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SUMMARY 

 

The rabbit fish (S. guttatus) can be found along the coastal area in Central Vietnam, 

especially at Thua Thien Hue, Quang Nam and Binh Dinh provinces. In aquaculture, 

rabbit fish is usually polycultured with the tiger shrimp (Penaeus monodon) and they 

use the residues from shrimp farming for food. Rabbit fish could also improve the 

water quality and reduce diseases of the tiger shrimp, without using chemicals and 

antibiotics. At the moment, aquaculture is still totally dependent on the wild collection 

of rabbit fish fingerlings, which does not meet the demand of fingerlings for 

aquaculture. In the past, the Vietnamese Aquaculture Research Institute I, Hue 

University, Nha Trang University and Can Tho University have carried out research on 

the artificial reproduction of rabbit fish. Unfortunately, there is no report yet on 

successful artificial reproduction. Therefore, with the huge demand for rabbit fish 

fingerlings for aquaculture, the study on the artificial reproduction is important for the 

development of rabbit fish culture in Vietnam. Hence, the main objective of this study 

is to close the life cycle of rabbit fish in captivity allowing for the production of 

fingerlings at commercial level.  

 

In view of the very small mouth opening (80 μm) upon hatching, it is anticipated that 

rabbit fish larvae would need very small live prey. Proales similis is a live food 

candidate with the body size of 83 ± 11 μm in length and 40 ± 6 μm in width. Large-

scale production of rabbit fish larvae would require a considerable amount of P. similis 

individuals. It is hypothesised that P. similis would heavily rely on a diet of bacteria and 

hence specific protocols would need to be developed for P. similis. The results showed 

that in the presence of the live probiotic mixture, both rotifer P. similis and Brachionus 

rotundiformis showed a better growth performance relative to the treatments without 

the probiotic mixture or those with the antibiotics. In addition, the growth performance 

of the very small rotifer P. similis is more dependent on proliferating bacterial 

community than the bigger rotifer B. rotundiformis in both experimental and large-scale 

culture conditions. The supplementation of these probiotic bacteria not only increased 

the production of the rotifers, but also had a regulating effect on the microbial 

community (MC).  
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After a specific large-scale culture protocol of P. similis was established, a series of 

experiments to optimize the rabbit fish larval rearing were conducted. The successful 

production of rabbit fish fingerlings is anticipated to require a specific live food feeding 

protocol. It is hypothesized that P. similis will be a better starter food for rabbit fish 

larvae than B. rotundiformis. After that, specific live food and probiotic feeding 

protocols with P. similis and B. rotundiformis from hatching to 240 hph followed by 

specific feeding protocol with B. plicatilis and Artemia from day 10 to 25 were tested. 

The data showed that P. similis was by far the better starter food for rabbit fish larvae 

than the B. rotundiformis. The feeding incidence was earlier and significantly higher 

survival was obtained in the treatment fed P. similis, than those fed B. rotundiformis. It 

also showed the importance of the B. rotundiformis on the survival of rabbit fish larvae 

when introduced into the culture system from day 6, compared to the survival of larvae 

fed B. rotundiformis at other time points. Furthermore, the feeding of probiotic-enriched 

rotifers to the larvae increased the larval survival compared to those fed non-enriched 

rotifers. Finally, the rearing protocols from day 10 to 25 is also reported. The results 

showed that rotifers still play an important role as food to the fish larvae beyond day 

10. After that, Artemia was the most suitable food for the larvae. The feeding schemes 

including Artemia resulted in significantly higher larval survival compared to those 

without Artemia. Compound diet could be fed to the larvae when combined with 

rotifers and Artemia for cost-effectiveness. 

 

The successful closure of the life cycle of rabbit fish will allow performing further 

experiments on the mass production of fingerlings for aquaculture in Central Vietnam. 

It is hypothesized that the body LC-PUFAs composition and gut MC of wild larvae 

entering into lagoons and hatchery larvae will be different, and information on these 

differences might provide clues to further optimise rabbit fish larviculture. For that, the 

fatty acid composition of body tissue and the gut MC composition of hatchery and wild 

larvae of rabbit fish at 3 different locations over a period of 3 years were investigated. 

Results from this study showed that rabbit fish larvae contained high proportion of 

ARA content. The ARA proportion of wild larvae was stable between sampling 

locations over the three-year period, and no significant differences were detected in 

the ARA level between wild and hatchery samples. The DHA/EPA ratios in fish larvae 

were very high. The ratios varied between locations and years. Difference between 

temperatures at 3 locations was negatively correlated with the DHA content and 
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DHA/EPA ratio, but not EPA content. The results of Illumina analysis of wild samples 

showed that location affected the gut MC composition. The bacteria that were 

identified in the rabbit fish gut content were mainly belonging in the phylum 

Proteobacteria, Bacteroidetes, Fusobacteria, Actinobacteria and Firmicutes. In 

addition, the gut MC composition of hatchery larvae, which were fed probiotic-enriched 

rotifers, was completely different from those in the gut of wild larvae. Next, relative 

genetic distances between the sampling locations ThuanAn and BinhDinh/QuangNam 

were bigger than those between BinhDinh-QuangNam. More importantly, the 

environmental temperature was correlated with larval gut MC, namely, differences 

between temperatures at 3 locations were positively correlated with genetic distances 

between MCs, suggesting that there might be a causative relationship. Food quality, 

water currents and temperature probably shape the larval gut MC in the wild. In the 

hatchery, it is shaped through the continuous supply of probiotics via feeding. 

Despite the differences in the body DHA/EPA ratio and gut MC composition of gut MC 

of rabbit fish larvae between wild and the hatchery, the DHA/EPA ratio profile of 

hatchery larvae is still within the natural range and hatchery larvae are apparently 

growing well. Rabbit fish can harbor totally different gut MC and be apparently healthy 

(wild versus hatchery). The current larval rearing protocol is considered to constitute a 

solid basis for further optimalisation.  

 

In summary, this is the first report of a specific protocol for the large-scale culture of P. 

similis. For the first time, the life cycle of rabbit fish in captivity was closed, allowing for 

the production of 15,000 – 20,000 fingerlings up to now. It is anticipated that the 

current protocol will allow for the development of a protocol for the production of 

fingerlings at commercial scale. In addition, the data generated from the PUFA content 

and gut MC composition of wild fingerlings entering into lagoons might provide clues 

for further research on nutritional requirements and MC management strategies of the 

rabbit fish larvae. 
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SAMENVATTING 

 

De konijnvis (S. guttatus) kan worden aangetroffen langs de kust in Centraal Vietnam, 

meer bepaald in de Thua Thien Hue, Quang Nam en Binh Dinh provincies. Konijnvis 

wordt meestal gekweekt in een geïntegreerd kweeksysteem samen met de 

tijgergarnaal (Penaeus monodon) in de aquacultuur waarbij ze de restanten van de 

garnaalkweek gebruiken als voeder. De konijnvissen kunnen mogelijks ook de 

waterkwaliteit verbeteren en reduceren ziektes van de tijgergarnaal zonder gebruik te 

maken van chemicaliën en antibiotica. Momenteel is aquacultuur nog steeds compleet 

afhankelijk van konijnvisjuvenielen die uit de natuur worden gevangen wat echter de 

vraag voor juvenielen voor de aquacultuur niet dekt. In het verleden, werd onderzoek 

verricht naar de artificiële reproductie van konijnvis aan het Vietnamese Aquacultuur 

Onderzoeksinstituut I, de Hue Universiteit, de Nha Trang Universiteit en aan de Can 

Tho Universiteit. Jammer genoeg is er nog geen rapport over succesvolle artificiële 

reproductie. Omwille van de grote vraag naar konijnvisjuvenielen vanuit de 

aquacultuur, is de studie van de artificiële reproductie belangrijk voor de ontwikkeling 

van de konijnviskweek in Vietnam. Daarom is het hoofdobjectief van deze studie het 

sluiten van de levenscyclus van konijnvis in gevangenschap waardoor de productie 

van juvenielen op commercieel niveau mogelijk wordt.  

 

Gezien de heel kleine mondopening (80 μm) na het ontluiken, wordt verwacht dat de 

konijnvislarven zeer kleine levende prooien zouden nodig hebben. P. similis is een  

kandidaat levend voer met een lichaamsgrootte van 83 ± 11 μm lang en 40 ± 6 μm 

breed. Grootschalige productie van konijnvislarven zou een aanzienlijke hoeveelheid 

P. similis individuen vereisen. Het wordt verondersteld dat P. similis sterk afhankelijk 

zou zijn van bacteriën als voedsel en dat daardoor specifieke protocollen zouden 

moeten ontwikkeld worden. De resultaten toonden aan dat in aanwezigheid van een 

levend probiotisch mengsel, beide rotifeersoorten een betere groeiprestatie hadden 

dan zonder levend probiotisch mengsel of wanneer antibiotica werden toegevoegd. 

