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ABSTRACT
In this contribution we present our latest investigations and analysis
on a novel a priori SNR estimator for speech enhancement applica-
tions. It is based on a clean spectral envelope estimation with a deep
neural network (DNN) in the cepstral domain. Furthermore, by in-
tegrating our cepstral excitation manipulation (CEM) approach into
this framework, we obtain not only a smooth and natural background
noise experience, but also achieve noise reduction between harmon-
ics which is not possible with low-order models. We investigate the
performance of the proposed approach in conjunction with three dif-
ferent spectral weighting rules and show improvement of more than
3.5 dB noise attenuation vs. the well-known decision-directed (DD)
approach without a significant trade-off in speech distortion.

Index Terms— a priori SNR, speech enhancement, cepstrum

1. INTRODUCTION

The broad field of speech enhancement comprises various applica-
tions that aim to facilitate the communication between human be-
ings. Among them we find speech presence probability estimation,
voice activity detection, and, e.g., noise reduction. The latter of-
ten uses a real-valued spectral weighting rule [1] in the frequency
domain for a bin-wise noise suppression of a noisy microphone sig-
nal’s amplitudes. These weighting rules are usually a function of
the a priori signal-to-noise ratio (SNR) and oftentimes also of the a
posteriori SNR.

The well-known decision-directed (DD) approach [2] defines an
a priori SNR estimate that depends both on the past a priori SNR
and the a posteriori SNR to obtain the estimate. Although the DD
technique suffers from its incapability to track sudden changes of the
true SNR, it is still regarded as classical state of the art.

Among the numerous more recent publications that investigate
different a priori SNR estimation approaches [3, 4, 5, 6, 7], a gen-
eralized version of the DD approach has been proposed recently by
Chinaev and Haeb-Umbach [8]. The method operates in a general-
ized spectral domain instead of the power domain. The authors show
improved performance for high global SNR conditions for the gen-
eralized approach, while the original method, operating in the power
domain, shows optimal behavior in low-SNR conditions.

Stahl and Mowlaee introduced a harmonic signal model for a
priori SNR estimation in [9]. The model allows to interpolate be-
tween frequency bins and thus to smooth the a priori SNR according
to harmonic trajectories. Thereby, the authors show improved noise

attenuation capability without introducing additional speech distor-
tion compared to the DD approach.

Furthermore, the incorporation of other models has been investi-
gated in the recent past [10, 11, 12, 13], showing some improvement
over the DD approach.

Very recently we proposed a novel a priori SNR estimator [12]
based on cepstral excitation manipulation (CEM), which exploits the
human speech production model. Its core features are the improve-
ment of noise attenuation between harmonics and also the preserva-
tion of weak harmonic structures. Therein, we could show a more
balanced and thus enhanced performance over the DD approach and
also over two further, more recent a priori SNR estimators [4, 5].
Accordingly, both the DD and the CEM a priori SNR estimator serve
as baselines for this work. Most recently we proposed a cepstral en-
velope estimation (CEE) approach [13] that nicely complements the
CEM approach by not only enhancing the excitation signal but also
the envelope. We described in detail how the proposed envelope es-
timator has been distilled from various investigated approaches.

In this paper we briefly revisit our findings from [13] and in-
vestigate the performance of the CEE approach for a priori SNR
estimation alone, and in conjunction with CEM. We evaluate the es-
timators in a speech enhancement task together with three different
weighting rules.

This contribution is structured as follows: In Section 2 we briefly
introduce the signal model along with the CEE technique and pro-
vide insight into our investigations on the different methods. This is
followed by a short introduction of the speech enhancement frame-
work and the three weighting rules in Section 3. Subsequently, the
experimental setup and the evaluation of our results is presented in
Section 4. We finally conclude the paper in Section 5.

2. CEPSTRAL ENVELOPE ESTIMATION (CEE)

The microphone signal y(n) is modeled as the superposition of the
time-domain speech signal s(n) and the noise signal d(n) as y(n) =
s(n) + d(n), with n as discrete-time sample index. The frequency-
domain entities are obtained by applying a K-point discrete Fourier
transform as Y`(k) = S`(k) +D`(k), where ` represents the frame
index and 0≤ k≤K−1 the frequency bin index. Furthermore, we
assume that both signals, noise and speech, have zero mean and that
they are statistically independent.

