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Abstract

Maternal mortality remains very high in Mozambique, with estimates from 2015 showing a

maternal mortality ratio of 489 deaths per 100,000 live births, even though the rates tend to

decrease since 1990. Pregnancy related hemorrhage, gestational hypertension and dis-

eases such as malaria and HIV/AIDS are amongst the leading causes of maternal death in

Mozambique, and a significant number of these deaths occur within health facilities. Often,

the analysis of data on maternal mortality involves the use of counts of maternal deaths as

outcome variable. Previously we showed that a class of hierarchical zero-inflated models

were very successful in dealing with overdispersion and clustered counts when analyzing

data on maternal deaths and related risk factors within health facilities in Mozambique. This

paper aims at providing additional insights over previous analyses and presents an exten-

sion of such models to account for spatial variation in a disease mapping framework of facil-

ity-based maternal mortality in Mozambique.

Introduction

Maternal mortality is still a major health problem in Mozambique, despite the country had

registered significant advancements in the last 10 years with an annual reduction of approxi-

mately 4.4%, between 2005 and 2015 [1]. Although both direct (hemorrhage, eclampsia,

puerperal infection, etc) and indirect (malaria, anemia, tuberculosis, HIV/AIDS, etc) compli-

cations have been pinpointed as the main causes of maternal deaths in the country [2–5], one

important determinant continues to be the lack of infrastructure and human resources, as
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shown by the number of avoidable deaths within health facilities if appropriate care were pro-

vided [6].

Consider, for instance, the data in the Needs for Maternal and Neonatal Health (NMNH)

survey [7] which motivates this study, where information was gathered from a random sample

of 450 health facilities (HFs) from 126 randomly selected districts in 11 provinces of Mozam-

bique. There were 278,173 obstetric admissions which resulted in 1,857 recorded maternal

deaths. About 68% of deaths were due to direct obstetric complications and 32% caused by

non-obstetric complications. The coverage of institutional deliveries is estimated at 58% [8]

while the number of confirmed maternal deaths is 8 times higher than that reported by health

facilities [9]. In addition, there is a considerable difference in access and quality of care services

between rural and urban areas. Most rural health centers do not have qualified medical per-

sonnel and equipment for basic or comprehensive emergency obstetric care or lack established

routines for assessment of the quality of maternity care offered [9, 10], which in many situa-

tions requires referrals of patients to “better” or urban health facilities.

For instance, in the NMNH survey, only 7.7% of maternal deaths were registered in health

centers of class 2 (health centers type II, III and health posts), representing about 64% of all

HFs sampled, which also included class 1 centers (hospitals and health center type I), much

larger and located in the cities or district capital. Class 2 HFs were responsible for approxi-

mately 87.5% of referrals due to obstetric complications to class 1 HFs. The referrals from one

facility to another may imply that no maternal deaths are reported in vast areas of the country.

Fig 1 shows the map of facility-based maternal mortality ratio, per 100,000 obstetric admis-

sions, leading to a phenomenon which appears quite often in count data collected in health

services: the excessive number of zero counts, more than expected relative to the commonly

used Poisson distribution.

The histogram of observed maternal deaths in Fig 2 shows that about 63% of the 336 HFs

reported zero maternal deaths.

Zero-inflated Poisson (ZIP) or Zero-inflated Negative Binomial (ZINB) and Hurdle models

have been proposed to model data with extra zeros. They both assume that for each observa-

tion there are two possible data generating processes with different probabilities: one generates

the zeros with probability p and another the counts with probability (1 − p). A Bernoulli model

is used to determine which of the two processes is used. While the zero-inflated model assumes

two types of zeros exists in the data (structural zeros and sampling zeros), the Hurdle model is

a two-part conditional model which assumes that all zero data are from one “structural” source

and the non-zero data have “sampling” origin following either a truncated Poisson or trun-

cated negative binomial distribution [11, 12]. Since in the NMNH survey data, one should

expect true zero maternal deaths to be reported in health centers lacking any surgery facility or

maternity ward such as health centers of type III and health posts, and sampling zeros from

health facilities of class 1 (provincial or district hospitals), zero-inflated models should be pre-

ferred to Hurdle models, which are more appropriate only when a true separation in the data

generation process is known. There are many examples of applications of zero-inflated models

in public health and social sciences [13–15], in ecological studies [16, 17] and other disciplines

[18–20].

For lattice spatial count data, defined as spatially-indexed data associated with geographic

regions or areas and a random variable for each area, hierarchical Poisson models are often

used and easily implemented using the Bayesian framework [21, 22]. ZIP models have been

extensively applied in the Bayesian context [23–25], as well as its spatial counterpart with

applications in ecological [26] and health fields [27–30].

Usually, spatial heterogeneity is accounted for by introducing Gaussian random effects

such as the Conditional Autoregressive model (CAR) either in the non-zero component of the

Mapping maternal mortality rate via spatial zero-inflated models for count data

PLOSONE | https://doi.org/10.1371/journal.pone.0202186 November 9, 2018 2 / 21

acknowledge the Ministry of Health of Mozambique

(MISAU) for providing the data.

