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Abstract 

In this study, benzophenone was introduced onto partially hydrolyzed 

poly(2-ethyl-2-oxazoline) (PEtOx-PEI) to prepare a poly(2-ethyl-2-oxazoline)-benzophenone 

(PEtOx-BP) copolymer, which was used to produce water stable nanofibers via aqueous 
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electrospinning and photocrosslinking. Three different ultraviolet (UV) irradiation methods, 

i.e. pre-crosslinking before electrospinning, in-situ crosslinking during electrospinning and 

post-crosslinking after electrospinning, were used to prepare crosslinked nanofibers. The 

influence of UV-irradiation at these different stages of the nanofiber production process was 

investigated in terms of alterations in viscosity, nanofiber morphology and water stability of 

the fibers. It was shown that pre-crosslinking the polymer solutions had a great influence on 

the solution viscosity which could both positively or negatively alter the stability of the 

electrospinning process. Whereas the strategy of crosslinking nanofibers during the 

production process did not lead to uniform nor water-stable nanofibers, the pre-crosslinking 

and post-crosslinking strategies greatly increased the water stability of the nanofibers. In 

both techniques the crosslinking density and therefore water solubility can be easily tuned 

by manipulating the polymer concentration, UV-irradiation time and membrane thickness. 

Complete insolubility, i.e. the formation of crosslinked networks, was achieved by the 

post-crosslinking strategy. This work provides straightforward methods to increase the water 

stability of the PEtOx nanofibers, which will definitely be of great value to biomedical 

applications such as drug delivery and tissue engineering. 

 

 

Keywords: electrospinning; poly(2-ethyl-2-oxazoline); benzophenone; UV-irradiation; 

crosslinking; nanofibers 
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1. Introduction 

Electrospun (nano)fibrous membranes are characterized by a small diameter and high 

porosity resulting in a large specific surface area, which makes them attractive for biomedical 

applications, including tissue engineering, wound care, and drug delivery[1-8]. Solvent 

electrospinning is the most commonly applied technique for the production of such 

nanofibers[9]. For future industrial applications of electrospinning as well as for biomedical 

applications of the nanofibers, the use of green, non-toxic solvents, such as water, becomes 

increasingly important[10]. Naturally derived biopolymers, such as collagen, silk fibroin and 

gelatin, have recently been used to form electrospun nanofibers from aqueous 

solutions[11-13]. On the other hand, also synthetic, water-soluble polymers, such as 

poly(2-alkyl/aryl-2-oxazoline)s (PAOx) and poly(N-isopropylacrylamide) (PNIPAM), have been 

used to prepare nanofibers based on electrospinning from aqueous solvent systems[14, 15]. 

These synthetic polymer based electrospun materials offer a versatile alternative to naturally 

derived biopolymers [16-18]. For instance, they have been applied as an artificial scaffold for 

tissue engineering or as a medium for drug delivery as they are characterized by low 

cytotoxicity, good cell viability and biocompatibility [19, 20]. 

 

The major disadvantage of using water-soluble polymers for electrospinning is, however, the 

lack of water stability of the produced nanofibers, which impedes their use in humid 

environments or in direct contact with water. A crosslinking treatment to improve the water 

stability of the nanofibers is therefore desired. In general, crosslinking of electrospun 

nanofibers is performed either before or after the production process [21, 22]. Several 

crosslinking strategies have been reported, including ultraviolet (UV-) irradiation or 

dehydrothermal treatment (DHT), and using crosslinking agents such as dicumyl peroxide 

(DCP), glutaraldehyde (GA) and citric acid (CA) [23-26].  

