
Privacy Aware Offloading of Deep Neural Networks

Sam Leroux 1 Tim Verbelen 1 Pieter Simoens 1 Bart Dhoedt 1

Abstract
Deep neural networks require large amounts of re-
sources which makes them hard to use on resource
constrained devices such as Internet-of-things de-
vices. Offloading the computations to the cloud
can circumvent these constraints but introduces a
privacy risk since the operator of the cloud is not
necessarily trustworthy. We propose a technique
that obfuscates the data before sending it to the
remote computation node. The obfuscated data is
unintelligible for a human eavesdropper but can
still be classified with a high accuracy by a neural
network trained on unobfuscated images.

1 Introduction
Remote processing of neural networks in the cloud is not
without risk. Traditional encryption techniques can protect
the data while sending it to the cloud but the unencrypted
data is needed by the computation node to evaluate the
neural network. The operator of the computing node can not
necessarily be trusted and has access to the raw data of the
users. An even greater risk is the compromise of the node
by a third party. Recent security breaches such as the leak
of personal images stored in Apple iCloud or the abuse of
personal data shared on Facebook for political goals have
raised public awareness of privacy and security risks.

In this paper we present a technique to obfuscate the data be-
fore sending it to the cloud. The obfuscation routine renders
the data unintelligible for a human eavesdropper while still
retaining enough structure to allow a correct classification
by the neural network. We focus on image classification us-
ing deep neural networks (DNNs) since this is arguably one
of the most common use cases for DNNs but this technique
could be applied to other application domains as well.

Previous approaches to protect the privacy of users in com-
puter vision tasks include extreme downsampling (Ryoo
et al., 2017), (Chen et al., 2017) and blurring or scrambling
(Manolakos & Soltani) of the inputs. These are hand-crafted
heuristics that are able to remove privacy sensitive details
but they also have a large penalty on the classification ac-

1Ghent University - imec, IDLab, Department of In-
formation Technology. Correspondence to: Sam Leroux
<sam.leroux@ugent.be>.

ICML2018 Privacy in Machine Learning and Artificial Intelligence
workshop

curacy. The most similar approach to our work is (Ren
et al., 2018) where the authors introduce a trainable model
that modifies video frames to obfuscate each person’s face
with minimal effect on action detection performance. The
biggest difference is that they train the classification network
together with the obfuscation network. The classification
network will therefore only work together with the obfusca-
tion network. In contrast, we use pretrained classification
networks that were trained on unobfuscated images. We
then train an obfuscation network to transform images in
order to make them unintelligible for humans while still al-
lowing for a high classification accuracy with the pretrained
classification network. We also obfuscate the full image
instead of only specific parts of the human face.

2 Architecture
Our approach builds upon two recent discoveries in deep
learning: Adversarial inputs and Generative Adversarial
Networks (GANs). Adversarial inputs (Goodfellow et al.,
2014b) are special input samples that have been carefully
tweaked to fool neural networks. They are created by mak-
ing tiny changes to real inputs such that the real and the
perturbed versions are indistinguishable to human observers
yet the model consistently misclassifies the perturbed in-
put with high confidence. In this paper we are however
interested in the exact opposite behaviour, we want to trans-
form images in order to make them unintelligible for human
observers yet the neural network should still be able to cor-
rectly classify them.

Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014a) are models that can learn to generate arti-
ficial datapoints that follow the same distribution as real
datapoints. The model consists of two networks, the genera-
tor and the discriminator competing against each other. The
task of the generator is to generate new datapoints based
on random input. The discriminator tries to distinguish be-
tween real data points and generated data. By training both
networks together the generator will eventually be able to
generate realistically looking datapoints.

Our proposed architecture is shown in figure 1. It consists of
three deep neural networks. The pretrained network on the
right is a network trained for image classification on normal,
unobfuscated images. We do not modify the weights of
this network. The obfuscator and the deobfuscator are two
autoencoder-like networks. The obfuscator takes the origi-
nal image as input and generates an obfuscated version that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/188634799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Privacy Aware Offloading of Deep Neural Networks

is then fed into the pretrained classification network. The
deobfuscator tries to reconstruct the original image based
solely on the obfuscated version. The final goal is to train an
obfuscator network than can transform the image in order
that the classifying network is still able to recognize the
object without the deobfuscator being able to reconstruct
the original input. We introduce two loss terms to train the
architecture. Lc is the crossentropy classification loss that is
commonly used in classification problems. Lr is the recon-
struction loss that measures the euclidean distance between
the original image and the reconstructed version. The ob-
fuscator is jointly trained to minimize the classification loss
and to maximize the reconstruction loss. The deobfuscator
is solely trained to minimize the reconstruction loss. Both
networks are trained at the same time.