Competing interests: The authors have declared

that no competing interests exist.



model or in both model components via a bivariate CAR model. The former case is well illus-

trated by Agarwal et al. [31] who applied a ZIP model to counts of isopod nest burrows in

Israel and by Gschlöb and Czado [32] who present a review of models for count data with

overdispersion and spatial effects applied to the number of invasive meningococcal disease

Fig 1. Map of facility-based maternal mortality rates per 100,000 obstetric admissions in Mozambique (2006-
2007), based on the NMNH data.

https://doi.org/10.1371/journal.pone.0202186.g001
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cases in Germany. On the other hand, Neelon et al. [25] used a Hurdle model with bivariate

CAR prior for spatial random effects introduced on both model components (i.e., dependence

between components), and applied to health services data. Although less commonly encoun-

tered in the spatial zero-inflated literature, allowing for between-component correlation

reduces bias in parameter estimates, and can be easily fitted in the Bayesian context using stan-

dard software [25].

A result from Loquiha et al. [33], based on a ZINB model with shared random effects,

showed that in the North of Mozambique, HFs located outside the district capital had a lower

estimated value for mortality rate; the same holds for HFs in the Center but less pronounced,

and for HFs in the South there was no difference between HFs in the district capital or outside.

To test whether facility-based mortality rate was spatially different across areas in Mozam-

bique, we considered extending the zero-inflated models previously used for these data,

expecting to observe clusters of areas with elevated or reduced mortality rate between the

North, Center and South of Mozambique. Our approach considers the inclusion of spatially

indexed random effects to accommodate unmeasured within and between-component spatial

dependence on a set of hierarchical ZIP models (non-spatial normal random effects), in a

Bayesian context. This enables the models to deal with both non-spatial and spatial clusters

due to common environmental, demographic or cultural effects shared by neighboring areas,

improving our understanding of spatial patterns and differences in mortality rates across areas

[34]. We will refer to these models as spatial ZIP or spatial ZINB.

Due to the complexity of the posterior distribution for parameter estimation, we relied

on MCMC algorithms implemented in the WinBUGS software (version 14.0), which contrary

to the recent Integrated Nested Laplace Approximation (INLA) method, allows fitting a

Fig 2. Histogram of observed facility-based maternal deaths in Mozambique (2006-2007), based on the NMNH data.

https://doi.org/10.1371/journal.pone.0202186.g002
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regression model for the zero-inflation component [29]. Model comparison was done using

DIC and Brier score as suggested in Gschlöb and Czado [32].

The remaining of this paper is organized as follows: details of the NMNH survey are pro-

vided in the next section with some descriptive statistics of the variables used in this study, fol-

lowed by an introduction of the zero-inflated model and its extensions to account for non-

spatial and spatial heterogeneity. Model estimation and selection are discussed in the fourth

section. The fifth section presents the results of the application of the models to the NMNH

survey data. The paper ends with a discussion of the results.

The NMNH survey

The Needs for Maternal and Neonatal Health (NMNH) survey is a nationwide survey at the

level of HFs, conducted from November 1/2006 to October 31/2007 by the Mozambican Min-

istry of Health, in order to provide the health authorities with an assessment of the progress in

controlling and decreasing maternal and neonatal mortality within the HFs as well as with an

assessment of the availability of infrastructures and other resources for the management of

maternal obstetric and newborn complications [7]. The NMNH survey data file is available

from S1 File.

Besides the number of maternal deaths, the following information was available at health

facility level: region (North, Center and South), location of HF (inside or outside district capi-

tal), type of HF (central hospital, general hospital, health centers I, II,III and health posts), exis-

tence of emergency obstetric care (yes or no), waiting house (or room, yes or no), proportion

of HIV and malaria cases (among obstetric admissions), ratio of medical doctors (among the

medical staff) and proportion of referrals from and to the HF. Due to missing data, out of the

450 HF and 126 districts records were complete for 336 HF from 124 districts, excluding the

districts of Chigubo and Chinde (not included in the survey), and Tambara and Malema

(missing data), with a maximum of 10 HFs in a given district and nearly 63% of HFs reported

0 maternal deaths. The average number of maternal deaths equaled 5.33, with variance 510.25

(see Table 1). The proportion of HIV and malaria cases in the HFs was on average 0.0120 and

0.0125, respectively. The average ratio of medical doctors was equal to 0.473, with majority of

HFs of Type II/III/health post (64.1%), next to central hospitals (0.6%), provincial and general

hospitals (2.7%), Type I HFs (27%), and rural hospitals (5.6%). Obstetric emergency care was

full time available in 53.6% of the HFs, and a waiting house was available in only 27.6%. The

geographical distribution of the HFs was as follows: 34.7% in the North, 32.6% in the Center

and 32.6% in the South; while only 35% of the HFs were located inside the district capitals.

Fig 3 shows the observed institutional maternal mortality rate at the district level, obtained

after aggregating the observed counts and dividing by the total number of obstetric admissions

within each district (multiplied by 100,000), with obstetric admissions used as a proxy for the

total number of women at risk of maternal death. The mean mortality rate was 504.67 (per

Table 1. Summary statistics of facility-based maternal deaths and rates per 100,000 obstetric admissions in
Mozambique (2006–2007).