The basic idea of our approach (see Figure 1) is to split a prelim-
inary denoised microphone signal Ȳ`(k) into its envelope (Figure 1,
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Fig. 1. Block diagram of the proposed a priori SNR estimator based on cepstral envelope estimation (CEE).

LPC analysis, lower path) and its excitation R`(k) by LPC analysis.
The denoised envelope is subsequently replaced by a clean envelope
estimate |Ĥ`(k)| and mixed with the excitation signal. It is used
further with the noise power estimate σ̂D` (k)2 from the preliminary
noise reduction to calculate the a priori SNR ξ̂CEE

` (k). The estima-
tion is done in the cepstral domain by converting (Figure 2, feature
conversion block) the N = 10 LPC coefficients to N + 1 = 11
cepstral coefficients using [14] as

cH` (m) =

a`(m) +
1

m

m−1∑
µ=1

[
(m− µ) · a`(µ) · cH` (m− µ)

] (1)

for 1 ≤ m ≤ N and

cH` (m = 0) = 0 = log(Pp=1) (2)

for m = 0. We set the prediction error power Pp to a fixed value
to obtain envelopes with a comparable energy level. This allows
us to work with N coefficients only, as the first coefficient has the
same value (zero) for all vectors. After estimating the clean envelope
representing coefficients cĤ` (m) (see Figure 2, bold face for vector
notation) we convert them back to LPC coefficients with [14]

â`(m) = cĤ` (m)− 1

m

m−1∑
µ=0

[
(m− µ) · cĤ` (m− µ) · â`(µ)

]
(3)

for 1 ≤ m ≤ N . The spectral representation |Ĥ`(k)| is obtained
from

|Ĥ`(k)| = 1

|1− Â`(k)|
, (4)

where Â`(k) is calculated by applying a K-point DFT to the zero-
padded LPC coefficients â`(m). This is done in the spectral conver-
sion block in Figure 2.

We have evaluated and optimized different approaches for the
cepstral envelope estimation task in [13]. We started with a clas-
sic hidden Markov model (HMM) with Gaussian mixture models
(GMMs) as acoustic backend (GMM-HMM) where the hidden
states represent clean, and the observations denoised envelopes. We
found out by means of an oracle experiment that a codebook size
of 64 + 1 = 65 is sufficient. The codebook entries are obtained by
using the Linde-Buzo-Gray [15] algorithm and the extra entry is
exclusively representing non-speech envelopes. Best posterior state
probability accuracy was obtained by choosing 16 modes for the
GMMs. Furthermore, we investigated maximum a posteriori (MAP)
and also minimum mean-square error (MMSE) estimation, resulting
in superior performance of the latter in our noise reduction task.
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Fig. 2. Block diagram of the preferred cepstral envelope esti-
mation (CEE) method using a classification DNN together with
MMSE estimation.

Hence, we fixed the number of parameters and investigated the
replacement of the GMMs by a classification deep neural network
(DNN). We trained differently configured networks with up to six
hidden layers, making sure that the aberration of parameters is al-
ways less than 2% by adjusting the number of nodes per layer, ac-
cordingly. Based on the best state posterior probability accuracy on
speech active frames we found a network with six hidden layers,
58 nodes per layer, and sigmoid activation function to be optimal
for classification. Thereby, the overall accuracy could be increased
by 10 % absolute on the development set compared to the GMM-
HMM approach. However, the incorporation of the DNN into the
HMM yielded only comparable performance of the DNN-HMM vs.
the GMM-HMM. Subsequently, we replaced the whole HMM struc-
ture by the classification DNN and could further improve the per-
formance, now being able to fully benefit from the additional 10 %
accuracy on the development set.

In Figure 2 we depict the processing structure of our favored
estimator and refer to this method as CEE throughout the remain-
der of this paper. We have also investigated the performance of a
DNN trained in regression mode, to directly estimate clean envelope-
representing coefficients from the denoised observation. An optimal
configuration was found for six hidden layers, 58 nodes, and also
sigmoid activation function, but the performance in our noise reduc-
tion task was imbalanced, showing some detriments in the low-SNR
conditions. So our proposal is to use the aforementioned classifica-
tion DNN with subsequent codebook-supported MMSE estimation,
as shown in Figure 2.