 

This study focuses on poly(2-ethyl-2-oxazoline) (PEtOx), which is a biocompatible, hydrophilic 

member of the PAOx class and can be synthesized by cationic ring-opening polymerization 

(CROP) of the corresponding 2-ethyl-2-oxazoline monomer[27]. PEtOx is very hydrophilic, 

enabling electrospinning from water. Additionally, the polymer is characterized by high 

thermal and mechanical stability, low toxicity and biocompatibility, making it an interesting 

material for many applications including biomedicine [28-32]. Aqueous electrospinning of 

PEtOx was already reported in earlier work [14, 33]. However, the produced PEtOx 

nanofibers are not stable in moist environments due to their inherent hygroscopic and 

hydrophilic nature. The nanofibrous membranes should therefore be crosslinked to enable 

their use in long-term biomedical applications. Hoogenboom et. al. described the successful 

and straightforward partial hydrolysis of PEtOx to obtain 

poly(2-ethyl-2-oxazoline)-stat-polyethyleneimine (PEtOx-PEI) copolymers, which contain 

secondary amine moieties which can be subsequently functionalized[34]. With the help of 

crosslinking agents, the polymer chains can subsequently be crosslinked via these reactive 

moieties. In previous work, we developed water-stable PEtOx nanofibers via in situ 

photoinitiated radical thiol-ene crosslinking during electrospinning from a DMF/THF 

solution[16]. Recently, we reported aqueous electrospinning of selenol-functionalized PEtOx 



  

4 
 

which were in situ crosslinked in air during the electrospinning process[35]. However, both 

approaches have their limitations: the first approach was non-compatible with an aqueous 

electrospinning process while the PEtOx-PEI-SeH polymer solutions prepared in the second 

approach were unstable and difficult to be preserved for a long time. Furthermore, the 

crosslinked nanofibers obtained by these two approaches significantly swelled after being 

immersed in deionized water. Finally, the reported methods required significant organic 

synthesis to either prepare a functional 2-oxazoline monomer or a selenolactone reagent. 

Therefore, in this study, we aimed to develop a simpler, more stable and controllable strategy 

to enable crosslinking of PEtOx nanofibers electrospun from water. 

 

In this work, the hydrolysis of PEtOx into PEtOx-PEI is followed by covalent attachment of the 

photoinitiator benzophenone (BP) to the secondary amine groups. Crosslinking is 

subsequently achieved by UV-irradiation before, during or after the electrospinning process, 

leading to radical addition of benzophenone to neighboring polymer chains. In general, it is 

accepted that UV-treatment of benzophenone leads to its radical induced addition to alkyl 

chains, albeit different mechanisms have been reported [36, 37]. Most reported 

UV-crosslinking procedures for nanofibers were performed during the electrospinning 

process [38-40], although there are also a few studies available on UV-crosslinking post 

nanofiber preparation [26, 41]. The present work studies the three different strategies and, 

as such, provides insights on the UV-irradiation effects at different stages, i.e. before, during 

and after the nanofiber production process. It is shown that the UV-irradiation time and 

PEtOx-BP concentration both influence the nanofiber morphology as well as the degree of 

crosslinking. The present work aims to demonstrate the feasibility of fabricating stable PEtOx 

nanofibers by a reproducible photo-crosslinking technology.  

 

2. Experimental Section 

 

2.1 Materials 

Poly(2-ethyl-2-oxazoline) (PEtOx; tradename Aquazol® 200; Mw 200,000 and Ð 3-4) was 

supplied by Polymer Chemistry Innovations, Inc. (Tucson, USA). 4-Benzoylbenzoic acid, 

thionyl chloride (97%), dichloromethane (DCM), hydrochloric acid (HCl, 37%), sodium 

hydroxide (NaOH), sodium carbonate and toluene were purchased from Sigma Aldrich. All 

chemical reagents were of analytical grade and used as received. 