Statistcs Maternal deaths Mortality rate

mean 5.33 504.67

standard deviation 22.59 840.33

median 0 207.37

mininum 0 0

maximum 244 4752.85

https://doi.org/10.1371/journal.pone.0202186.t001
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100,000 obstetric admissions), standard deviation of 840 and median of 207.37 (range: 0.0—

4752.85). Geographically, the highest rates were found in the South, where districts of Gaza

and Inhambane, located alongside the coastal line of Mozambique such as Chibuto, Manjacazi

or Homoine, had rates greater than 3000 (per 100,000 obstetric admissions). The district of

Fig 3. Map of facility-based maternal mortality rates per 100,000 obstetric admissions in Mozambique (2006-
2007) at district-level. Blank spots indicate districts for which data was not available.

https://doi.org/10.1371/journal.pone.0202186.g003
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Muanza in the province of Sofala province had a rate larger than 4000 (per 100,000 obstetric

admissions) and the districts of Maravia, Moatize and Cahora-Bassa in the province of Tete,

had rates larger than 2500 (per 100,000 obstetric admissions), constituting the highest cases in

central Mozambique. In the North, the highest rates were mostly observed in the Cabo Del-

gado province and were not more than 2500 (per 100,000 obstetric admissions). The highest

institutional maternal mortality rate was observed in the district of Massingir in the southwest

of the Gaza province, with 4752.9 (per 100,000 obstetric admissions), i.e, 25 maternal deaths

among 526 obstetric admissions, for a district with a population density of 4.8 persons per km2

according to the 2007 population census [35]. In the next section, we describe the different sta-

tistical models that will be applied to the NMNH data.

Zero-inflatedmodels

Hierarchical zero-inflated models

Let yij,Nij and l̂ij be the number of maternal deaths, obstetric admissions (population at risk)

and observed mortality rate (l̂ij ¼
yij

Nij
) for district i and health facility j (i = 1, . . ., n; j = 1, . . ., ni),

and let xij and zij denote two sets of explanatory variables or risk factors. A zero-inflated (ZI) dis-

tribution is defined as follows

yij �

(
f ðyijÞ with probability 1 pij;

0 with probability pij:
ð1Þ

Two ZI distributions are considered for this application: with a Poisson (P) or negative

binomial (NB) distribution for f(yij) and πij the zero-inflation probability. Denote by ij the

mortality rate and ϕ the dispersion parameter of the Negative Binomial distribution, then we

can rewrite (1) as

yijjNij; lij; pij � ZIPðNijlij; pijÞ;

for the ZIP distribution, or

yijjNij; lij; pij; � � ZINBðNijlij; pij; �Þ;

for the ZINB distribution.

Denoting νij = Nij ij, the parameters νij and πij can be modeled as a function of covariates xij
and zij using canonical link functions:

logitðpijÞ ¼ z
t
ij ;

logðnijÞ ¼ x
t
ij þ logðNijÞ;

ð2Þ

where and are vectors of model parameters of length q and q parameters, respectively.

The mean of yij is given by

mij ¼ Eðyijjxij; zijÞ ¼ ð1 pijÞnij:

If data is hierarchically structured, such as in the NMNH survey with health centers clustered

within districts, Hall [36] introduced the ZIP model with random effects, which we will refer

to by adding H (Hierarchical) to the ZIP and ZINB acronym, i.e., HZIP and HZINB,

Mapping maternal mortality rate via spatial zero-inflated models for count data
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respectively. Model (2) now turns into

logitðpijÞ ¼ z
t
ij þ Wi;

logðnijÞ ¼ x
t
ij þ logðNijÞ þ yi;

ð3Þ

where θi and ϑi are random intercepts for the i-th district usually assumed to be

yi

Wi

 !
� N

2
0; yð Þ; y ¼

s2

y
rsysW

rsysW s2

W

 !
;

with ρ the between-components correlation parameter, i.e., the correlation between the zero-

inflation probability (on the logit scale) and the mean number of deaths (on the log scale)

across the districts. Higher values for ϑi are indicative of a higher probability of zero maternal

deaths in district i compared to other districts. Similarly, higher values for θi imply larger

expected counts of maternal deaths in district i compared to other districts. With this model

specification, district effects on the maternal mortality rate can be accounted for via the ran-

dom effects θi and ϑi. It also allows a multitude of parameterizations for the covariance matrix

structure, such as the shared parameter model if we let ϑi = Bθi, for some proportionality con-

stant B, implying that s2

W
¼ B2s2

y
, or the independent random intercepts model when ρ = 0. The

case where ρ2 6¼ 0 and ρ2 6¼ 1 will be referred to as HZIP or HZINB (correlated) and for ρ = 0

and ϑi = Bθi as HZIP (independence) and HZIP (shared), respectively. We showed previously

in Loquiha et al. [33], using likelihood-based methods, that the HZINB (shared) provided bet-

ter fit to the NMNH data and that the negative binomial family of models outperformed its

Poisson counterpart.

