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Abstract. When adopting the trapezoidal section of ribs in orthotropic steel decks, the torsional 

rigidity of ribs losses radically because of rib distortion especially when the load is eccentric 

from the axis of the rib. Hence, the rib distortion causes high stress concentrations at the rib-to-

crossbeam joint which makes this joint easily prone to fatigue. In this paper, the influence of 4 

conventional design parameters on distortional behaviour is investigated by numerical 

simulation adopting the hot spot stress approach and the sub-model analysis technique. A 

refined finite element model of an orthotropic steel deck specimen with the dimension of 8.2 m 

× 4.1 m is built. Research results indicate that the distortional stress rises with the increment of 

the spacing of crossbeam or the weld length of rib-to-crossbeam joint. The thickness of rib is 

negatively correlated with the distortional stress. The influence of the spacing of rib on 

distortional stress depends on the relative size between the width of load area and the spacing 

of rib. The most unfavourable load position is determined by rib geometries, i.e. the thickness 

of ribs, whereas rest three parameters do not have obvious influence. 

1.  Introduction 

The orthotropic steel deck is widely adopted in long-span bridges around the world since it has many 

merits e.g. high load carrying capacity, light weight, rapid construction, etc. However, stress 

concentrations caused by complex structure and the existence of numerous welds have impeded the 

further usage of orthotropic steel deck. According to previous research, there are four positions in total 

where fatigue cracks typically appear: rib-to-deck joint, splice joint of the longitudinal rib, deck plate 

at the position of crossbeam and rib-to-crossbeam joint [1]. Even though relevant research of these 

fatigue-prone details had been reported, the stress concentration at the rib-to-crossbeam joint caused 

by rib distortion was more or less ignored in previous research. 

In orthotropic steel decks, one of the broadly adopted rib geometries is the trapezoidal section. 

Nevertheless, the torsional rigidity of rib is essentially reduced by distortion because of the existence 

of cut-outs in crossbeams, especially when the load is eccentric from the axis of the rib [2]. High stress 

concentrations are caused by the rib distortion at the rib-to-crossbeam joint. Moreover, the eccentric 

load that causes tension stress on one stem of the rib always causes compression stress on the other 

stem of the rib in the meantime. Thus, the rib-to-crossbeam joint carries positive and negative stress 

alternately when vehicles passing by, which makes the joint more vulnerable to fatigue damage. 

Unfortunately, no explicit recommendations on relevant parameters with respect to the influence of rib 

distortion are given in current major design codes. 

http://creativecommons.org/licenses/by/3.0
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This paper presents the influence of a number of classical design parameters on the distortional 

behavior. Firstly, the finite element model of an orthotropic steel deck specimen (8.2 m × 4.1 m) was 

developed. The sub-model including the investigated rib-to-crossbeam joint was also built to achieve a 

more accurate assessment. Then, the influence of the considered parameters was calculated and 

analyzed by getting influence lines of different parameters, which will provide the foundation for 

relevant experiments of the orthotropic steel deck specimen in the nearest future.  

2.  Numerical simulation of rib distortion 

2.1.  Finite element model 

In order to investigate the influence of classical design parameters on the distortional behavior, 

parametric analyses were performed by ANSYS. The standard orthotropic steel deck is composed of 6 

ribs, 3 crossbeams and 2 main girders. The dimensions of the longitudinal ribs are 300 mm high, 300 

mm wide at the top and 125 mm wide at the lower soffit. Relevant geometries are shown in Figure 1. 
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Figure 1. Geometries of the standard orthotropic steel deck (unit: mm) 

Based on the geometries of the standard orthotropic steel deck, a global model was first built using 

shell element with relatively coarse mesh. Then, a sub-model was developed using solid element with 

the reference of the global model, which took the influence of welds into account. The sub-model was 

composed of segmental deck, crossbeam, rib and relevant welds as shown in Figure 2(b). The position 

of the sub-model was at the intersection of the third rib (see Figure 1) and the middle crossbeam, as 

shown in Figure 2(a). The cross section of weld in the sub-model was modelled as a triangular. The 

weld throat thickness of 4 mm was adopted.  
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(a) global model                                                    (b) sub-model 

Figure 2. Finite element models: (a) global model; (b) sub-model 

The numerical simulation is based on linear elastic properties of the material. The modulus of 

elasticity is 210 GPa for steel and the Poisson’s ratio in the elastic stage is 0.3. The structural hot spot 

stress approach is more appropriate for this joint according to previous research [3]. Meanwhile, the 

liner extrapolation method is also adopted. Based on the IIW recommendations [4], two reference 

points are at a distance of 0.4 times and 1.0 times the thickness of the rib separately. The mesh size of 

the elements at the investigated area is 0.1 times the thickness of the rib in order to fit the IIW 

recommendations. Figure 3 displays locations of two reference points and relevant mesh nearby.  

 

Figure 3. Reference points and mesh 

2.2.  Boundary conditions and load case 

The boundary conditions of the global model are based on the real support conditions of the 

orthotropic steel deck specimen. Six bearings are situated at both ends and at the middle of two main 

girders separately. The contact area of a bearing is 80 mm × 80 mm. The boundary condition of the 

sub-model comes from the calculation result of the corresponding global model. Displacements and 

rotations of nodes along the cutting boundary between two models are placed on the sub-model as 

external loads.  

In order to achieve the most unfavourable load position of distortional stress and to analyse the 

influence of different parameters, a movable unit load is considered to get the influence lines of 

distortional stress. The unit pressure of 1 MPa is adopted with the load area of 100 mm wide and 100 

mm long and a load of 10kN. The load path is at the central line between rib 2 and rib 3 as shown in 

Figure 2(a). The interval distance between two loading points is 200 mm. 