 

2.2 Synthesis experimental 

Synthesis of poly (2-ethyl-2-oxazoline)-co-polyethyleneimine (PEtOx-PEI)  

According to the methods described previously [34], the partial hydrolysis of PEtOx was 

achieved as follows. First, the freeze dried PEtOx (50 g) polymer was dissolved in deionized 

water (500 mL) in a three-neck round-bottom flask equipped with a magnetic stirring bar and 

stirred at room temperature. After dissolution of PEtOx, 50 mL of HCl (37%) was added; the 

mixed solution was stirred at 75 °C for a reaction time of 2.5 h. Subsequently, the released 

propionic acid was neutralized (up to pH 9) with 1 mL of a 4 M NaOH solution. The 

neutralized product was dialyzed for 3 days. Finally, the PEtOx-PEI polymer was freeze dried 
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from water, obtaining a white powder. The degree of hydrolysis in the PEtOx-PEI copolymer 

was determined by 1H nuclear magnetic resonance (NMR) spectroscopy to be 4.5 mol% 

(Figure S1), calculated by the integral ratio between the peaks at 2.6−2.8 ppm (PEI backbone) 

and 3.2−3.5 ppm (PEtOx backbone)[42]. 

 

Synthesis of 4-benzoylbenzoyl chloride 

In a typical acid chloride synthesis procedure, thionyl chloride (45 mL, 73.40 g, and 0.6169 

mol) was added in a single portion to 4-benzoylbenzoic acid (15.01 g, 0.0663 mol) in dry 

DCM (150 mL), under an argon atmosphere. The reaction mixture was heated to reflux and 

stirred for 12 h. The resulting clear solution was concentrated by removing the excess thionyl 

chloride and DCM using a rotary evaporator. Upon removal of the residual amount of thionyl 

chloride with toluene (100 mL), pure 4-benzoylbenzoyl chloride was obtained as fine white 

crystals. This product was used as obtained without further purification. 

 

Synthesis of the benzophenone functionalized poly(2-ethyl-2-oxazoline)-stat-(ethylene 

imine) copolymer (PEtOx-BP) 

4-Benzoylbenzoyl chloride (2.49 g, 0.0102 mol) was added to PEtOx-PEI ( 30 g, 0.0069 mol 

PEI units) in dry DCM ( 400 mL), in total 1.43 excess of 4-benzoylbenzoyl chloride was used. 

Subsequently, 38.66 mL of triethylamine (TEA) was added dropwise. The reaction was stirred 

at room temperature for 3 days. During the preparation of PEtOx-BP, the flask was covered 

with aluminum foil to exclude the effects of (UV) light. The DCM was removed by a rotary 

evaporator, and the polymer was dissolved in deionized water. Then, the polymer was 

dialyzed and freeze dried. Conversion of PEtOx-PEI with 4-benzoylbenzoyl chloride was 

determined with 1H NMR analysis to be 99 − 100% by comparing the integrated areas of 

characteristic signals of 2.6−2.8 ppm (PEI backbone) and 7.4−7.8 ppm (benzene ring) in 

Figure S1. 

 

Aqueous electrospinning 

The PEtOx-BP electrospinning solutions were prepared by dissolving the polymer in 

deionized water at various concentrations (15−30 wt%). Homogeneous solutions were 

obtained after stirring overnight at room temperature. During all experimental steps, the 

PEtOx-BP solutions were covered with aluminum foil. Electrospinning experiments were 

performed on a mono-nozzle setup with an 18-gauge needle, a tip-to-collector distance of 15 

cm and a flow rate of 1 mL/h. The voltage was adapted in the range from 12 kV to 20 kV to 

enable a stable electrospinning process. To produce larger scale and thicker membranes (A4 

size, 5 g/m2) a rotating drum set-up was used with the same electrospinning conditions. All 

the electrospinning experiments were conducted at a relative humidity of 40 ± 10% and a 

temperature of 23 ± 3°C. 