Spatial zero-inflated models

We now extend model (3) to accommodate both non-spatially and spatially structured hetero-

geneity. Let θi and ϑi be the non-spatially and υi the spatially structured random effects for the

i-th district. The model can be written as

logitðpijÞ ¼ z
t
ij þ Wi;

logðnijÞ ¼ x
t
ij þ logðNijÞ þ yi þ ui

ð4Þ

For lattice data, spatial dependence between the counts is introduced via υi, and usually one

assumes the υi to follow a Conditional Autoregressive (CAR) model, a proper distribution

defined as

ðuijui0 ; s
2

u
Þi6¼i0 � N

c
P

i�i0 ui0oii0P
i�i0 oii0

;
s2

uP
i�i0 oii0

� �
; ð5Þ

where ωii0 = 1 if i and i0 are adjacent (or i� i0) and 0 otherwise, and ψ is a spatial autocorrela-

tion parameter.

If ψ = 1 in (5) then the intrinsic CAR model proposed by Besag et al. [37] is obtained. In

WinBUGS version 14.0, intrinsic CAR can be specified via the function and

proper CAR through the function. Similarly to the hierarchical situation in

the previous section 1, the case where ρ2 6¼ 0 and ρ2 6¼ 1 will be referred as spatial hierarchical

ZIP/ZINB (correlated), denoted SpHZIP/SpHZINB (correlated) and for ρ = 0 and ϑi = Bθi as

SpHZIP (independence) and SpHZIP (shared) respectively.

Model (4) assumes that all correlation within and between-components is accounted for by

the unstructured random intercepts θi and ϑi and thus the propensity for maternal deaths and

Mapping maternal mortality rate via spatial zero-inflated models for count data
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number of maternal deaths are spatially unrelated. This is possibly not the case in the NMNH

data, where clusters of areas more prone for maternal deaths are located in major cities along

the coastal line (see Fig 1). To allow for this association due to unobserved common environ-

mental or demographic effects and sharing of information across neighboring areas, a bivariate

vector of spatially correlated data in each area or district, υi = (υ1i, υ2i)
t, i = 1, . . ., n, should be

considered. We could extend model (4) towards

logitðpijÞ ¼ z
t
ij þ Wi þ u

1i;

logðnijÞ ¼ x
t
ij þ logðNijÞ þ yi þ u

2i;
ð6Þ

using an intrinsic bivariate CAR prior,

iju1ð iÞ; u2ð iÞ � N
2 i;

uP
i�i0 oii0

� �
;

where υ1(−i), υ2(−i) denotes the elements of υ excluding the i-th area, i ¼ ðu1i; u2iÞ and

upi ¼

P
i�i0 upi0oii0P
i�i0 oii0

; p ¼ 1; 2;

while Sυ is a 2 × 2 covariance matrix with diagonal elements s2

u1
and s2

u2
representing the con-

ditional variances of υ1i and υ2i respectively, and off-diagonal element su12
representing the

conditional within-district covariance between υ1i and υ2i, which controls the between-compo-

nents spatial association. If su12
is positive then areas with a higher probability of maternal

deaths will tend to show elevated numbers of facility-based maternal deaths, whilst su12
¼ 0 is

indicative of spatially unrelated model components. The motivation of including the two ran-

dom effects lies in the fact that the spatial dependence of the intrinsic CAR random effect is

pre-determined by the neighborhood structure. Unstructured effects are included to allow for

Bayesian learning about the strength of spatial dependence in the data, via the relative contri-

butions of the two random effects to the posterior [37, 38]. Note also that (θi, ϑi) and (yi
0 ; Wi

0 ),

as well as (θi, ϑi) and (u1i0 ; u2i0 ) are assumed independent for any i 6¼ i0.

We will denote this models spatial hierarchical ZIP (correlated-correlated) or SpHZIP (cor-

related-correlated) the case where ρ 6¼ 0 and su12
6¼ 0, and as spatial hierarchical ZIP (corre-

lated-independence) or SpHZIP (correlated-independence) if ρ 6¼ 0 and su12
¼ 0. A good

model building strategy suggests starting the fitting process with the SpHZIP (correlated-cor-

related) and if we fail to reject the hypothesis that su12
¼ 0, continue with the SpHZIP (corre-

lated-independence) or with a further simplified version [25]. This can be easily implemented

in standard Bayesian software, and although a proper multivariate CAR prior has been dis-

cussed elsewhere [39], only the intrinsic option is currently available in WinBUGS (or Open-

BUGS), using the function.

Model estimation and selection

Given the high dimensional and complex distributions for the models presented in the previ-

ous section, a Bayesian approach was considered for parameter estimation. The Bayesian con-

text offers a flexible framework capable of accommodating complex relationships between

data and models while incorporating various sources of uncertainty such as uncertainty about

model parameters or missing data via prior distributions [21]. As such, we specified the

Mapping maternal mortality rate via spatial zero-inflated models for count data

PLOSONE | https://doi.org/10.1371/journal.pone.0202186 November 9, 2018 9 / 21



negative binomial distribution as a Poisson-Gamma mixture model [40],

yijjuij � PoissonðlijuijÞ and uij � Gammaðr; rÞ;

where yij = 0, 1, 2, . . ., r and r> 0 is a positive parameter. Under this parametrization, the mar-

ginal distribution of y (discarding any subscript) is given by:

f ðyÞ ¼

Z 1

0

f ðyjuÞf ðuÞdu ¼
Gðyþ rÞ

y!GðrÞ

r

r þ l

� �r
l

r þ l

� �y

;

which is a negative binomial distribution with parameters r/(r + ) and ϕ = r−1.