The premise of our approach is to offload the computation-
ally costly classification network to the cloud and to do a
local obfuscation step to protect the privacy of the user. It is
therefore crucial that the obfuscator network is as small as
possible. We use a MobileNet inspired architecture (Howard
et al., 2017) with depthwise seperable convolutions to re-
duce the computational cost. Details of the architecture and
training routine can be found in Appendix A.

Figure 1. Overview of our architecture.

L
c

L
r

Original image Obfuscator Obfuscated image Trained network

Deobfuscator

3 Experiments
All our experiments were implemented in PyTorch (Paszke
et al., 2017) We used the CIFAR10 dataset (Krizhevsky
et al., 2009) for all these experiments.

Table 1 shows the accuracy of the classification models on
original and on obfuscated images. We find similar results
for the different architectures where the accuracy drops by
5%. We argue that this is a reasonable price to pay for the
added privacy. We also show the overhead of the obfusca-
tion network relative to the classification network both in
terms of FLOPS and number of parameters. Table 2 shows
some more qualitative results. We show the original images,
the obfuscated and the deobfuscated versions. The classifi-
cation network was trained on the original images but is also
able to classify the obfuscated versions. The deobfuscated
versions were included to prove that it is indeed impossible
to retrieve the original images from the obfuscated versions.
These images show that there is still information on the
background color and the location of the object encoded in
the obfuscated image but all details are lost.

One disadvantage with our proposed approach is that we
need to backpropagate through the classification network
to train the obfuscation network. This means that our tech-

nique does not treat the classification model as a truly black
box since we need the weights of the network which might
be unavailable. In our last experiment we examine how
transferable the obfuscator networks are. We train the ob-
fuscator network with one classification network and test it
with another. The results are shown in Table 3. There is a
large drop in accuracy but surprisingly the accuracy does
not drop to the random level for most combinations. This
suggests that the obfuscator network can learn a transforma-
tion that is not completely overfitted to one classification
network but that captures some universal features that are
used by different classification networks.

Table 1. Classification accuracies for plain and obfuscated images.
The overhead column shows the cost (in terms of FLOPS and
parameters) of the obfuscator network relative to the classification
network. Absolute measurements are included in Appendix A.

ACCURACY OVERHEAD

ARCHITECTURE PLAIN OBFUSC. FLOPS PARAM.

VGG19 93.4% 89.3% 6.7% 1.6%
RESNET18 94.8% 89.8% 4.8% 2.9%
RESNET50 95.1% 90.2% 2.1% 1.4%
GOOGLENET 95.2% 90.5% 1.7% 5.3%

Table 2. Original, obfuscated (output of the obfuscator) and recon-
structed images (output of the deobfuscator). More examples are
shown in Appendix B

ORIG
IN

AL

OBFUSC.

RECONSTR.

ORIG
IN

AL

OBFUSC.

RECONSTR.

Table 3. The classification accuracy when applying the obfuscator
network to other networks than it was originally trained with.
ResNet18 1 and ResNet18 2 are the same architecture, trained in
the same way but from a different random initialisation.

TESTED ON

TRAINED ON RESN
ET18

1

RESN
ET18

2

RESN
ET50

GOOGLENET

VGG19

RESNET18 1 89.8% 53.8% 36.0% 30.6% 47.4%
RESNET18 2 72.6% 90.0% 46.7% 34.7% 46.0%
RESNET50 62.1% 54.9% 90.2% 29.1% 44.8%
GOOGLENET 71.0% 74.0% 66.3% 90.5% 41.5%
VGG19 25.8% 20.0% 20.2% 13.0% 89.3%

4 Conclusion and future work
We introduced a trainable obfuscation step that renders im-
ages unintelligible for humans but still allows a high classi-
fication accuracy by pretrained networks. Future work will
focus on applying this technique to more complex datasets
and on improving the transferability of the obfuscator net-
works between classification networks.