 

UV-irradiation 

The applied UV-reactor was constructed from an 11 W UV-lamp. Pre-crosslinking was 

performed by irradiating the PEtOx-BP solutions prior to electrospinning. A bottle containing 

10 mL of polymer solution was put in a 100 mL beaker, and the sides and top of the beaker 

were covered with aluminum foil. Meanwhile, the beaker was placed on a magnetic stirrer in 
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a climate chamber at 23°C and 40% relative humidity. The UV-lamp was approximately 5 cm 

from the solution, and UV-treatment was carried out over 3, 6 and 12 hours. Crosslinking 

during the electrospinning process was carried out by placing two UV-lamps on both sides of 

the electrospinning jet. The distance between the needle and the UV-lamp was varied from 

1cm to 20cm. Post-crosslinking of the produced nanofibers was performed by exposing the 

membranes to the UV-lamp at a distance of 3cm, under acclimatized conditions with the 

temperature fixed at 23°C and the relative humidity was varied from 30% to 90% relative 

humidity. The irradiation times varied from 10 min to 30 min.  

 

2.3 Characterization 

 

Water stability test 

All the PEtOx-BP nanofibers (original samples, pre-crosslinked samples, post-crosslinked 

samples and samples crosslinked during the electrospinning process) were cut into samples 

with a size of 1 cm x 3 cm and immersed in 3 mL of deionized water at room temperature for 

prolonged periods of time. 

 

Rheological measurements 

The rheological behavior (viscosity) of the PEtOx-BP solutions was determined with an 

MCR302 rheometer (Anton Paar). The tests were performed with a shear rate ranging from 1 

to 10 s-1 at a temperature of 25 °C. An upper, rotating measuring plate with a diameter of 25 

mm was used together with a fixed parallel plate (diameter of 52 mm). 

 

Scanning electron microscopy (SEM)   

The morphology of the electrospun membranes was examined using an FEI Quanta 200F 

Scanning Electron Microscope (SEM) operating at an accelerating voltage of 20 kV. A gold 

coating was applied on all the samples using a sputter coater (Balzers Union SKD030) prior to 

SEM observation. The nanofiber diameters were measured using ImageJ software, and the 

average fiber diameters and standard deviations were calculated based on the SEM images 

by performing 50 measurements per sample. 

 

NMR spectroscopy 
1H NMR spectra were obtained on a Bruker Avance 400 MHz spectrometer with CDCl3 as a 

solvent. Chemical shifts (δ) are expressed in ppm relative to the signal of trimethyl silane 

(TMS) used as an internal standard. 

 

3. Results and Discussion 

 

3.1 Synthesis of benzophenone functionalized poly(2-ethyl-2-oxazoline) (PEtOx-BP) 

copolymer  

As shown in Scheme 1, the approach for the preparation of PEtOx-BP copolymers consists of 

a three-step synthetic protocol. In the first step, the partial hydrolysis of a commercial grade  

PEtOx polymer, i.e. Aquazol® 200, was performed under acidic conditions and basic work-up, 
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as described in literature[34] (Step I of Scheme 1). In the second step, 4-benzoylbenzoyl 

chloride was synthesized to enhance the reactivity of the 4-benzoylbenzoic acid for the 

coupling onto the synthesized copolymer in step I (Step II of Scheme 1). In the last step, 

PEtOx-PEI and 4-benzoylbenzoyl chloride were mixed in dry DCM using TEA to deprotonate 

the secondary amine in the PEtOx-PEI copolymer to yield the PEtOx-BP copolymer (Step III of 

Scheme 1). The 1H NMR spectrum (Fig. S1) of PEtOx-BP reveals the disappearance of the PEI 

signals at 2.6−2.8 ppm while new signals appeared at 7.4-7.8 ppm illustrating the successful 

incorporation of BP. From the 1H NMR spectrum it could be calculated that a PEtOx-BP 

copolymer was obtained with an approximate content of 4.5 mol% benzophenone. 

 

 

 

 

 

 

Scheme 1. (I), Partial hydrolysis of PEtOx, (II) activation of benzophenone acid with thionyl chloride and (III) 

reaction of PEtOx-PEI with 4-benzoylbenzoyl chloride (II).  