Daarenboven is de groeiprestatie van de rotifeer P. similis meer afhankelijk van een 

groeiende bacteriële gemeenschap dan de rotifeer B. rotundiformis in zowel 

experimentele als massacultuur condities. De toediening van deze probiotische 
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bacteriën verhoogde niet alleen de rotifeerproductie, maar had eveneens een 

regulerend effect op de microbiota.  

 

Nadat een specifiek protocol voor massakweek van P. similis werd bekomen, werden 

een reeks experimenten om de konijnvislarvenkweek te optimaliseren uitgevoerd. Het 

is te verwachten dat de succesvolle productie van konijnvisjuvenielen een specifiek 

levend voervoederprotocol zal nodig hebben. Er wordt verondersteld dat P. similis een 

beter startvoeder zal zijn voor konijnvislarven dan B. rotundiformis. Daarna werden 

aangepaste levend voer- en probiontenvoederprotocols met P. similis en B. 

rotundiformis vanaf de ontluiking tot dag 10, gevolgd door een soortspecifiek 

voederprotocol met B. plicatilis en Artemia van dag 10 tot dag 25 getest. Uit de 

bekomen data bleek dat P. similis een veel beter startvoeder was voor konijnvislarven 

dan het SS-type B. rotundiformis. De larven aten eerder en de overleving was 

significant hoger in de behandelingen waar P. similis werd gevoederd, dan in deze 

gevoederd met B. rotundiformis. Het toonde ook het belang het SS-type B. 

rotundiformis op de overleving en de totale lengte van de konijnvislarven aan wanneer 

deze werd geïntroduceerd in het kweeksysteem vanaf dag 6, wat resulteerde in de 

beste overleving, in vergelijking met de overleving van larven gevoederd met B. 

rotundiformis op andere momenten. Daarenboven, het voederen van probiont-

aangerijkte rotiferen aan de larven verhoogde de overleving van de larven in 

vergelijking met deze die niet-probiont-aangerijkte rotiferen kregen. Finaal, de 

kweekprotocollen van dag 10 tot 25 werden ook gerapporteerd. De resultaten toonden 

aan dat rotiferen nog steeds een belangrijke rol vervullen als voeder voor de vislarven 

na dag 10. Daarna was Artemia het meest geschikte voeder van de geteste voeders 

voor de larven. De voederschema’s met Artemia toonden eeu aan zienlijk hogere 

larvale overleving aan han deze zonder Artemia. Samengesteld, industrieel, voeder 

kon vervoederd worden aan de larven indien het gecombineerd werd met rotiferen en 

Artemia omwille van de kost efficiëntie.  

 

Het succesvol sluiten van de levenscyclus van konijnvis liet verdere experimenten 

over massaproductie van pootvis voor aquacultuur in Vietnam toe. Het werd 

vooropgesteld dat de gegevens over de lange keten onverzadigde vetzuren 
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samenstelling van het lichaam en de samenstelling van de microbiële gemeenschap 

(MG) van het spijsverteringsstelsel van de juvenielen die de lagunes binnenzwemmen 

en van broedhuislarven verschillend zal zijn en dat informatie over deze verschillen 

kunnen aanwijzingen opleveren om de larvicultuur van konijnvis verder te 

optimaliseren. Daartoe werden de vetzuurcompositie van het lichaamsweefsel en de 

MG van het spijsverteringsstelsel van kwekerij-gekweekte en wilde larven van 

konijnvis uit drie verschillende locaties over een periode van drie jaar onderzocht. 

Resultaten van deze studie toonden aan dat konijnvislarven grote hoeveelheden ARA 

bevatten. De hoeveelheid ARA van de wilde larven was stabiel tussen de 

verschillende staalnamelocaties gedurende de drie jaar en er werden geen significante 

verschillen gevonden in het ARA niveau tussen stalen uit het wild en uit de kwekerij. 

De DHA/EPA verhoudingen in de vislarven waren heel hoog. De verhoudingen waren 

verschillend naargelang de locatie en het jaar van staalname. Het verschil in 

temperatuur op de drie locaties was negatief gecorreleerd met de DHA inhoud en 

DHA/EPA verhouding, maar niet met de EPA inhoud. De resultaten van de Illumina 

analyse van de stalen van wilde vissen toonden aan dat de locatie een effect had op 

de diversiteit en samenstelling van de spijsverteringsMG. De bacteriën die 

geïdentificeerd werden in de inhoud van het konijnvisspijsverteringsstelsel behoorden 

voornamelijk tot de Proteobacteria, Bacteroidetes, Fusobacteria, Actinobacteria en 

Firmicutes fyla. Darenboven was de diversiteit en samenstelling van de 

spijsverteringsMG van kwekerij-gekweekte larven, die probiont-aangerijkte rotiferen 

werden gevoederd, compleet verschillend van deze in het spijsverteringsstelsel van de 

wilde larven. Daarnaast, de relatieve genetische afstanden tussen de 

staalnameplaatsen ThuanAn en BinhDinh/QuangNam waren groter dan deze tussen 

BinhDinh en QuangNam. Echter belangrijker; de omgevingstemperatuur was 

gecorreleerd met de spijsveteringsMG van de larven, namelijk, de verschillen tussen 

de temperatuur op de drie  locaties waren positief gecorreleerd met de genetische 

afstand tussen MGs, wat eventueel duidt op een oorzakelijk verband. In het wild, 

voedselkwaliteit, waterstromingen en temperatuur modeleren waarschijnlijk de 

spijsverteringsMG. In de kwekerij, wordt deze gevormd door een continue toediening 

van probiotica via het voeder. 
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Ondanks de verschillen in de lichaams DHA/EPA-verhouding en de spijsveteringsMG 

samenstelling van konijnvislarven uit het wild of de kwekerij, is de 

DHA/EPAverhouding en profiel van larven uit de kwekerij nog steeds binnen de 

natuurlijke spreiding en groeien kwekerijlarven blijkbaar goed. Konijnvis kan een totaal 

verschillende spijsverteringsMG hebben en blijkbaar toch gezond zijn (natuurlijk 

versus kwekerij). Het huidige kweek protocol voor larven wordt gezien als een goede 

basis voor verdere optimalisatie. Samenvattend; dit is het eerste rapport over een 

specifiek protocol voor de massaproductie van P. similis. Voor het eerst werd de 

levenscyclus van konijnvis in gevangenschap gesloten, wat de productie van tot nu toe 

15.000-20.000 juvenielen  toeliet. Er wordt verwacht dat het huidige protocol zal 

toelaten een protocol voor de productie van juvenielen op commerciële schaal te 

ontwikkelen. Daarenboven, de gegevens over de lichaamsFAME en MG samenstelling 

van wilde juvenielen die naar de lagunes zwemmen zou eventueel aanwijzingen voor 

verdere onderzoeken over de nutritionele vereisten van en microbiële gemeenschap 

strategiën voor konijnvislarven kunnen verstrekken.  
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1.1. Aquaculture – the current status 
 

Aquaculture plays an important role in food supply, nutrition, income, livelihood, rural 

development and poverty alleviation for several hundred millions of people worldwide. 

In 2014, the fish consumption hit a record high of 20.1 kg per capita, which was a 10.2 

kg increase compared to 1960s, and aquaculture accounted for half of the fish supply 

for human consumption. In the future, aquaculture is expected to supply food for 

nearly 10 billion people by 2050. Over the last 22 years, aquaculture production 

increased rapidly from 13.1 million tons in 1990 to 73.8 million tons in 2014 (Table 1.1) 

(FAO, 2016). The statistical data of 2014 mentioned that over 67% of the production 

was finfish (49.9 million tons), in which 43.6 million tons came from inland aquaculture 

and 6.3 million tons from mariculture. It was followed by the production of mollusks 

(21.8%, 16.1 million tons) and crustaceans (9.4%, 6.9 million tons) (Table 1.2) (Figure 

1.1). By contrast, the fisheries production worldwide increased only slightly over the 

last decade, to 93.4 million tons in 2014 (FAO, 2016). In fact, most of the main fishing 

grounds around the world, such as China, Indonesia, Russia, USA, Japan, Peru and 

India have reached their maximum potential for capture fisheries. As a consequence, 

fisheries production will not be able to satisfy the human demand for aquatic products, 

and aquaculture production is anticipated to increase to 80 million tons by 2050 to 

meet global consumption (FAO, 2016).  
 