Samples from the posterior distributions of model parameters were drawn using MCMC

methods, specifically the Metropolis-Hastings algorithm. The following non-informative prior

distributions were assigned to the model parameters:

br � Nð0; s2

br
Þ with s 2

br
� Gð10 5; 10 5Þ and r ¼ 1; 2; . . . ; qb;

at � Nð0; s2

at
Þ with s 2

at
� Gð10 5; 10 5Þ and t ¼ 1; 2; . . . ; qa;

yi � Nð0; s2

y
Þ with s 2

y
� Gð10 3; 10 3Þ;

Wi � Nð0; s2

W
Þ with s 2

W
� Gð10 3; 10 3Þ;

t2
u
� Gð5� 10

 3; 5� 10
 3Þ with s2

u
¼ t 2

u
;

t2
u1
; t2

u2
� Gð5� 10

 3; 5� 10
 3Þ with s2

u1
¼ t 2

u1
and s2

u2
¼ t 2

u2
;

� ¼
1

r
; r being the order parameter in the NB distribution and r � Gð10 3; 10 3Þ;

B � Nð0; 10 4Þ:

AWishart prior with 2 degrees of freedom was assumed for the inverse covariance matrix

on the bivariate distribution for both the spatial and non-spatial random effects:

 1
y
�Wishartð ; 2Þ and  1

u
�Wishartð ; 2Þ;

with O a scale matrix and a prior guess of the order of the covariance matrix,

¼
1 0

0 1

 !
:

The “zero trick” strategy, which consists in using a well known distribution such as the

Poisson distribution to indirectly specify an arbitrary model likelihood, was used to implement

the ZIP and ZINB likelihood, since in WinBUGS no default likelihood currently exists for

these distributions [40]. If we assume a model with log-likelihood ℓij = log f(yij| ), then using

the “zero trick” strategy the model likelihood is written as

f ðyijjYÞ ¼
Yn

i¼1

Yni

j¼1

exp ð‘ijÞ ¼
Yn

i¼1

Yni

j¼1

exp ð ð ‘ijÞÞð ‘ijÞ
0

0!
¼
Yn

i¼1

Yni

j¼1

fPð0; ‘ijÞ

where is a set of parameters of interest and fP the Poisson probability density function. To

ensure the positivity of the likelihood, a positive constant C was added such that −ℓij + C> 0.

WinBUGS codes for this implementation are available in the S1 Appendix. A total of 50,000

iterations were used with a burn-in of 20,000 iterations. Convergence of MCMC chains was

monitored using trace plots.
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For selection of competing models we used DIC [41] which is given by

DIC ¼ 2DðYÞ  DðYÞ

where D denotes the Deviance and an over-line denotes the posterior expectation. One major

weakness of DIC is that it lacks invariance to re-parameterizations due to the use of the poste-

rior meanY, which should be chosen on computational grounds so to provide likelihoods

that are available in closed forms [41, 42].

One alternative is to use a scoring measure such as the Brier score as discussed in Gschlößl

and Czado [32], for categorical variables. The Brier score is a proper score such that the highest

score is obtained for the best model. It is based on the posterior predictive probabilities

pijs ¼ Pðyij ¼ sjYÞ:

We used the following definition for the Brier score:

 
1

n

XJ

k¼1

Xn

i¼1

Xni

j¼1

ðpijs  p̂
emp
ijs
Þ
2
;

for k = 1, . . ., J, the k-th iteration of the MCMC algorithm and p̂emp
ijs
¼ 1 if yij = s and 0 other-

wise, the empirical probability that observation ij takes the value s. The higher the score, the

better the model. To obtain the posterior predictive probabilities pijs ¼ Pðyij ¼ sjYÞ, we used

the posterior predictive ordinate or PPO [40],

PPOij ¼ Pðyij ¼ sjYÞ;

estimated by

dPPOij ¼
1

J

XJ

k¼1

Pðyij ¼ sjYkÞ;

with k the vector of parameter values generated in the k-th MCMC iteration. To calculate the

dPPO using the MCMC outputs one only needs to set a node equal to the likelihood evaluated

at the current values of .

Application to the NMNH survey

The models considered for this application have the same specification for the mean of yij as

those previously formulated in Loquiha et al [33]. Specifically, we consider the following initial

model for the mean μij:

logðnijÞ ¼ b
0
þ b

1
NORTHij þ b

2
CENTERij þ b

3
PHij þ b

4
HC1ij þ b

5
HC2 þ b

6
RHij

þb
7
LOCij þ b

8
WAITij þ b

9
MEDij þ b

10
EMOCij þ b

11
MALij þ b

12
HIVij

þb
13
REFOUTij þ b

14
REFINij

þb
15
NORTH � LOCij þ b

16
CENTER� LOCij þ logðNijÞ

logitðpijÞ ¼ a
0
þ a

1
NORTHij þ a

2
CENTERij þ a

3
LOCij þ a

4
MALij

ð7Þ

where NORTH and CENTER are two dummy variables for the regions (South = reference,

Center, North); LOC refers to location of HF (district capital = reference, outside capital);

PH, HC1, HC2 and RH are 4 dummy constructs for type of health facility (central

Mapping maternal mortality rate via spatial zero-inflated models for count data
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hospital = reference, PH = provincial hospital, HC1 = health center I, HC2 = health centers

II/III/h.post and RH = rural hospital), WAIT refers to waiting house (not available = reference,

available), MED is ratio of medical doctors, EMOC refers to emergency obstetric care

(none = reference, partial/full time), MAL refers to proportion of malaria cases, HIV to pro-

portion of HIV cases, REFOUT to referral to other HFs and REFIN to referral from other HFs.