 

 

3.2 Electrospinning and crosslinking of PEtOx-BP 

 

The synthesized PEtOx-BP was subsequently electrospun from water at different polymer 

concentrations. As shown in Figure 1, the solution viscosity increased from 38 mPa·s to 3429 

mPa·s with increasing PEtOx-BP concentration from 15% to 30% because of the increasing 
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amount of polymer chain entanglements in the solution. 

 

 
 
Figure 1. Viscosity versus shear rate plots of 15, 20, 25 and 30 wt% PEtOx-BP. 

 

The respective SEM images (Figure 2) of the PEtOx-BP nanofibers obtained by 

electrospinning these solutions revealed that not enough chain entanglements were present 

in the 15 wt% polymer solution, resulting mainly in the formation of beads rather than 

nanofibers (Figure 2a). When the PEtOx-BP concentration was increased to 20 wt%, the 

number of beads decreased dramatically, and the formation of elongated beaded and fibrous 

structures with a diameter of 717 ± 492 nm was observed (Figure 2b). In a typical 

electrospinning process, the fiber morphology changes from beaded fibers to uniform fibers 

upon increasing the concentration or viscosity of the polymer solution[43]. Indeed, polymer 

solutions with 25 wt% and higher resulted in the formation of uniform, bead-free nanofibers 

(Figure 2c), whereby the nanofiber diameters increased as the concentration increased (from 

735 ± 103 nm for 25 wt% to 811 ± 92 nm for 30 wt%). This increase in fiber diameter can be 

subscribed to the higher solution viscosity at higher polymer concentrations. 

 

 

 
Figure 2. Representative SEM images of PEtOx-BP nanofibers: (a) 15 wt% PEtOx-BP, (b) 20 wt% PEtOx-BP, (c) 25 wt% 

PEtOx-BP, and (d) 30 wt% PEtOx-BP. 

 

3.2.1 Pre-crosslinking of electrospinning solutions 
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Pre-crosslinking is realized by UV-irradiation of the PEtOx-BP solutions in a closed cabinet 

prior to electrospinning. The radical addition of benzophenone to neighboring polymer 

chains is utilized to covalently crosslink the polymer leading to an increase in molar mass and, 

as a result, the viscosity of the solutions is increased with longer UV-irradiation times. For 

example, before UV-irradiation, the viscosity of the 15 wt% PEtOx-BP solution was only 38.3 

mPa·s (Figure 3), which inevitably led to the formation of beads during the electrospinning 

process (Figure 4a). However, upon prolonged UV-irradiation times of 3 hours and 6 hours 

the viscosity increased to 55.8 and 91 mPa·s respectively, which led to the formation of 

uniform nanofibers (Figure 4b and c). This viscosity (91 mPa·s) is still much lower than the 

viscosity needed to obtain uniform nanofibers from the non-crosslinked PEtOx-PEI solutions 

(1983.7 mPa·s), requiring a polymer concentration of 25 wt%. This difference indicates that 

the introduction of chemical crosslinks, over physical crosslinks (i.e. chain entanglements), 

enhances the electrospinability of the polymer.  Hence, this explains the lower 

concentration needed for chemically crosslinked BP polymers in comparison to the 

non-crosslinked PEtOx polymer. Because of the lower viscosity also the nanofiber diameters 

are smaller (567±65 nm compared to 735 ± 103 nm of nanofibers spun from 25 wt% 

non-crosslinked PEtOx-PEI solutions). Furthermore, pre-crosslinking leads to the formation of 

branched polymers with higher molar mass that aids the formation of bead-free fibers[44]. 

The strategy of pre-crosslinking is thus a good alternative to spin low-viscosity polymer 

solutions that otherwise need a high polymer concentration for electrospinning. When the 

UV-irradiation time was further increased to 12 hours, the viscosity of the resulting solution 

became too high for electrospinning. Although the amount of crosslinking can thus be easily 

tuned by the UV-irradiation time, the degree of crosslinking is limited to the viscosity 

window available for stable electrospinning. SEM-images of the 25wt% and 30wt% 

pre-crosslinked nanofibers can be found in Figure S2.  