 

Although aquaculture creates a lot of significant contributions to fish production for 

human consumption, still some critical issues need to be tackled, especially to foster 

sustainable growth of aquaculture. Firstly, intensive aquaculture goes together with 

water pollution and disease outbreaks. This might cause a decline in aquaculture 

production in some regions in the near future. Secondly, the rapid increase of 

aquaculture was correlated with a shortage of fish meal and fish oil for the aqua food 

industry. The use of one species for feeding another species is considered to be 

unsustainable. Lastly, the prophylactic use of chemicals and antibiotics in the water, 

e.g. disease treatments, not only creates long-term consequences directly to 

aquaculture species itself, but also to the environment and to the consumers. To sum 

up, despite continuing growth of global aquaculture, it is also worthwhile and critical to 

focus on developing a more sustainable industry, creating more responsible 

approaches based on the biological and environmental mechanisms of all related 

processes (FAO, 2016). One of the more sustainable options is to farm species with 
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low trophic level. Unlike for freshwater fish, there is limited number of cultured marine 

species with low trophic level. In fact, rabbit fish is a candidate. 

 

Figure 1.1. World production of farmed species from inland and marine culture in 2014. Other animals: frogs, 

reptiles, aquatic invertebrates (FAO, 2016).  
 

Table 1.1. Quantity and percentage of world aquaculture production in 2014 (FAO, 2016) 

Regions Quantity (thousand tons) Percentage (%) 

Africa 1710.9 2.32 

Americas 3351.6 4.54 

Asia 65601.9 88.91 

Europe 2930.1 3.97 

Oceania 189.2 0.26 

World 73783.7 100 
 

 

Table 1.2. Quantity (ton) & value (US$ billion) of farmed species from inland & marine culture in 2014 (FAO, 2016) 

Species groups 
Quantity subtotal Value subtotal 

ton % volume value % value 

Finfish 49,861,891 67.58 99.2 61.92 

Crustacean 6,915,073 9.37 36.2 22.60 

Mollusk 16,113,194 21.83 21.1 13.17 

Others 893,568 1.21 3.7 2.31 

Total 73,783,725 100 160.2 100 
 

1.2. The rabbit fish (S. guttatus) life cycle and natural food items 

 

The females of rabbit fish produce small adhesive eggs, which then hatch into larvae. 

In the early stage, the larvae are planktonic and develop into a distinctive post-larval 

stage called the acronurus, which is characteristic for members of the 

suborder Acanthuroidei. In the acronurus stage, the body of the larvae is transparent 

and they remain pelagic beyond the outer reef or near the coastal area for an 

extended period before settling into the adult habitat and rapidly changing into the 
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juvenile form (Duray, 1998b). The juveniles and adults of rabbit fish occupy very 

diverse shallow water habitats (Lam, 1974), including the coral reefs (Woodland, 

1979), sandy and rocky bottoms with or without vegetation (Popper and Gundermann, 

1975), lagoons and river mouths (Duray, 1998b; Ayson et al., 2014), and mangrove 

forests (Popper and Gundermann, 1975).  
 

In the wild, the first food for rabbit fish larvae remains unknown, while the juveniles 

form schools in algal and sea grass beds, feeding mainly on filamentous algae (Duray, 

1998b; Ayson et al., 2014). The juveniles and adults are primarily herbivores and feed 

predominantly on different kinds of benthic algae and plants. In captivity, the brood 

stocks of rabbit fish become omnivorous and food on a variety of food from both 

vegetable and animal origin, including pellets in the culture system. In fact, rabbit fish 

have also been reported to consume amphipods, copepods, sponges, foraminifera, 

crustaceans and brittle stars, which suggest that the rabbit fish may be also 

opportunistic omnivores (Duray, 1998b; Ayson et al., 2014).  
 

1.3. Problems of rabbit fish (S. guttatus) farming in Vietnam 

 

The rabbit fish (S. guttatus) can be found along the coastal area in the Central 

Vietnam, especially at Thua Thien Hue, Quang Nam and Binh Dinh province. Adult 

fish can reach up to 30 cm and weight up to 700 g. The natural spawning season is 

between May and June and the wild fingerlings can be collected at the river mouths 

three to four weeks after hatching for aquaculture. The food for grow out farming of 

rabbit fish are seaweed, compound diets and uneaten food from shrimp farming (Mien 

et al., 2000; MARD, 2016b).  

In aquaculture, rabbit fish is usually polycultured with the tiger shrimp (P. monodon) in 

pond at a density of 0.5 – 1 fish.m-2. In the polyculture with the tiger shrimp, rabbit fish 

can use the residues from shrimp farming for food. After 4 – 5 months of polyculture, 

rabbit fish production could reach up to 0.8 – 1 tons.ha-1, with up to 75% survival. The 

rabbit fish production in Thua Thien Hue in 2014 was approx. 1,000 tons, which was 

just enough for the local market (DAARD-TTH, 2014). At the moment, rabbit fish 

aquaculture is still totally dependent on the wild fingerling collection, which does not 

meet the demand of fingerlings for aquaculture (roughly 35 million fingerlings annually 

in Thua Thien Hue province) (MARD, 2016b), while the supply of fingerlings from wild 

catch was only 7 millions, which account for 20% of the demand (DAARD-TTH, 2014). 
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In the past, the Vietnamese Aquaculture Research Institute I, Hue University, Nha 

Trang University and Can Tho University have carried out researches on the artificial 

reproduction of rabbit fish. Unfortunately, there is no report yet on successful artificial 

reproduction (Mien et al., 2000; Ngoan, 2006; MARD, 2016b). In conclusion, with the 

huge demand for rabbit fish fingerlings for aquaculture, the study on the artificial 

reproduction is important for the development of rabbit fish culture in Vietnam.  

 

1.4. Objectives of this study and thesis outline 

 

The main objective of this study is to close the life cycle of rabbit fish in captivity 

allowing for further experiments on the production of fingerlings at commercial level. 

The specific objectives involved are:  
 

- In view of the very small mouth opening (80 μm) upon hatching, it is anticipated that 

rabbit fish larvae would need very small live prey. P. similis is a candidate live food 

with the body size of 83 ± 11 μm in length and 40 ± 6 μm in width. Large-scale 

production of rabbit fish larvae would require a considerable amount of P. similis 

individuals. Based on the size and as stated in recent reports, the microalga 

Nannochloropsis oculata (1.5-2 μm) is the most appropriate food for P. similis. 

However, the importance of the bacterial community in the diet of P. similis is still 

unknown. In this study, it is hypothesized that the growth performance P. similis is 

heavily dependent on a diet of bacteria (Chapter 3).   
 

- The successful production of rabbit fish fingerlings is anticipated to require a specific 

live food feeding protocol. B. rotundiformis was considered to be the best starter food 

for rabbit fish larvae. In this study, it is hypothesized that P. similis will be a better 

starter food for rabbit fish larvae than B. rotundiformis. After that, specific live food and 

probiotic feeding protocols with P. similis and B. rotundiformis from hatching to 240 

hph; followed by specific feeding protocol with B. plicatilis and Artemia from day 10 to 

day 25; will be developed. The data generated from this chapter will generate a 

protocol for rabbit fish larviculture from hatching to day 25 (Chapter 4). 
 

- To further optimize the larviculture of rabbit fish, it is hypothesized that information on 

the body LC-PUFAs composition and gut MC of wild larvae entering into lagoons 

would be useful. For that, the LC-PUFAs composition of body tissue and the gut MC of 

wild larvae of rabbit fish (sampled at 3 different locations over a period of 3 years) will 

be investigated and compared with hatchery-reared larvae (Chapter 5).
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2.1. Larviculture of marine fishes in South East Asia  
 

Aquaculture plays an important role in supplying food to many countries in South East 

Asia (Marte, 2003) and is expected to increase its role annually to meet the increased 

human consumption in the near future (FAO, 2016). Besides important high trophic 

level seafood e.g. Asian seabass (Lates calcarifer), orange-spotted grouper 

(Epinephelus coioides), red snapper (Lutjanus campechanus), cobia (Rachycentron 

canadum), red drum (Sciaenops ocellatus), lower trophic level seafood such as rabbit 

fish (S. guttatus), spotted scat (Scatophagus argus), grey mullet (Mugil cephalus), and 

milk fish (Chanos chanos) are considered important cultured species to fulfill the 

demand for food in this region. To develop sustainable aquaculture, the larviculture 

industry should be established adequately to supply enough fingerlings all year around 

for the grow out farming, in order to replace fingerlings captured from nature (Marte, 

2003). In most hatcheries, marine fish larviculture is carried out in 3 – 60 m3 canvas, 

concrete or fiberglass tanks (Pechmanee, 1997; Duray, 1998a; Sugama et al., 2001) 

with stocking densities from 10 to 60 larvae.L-1. The larvae are reared using the clear 

water (without microalgae) or green water technique (with Chlorella vulgaris or N. 

oculata added in the water) (Marte, 2003). Rotifers (Brachionus sp.) are commonly 

used as starter food during the first 2 weeks, then, they are gradually replaced by 

Artemia nauplii (Marte, 2003). Prior to feeding to the larvae, the rotifers and Artemia 

are enriched in an emulsified highly unsaturated fatty acids (HUFA) medium. Finally, 

the Artemia are gradually replaced or co-fed with compound diets from 20 dph 

(Bagarinao, 1986; Ordonio-Aguilar, 1995; Quinitio and Duray, 1996; Pechmanee, 

1997) (Figure 2.1). 
 