3. SPEECH ENHANCEMENT FRAMEWORK

Later evaluation of the a priori SNR estimators will be conducted in
a speech enhancement framework consisting of a minimum statistics



noise power estimator [16], the a priori SNR estimator under test,
and a spectral weighting rule to obtain the enhanced speech signal
as

Ŝ`(k) = G`(k) · Y`(k). (5)

The spectral weighting rules G`(k) = f(ξ̂`(k), γ`(k)) are the
minimum mean square error log-spectral amplitude (MMSE-LSA)
estimator [17], the Wiener filter (WF) [18], and the super-Gaussian
joint maximum a posteriori (SG-jMAP) estimator [19]. An a poste-
riori SNR

γ`(k) =
|Y`(k)|2
σ`(k)2

(6)

is required for the MMSE-LSA and the SG-jMAP spectral weighting
rule, and also for the DD a priori SNR baseline estimator according
to [2]

ξ̂DD
` (k) =

(1−βDD) ·max {γ̂`(k)−1, 0}+ βDD
|Ŝ`−1(k)|2
σ̂D`−1(k)2

.
(7)

The CEMSI baseline [12] is refining a clean speech amplitude
estimate in an instantaneous fashion by modifying the excitation sig-
nal based on pre-trained templates. Is is subsequently used with the
noise power estimate from the preliminary noise reduction to obtain
ξ̂CEM
` (k).

If our proposed CEE-based a priori SNR estimator according to
Figure 2 is employed, the minimum statistics noise power estimator
is executed as part of the preliminary noise reduction, which inter-
nally also contains a DD a priori SNR estimation and an MMSE-
LSA weighting rule. The rest of our CEE a priori SNR estimator is
shown in Figure 1 with Figure 2 as discussed.

We will also investigate an approach that concatenates the CEE
a priori SNR estimator with the CEM technique from [12]. For that
purpose the preliminary noise reduction as it is required for the CEM
approach consists of the complete Figure 1, including a subsequent
MMSE-LSA spectral weighting rule which is applied to the micro-
phone signal. The further processing according to [12] provides then
the final a priori SNR estimate ξ̂CEE→CEM

` (k) — for details please be
referred to [12, 13]. Note that in this serial approach the noise power
estimate that is used throughout is the one of the aforementioned
preliminary noise reduction in the CEE approach, see Figure 1.

4. EXPERIMENTAL EVALUATION

4.1. Experimental Setup

The DD estimator, wherever it is employed, is tuned with optimal
parameters1 [20] for each weighting rule. The DD estimator as part
of the preliminary noise reduction in Figure 1 uses parameters as
shown1 for MMSE-LSA, since this is the weighting rule of the pre-
liminary noise reduction. We work with a sample rate of 8 kHz, a
frame size of K = 256 samples with a frame shift of 50 %. For
analysis and overlap-add synthesis we utilize a periodic square root
Hann window. The training and development sets for the investiga-
tions in Section 2 are taken from the TIMIT database [21]. The clean

1Optimal parameters for the DD estimator and each weighting rule:

MMSE-LSA: βDD = 0.975, ξmin = −15 dB
SG-jMAP: βDD = 0.993, ξmin = −14 dB

WF: βDD = 0.99, ξmin = −14 dB.

speech is mixed at six different SNR conditions ranging from -5 dB
to 20 dB in 5 dB steps together with disjoint portions of 53 noise files
taken from the ETSI [22] and the QUT [23] noise databases. For
a test set with unseen noise files we use four files2 from the ETSI
database exclusively which are not used for training or development.
However, similar noise types have been used also for the training
process. Signal levels are adjusted according to ITU-T P.56 [24] and
subsequently superimposed.

4.2. Quality Measures

To evaluate the estimators in a speech enhancement task we use the
white-box approach [25] which allows us to evaluate the filtered
speech component s̃(n) and the filtered noise component d̃(n) of
the enhanced signal ŝ(n), separately. This is done by applying the
final gain function G`(k) not only to the microphone signal Y`(k)

in order to obtain the enhanced speech Ŝ`(k), but also to the sepa-
rate speech component S`(k) and noise componentD`(k), followed
by inverse DFT and overlap-add synthesis. As objective measures
we use the segmental speech-to-speech-distortion ratio (SSDR) [26]
which is calculated as

SSDRseg =
1

|L1|
∑
`∈L1

SSDR(`) (8)

with L1 being the set of speech active frames,

SSDR(`) = max
{

min
{

SSDR′(`), Rmax
}
, Rmin

}
(9)

where Rmax and Rmin limit the values to 30 dB and -10 dB, respec-
tively. The frame-wise ratio is obtained as

SSDR′(`) = 10 log10

[∑N−1
ν=0 s(ν + `N)2∑N−1
ν=0 e(ν + `N)2

]
(10)

with the error signal being

e(ν + `N) = s̃(ν + `N + ∆)− s(ν + `N). (11)

The term ∆ is accounting for potential processing delay and ` is de-
picting a segment of length N = 256 samples. A high SSDRseg in-
dicates a strong similarity of the speech component with respect to
the clean reference signal.