 

 

 
Figure 3. Plots of viscosity versus shear rate for 15 wt% PEtOx-BP solution and pre-crosslinking from 15 wt% 

PEtOx-BP solution of 3 and 6 hours UV-irradiation. 
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Figure 4. SEM images of pre-crosslinked nanofibers electrospun from 15 wt% PEtOx-BP solution: (a) 15 wt% 

PEtOx-BP untreated reference sample, (b) 15 wt% PEtOx-BP, exposed to UV-irradiation for 3 hours and (c) 15 wt% 

PEtOx-BP, exposed to UV-irradiation for 6 hours. 

 

To test if crosslinking of the nanofibers by UV-irradiation was successful and sufficient to 

obtain stability in aqueous environments, the photo-irradiated membranes were immersed 

in water for several periods of time. In contrast to non-crosslinked PEtOx-BP nanofibers that 

immediately dissolve when added into water, the nanofibers electrospun from UV-irradiated 

polymer solutions did not dissolve instantaneously. The pre-crosslinked nanofibers 

electrospun from the 15 wt% polymer solutions dissolved slowly over a few hours while the 

pre-crosslinked nanofibers electrospun from 25 wt% and 30 wt% PEtOx-BP solutions even 

remained stable for two weeks. This increase in water stability can be ascribed to increased 

chain entanglements resulting from the higher molar mass of the partially crosslinked 

polymers and potentially from enhanced chain entanglements resulting from branching of 

the polymer structures (Figure S3). The extent of crosslinking is, however, limited by the 

respective increase in viscosity which eventually inhibits a stable electrospinning process. 

Although these results clearly indicate that pre-crosslinking the polymer solutions by 

UV-irradiation allows to increase the water stability of the produced nanofibers, complete 

insolubility cannot be achieved. On the other hand, this pre-crosslinking strategy enables to 

tune the crosslinking density easily by adapting the polymer concentration and 

UV-irradiation time to the requirements of the foreseen application. Such control over the 

dissolution time of the nanofibers may be beneficial for tuning drug release rates from such 

materials, which is the focus of ongoing work. 

 

3.2.2 Crosslinking during electrospinning 

Instead of crosslinking the polymer solutions prior to electrospinning, the nanofibers can 

also be crosslinked by so-called UV-irradiation on the fly. In this approach, a higher amount 

of crosslinks might be achieved without compromising the electrospinnability of the solution 

because of too high viscosities. For this strategy, the UV-lamp is placed close to the 

electrospinning jet with the distance between the UV-lamp and the needle being an 

important parameter of the process as also the UV-lamp can be seen as a grounded collector. 

Although this strategy sounds promising, the electric field was highly disturbed by the 

presence of the UV-lamp resulting in an unstable electrospinning process. Although this 

crosslinking strategy resulted in some interesting fiber morphologies such as very short fibers, 

the sample reproducibility was too low (Figure S4) to enable future upscaling and was 
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therefore not further investigated. Further the water stability tests showed the obtained 

membranes dissolved within a few seconds after immersion in deionized water. As such the 

strategy of crosslinking the nanofibers during electrospinning did not lead to uniform nor 

water-stable nanofibers.  

 

3.2.3 Post-crosslinking of electrospun nanofibers 

Because electrospun nanofibers are characterized by a high specific surface area, 

UV-irradiation of the membranes after electrospinning may be anticipated to result in a high 

degree of crosslinking that may not be achievable by the previous strategies. For 

post-crosslinking the diameter of PEtOx-BP nanofibers was found to be an important 

parameter, which was regulated by controlling the concentration of the PEtOx-BP solutions in 

this study. Meanwhile, the relative humidity during photo-crosslinking was found to be 

another key parameter and the relative humidity was set from 30% to 90% as shown in Table 