2.2. Rabbit fish larviculture 
 

2.2.1. Biology of rabbit fish (Siganus guttatus) 
 

Morphology and species identification: Rabbit fish (S. guttatus) (Figure 2.2) 

morphology was first described by Herre and Montalban (1928).  The rabbit fish body 

is deep and compressed with a snout similar to a rabbit. The dorsal fin has 13 pungent 

spines, the anal fin has 7 spines, and the ventral fin has 2 spines. The skin of rabbit 

fish (S. guttatus) is leathery with smooth, small and closely adherent scales. There are 

few morphological differences between species in the genus Siganus. The orange-

spotted rabbit fish differentiate from other species with a big orange spot just in front of 
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the tail of the fish. There are guidelines to identify the species within the rabbit fish 

family from Herre and Montalban (1928); Woodland (1973); Woodland and Allen 

(1977); Burgan and Zseleczky (1979); Burgan et al. (1979); Woodland (1979); 

Woodland and Randall (1979); Rau and Rau (1980).  
 

 

Figure 2.1. Feeding scheme and water management for rearing of milkfish (Marte, 2003) 

 

 

Figure 2.2. Rabbit fish (S. guttatus) (Source: Ayson et al., 2014) 

 

Taxonomy: The rabbit fish belongs to the phylum Chordata, class Osteichthyes, 

division Halecostomi, order Perciformes, family Siganidae, genus Siganus and species 

S. guttatus Bloch, 1787. The common names are orange-spotted rabbit fish or golden 

rabbit fish (Day, 1888; Starks, 1907; Woodland, 1973; Woodland and Allen, 1977).  
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Geographic distribution and habitats: Previous studies described that rabbit fish 

appeared in various areas around the world, such as Indian Ocean, Pacific Ocean, the 

Eastern and Western of the Indo-Malay area, Western Indian Ocean, Red Sea, 

Mediterranean Sea and Northwestern Australian Province (Day, 1888; Starks, 1907; 

Woodland, 1973; Woodland and Allen, 1977; Woodland, 1979; 1983) (Figure 2.3).  
 

 

Figure 2.3. Geographic distribution of rabbit fish (S. guttatus) (red spots) (Source: FishBase) 

 

Gundermann et al. (1983) reported that rabbit fish (S. guttatus) school at some stage 

in life. They could adapt to a wide variety of salinity and temperature (Woodland and 

Allen, 1977). The rabbit fish (S. guttatus) larvae at early stages are pelagic and 

commonly found close to the water surface above the coral reef (Johannes, 1978). 

Later, the larvae migrate to the lagoons and river mouths (Munro, 1967), mangrove 

forests and swamps (Alcala, 1979; Gundermann et al., 1983), sandy or rocky bottom 

coast (Popper and Gundermann, 1975; Hasse, 1977) or stay at the coral reef (Lam, 

1974; Woodland, 1979; Woodland and Randall, 1979). 
 

Reproductive characteristics of rabbit fish (S. guttatus): The morphology of male 

and female rabbit fish is different. Firstly, the body of male rabbit fish is smaller, more 

elongated and the abdomen is plumper than the female (Manacop, 1959; Helfman, 

1968). In addition, the anus aperture of the female is bigger than the male. Based on 

histological evidence, Juario et al. (1985) and Soletchnik (1984) observed that the 

hatchery-bred male S. guttatus matured at 10 months (19 cm total length, 200 g), 

while the female matured at 12 months (21.5 cm total length, 260 g). Based on the 
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morphology of the ovary/testis, there are 6 stages of rabbit fish gonadal development 

according to Lavina (1975), and based on the size of the gonad, the rabbit fish 

gonadal development is divided into 7 stages (Alcala and Alcazar, 1979) (Table 2.1). 
 

Table 2.1. Gonadal development of S. guttatus, according to Lavina (1975), Alcala and Alcazar (1979) 

Stage Lavina (1975) Alcala and Alcazar (1979) 

1 Immature gonad 
14 – 70 mm (the chromatin stage of nucleolus, the 
early perinucleolar stage of oocytes) 

2 
Developing virgin or recovering spent 
(ovary or testis) 

14 – 238 mm (the late perinucleolar and yolk vesicle 
oocytes) 

3 Ovary/testis mature in progress 
56 – 350 mm (the vesicle stage of yolk and primary 
stage of oocytes) 

4 Ovary/testis mature in captivity 
210 – 364 mm (the secondary and tertiary stage of 
oocytes) 

5 Ovary/testis ripe and ready to spawn 266 – 406 mm (the oocytes is mature in captivity) 

6 Unable to spawn, spending stage 336 – 420 mm (eggs are ripe and ready to spawn) 

7  
14 – 70 mm (after spawning rest or spend after unable 
to spawn) 

 

Soletchnik (1984) observed that the vitellogenesis cycle of S. guttatus is completed 

within 27 – 28 days and the vitellogenesis cycle is largely dependent on the quantity 

and quality of diet. For example, females fed 43% protein pellets could spawn 

consecutively for 11 months (Soletchnik, 1984). Hara et al. (1986c) also reported that 

females fed the fatty diets containing lecithin and cod liver oil could spawn for at least 

4 consecutive months. Soletchnik (1984) and Hara (1987) described that a 400 g 

female with 13.8 gonadosomatic index (GSI) can spawn 800,000 eggs. 
 

2.2.2. Larviculture of rabbit fish  
 

Spawning activity: The natural spawning of captive S. guttatus has been observed 

monthly in 0.5 – 6 m3 canvas or fiberglass tanks with little water change at 2 – 3 days 

after the first quarter of the lunar cycle all year round (Soletchnik, 1984; Juario et al., 

1985; Hara et al., 1986a; Hara et al., 1986c). In addition, the female rabbit fish can be 

induced to spawn by HCG hormone or environmental change (changing the water 

level simulating tidal regime). The spermiation response of mature male rabbit fish is 

induced using LHRHa (Lam, 1974; Bryan, 1975a; Burgan and Zseleczky, 1979; Anon, 

1983; Hara et al., 1986c; Ayson, 1989). Rabbit fish spawning activity is strongly 

synchronized with moonlight cycle (Takemura et al., 2004). During spawning season, 
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the adults matured by the new moon. Spawning activity was reported between the first 

quarter of the moon and the full moon, including Vietnam (Hara et al., 1986c; 

Takemura et al., 2004; Ngoan, 2006; Park et al., 2007; Ikegami et al., 2014). At 

present, the spawning grounds or egg distribution of rabbit fish have not been 

reported. It is also very difficult to obtain either eggs or early stage larvae from nature 

(Manacop, 1937; Hasse, 1977).  
 

The hatching of eggs, larval development and larval rearing of rabbit fish: After 

spawning, the egg diameter of rabbit fish range between 0.42 and 0.70 mm, demersal 

and adhesive to the substrate such as plants, sea grass and rocks at the bottom of the 

sea. The stages of development of the fertilized eggs were described in Figure 2.4 

(Manacop, 1937; Fujita and Masaaki, 1954; Lam, 1974; Westernhagen et al., 1974; 

Hasse, 1977; Burgan and Zseleczky, 1979; Luchavez and Carumbana, 1982; Leis and 

Rennis, 1983; Avila, 1984; Juario et al., 1985; Hara et al., 1986b). In the optimal water 

temperature (22-30°C), it took 18-35 h for fertilized eggs to hatch (Westernhagen, 

1973; Lam, 1974; Westernhagen, 1974; Westernhagen et al., 1974; Luchavez and 

Carumbana, 1982). There is no report on the distribution of rabbit fish eggs in the wild, 

presumably because of the difficulty in sampling demersal and adhesive eggs (Duray, 

1998b). Details of the length development of rabbit fish larvae are indicated in Figure 

2.5. After hatching (0 hph, stage 1), the larvae distribute at the water surface. The 

length of the larvae is 1.5 – 2.6 mm with a straight intestine, closed mouth and eyes 

(Duray, 1998b). The mouth opens at 30.5 hph (Ordonio-Aguilar, 1995). The larval yolk 

volume is small (0.70✕0.24 mm), formed together with two oil globules. From 6 hph 