To account for the noise attenuation we additionally report the
∆SNR which is a global measure and calculated as

∆SNR = SNRout − SNRin, (12)

where SNRout is the SNR of the filtered components s̃(n) and d̃(n),
and SNRin is the SNR of the unprocessed components s(n) and
d(n). Both SNRs are measured in line with ITU-T P.56 [24] where
for the speech signals only speech active portions are considered.
The ∆SNR gives information on the global SNR improvement by
considering both components simultaneously.

4.3. Discussion

In Figure 3 we depict the results for the different a priori SNR esti-
mators under test with the three weighting rules MMSE-LSA, SG-
jMAP, and WF. We plot the SSDRseg vs. the ∆SNR and each marker
represents one SNR condition, where -5 dB is at the bottom and

2Fullsize Car1 80Kmh, Outside Traffic Crossroads,
Pub Noise Binaural V2, Work Noise Office Callcenter



20 dB is at the top in steps of 5 dB. In general, the WF seems to
achieve the highest ∆SNR for each approach, while the speech com-
ponent quality suffers, which is quite obvious especially for the DD
approach. The most recent weighting rule SG-jMAP provides best
speech component quality among the analyzed estimators, however,
offering less noise attenuation as a typical trade-off. The MMSE-
LSA estimator settles somewhere in between showing a balanced
performance of the a priori SNR estimators.

The CEE a priori SNR estimator (solid orange line, aster-
isk markers) outperforms the DD baseline (solid yellow line, plus
markers) by about 2 dB ∆SNR for the MMSE-LSA and SG-jMAP
weighting rules in the -5 dB SNR condition. Using the SG-jMAP
weighting rule, CEE exceeds the performance of the DD approach
also consistently in terms of SSDRseg. When used with the WF, only
the important low-SNR conditions show reasonable performance
gain for CEE.

The recently published CEMSI baseline [12] (solid green line,
square markers) exceeds clearly the DD baseline, and also CEE
when operating alone, in terms of noise attenuation for every
weighting rule owing to its ability to effectively reduce noise be-
tween the harmonics. The highest performance gain obtained over
DD amounts to more than 3 dB ∆SNR for CEMSI when either
using MMSE-LSA or SG-jMAP. This gain can be further enlarged
by concatenating (symbol →) the CEE approach with the CEMSI
baseline (dashed green line, triangle markers). Thereby, we obtain
a ∆SNR that is higher by more than 3.5 dB compared to the DD
approach for the MMSE-LSA weighting rule.

The investigated approaches (CEE and CEE→CEMSI) appear
to be more robust compared to DD as the speech component quality
remains comparable for the respective approach when exchang-
ing MMSE-LSA by the WF, while simultaneously also showing
higher ∆SNR. Here, the DD approach experiences quite some neg-
ative effects on the speech component quality due to the increase
of noise attenuation. Hence, we recommend the serial approach
CEE→CEMSI as it offers robustness across various weighting rules
while being able to mitigate the classical trade-off between speech
component quality and noise attenuation. Informal expert analysis
and listening tests3 have shown that the approach results in a very
smooth and also natural sound of the remaining low-level back-
ground noise. This is an advantage over both baselines, DD and also
CEMSI.

5. CONCLUSIONS

We investigated the performance of a novel a priori SNR estima-
tor in a noise reduction environment with three different spectral
weighting rules. We could show that the proposed serial estimator,
which uses cepstral envelope estimation (CEE) in conjunction with
cepstral excitation manipulation (CEM), exceeds CEM consistently
by up to 0.4 dB ∆SNR, even in non-stationary noise, and improves
by more than 3.5 dB vs. the decision-directed (DD) approach. At the
same time, no significant trade-off in speech distortion is observed.
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