1. Crosslinking did not occur when the relative humidity was below 60%, presumably due to 

limited chain mobility at lower relative humidity. A high relative humidity showed to be 

critical to allow for crosslinking and PEtOx-BP nanofibers with a larger diameter could be 

successfully crosslinked at a relative humidity between 65% and 75%. The thinner PEtOx-BP 

nanofibers were more difficult to crosslink, ascribed to a too small number of polymer chains 

to get a homogeneous crosslinking of the PEtOx-PEI with rather low BP functionalization 

degree. When the relative humidity during crosslinking was further increased above 80%, 

the PEtOx nanofibers disappeared in a few minutes due to the fast water-uptake and 

subsequent dissolution of the nanofibers, already before the crosslinking reaction could 

occur. In this study, the optimal conditions for photo-crosslinking of the electrospun 

PEtOx-BP nanofibers were found to be 23°C and 70% relative humidity as controlled in a 

climate chamber. Under these conditions, the morphology of the nanofibers electrospun 

from 25 wt% and 30 wt% PEtOx-BP solutions was well-preserved during a post-crosslinking 

treatment of 10 min (Figure 5). However, longer irradiation times of 30 min led to loss of 

nanofiber integrity due to exposure to the increased temperature produced by 

UV-irradiation, again posing a limit to the possible amount of crosslinking (Figure S5). The 

loss of fiber integrity could be prevented by producing thicker nanofibrous membranes. This 

even allowed for an improved crosslinking of the smaller diameter nanofibers, electrospun 

from 20 wt% PEtOx-BP solutions, by exposing them for a prolonged time (Figure S6a). Where 

the thinner nanofibrous membranes already lost their integrity after 10 min of UV-irradiation, 

the morphology of the thicker membranes (with a similar fiber diameter) was not altered by 

the post-crosslinking treatment (Figure S6b). 

 

Table 1. Overview of the results obtained for post-electrospinning photo-irradiation of the electrospun PEtOx-BP 

nanofibers(15-30 wt%) at 23°C and different relative humidity. 

Samples Below 60%  Between 65% and 75% Above 80% 

15 wt% PEtOx-BP non-crosslinked non-crosslinked dissolved 

20 wt% PEtOx-BP non-crosslinked poor-crosslinked dissolved 

25 wt% PEtOx-BP non-crosslinked crosslinked dissolved 
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30 wt% PEtOx-BP non-crosslinked crosslinked dissolved 

 

 
Figure 5. SEM images of the post-crosslinked nanofibers electrospun from 25 wt% and 30 wt% PEtOx-BP solution 

with a 10 min UV-irradiation: (a) 25 wt% PEtOx-BP nanofibers and (b) 30 wt% PEtOx-BP nanofibers. 

 

Where the post-crosslinked membranes electrospun from 15 wt% PEtOx-BP solutions 

dissolved instantaneous on contact with water, the samples based on 20 wt% PEtOx-BP 

solutions partially dissolved in water after 6 hours of immersion, probably because the 

nanofibers were not yet perfectly uniform and the crosslinking density was not high enough 

to provide sufficient water stability. However, thicker electrospun membranes, based on the 

20 wt% solutions, were stable in water for at least 24 hours without loss of fiber integrity 

(Figure 6a). This again indicates that thicker nanofibrous membranes are less prone to 

solubilization as was observed for the post-UV-treatment at 70% relative humidity. Further 

increasing the fiber diameter resulted in a further improved water stability. For both the 25 

wt% and 30 wt% polymer solutions the nanofiber integrity was preserved and these 

membranes remained stable even after submerging in deionized water for one month 

(Figure S7). Where a minor swelling is still noticeable for the post-crosslinked nanofibers 

electrospun from the 25 wt% polymer solutions (Figure 6b) the 30 wt% polymer solution 

based nanofibers did not show this swelling behavior at all, possibly because of their larger 

diameter and more efficient crosslinking (Figure 6c). It can thus be concluded that, for 

nanofibers with appropriate diameters, the post-UV-irradiation strategy enables sufficient 

crosslinking to provide complete long term water stability. 