This model construction was a result of a likelihood-based backward regression procedure

with significance level for the removal set at 0.20.

Table 2 shows the DIC and Brier score for the best fitting models. Other models were also

estimated, but since their fits were inferior, their results are not reported here. The negative

binomial family of models seemed to outperform its Poisson equivalent, except when the hier-

archical structure of the data is taken into account. The simple Poisson regression showed the

worst fit of all models considered with a DIC = 2015.2 versus DIC = 1055.9 of the simple nega-

tive binomial regression, once again highlighting the need for properly accounting for overdis-

persion in the model. We observed a much greater reduction on the DIC or Brier score when

the ZIP models incorporate random effects than when the ZINB models do. The HZIP (corre-

lated) ranked as the best model when spatial effects were ignored, with a DIC of 927.3 and

Brier score of -0.3415, followed closely by the HZIP (independence) with a Brier score equal to

-0.3441, not surprisingly so since the (non-spatial) between-component correlation was esti-

mated at 0.44 (95% credible interval(CI): [-0.28; 0.86]) which was statistically not different

from zero.

When spatial effects are considered using an intrinsic CAR prior, we observed a similar pat-

tern as before: SpHZIP models improved the fit of a simple spatial Poisson regression and they

offered better fits than the SpHZINB, with both DIC and Brier scores. Again, the SpHZIP (cor-

related) is the best model with a score of -0.3413, which is not that different to when the spatial

structure was ignored. In fact, the DIC value slightly increased, from 927.3 when spatial effects

were ignored to 927.8 when spatial effects were included. A preliminary conclusion here is that

spatial heterogeneity is not significant or is already taken into account with the incorporation

of non-spatial random effects. Also, a global Moran’s I test for which the statistic was equal to

0.077 with p-value = 0.0720, was indicative of no positive spatial autocorrelation of mortality

rates across areas in Mozambique. Looking at the variance components estimates for the

SpHZIP (correlated) in Table 3, the variance of θ (random intercept on number of maternal

deaths) estimated as 1.24 is roughly 2 times the variance of υ2 (spatial random effect on num-

ber of maternal deaths) at 0.79, indicative once more for the dominance of non-spatial hetero-

geneity compared to the spatial one. Also, for this model there was no sufficient evidence for

between-component correlation (r̂ ¼ 0:44, 95% CI: [-0.37; 0.87]). This is also the case when

Table 2. Model fit summary for best zero inflated models.

Model Deviance Effective par. DIC Brier score

HZIP (correlated) 841.8 85.4 927.3 -0.3415

SpHZIP (correlated) 1 840.4 87.4 927.8 -0.3413

SpHZIP (correlated) 2 840.4 85.3 925.6 -0.3414

SpHZIP (correlated—independence) 3 837.9 91.8 929.6 -0.3397

SpHZIP (correlated—correlated) 3 833.3 91.7 924.9 -0.3397

“H” stands for hierarchical or random effects model and “Sp” for spatial.
1: with intrinsic CAR assumption
2: with proper CAR assumption
3: with intrinsic bivariate CAR assumption

https://doi.org/10.1371/journal.pone.0202186.t002
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proper CAR priors are considered, with the best model SpHZIP (independence) having a

score of -0.3413 followed closely by the SpHZIP (correlated) with a score of -0.3414, and ρ sta-

tistically not different from zero (0.44 and 95% CI: [-0.32; 8.87]). As pointed out previously,

spatial patterns or clusters on the NMNH data cannot be completely identified by only a

spatial random effect on the counts component of a zero-inflated model. This is shown by the

improvement obtained in model fit when bivariate CAR priors are considered. Although the

SpHZIP(correlated—correlated) had the lowest DIC value (924.9), we obtained the exact same

Brier score as for the SpHZIP (correlated—independence) of -0.3397, implying no spatial

dependence between model components. The estimate of su12
was -0.54 (95% CI: [-1.88; 0.11])

which shows a negative between-component association, i.e., areas with high likelihood of

maternal deaths tend to show a reduced number of facility-based maternal deaths, but with no

sufficient evidence that this is indeed different from zero. However, an interesting note about

this model is the considerable variation of spatial random effects introduced in the zero com-

ponent relative to its equivalent in the counts component. From these results, a much simpler

model was constructed through a model building process starting from the SpHZIP(correlated

—correlated) model. We also removed non-significant fixed effects and correlation that had

been encountered in the previous models and end up with the more parsimonious SpHZIP

(independence—independence) model, which assumes that a multivariate set of independent

random intercepts and spatial effects in each model component account for non-spatial and

spatial heterogeneity, respectively. The 95% credible intervals for the variances of spatial ran-

dom effects were wider than their non-spatial equivalents, and not bounded away from zero,

which may lead to questioning their statistical significance. The same can be said regarding the

relevance of ϑ given the wider 95% CI: [0.01; 1.42] relative to the posterior estimate of the vari-

ance of 0.26.