2.3.  Results and discussion 
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In total 4 classical design parameters are considered, namely the thickness of rib, the transversal 

spacing of rib, the weld length of rib-to-crossbeam joint and the longitudinal spacing of crossbeam. 

Specially, the thickness of rib is determined by the stiffness of rib, which is normally selected in 

accordance with the traffic category, etc. The second moment of area of ribs acts as the constant 

reference when adjusting the thickness of rib. Relevant models with various parameters are shown in 

Table 1. The hot spot stress of following figures is the average of hot spot stress calculated from the 

two reference lines which are shown in Figure 3. 

Table 1. Parameters of geometries 

Model 

number 

Height 

of 

rib 

(mm) 

Upper 

width 

of 

rib 

(mm) 

Bottom 

width 

of 

rib 

(mm) 

Thickness 

of 

rib 

(mm) 

Spacing 

of 

rib 

(mm) 

Spacing 

of 

crossbeam 

(mm) 

Weld 

length of 

rib-to-

crossbeam 

joint(mm) 

0(standard) 300 300 125 6 300 4000 200 

1 275 - - 8 - - - 

2 255 - - 10 - - - 

3 - - - - 200 - - 

4 - - - - 375 - - 

5 - - - - - 2500 - 

6 - - - - - 5000 - 

7 - - - - - - 150 

8 - - - - - - 240 

2.3.1.  Rib thickness 

Figure 4 shows the influence lines of different rib thicknesses. Generally, the distortional stress 

decreases as the rib thickness increases. On the tension side, the maximum distortional stress decreases 

from 10.27 MPa to 5.27 MPa when the rib thickness increases from 6 mm to 10 mm. On the 

compression side, the maximum distortional stress decreases from 7.94MPa to 4.19 MPa as the rib 

thickness increases. Figure 4 also presents that the most unfavorable load position moves toward the 

middle crossbeam for about 400 mm when the rib thickness changes from 6 mm to 10 mm. 
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(a) tension side                                                     (b) compression side 

Figure 4 Influence lines of different rib thicknesses: (a) tension side; (b) compression side 
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2.3.2.  Rib spacing 

Figure 5 displays the influence lines of different rib spacing. When the rib spacing decreases from 375 

mm to 200 mm, the maximum distortional stress increases from 9.30 MPa to 10.18 MPa on the tension 

side and the maximum distortional stress increases from 7.07 MPa to 8.16 MPa on the compression 

side. According to previous research, when adopting a larger load area, the distortional stress would 

increase when the rib spacing increases [5]. Thus, the load dispersal is correlated with the relative size 

between the rib spacing and the width of load area. The most unfavourable load positions of both sides 

are not influenced by the changes of the rib spacing , which are about 400 mm away from the middle 

span in the direction to middle crossbeam. 
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(a) tension side                                                     (b) compression side 

Figure 5 Influence lines of different spacing of rib: (a) tension side; (b) compression side 

2.3.3.  Crossbeam spacing 

Figure 6 presents the influence lines of different spacing. The distortional stress and the crossbeam 

spacing are also positively correlated crossbeam. On the tension side, the maximum distortional stress 

decreases from 11.57MPa to 6.90MPa as the crossbeam spacing decreases from 5000 mm to 2500 

mm. Meanwhile, on the compression side, the maximum distortional stress decreases from 9.14MPa to 

5.28MPa. The most unfavourable load position is around 1600 mm away from the middle crossbeam, 

which does not change with the crossbeam spacing. 
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(a) tension side                                                     (b) compression side 

Figure 6 Influence lines of different spans: (a) tension side; (b) compression side 

2.3.4.  Weld length of rib-to-crossbeam joint 
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Figure 7 shows the influence line of different weld length of rib-to-crossbeam joint. The distortional 

stress and the weld length of rib-to-crossbeam joint are positively correlated as well. On the tension 

side, the maximum distortional stress increases from 9.32 MPa to 11.18 MPa while the weld length of 

rib-to-crossbeam joint increases from 150 mm to 240 mm. At the same time, on the compression side, 

the maximum distortional stress increases from 6.20 MPa to 9.44 MPa. The most unfavorable load 

position is not affected by the weld length of rib-to-crossbeam joint which remains around 1600 mm to 

the middle crossbeam. 
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(a) tension side                                                     (b) compression side 

Figure 7 Influence lines of weld length of rib-to-crossbeam joint: (a) tension side; (b) compression 

side 

3.  Conclusions 

This paper presents the parametric analysis of 4 classical design parameters on the distortional 

behavior of ribs in orthotropic steel deck. Based on the presented results, the following conclusions 

can be drawn: 

 Among these 4 parameters, the spacing of crossbeam and the weld length of rib-to-crossbeam 

joint have positive correlations with the distortional stress. The rib thickness has a negative 

correlation with the distortional stress. The influence of the rib spacing on distortional stress 

depends on the relative size between the width of load area and the rib spacing, which requires 

further research. 

 The most unfavourable load position of distortional stress is determined by the geometries of 

ribs, whereas rest three considered parameters of this paper do not show obvious influence. In 

this case, the most unfavourable load position of distortional stress is at a distance of about 

1600 mm away from the investigated crossbeam. When the rib thickness increases, the most 

unfavourable load position moves toward the investigated crossbeam.  

 Analysis results will be verified by experiments in the nearest future. Simplified calculation 

method of distortional stress and possible alternatives to reduce the distortional behaviour 

require further research. 
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