q secant planes through l contains at least q + 1 points of B. Since xl /∈ B, the tangent
plane through l contains at least q + 1 points of B. Using the fact that |l ∩ B| = 1, it
follows that all the planes through l together contain at least (q + 1)q + 1 = q2 + q + 1
points of B, a contradiction to (2).

As a consequence of Lemmas 3.5 and 3.6, we have the following.

Corollary 3.7. There exists a secant plane containing exactly q points of B.

Note that there are lines secant to H which are disjoint from B. Otherwise, |B| ≥
q2 + q + 1, as B would be a blocking set with respect to all the lines of PG(3, q).

Lemma 3.8. Let l be a secant line disjoint from B. If πa and πb, for points a, b of H,
are the two tangent planes through l, then at least one of a and b is in B.

Proof. Suppose that none of a and b is in B. By Lemma 3.4, each of πa and πb contains
at least q + 1 points of B and each of the q − 1 secant planes through l contains at least
q points of B. Since l ∩ B is empty, we get |B| ≥ 2(q + 1) + q(q − 1) = q2 + q + 2, a
contradiction to (2).

Now, let π be any secant plane of PG(3, q) containing exactly q points of B. Since
π ∩ B is a minimum size blocking of the external and tangent lines in π with respect to
Cπ, there are three possibilities for π ∩B by Proposition 3.1:

(I) π ∩B = l \ {xl} for some tangent line l contained in π;

(II) π ∩B = (l \ Cπ)∪{α} for some secant line l in π, where α is the pole of l if q is odd
and the nucleus of Cπ if q is even;

(III) q is a square and π ∩ B = Π \ (Π ∩ Cπ), where Π is a Baer subplane of π such that
Π ∩ Cπ is an irreducible conic in Π.

Lemma 3.9. Possibility (I) occurs for every secant plane that contains q points of B.

Proof. Suppose that π is a secant plane containing q points of B for which possibility
(I) does not occur. The number of secant lines in π that are disjoint from π ∩ B is then
equal to 2(q − 1) or (

√
q + 1)(q − √q) =

√
q(q − 1) depending on whether possibility

(II) or (III) occurs. Each of these secant lines is contained in exactly two tangent planes,
implying that the number of points a ∈ H \ Cπ for which πa ∩ π is a secant line disjoint
from π ∩ B is equal to 4(q − 1) or 2

√
q(q − 1). Since |B ∩ H| ≤ 2q by equation (4) and

2q < min{4(q− 1), 2
√
q(q− 1)} for q ≥ 3, there exists a point a∗ ∈ H\ (B ∪Cπ) such that

l∗ := πa∗ ∩ π is a secant line disjoint from π ∩B.
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There are q − 1 secant planes through l∗. For each such plane π′, the set π′ ∩ B
(disjoint from l∗) is a blocking set in π′ of the external and tangent lines to Cπ′ and so
π′∩B contains at least q points of B \H by Lemma 3.3. As a∗ 6∈ B, the tangent plane πa∗
through l∗ contains at least q−1 points of B\H. Hence, |B\H| ≥ (q−1)q+q−1 = q2−1.
As |B \H| ≤ q2− 1 by equation (3), we thus have that |B \H| = q2− 1. As |B| ≤ q2 + q
and q + 1 ≤ |B ∩ H| by equations (2) and (4), we then know that |B| = q2 + q and
|B ∩H| = q + 1.

As mentioned above, there are 2(q − 1) or
√
q(q − 1) secant lines in π disjoint from

π ∩ B. For each such secant line l, we know from Lemma 3.8 that there exists a point
a ∈ B∩H for which πa∩π = l. In this way, we get a collection of N ∈ {2(q−1),

√
q(q−1)}

points of B ∩ H. Since N ≤ |B ∩ H| = q + 1 and q ≥ 3, we find that q = 3 and that
possibility (II) occurs for the secant plane π.

We thus have that q = 3, |B| = q2+q = 12, |B\H| = q2−1 = 8 and |B∩H| = q+1 = 4
(so B ∩ H is an ovoid of H). Moreover, for each of the four secant lines l contained in π
and disjoint from π ∩ B, there exists a unique point a ∈ B ∩H for which πa ∩ π = l and
a unique point b ∈ H \ (B ∪ Cπ) for which πb ∩ π = l. Among the eight points of B \ H,
there are two contained in πb and six contained in the two secant planes through l (recall
Lemma 3.3). So, the tangent plane πa through l cannot contain further points of B \ H.

As l ranges over all four secant lines of π disjoint from π ∩ B, the point a will range
over all four points of B ∩H. As none of the four tangent planes πa, a ∈ B ∩H, contains
points of B \ H, we thus have:

(∗) any T1-line through a point of B ∩H does not contain points of B \ H.

For every point x of PG(3, 3) \ H, the conic Cx in xζ is an ovoid of H. The map x 7→ Cx
from PG(3, 3) \ H to the set of ovoids of H is a bijection (see e.g. [7]). Any two distinct
ovoids of H intersect in at most two points. If x1 and x2 are two distinct points of
PG(3, 3) \H, then x1x2 is a tangent, secant or external line whenever |Cx1 ∩ Cx2| is equal
to 1, 2 or 0, respectively. By (∗), we have

For every x ∈ B \ H, the ovoid Cx is disjoint from B ∩H.