Privacy Aware Offloading of Deep Neural Networks

Acknowledgements
We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of GPU hardware used in this
research.

References
Chen, Jiawei, Wu, Jonathan, Konrad, Janusz, and Ishwar,

Prakash. Semi-coupled two-stream fusion convnets for
action recognition at extremely low resolutions. In Appli-
cations of Computer Vision (WACV), 2017 IEEE Winter
Conference on, pp. 139–147. IEEE, 2017.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu,
Bing, Warde-Farley, David, Ozair, Sherjil, Courville,
Aaron, and Bengio, Yoshua. Generative adversarial nets.
In Advances in neural information processing systems,
pp. 2672–2680, 2014a.

Goodfellow, Ian J, Shlens, Jonathon, and Szegedy, Christian.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014b.

Howard, Andrew G, Zhu, Menglong, Chen, Bo,
Kalenichenko, Dmitry, Wang, Weijun, Weyand, Tobias,
Andreetto, Marco, and Adam, Hartwig. Mobilenets: Ef-
ficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Kingma, Diederik P and Ba, Jimmy. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Krizhevsky, Alex, Hinton, Geoffrey, and xxxx. Learning
multiple layers of features from tiny images. 2009.

Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y.
Rectifier nonlinearities improve neural network acoustic
models. In Proc. icml, volume 30, pp. 3, 2013.

Manolakos, Alexandros and Soltani, Nima. Privacy-aware
image classification.

Paszke, Adam, Gross, Sam, Chintala, Soumith, Chanan,
Gregory, Yang, Edward, DeVito, Zachary, Lin, Zeming,
Desmaison, Alban, Antiga, Luca, and Lerer, Adam. Au-
tomatic differentiation in pytorch. 2017.

Ren, Zhongzheng, Lee, Yong Jae, and Ryoo, Michael S.
Learning to anonymize faces for privacy preserving action
detection. arXiv preprint arXiv:1803.11556, 2018.

Ryoo, Michael S, Rothrock, Brandon, Fleming, Charles,
and Yang, Hyun Jong. Privacy-preserving human activity
recognition from extreme low resolution. In AAAI, pp.
4255–4262, 2017.

A Network architecture and training details
The obfuscator and deobfuscator networks are based on the
MobileNet (Howard et al., 2017) architecture. MobileNets
use depthwise seperable convolutions to reduce the com-
putational cost and the number of parameters. The basic
building block is the “Bottleneck module” that uses 3 convo-
lutional layers: a 1x1 pointwise convolution that expands the
number of input channels by a factor of six, a 3x3 depthwise
convolution that applies a single 3x3 filter to each channel
and a 1x1 pointwise convolution that performs a linear com-
bination of information in different channels to reduce the
number of channels again. We use BatchNorm (Ioffe &
Szegedy, 2015) and Leaky ReLU activations (Maas et al.,
2013) for all layers. The obfuscator has 324518 parame-
ters (1.2 MB if stored as 32 bit floating point) and requires
2.6× 107 FLOPS. All our models were trained using the
Adam optimizer (Kingma & Ba, 2014) with initial learning
rate 0.001. We trained for 100 epochs and divided the learn-
ing rate by 10 every 30 epochs. We used horizontal flips of
the training images to augment the dataset. The “Upsample
Bottleneck” layers use 2D nearest neighbour upsampling to
double the spatial size.

Table 4. Obfuscator and deobfuscator network architecture.

INPUT SIZE MODULE OUTPUT CHANNELS STRIDE

3 X 32 X 32 CONV2D 32 1
32 X 16 X 16 BOTTLENECK 32 2
64 X 16 X 16 BOTTLENECK 64 2
128 X 4 X 4 BOTTLENECK 128 2
128 X 4 X 4 UPSAMPLE BOTTLENECK 64 1
64 X 8 X 8 UPSAMPLE BOTTLENECK 32 1
32 X 16 X 16 UPSAMPLE BOTTLENECK 3 1

B Additional examples
Table 5. Original, obfuscated (output of the obfuscator) and recon-
structed images (output of the deobfuscator).

ORIG
IN

AL

OBFUSC.

RECONSTR.

ORIG
IN

AL

OBFUSC.

RECONSTR.