Results for the fixed effects of the SpHZIP (independence—independence) model are pre-

sented in Table 4. Posterior means for the binomial component of the model, showed that

only HF location is strongly associated with the propensity for facility-based maternal deaths.

The odds for reporting no maternal deaths was roughly 21 times (exp(3.04) = 20.91, 95%CI:

[7.61;75.94]) higher when the HF was located outside the district capital (i.e., in rural areas)

compared to inside the district capital. On the other hand, the expected number of maternal

deaths in central hospitals was higher than in any other health facility type, being as much as

93% higher (exp(−2.78) = 0.06, 95%CI:[0.03;0.12]) when compared to health center II.

Table 3. Posterior estimates (95% credible interval) for variance components of the best 4 models with and without spatial effects.

Effect HZIP (corr) SpHZIP(corr)1 SpHZIP(corr)2 SpHZIP(corr-corr)3 SpHZIP(ind-ind)4

s2

y
1.60(1.02, 2.43) 1.24(0.42, 2.15) 1.20(0.71, 1.86) 1.34(0.76, 2.29) 1.09(0.34, 2.05)

ρ 0.44(-0.28, 0.86) 0.44(-0.37, 0.87) 0.41(-0.32, 0.87) 0.55(-0.16, 0.91) —

s2

W
0.77(0.15, 2.40) 0.86(0.16, 2.50) 0.74(0.15, 2.19) 0.95(0.15, 3.12) 0.26(0.01, 1.42)

s2

u1
— — — 1.23(0.11, 4.56) 0.84(0.01, 3.95)

su12
— — — -0.54(-1.88, 0.11) —

s2

u2
— 0.79(0.04, 3.07) 0.31(0.00, 2.43) 0.53(0.04, 1.64) 2.05(0.08, 6.07)

ψ — — -0.10(-0.74, 0.97) — —

1: with intrinsic CAR assumption
2: with proper CAR assumption
3: with intrinsic bivariate CAR assumption (correlated-correlated)
4: with intrinsic bivariate CAR assumption (independence—independence)

https://doi.org/10.1371/journal.pone.0202186.t003
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Also, the availability of a waiting house reduced the expected number of maternal deaths by

about 55% (exp(−0.79) = 0.45, 95%CI:[0.30;0.68]), similar to availability of full time emergency

obstetric care (53%, exp(−0.76) = 0.47, 95%CI:[0.29;0.75]). Interestingly, the more medical

doctors a facility has, the higher the average number of maternal deaths (as high as 3 times,

exp(1.12) = 3.06, 95%CI:[1.19;8.42]). This is to be expected, since a higher proportion of medi-

cal doctors are located in central hospitals, usually in major cities.

Fig 4 presents the map for the predicted maternal mortality rate (l̂ i) from the SpHZIP

(independence—independence) model, calculated by aggregating the predicted counts and

dividing it by the total number of obstetric admissions from each district (× 100,000). The

maternal mortality rate based on posterior predictions of the model showed a very similar spa-

tial pattern as observed with the crude mortality rate (Fig 3), though slightly smoothed as a

result of borrowing information from neighboring districts. Again, districts in the South

showed the highest mortality rate, followed by districts in the Center and lastly the North. The

district of Massingir in the Gaza province (South) continues to show the highest facility-based

maternal mortality rate of 3843.5 (per 100,000 obstetric admissions), about 19.1% lower then

the observed rate. In Fig 5, we show the histogram of predicted counts of facility-based mater-

nal deaths. Overall, the model fits the data quite well, with the predicted counts being close to

the observed counts as shown in Fig 2.

Fig 6 shows the posterior predictive distributions of non-spatial and spatial random effects.

There was more variation, geographically, in the non-spatial random effects, presented on Fig

6a and 6b, contrary to the spatial effects on Fig 6c and 6d. The geographical distribution of

non-spatial random effects is a mirror of the distribution for the observed and predicted mor-

tality rate, where roughly the same set of districts showed increased propensity for institutional

Table 4. Posterior estimates (95% credible interval) for fixed effects in the SpHZIP(independence—independence)
model.