(stage 2) to 13 hph (stage 3), the larvae use the yolk energy for a rapid growth from 

2.15 to 2.80 mm in length. From 24 hph (stage 4, 2.80 mm) to 48 hph (stage 6, 2.75 

mm), the larvae show slow or even negative growth due to the rapid decrease of yolk 

volume. Once the larvae can consume the rotifers (from day 3 onwards), the length 

increased quickly to 7.92 mm at 192 hph (Figure 2.5). At hatching, the rabbit fish 

larvae are pelagic and very fragile. There are 24-myotomes and melonaphores 

distributed around the snout, yolk and globules, and near the ventral side of the 

larvae. The cupulae are observed on free neuromasts at 6 hph and disappear at 39 

hph. The presence of cupulae made the larvae very sensitive to handling and difficult 

to catch by pipette. In case of handling, the larvae would die (Hara et al., 1986c; 

Kohno et al., 1988). Most importantly, the head armor of rabbit fish protects the larvae 
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against predators through increasing flotation and body size to deter predators, and 

hence, improve larval survival (Hara, 1987). Kohno et al. (1986) described the 

development of morphology in rabbit fish based on body length. In detail, the dorsal 

and ventral fin rays of S. guttatus larvae appear and develop around 4.0 mm. The 

premaxillae appear at around 4.1 mm. The flexion of the notochord is completed at 6.5 

mm. Fin rays appear at 8.0 mm. The jaw and pharyngeal teeth appear and develop 

from 4.0 - 4.5 mm.  The availability of jaw and pharyngeal teeth allow the larvae to 

change gradually the feeding habit at 7.0 – 8.0 mm (Table 2.2 and 2.3). On day 12, 

rabbit fish larvae start to eat on algae growing on the tank walls. The larval behavior 

becomes more aggressive from day 15, and cannibalism starts through biting on other 

larval tails or eyes (Juario et al., 1985). On day 18, larvae swim toward the tank 

bottom and stay deeper in the water column. Schoaling begins at day 23 (Hara 1987) 

(Table 2.3). The complete larvae morphology, behavioral development and feeding 

habits are described in the Table 2.2 and 2.3. The S. guttatus larvae approach the 

juvenile stage (22.0 mm after 45 days from hatching) when they obtain the full 

complement of spines and fin rays of the adults. Juveniles also resemble the adults in 

body colour and shape (Duray, 1998a). 

 

Figure 2.4. Embryogenesis of rabbit fish (Hara et al., 1986b); (A): 8-cell stage (0.5 h post fertilization – 

hpf); (B): 32-cell stage (1 hpf); (C): morula stage (1.5 hpf); (D): blastula stage (2 hpf): (E): embryonic 

shield stage (6 hpf); (F): development of embryonic body stage (7 hpf); (G): 6-myomere stage (8 hpf); 

(H): 16-myomere stage (11 hpf); (I): 24-myomere stage (13 hpf). 
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Figure 2.5. The  length of the S. guttatus larvae in 9 stages of development (Hara et al., 1986b): stage 1 

(A): newly hatched larvae (0 hph), 1.72 mm total length (TL); stage 2 (B): 6 hph, 2.15 mm TL; (B’): 

ventral side of larvae at stage 2; stage 3 (C): 13 hph, 2.80 mm TL; (C’) ventral side of larvae at stage 3; 

stage 4 (D): 24 hph, 3.00 mm TL; stage 5 (E): 39 hph, 2.84 mm TL; stage 6 (F): 48 hph, 2.75 mm TL; 

stage 7 (G): 192 hph, 4.40 mm TL; stage 8 (H) 312 hph, 7.92 mm TL; stage 9 (I): 408 hph, 13.07 mm 

TL. Bar scale: pictures from A to F: 0.5 mm; pictures from G to I: 1.0 mm.  

Table 2.2. The morphology of S. guttatus larvae from hatching to 9.6 mm.  

Length (mm) or 

age (hph)  
Morphology  References 

6 – 39 hph Neuromasts containing cupulae 
(Hara et al., 1986b; Pantoja 

and Kadowaki, 1988) 

30.5 hph Mouth opening (80 μm) (Ordonio-Aguilar, 1995) 

2.6 mm The beginning of rheotaxis 
(Hara, 1987) 

2.7 mm The beginning of phototaxis  

3.9 mm The development of dorsal and ventral fins (Kohno et al., 1986) 

 4.0 – 4.5 mm The development of jaw and pharyngeal teeth 

4.1 mm The appearance of premaxillae  

(Hara, 1987) 

6.5 mm The premaxillae occupied in most of the gape  

7.0 – 8.0 mm The feeding habit is similar to the adult 

8.0 mm 
The complete development of fin rays. The fin 

rays are morphologically similar to adult 

9.6 mm The phototaxis disappeared 
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Table 2.3. The behavior/feeding habits of S. guttatus larvae from hatching to day 24.  

Age (dph) Behavior/Feeding habits References 

1 

The larvae grew very fast in length using nutrients from yolk  

Swimming with head down, often going up and down quickly in 

the water column.  

Staying and resting near the water surface  

(Westernhagen, 1973; 

1974; Bryan, 1975b; 

Kohno et al., 1986) 

2 

The larvae grew slower as the yolk sac was nearly exhausted. 

The larvae started some initial feeding on small rotifers. Rabbit 

fish larvae are relatively diligent feeders. 

Learning how to feed on the wall sides of the rearing tanks 

(Luchavez and 

Carumbana, 1982; 

Kohno et al., 1986; 

Ordonio-Aguilar, 1995) 

3 
The larvae grew slowly using nutrients from reserved energy 

(remaining yolk, oil globules) and exogenous food 

(Kohno et al., 1986) 

 

4 
The larvae grew slowly using nutrients from reserved energy 

(oil globules) and exogenous food 
(Juario et al., 1985) 

5-6 
The larval growth accelerated and swimming actively based on 

energy from exogenous food 
(Juario et al., 1985) 

>6 
The food consumption increased rapidly and the larvae grow 

rapidly 
(Juario et al., 1985) 

12 
Eating predominantly on algae growing on wall sides of the 

rearing tanks  
(Juario et al., 1985) 

15 

The larvae start swimming erratically exhibiting some 

cannibalism. The tail and eyes of smaller larvae are bitten by 

bigger ones. 

(May et al., 1974; Juario 

et al., 1985) 

18 The larvae start to migrate to the bottom of the tanks 

(Hara, 1987) 
23 

The larvae start metamorphosis. Their appearance looks 

similar to the adult after metamorphosis. They swim actively up 

and down the water column searching for food 

24 Body color turns from transparent to brown similar to the adult  (Hara et al., 1986b) 

24 

Starting migration from offshore to the coastal area. Under 

hatchery conditions, the migration speed of larvae is 58.2 cm 

per minute at 60 hph, 70.6 cm per minute at 156 hph day 6 1/2  

(Gundermann et al., 

1983; Kishimoto, 1984; 

Duray, 1998b) 

 

Environmental parameters and requirements in the early stages of rabbit fish  

(S. guttatus) development: The eggs of rabbit fish (S. guttatus) are highly tolerant to 

a wide salinity range, where over 90% of the eggs could hatch at salinities from 3 to 71 

g.L-1 and the optimum salinity for spawning and hatching are 24 to 32 g.L-1 (Young and 

Dueñas, 1993). Hara et al. (1986b) also reported that in the range of 20 – 32 g.L-1, 

salinity did not affect the incubation and hatching of the eggs. In the salinity range of 

14 – 37 g.L-1, more than 50% fertilized eggs could be achieved. The high tolerance to 

salinity is also observed in the rabbit fish over 21 days old. They survived in salinity 

ranging from 2 g.L-1 to 55 g.L-1. In freshwater conditions (0 g.L-1), the larvae died after 

48 – 72 h (Westernhagen, 1973; 1974; Westernhagen et al., 1974; Carumbana and 

Luchavez, 1979). Hara et al. (1986c); Kohno et al. (1988) reported that rabbit fish (S. 
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guttatus) larvae can be reared at 22 to 30°C, and the highest survival of larvae is 

obtained at a temperature of 22 to 26°C. Within the optimal range of temperature, the 

metabolism rate of rabbit fish larvae is highest at 30°C. At a temperature of 30°C, the 

pigmentation of the larval eyes is observed 3 h earlier than at 27°C. The larvae could 

endure a low level of dissolved oxygen of 0.7 mg.L-1. The optimal DO level for larval 

rearing is above 4 mg.L-1 (Ben-Tuvia et al., 1972; Tobias, 1976; Carumbana and 

Luchavez, 1979). Besides, Duray and Kohno (1988) suggested that continuous light 

would improve the survival of first-feeding rabbit fish (S. guttatus) larvae. 
 