We can now label the points of H by xij, where i, j ∈ {1, 2, 3, 4}, such that two distinct
points xij and xi′j′ of H are incident with a T0-line if either i = i′ or j = j′. Without
loss of generality, we may suppose that B ∩ H = {x11, x22, x33, x44}. Then the ovoids of
H disjoint from B ∩H are the following:

O1 = {x12, x21, x34, x43}, O2 = {x13, x31, x24, x42}, O3 = {x14, x41, x23, x32},
O4 = {x12, x24, x31, x43}, O5 = {x12, x23, x34, x41}, O6 = {x13, x24, x32, x41},
O7 = {x13, x21, x34, x42}, O8 = {x14, x21, x32, x43}, O9 = {x14, x23, x31, x42}.

The collection {Cx | x ∈ B \H} consists of eight of these nine ovoids. So, one of the above
ovoids is missing in this collection.

Suppose one of the ovoids O1, O2 and O3 is missing in the above collection. Without
loss of generality, we may suppose that O1 is the ovoid that is missing. Since O4 ∩ O5 =
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{x12} is a singleton, the two points of PG(3, 3) \ H corresponding to O4 and O5 lie on
the same T1-line through x12. Then the other T1-line through x12 would not contain any
point of B, a contradiction.

Suppose one of the ovoids O4, O5, . . . , O9 is missing in the above collection. Without
loss of generality, we may suppose that O4 is the ovoid that is missing. The ovoids
O4 = {x12, x24, x31, x43} and O′ := {x11, x23, x34, x42} are disjoint and hence correspond
to points y4 and y′ of PG(3, 3) \ H such that the line y4y

′ is external. Denote by y′′ and
y′′′ the other two points of the line y4y

′, and by O′′ and O′′′ the corresponding ovoids of
H. Then {O4, O

′, O′′, O′′′} is a partition of the point set of H in ovoids. So, these ovoids
determine a partition of B ∩H. Since (B ∩H) ∩O4 = ∅ and |(B ∩H) ∩O′| = 1, each of
the ovoids O′′ and O′′′ intersects B ∩H in 1 or 2 points. It follows that none of the points
y4, y

′, y′′, y′′′ belongs to B. This would imply that the external line y4y
′ is disjoint from

B, a contradiction.

By recycling some of the arguments in the proof of Lemma 3.9, we show the following.

Lemma 3.10. We have |B| = q2 + q, |B∩H| = 2q and |B \H| = q2− q. Moreover, there
exist two intersecting T0-lines l0 and l1 such that B ∩H = (l0 ∪ l1) \ (l0 ∩ l1).
Proof. By Corollary 3.7 and Lemma 3.9, there exists a secant plane π containing q points
of B for which possibility (I) occurs. So, there exists a T1-line m contained in π such that
π∩B = m\{xm}. Let l0 and l1 denote the two T0-lines through xm. In the plane π, there
are exactly q secant lines disjoint from π∩B, and each of these lines contains the point xm.
For each of these secant lines l, there exists by Lemma 3.8 a point a ∈ B ∩H, necessarily
belonging to (l0 ∪ l1) \ {xm}, for which πa ∩ π = l. In this way, we get a collection of
q ≥ 3 points belonging to (l0 ∪ l1) ∩ B. So, B ∩ H cannot be an ovoid of H and hence
|B ∩H| > q + 1. As |B| ≤ q2 + q by equation (2), this implies that |B \ H| < q2 − 1.

Suppose now there exists a point a of (l0∪ l1)\{xm} which is not in B. Then πa∩π is
a secant line l disjoint from π∩B. Applying a similar argument as in the proof of Lemma
3.9, each of the q − 1 secant planes through l contains at least q points of B \ H and the
tangent plane πa contains at least q − 1 points of B \ H. This would again lead to the
inequality |B \ H| ≥ q2 − 1, which is impossible.

Hence, all the 2q points of (l0∪ l1)\{xm} belong to B. As |B| ≤ q2+q, q2−q ≤ |B\H|
and |B∩H| ≤ 2q by equations (2), (3) and (4) respectively, this implies that |B∩H| = 2q,
|B \ H| = q2 − q and |B| = q2 + q. Moreover, the 2q points of B ∩ H are precisely the
points of (l0 ∪ l1) \ {xm}.

Invoking Lemma 3.10, we can now prove the following.

Proposition 3.11. There exists a point x of H such that B = πx \ {x}.
Proof. Since B \ H is a set of size q2 − q blocking all external lines, Theorem 2.2 implies
that there exists a point x ∈ H such that B \H = πx \H. Every point y of πx∩H distinct
from x is contained in a T1-line that is not contained in πx. As this T1-line contains a
point of B, we must have y ∈ B. So, πx \ {x} is contained in and hence equal to B (as
both sets contain q2 + q points).
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