 

 

 

Figure 6. SEM images of the post-crosslinked nanofibers immersed in water for 24 h: (a) electrospun 20 wt% 

PEtOx-BP nanofibers (5 g/m2), (b) electrospun 25 wt% PEtOx-BP nanofibers, and (c) electrospun 30 wt% PEtOx-BP 

nanofibers. 
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4. Conclusions  

This work aimed to broaden the scope of PEtOx nanofibers by making them stable in 

aqueous environments through three different crosslinking strategies. First, crosslinking sites 

were introduced on the polymer backbone by partially hydrolyzing PEtOx, forming PEtOx-PEI 

statistical copolymers. Benzophenone was subsequently linked to these sites, enabling 

crosslinking of the polymer by UV-irradiation. UV-irradiation was then performed either 

before, during or after electrospinning from aqueous solutions, whereby it was found that no 

stable electrospinning process could be obtained for the approach where photo-crosslinking 

is performed during the electrospinning. Uniform, bead-free nanofibers were successfully 

obtained with both the pre-crosslinking and post-crosslinking strategy yielding water-stable 

nanofibers. The results indicated that the polymer concentration, UV-irradiation time and 

thickness of the membranes played an important role in the water-stability of the 

membranes. It was shown that the viscosity of the polymer solutions increased drastically 

during the pre-crosslinking treatment, which could enhance the electrospinnability of 

low-viscosity solutions. The pre-crosslinking strategy could not provide sufficient crosslinking 

density for complete insolubility due to viscosity limitations prior to the electrospinning 

process, yet enabled simple tunability of the crosslinking density and thus water solubility by 

altering polymer concentration or UV-irradiation times. With the post-crosslinking strategy 

on the other hand completely water-stable nanofibers were obtained. Thanks to these 

straightforward crosslinking strategies, water-insoluble PEtOx nanofibers can easily be 

produced, which greatly enhances their applicability in biomedical applications such as drug 

delivery and tissue engineering. 
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Supporting information 
 

 

Figure S1. 
1
H NMR spectra of PEtOx-PEI and PEtOx-BP. 

 

 

 
 
Figure S2. SEM images of pre-crosslinked nanofibers electrospun from 25 wt% and 30 wt% PEtOx-BP solutions, 

exposed to UV-irradiation for 6 hours: (a) 25 wt% PEtOx-BP and (b) 30 wt% PEtOx-BP. 
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Figure S3. Viscosity versus shear rate plots of pre-crosslinked 15, 25 and 30 wt% PEtOx-BP solution of 6 hours 

UV-irradiation. 

 

 
Figure S4. SEM images of 25 wt% electrospun PEtOx-BP nanofibers of UV-irradiation during electrospinning: (a) 

short nanofibers and (b) non-uniform nanofibers. 
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Figure S5. SEM images of the post-crosslinked nanofibers electrospun from 25 wt% and 30 wt% PEtOx-BP solution 

with a 30 min UV-irradiation: (a) 25 wt% PEtOx-BP nanofibers and (b) 30 wt% PEtOx-BP nanofibers. 

 

 

 

 
 
Figure S6.  SEM images of 20 wt% PEtOx-BP nanofibers electrospun on a rotating drum: (a) 20 wt% PEtOx-BP 

nanofibers and (b) post-crosslinked nanofibers electrospun from 20 wt% PEtOx-BP solution with a 10 min 

UV-irradiation. 

 

 

    
Figure S7. 25 wt% and 30 wt% post-crosslinked PEtOx-BP membranes immersed in deionized water for a month. 
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Highlights 

- Functionalization of poly(2-ethyl-2-oxazline) with benzophenone to enable crosslinking 

- Green electrospinning of poly(2-ethyl-2-oxazoline) nanofibers from water 

- Study of the effect of pre-, in situ, and post-crosslinking by UV-irradiation respectively 

before, during or after the electrospinning process 

- Different crosslinking stages provide variable crosslinking densities resulting in tunable 

water-stability of nanofibrous membranes, of great interest to biomedical applications 

 