2.3. Types of food for the early stages of marine fish larvae 

2.3.1. Microalgae 
 

Microalgae are the first and an important link in the marine food chain, as primary 

producer, due to the ability to use sunlight for organic molecules’ synthesis. In marine 

fish larviculture, microalgae are used as an indirect food at the early larval stage. 

Species such as N. oculata, Tetraselmis sp., C. vulgaris, Isochrysis galbana, Pavlova 

sp. had important roles and have been documented to facilitate transfer of PUFAs, 

amino acids and vitamins from microalgae through zooplankton to fish larvae 

(Makridis and Olsen, 1999; Chakraborty et al., 2007; Hemaiswarya et al., 

2011).  Additionally, microalgae (N. oculata and C. vulgaris) are also used in the larval 

rearing for the green water technique, in which microalgae are used directly in the 

larval tanks. The green water technique is reported to improve the survival of fish 

larvae (Marte, 2003), hence, it is widely applied in the marine fish rearing protocols 

(Yúfera and Lubián, 1990; Reitan et al., 1997). Moreover, many reports indicated that 

the larval quality is improved when adding microalgae to the rearing water, and it is 

observed that some larvae consumed microalgae directly (Moffatt, 1981). Finally, the 

addition of microalgae to the rearing water “enhanced” the MC in the water and in the 

larval gut (Nicolas et al., 1989; Reitan et al., 1997; Skjermo and Vadstein, 1999; Olsen 

et al., 2000). 
 

2.3.2. Rotifers 
 

Rotifera are one of the smallest metazoans of which over 2200 species have been 

described. The rotifer body size used in larviculture ranges from 35 to 350 μm, an 

appropriate size of prey to start feeding after the yolk sac of many marine fish species 

is exhausted (Yufera et al., 1984; Polo et al., 1992; Olsen et al., 2000). Although B. 
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plicatilis was first found as a pest in a pond, Japanese researchers (around 1970’s) 

soon realized that they could be used as a suitable live food organism for the early 

larval stages of marine fish since the 1970s. The successful use of rotifers in the 

commercial hatchery operations of the red sea bream (Pagrus major) encouraged 

investigations in the development of large-scale culture techniques of rotifers (Fukusho 

and Iwamoto, 1981; Fukusho, 1989; Dhert et al., 1995; Lavens and Sorgeloos, 1996; 

Hirata et al., 1998). The B. plicatilis species complex is a group of euryhaline rotifers in 

the Brachionidae family. They are raised in the aquaculture industry as food for most 

marine fish larvae. A simple classification is still used in aquaculture based on three 

different morphotypes, namely super small (SS-type, 90 – 110 μm), small (S-type, 100 

– 120 μm) and large (L-type, 130 – 340 μm) rotifers (Dhert et al., 1995; Hagiwara et 

al., 1995; Lavens and Sorgeloos, 1996; Hagiwara et al., 2001) (Figure 2.5), although 

DNA-based characterization has been developed (Gómez and Carvalho, 2000; 

Papakostas et al., 2006). Currently, they are classified into 15 species (Segers, 1995; 

Ciros-Pérez et al., 2001; Gómez et al., 2002; Suatoni et al., 2006; Fontaneto et al., 

2007). Apart from the appropriate body size, rotifers have a lot of advantages for 

marine fish larviculture, including (i) slow swimming; (ii) high reproduction rate by 

parthenogenesis; (iii) filter feeding on a wide variety of foods; (iv) tolerance to extreme 

culture conditions (low oxygen level, salinity changes…) and handling (harvesting); (v) 

the ability to bioencapsulate various kinds of nutrients, such as protein, HUFA, ARA 

and vitamins; and lastly (vi) they can be year-round cultured, making the hatchery 

independent of the live food supply, avoiding being dependent on external supplies. 

The main rotifers cultured for fish mariculture include the species/genotypes within the 

euryhaline B. plicatilis complex (Yufera, 1982; Fukusho and Okauchi, 1983; Snell and 

Carrillo, 1984; Gómez and Serra, 1995) such as Nevada, Cayman and Austrian strain 

(Papakostas et al., 2006; Dooms et al., 2007; Baer et al., 2008). The SS-type is the 

smallest Brachionus sp. used in aquaculture and is classified as B. rotundiformis 

(Segers, 1998; Kotani et al., 2005; Fontaneto et al., 2007). Due to its smaller size, B. 

rotundiformis is commonly used as starter food for fish species with a small mouth 

gape. However, feeding mixed stages of B. rotundiformis is ineffective or unsuitable for 

the larvae of several marine fishes with even a smaller mouth, including some species 

of groupers (Kohno et al., 1997; Glamuzina et al., 1998), angelfishes (Olivotto et al., 

2006) and wrasse (Sugama et al., 2004). Recently, Wullur et al. (2009) found a minute 

euryhaline rotifer, namely P. similis, with a body size of 83 ± 11 μm in length and 40 ± 

https://en.wikipedia.org/wiki/Euryhaline
https://en.wikipedia.org/wiki/Rotifer
https://en.wikipedia.org/w/index.php?title=Brachionidae&action=edit&redlink=1
https://en.wikipedia.org/wiki/Aquaculture
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6 μm in width, which has the potential to be the first food for small-sized mouth marine 

fish larvae (Figure 2.6). The optimal temperature for P. similis culture is 30 – 35 °C and 

this rotifers can grow well at a wide salinity range (2 – 25 g.L-1). The life span, 

generation time and reproductive period are 2.4 – 4.7 days, respectively depending on 

culture conditions (such as temperature). The fecundity is 4.3 – 7.8 female-1 (Wullur et 

al., 2009). Many reports recently stated that P. similis is the most suitable live food for 

the first feeding stage of a variety of marine species with a very small mouth/special 

esophagus at opening, including the seven-band grouper E. septemfasciatus, the rusty 

angelfish Centropyge ferrugata, the humphead wrasse Cheilinus undulatus and the 

Japanese eel Anguilla japonica (Wullur et al., 2009; 2011; Hirai et al., 2012; Hirai et 

al., 2013; Wullur et al., 2013; Hagiwara et al., 2014). 

 
Figure 2.6. Rotifers used in fish larviculture. A. P. similis. B. B. rotundiformis. C&D. B. plicatilis (S&L) (own 

measurements) 

2.3.3. Copepods 
 

Copepods are one of the main food for most marine fish larvae in nature. Copepods 

belonging to the orders Calanoida, Harpacticoida and Cyclopoida are cultured 

commercially and used in the hatchery for the feeding of fish larvae, due to its small 

size at the nauplius stage (Payne and Rippingale, 2001; Stottrup, 2003; Lee et al., 

2008). For example, the harpacticoid Schizopera elatensis, Tisbe holothuriae and 

Tisbentra elongata nauplius size are 50, 55 and 150 μm, respectively (Lavens and 

Sorgeloos, 1996). Many reports indicated that larvae performed better when fed 

copepod nauplii, compared to rotifers and Artemia, especially for Atlantic halibut and 

Atlantic cod larvae (Næss et al., 1995; Støttrup et al., 1998; Shields et al., 1999; 

Hamre et al., 2002; Rajkumar and Vasagam, 2006) due to its high nutritional content 

(Moren et al., 2006; Hamre et al., 2008; van der Meeren et al., 2008). For example, 

the EPA, DHA and (n-3)HUFA levels in Tisbe nauplii fed Dunaliella are high, (around 

3.5, 9.0 and 15% of body composition, respectively) (Lavens and Sorgeloos, 1996) 

and the EPA and DHA levels of A. tonsa nauplii newly hatched from eggs was 15.5 

            A                                B                              C                                D 
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and 34.8%, respectively) (Støttrup et al., 1999). However, the use of copepod nauplii 

in the hatchery is not as popular as rotifers and other zooplankton, mainly because of 

its costly culture protocol. As a result, copepod nauplii are only fed to the larvae in 

experimental scale or in hatcheries located near the natural harvesting grounds. In 

case copepods are available in sufficient amounts, they could be used as food to the 

larvae (Conceição et al., 1997; Toledo et al., 1999), especially for larvae with small 

yolk sac volume and small mouth size at opening, such as groupers and red snapper 

(Toledo et al., 1999; Ogle et al., 2005; Toledo et al., 2005). 

 

2.3.4. Artemia 
 

Artemia are commonly used as live food in larviculture of marine fishes worldwide. In 

most fish species, the larvae need to food on rotifers before weaning to Artemia. 