Effect (reference category) SpHZIP(ind-ind)

Model for logit(πij)

Intercept -2.11(-3.29, -1.12)

Location (district capital)

Outside capital 3.04(2.03, 4.33)

Model for log(νij)

Intercept -3.17(-3.70, -2.56)

Facility type (Central hospital)

Provincial hospital -0.32(-0.52, -0.12)

Health center I -1.87(-2.24, -1.54)

Health center II/III/H.Post -2.78(-3.39, -2.15)

Rural hospital -1.33(-1.88, -0.79)

Waiting house (Not available)

Available -0.79(-1.20, -0.39)

Ratio of medical doctors 1.12(0.17, 2.13)

Emergency obstetric care (None)

Full time -0.76(-1.24,-0.29)

Proportion of referrals to -2.57(-3.13, -2.03)

Proportion of referrals from -3.62(-7.01, -0.87)

DIC = 951.1

Brier score = -0.3407

https://doi.org/10.1371/journal.pone.0202186.t004

Mapping maternal mortality rate via spatial zero-inflated models for count data

PLOSONE | https://doi.org/10.1371/journal.pone.0202186 November 9, 2018 14 / 21



maternal deaths or increased expected counts of maternal deaths as before. The distribution of

spatial random effects, however, shows huge clusters of effects structured by regions: South

region with highest effects, reducing as we move to the North. Recall that dark colors indicate

districts with elevated propensity for institutional maternal death or increased expected counts

Fig 4. Map of posterior means of maternal mortality rate based on the SpHZIP (independence-independence)
model. Blank spots indicate districts for which data was not available.

https://doi.org/10.1371/journal.pone.0202186.g004
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of maternal deaths compared to an “average” or “typical” district, i.e, when random effects = 0,

given the same set of covariates.

Discussion

In this paper, we extended the ZIP and ZINB models used in [33] to address the need for shar-

ing information between neighboring areas when modeling facility-based maternal mortality

rate in Mozambique. Results showed that using the bivariate intrinsic CAR specification for

spatial random effects into zero-inflated models that already account for correlated count data

slightly improved the fit, and that this is more pronounced when using the Poisson distribu-

tion, a surprising result based on our findings from [33] where the Negative binomial distribu-

tion outperformed the Poisson distribution for any considered extension. Although the best

model formulation allowed an estimation of both spatial and non-spatial within and between-

components correlation in a zero-inflated setting, more complex models need not always be

preferred, specially if similar fits can be accomplished with relatively simpler models. This is

the case in this application as was also in Silesh et al. [17] and Neyens et al. [30].

An independence structure was imposed for the multivariate distribution of spatial and

non-spatial random effects but it is difficult to imagine a situation where more complex struc-

tures were necessary, as there may not be enough information in the data to attribute to vari-

ous sources of variability. For instance, we found that there was no sufficient variability in the

data to support spatial and non-spatial between-component correlations. Also, with a high

proportion of structural zeros in the NMNH data (zeros from health center type II/III and

health posts) the question on whether to add random effects to the binomial component of the

Fig 5. Histogram of posterior predictive counts of maternal deaths based on the SpHZIP (independence—independence)
model.

https://doi.org/10.1371/journal.pone.0202186.g005
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model is no longer trivial and other statistical tools need to be considered in the verification of

adequacy of random effects [31, 43]. What’s more, the random-intercepts model specification

implies an equal within-district correlation assumption, meaning that the correlation of counts

of larger or smaller health facilities is the same within districts. This might be problematic if

Fig 6. Maps of posterior mean. a: for ϑi, b: for θi, c: for υ1i and d: for υ2i based on the SpHZIP (independence—independence)
model. Blank spots indicate districts for which data was not available.

https://doi.org/10.1371/journal.pone.0202186.g006
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smaller sites consistently reported 0 maternal deaths. The results showed no evidences that the

probability for reporting zero maternal deaths was related to the type of health facility, but

rather to its location (outside district capital vs inside district capital). It then seemed reason-

able to ignore the type of health facility in any correlation structure formulation and assume

equal correlation within districts conditional on either the health facility reports 0 maternal

deaths or 1 or more maternal deaths.

Our application assumed the data to be missing completely at random (MCAR), and so a

complete case analysis was performed. Although no test was performed to check the MCAR

assumption it seemed reasonable to believe that it holds since this specific data was aggregated

and derived from administrative records which in the case of Mozambique may lack for

proper management. Methodologies to deal with non-ignorable missingness in non-spatial

zero-inflated models are provided in Hasan et al. [44] and Maruotti [45]. However, a careful

handling of the missing data was a task beyond the scope of this paper.

Maps were used to highlight areas with increased and reduced mortality rate and, in gen-

eral, such areas were located in the South and North of Mozambique, respectively. Because the

non-spatial variation, related to the unstructured random effects θi and ϑi was larger relative to

the spatial variation (related to υ1i and υ2i), as observed in the estimated covariance matrix for

SpHZIP (independence-independence) model, there was not much smoothing in the maps of

the maternal mortality rates, despite the elevated spatial effect presented in the South and cen-

tral regions of Mozambique. Regional inequalities play an important role in explaining the

inefficacies found in the health system in Mozambique. Historically, the South region of

Mozambique is more developed than the other 2 regions, with many more urban areas and

health facilities. Our intuition is that what these results show is not the need to increase or

strengthen the health system in the South region, but the historical inequality of health care

use between the regions in Mozambique. This is supported by the results of the SpHZIP(corre-

lated—correlated) model which showed that the expected counts of maternal deaths for health

facilities in the North region and located outside the district capital is 93% lower compared to

health facilities in the South located inside the district capital. However, the expected counts

for facilities in the central region and outside the district capital is 27% higher compared to

facilities in the South, although overall, counts in the central region were expected to be

approximately 12% lower than in the South.
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