However, in some species with relatively large larvae (salmon) (Kim et al., 1996), 

Artemia can be used as the first and only live food until juvenile stage. Artemia cysts 

are famous for its ease of handling, mass hatching and production. However, newly 

hatched Artemia nauplii contain very low DHA levels, and are expensive (Van 

Stappen, 1996b; a; Lavens and Sorgeloos, 2000; Fernández, 2001). Similar to rotifers, 

the metanauplius stage of Artemia are continuous non-selective filter-feeding 

organisms and could be enriched with nutrients (HUFAs and vitamins) through bio-

encapsulation (Lavens and Sorgeloos, 1996) prior to feeding to the fish larvae.  
 

2.3.5. Micro-formulated diets 
 

The larviculture of marine fishes is largely dependent on live food, such as rotifers and 

Artemia (Liao et al., 2001). However, the production of live food is relatively costly and 

a possible source of bacteria-contamination to the larval rearing system (De Pauw et 

al., 1983; People Le Ruyet et al., 1993; Skjermo and Vadstein, 1999; Salvesen et al., 

2000; Villamil et al., 2003; Rawlings et al., 2007; Gugliandolo et al., 2008; Conceição 

et al., 2010). Since 40 years, micro-formulated diets are produced and are considered 

as one of the alternatives for the live food in larviculture. Up to date, there are 6 

different types of micro-formulated diets: microbound particles (Teshima et al., 1982; 

Barrows et al., 1993; Holt, 1993; López-Alvarado et al., 1994; Canavate and 

Fernández-Dıaz, 1999; Barrows and Hardy, 2000; Baskerville-Bridges and Kling, 

2000; Önal and Langdon, 2000), cross-linked protein-walled capsules (Gatesoupe et 

al., 1977; Kanazawa et al., 1982; Teshima et al., 1982; Jones et al., 1984), lipid-walled 
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microcapsules (Langdon and Siegfried, 1984), lipid spray beads (Langdon and Buchal, 

1998), liposomes (Ostro, 1987; Kulkarni et al., 1995; Coutteau and Sorgeloos, 1997) 

and complex particles (Hayward et al., 1987; Villamar and Langdon, 1993; Baskerville-

Bridges and Kling, 2000; Langdon, 2000). Despite the advantages and development of 

micro-formulated diets, there are still a number of difficulties for the wide application of 

micro-formulated diets in the larval rearing. Firstly, some digestive enzymes for the 

digestion of micro-formulated diets, such as lipase and amylase, are still absent in the 

larval gut (Blaxter et al., 1983; Cataldi et al., 1987; Munilla-Moran et al., 1990; Kjørsvik 

et al., 1991; Infante et al., 1997; Kolkovski et al., 1997; Hamlin et al., 2000; Cahu and 

Infante, 2001; Kolkovski, 2001). Secondly, micro-formulated diets normally contain 

denatured, insoluble or slightly soluble proteins and complex carbohydrates that are 

very different from those of living cells, which commonly contain dissolved nutrients 

(Langdon, 2000). Thirdly, this reduces the digestion efficiencies of micro-formulated 

diets in the larval gut (Kolkovski et al., 1993). Lastly, the micro-formulated diets could 

contain a high concentration of free amino acids, however, this concentration declines 

rapidly in water due to very high leakage rates (Rust et al., 1993; López-Alvarado et 

al., 1994; Rust, 1995; Cahu and Infante, 2001). By contrast, live food, such as 

Artemia; contain high level of dietary free amino acids, which could be delivered easily 

to the larvae without any leakage (Dabrowski and Rusiecki, 1983; Webb and Chu, 

1983; Frolov et al., 1991; Roeck-Holtzhauer et al., 1993; Fyhn et al., 1995; Næss et 

al., 1995; Helland et al., 2000). Moreover, some studies reported that the tissues of 

live food had better smell and taste because of free amino acids, resulting in the 

increased releasing of digestive enzymes and appetite of larvae (Munilla-Moran et al., 

1990; Cahu and Infante, 1995; Infante et al., 1997; Kolkovski et al., 1997; Cahu et al., 

1998; Lazo et al., 2000; Nikolaeva and Kasumyan, 2000; Koven et al., 2001). In 

addition, there is little knowledge about the real nutritional requirements of marine fish 

larvae. Therefore, some essential nutrients might be absent or leaking rapidly, such as 

vitamin C and HUFAs, resulting in the poor growth of fish larvae when fed micro-

formulated diets (Slinger et al., 1979; Goddard, 1995). Finally, the larvae feed visually 

and predominantly on moving live food of the right size in a tank with the appropriate 

color (Ostro, 1987; Mukai et al., 1994; Pankhurst, 1994; Job and Bellwood, 1996; Roo 

et al., 1999; Cox and Pankhurst, 2000; Cahu and Infante, 2001). As a result, the 

movement of artificial particles need to be similar to live preys, and settlement losses 

need to be reduced in order to enhance the feeding efficiencies of the fish larvae 
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(Backhurst et al., 1988). Although micro-formulated diets had over 40 years of 

development, there are still few reports on micro-formulated diets totally replacing live 

food in larval rearing. Hence, depending on the fish species, micro-formulated diets 

could be co-fed with live food with different ratios in the first feeding stages, prior to 

weaning into a total replacement of live food in later stages of larval rearing. 

 

2.4. The importance of small food size in the first feeding stage of rabbit fish (S. 

guttatus)  
 

Live food such as rotifers or Artemia has been considered as the most convenient food 

for marine fish larvae at early stage. In terms of prey size, it was suggested that the 

effective dimensions of prey for most marine fishes ranges from 20 to 70% of the 

mouth size (Planas and Cunha, 1999; Yúfera and Darias, 2007; Rønnestad et al., 

2013). Rabbit fish larvae may require a starter food of 44 – 140 μm. The rotifers of 

Brachionus genus are commonly used for most marine fish larvae at first feeding 

(Watanabe and Kiron, 1994). However, the Brachionus sp. (90 – 340 μm) (Dhert et al., 

1995; Hagiwara et al., 1995; Lavens and Sorgeloos, 1996; Hagiwara et al., 2001) is 

bigger than the preferred food size of first feeding siganid larvae (Hara et al., 1986b). 

Hence, it is necessary to provide a smaller food at the first feeding stage (Hara et al., 

1986a; Ayson, 1989; Diani et al., 1990; Duray, 1998b). Alternative first feeding food 

has been studied for the siganids, consisting of bacteria, microalgae and oyster D-

larvae (Juario et al., 1985; Bagarinao, 1986; Kohno et al., 1986; Kohno et al., 1988). 

 

The first nominee, bacteria (0.2 μm in width, 2 – 8 μm in length), is too small and not 

visual for fish larvae to capture. Secondly, microalgae (from 1.5 μm in width and 14 μm 

in length, are too small to be retained by the larvae gill rakers, as they are not filter 

feeders. In the green water technique, microalgae are found in the gut, but some 

reports indicated that the microalgae are there through rotifers or ingested through 

drinking (Bagarinao, 1986; Kohno et al., 1986; Kohno et al., 1988). Next, the bivalve 

larvae, for example, the oyster D-larvae (55 – 75 μm) would fit the size. However, 

besides the inconsistent supply, the oyster D-larvae formed shells within 6 h at 30°C 

and started settling to the tank wall, as a result, the residue of oyster D-larvae would 

destroy the culture tanks. Therefore, the use of oyster D-larvae in larval rearing is 

limited to date (Juario et al., 1985). When rotifers (Brachionus sp.) were fed to the 

rabbit fish larvae at first feeding, Kohno et al. (1988) stated that feeding of rotifers 
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could only start when the S. guttatus had a mouth size of 200 μm, which is at 55.5 h 

after hatching. The ingested rotifer had a width of 125 μm and is by far the most 

suitable food to larvae of S. guttatus, at that stage. In current practice of rabbit fish 

larviculture, newly hatched rotifers (Brachionus sp.) are collected by straining the 

rotifer culture through 80 or 100 μm mesh size net prior to feeding to the larvae. 

However, this is a wasteful way of feeding, as only 10% of the rotifers can pass 

through the 80 μm net and furthermore, the rotifers subsequently, grow quickly in the 

larval tank (Hara et al., 1986a). When the fry grow bigger, another suitable live food 

species is Artemia sp. (500 – 600 μm).  

 

2.5. The roles of LC-polyunsaturated fatty acids (LC-PUFAs) in fish 

LC-PUFAs are fatty acids with 18 or more carbons, which can be categorized into two 

main families — ω6 (n-6) and ω3 (n-3) — depending on the position of the first double 

bond from the methyl end group of the fatty acid. The main n-3 LC-PUFA in food 

sources are α-linolenic acid (ALA) (18:3 Δ9, 12, 15), docosahexaenoic acid (DHA) 

(22:6 Δ4, 7, 10, 13, 16, 19), eicosapentaenoic acid (EPA) (20:5 Δ5, 8, 11, 14, 17), and 

docosapentaenoic acid (DPA) (22:5 Δ7, 10, 13, 16, 19), and n-6 LC-PUFA include 

linoleic acid (LA) (18:2 Δ9, 12) and arachidonic acid (AA) (20:4 Δ5, 8, 11, 

14) (Venegas-Calerón et al., 2010). Most fish have no ability to synthesize the long 

chain polyunsaturated fatty acids (PUFAs) from C18 fatty acids (Watanabe et al., 

1984a; Watanabe et al., 1984b; Sargent and Henderson, 1995; Izquierdo et al., 2001; 

Suloma and Ogata, 2011), except some species (examples in Table 2.4). The long-

chain PUFAs biosynthesis from C18 (linolenic and linoleic fatty acids) contains a 

series of sequential reactions by multiple fatty acyl desaturases (Fads), e.g. Δ4, Δ5, 

Δ6, Δ6/Δ5, Δ6/Δ8, Fads and elongase of very long-chain fatty acid (Elovl) enzymes, 

e.g. Elovl2, Elovl4 and Elovl5 (Agaba et al., 2004; Li et al., 2010; Monroig et al., 2011). 

The capability of long-chain PUFAs biosynthesis is different amongst fish species 

(Table 2.4), and is determined by the availability of biosynthetic enzymes in their body 

(Castro et al., 2016). Generally, freshwater teleosts possess the ability to synthesise 

their own long-chain HUFA from C18 fatty acids. By contrast, marine teleosts lack this 

ability due to an apparent deficiency of the Δ5-desaturase required for the elongation 

and desaturation of these C18 precursors to AA and EPA (Sargent, 1995). However, 

the Δ6/Δ5 Fads enzyme, which is critical for the biosynthesis of the PUFAs, was found 

in rabbit fish, hence, they are unique amongst marine teleosts having the ability to 
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synthezise all long chain PUFAs from C18. The fatty acyl desaturases (Fads) and the 

elongases of very long-chain fatty acids (Elovl) in fish are presented in Table 2.4. 

 

Table 2.4. The summary of the fatty acyl desaturases (Fads) and the elongases of very long-chain fatty 

acids (Elovl) in marine fish.  

Species Reported activities References 

Rabbit fish (S. canaliculatus) 
Δ4, Δ6/Δ5 Fads, 

Elovl4, Elovl5 

Li et al. (2010); Xie et al. (2016); 

Monroig et al. (2012) 

Zebra fish (Danio rerio) 
Δ4, Δ5, Δ6, Δ8 Fads, 

Elovl4, Elovl5, Elovl2 

Hastings et al. (2001); Agaba et al. 

(2004); Monroig et al. (2009); Monroig 

et al. (2010a) 

Atlantic salmon (Salmo salar) 
Δ6, Δ8 Fads, Elovl2, 

Elovl4, Elovl5 

Agaba et al. (2005); Zheng et al. (2005); 

Morais et al. (2009); Monroig et al. 

(2010b); Carmona-Antoñanzas et al. 

(2011) 

Cobia (Rachycentron canadum) Δ6, Δ8, Elovl4, Elovl5 
Zheng et al. (2009); Monroig et al. 

(2011) 

Gilthead sea bream (S. aurata) Δ6, Δ8 Fads, Elovl5 
Seiliez et al. (2003); Zheng et al. (2004); 

Agaba et al. (2005) 

Turbot (Psetta maxima) Δ6, Δ8 Fads, Elovl5 Zheng et al. (2004); Agaba et al. (2005) 

Atlantic cod (Gadus mordua) Δ6, Δ8 Fads, Elovl5 Tocher et al. (2006); Agaba et al. (2005) 

Common carp (Cyprinus carpio) Δ6 Fad, Elovl5 Zheng et al. (2004); Agaba et al. (2005)  

Asian seabass (Lates calcarifer) Δ6 Fad, Elovl5 Mohd-Yusof et al. (2010) 

Bluefin tuna (Thunnus thynnus) Δ6 Fad, Elovl5 Morais et al. (2011) 

Rainbow trout (Oncorhynchus 

mykiss) 
Δ6, Δ8 Fads Seiliez et al. (2001); Zheng et al. (2004) 

European seabass (Dicentrarchus 

labrax) 
Δ6 Fad 

González-Rovira et al. (2009); 

Santigosa et al. (2011) 

Spotted-scat (Scatophagus argus)  Δ4 Fad Xie et al. (2016) 

Senegalese sole (S. senegalensis) Δ4 Fad Li et al. (2010); Morais et al. (2012) 

Yellow croaker (Larimichthys crocea) Elovl4, Elovl5 Li et al. (2017b) 

Nibe croaker (Nibea nmitsukurii) Elovl4 Kabeya et al. (2015) 

Grouper (E. coioides) Elovl4 Li et al. (2017a) 

 

The long chain PUFAs (LC-PUFAs), including the docosahexaenoic acid (DHA), 

eicosapentaenoic acid (EPA) and arachidonic acid (ARA), play important roles in the 

growth performance, development and reproduction of fish and other vertebrates 

(Sargent, 1993; Sargent et al., 1993; 1995; Sargent and Henderson, 1995; Sargent et 

al., 1997). The roles of three PUFA’s in fish are summarized into two categories: (i) to 
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maintain the structural and functional integrity of the cell membrane and (ii) to act as 

precursors of the highly biologically active paracrine hormones such as eicosanoids. 

The high dietary levels of DHA contribute to the neural development (structure and 

function of the cell membrane of fish); the high dietary levels of EPA and ARA are 

involved in the determination of eicosanoid actions (Sargent, 1993; Sargent et al., 

1993; 1995; Sargent and Henderson, 1995; Sargent et al., 1997). In the mass 

production of marine fish fry for aquaculture, finding the appropriate composition of 

EPA, DHA and ARA in the body of each species of marine fish larvae is crucial for the 

establishment of culture technology, artificial food and EPA/DHA-enriched live foods 

(Watanabe et al., 1978b; Watanabe et al., 1978a; Watanabe et al., 1978c; Imada et 

al., 1979; Kitajima et al., 1979; Watanabe et al., 1982; Watanabe et al., 1984a; 

Watanabe et al., 1984b; Ogata et al., 2004) (Table 2.5). Furthermore, the dietary 

PUFA composition also had an important effect on brood stocks’ performance, 

including the fecundity, embryo development, hatchability and survival (Izquierdo et 

al., 2001). Several studies on the PUFA composition in marine fish brood stocks and 

larval diets were carried out (Gibson, 1983; Gibson et al., 1984; Fogerty et al., 1986; 

Ako et al., 1994b; Castell et al., 1994; Sargent et al., 1999a; Sargent et al., 1999b; Bell 

and Sargent, 2003). It is reported that the wild tropical/subtropical marine fish 

contained ARA levels equivalent to or higher than those of EPA. By contrast, the ARA 

levels are lower than EPA in cold-water species (Gibson, 1983; Gibson et al., 1984; 

Fogerty et al., 1986; Ako et al., 1994b; Castell et al., 1994; Sargent et al., 1999a; 

Sargent et al., 1999b; Bell and Sargent, 2003). Within a similar proximate composition 

and n-3 HUFA level, the eggs and larvae performed better with higher ARA content in 

the diets in sea bass (Bell et al., 1997; Bruce et al., 1999), sea bream (Bessonart et 

al., 1999) and Japanese flounder (Furuita et al., 2000; Furuita et al., 2003) and 

Atlantic cod (Zheng et al., 1996). In nature, EPA and DHA in fish have been reported 

to come from phytoplankton and aquatic plants, which are consumed by herbivores 

and subsequently delivered into carnivores (Sargent and Whittle, 1981), while ARA 

origin is unclear. Johns et al. (1979) reported that red/brown macro-algae and 

microalgae might be ARA sources for marine fish. Indeed, the ARA content in red 

algae (Gracilaria sp.) in Vietnam ranges from 5.9 to 54.8% of total lipids (Imbs et al., 

2012). In conclusion, since siganids are herbivores, benthic macro algae are the main 

source of external PUFA of this group of fish (Suloma and Ogata, 2011). The 

information of PUFA and ratio of DHA/EPA in the body of fish larvae can be used as a 
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guideline for development of appropriate brood stock and larval diets, to ensure high 

egg and larval quality originating from sustainable hatchery production in 

tropical/subtropical areas (Watanabe et al., 1978b; Watanabe et al., 1978a; Watanabe 

et al., 1978c; Imada et al., 1979; Kitajima et al., 1979; Watanabe et al., 1982; 

Watanabe et al., 1984a; Watanabe et al., 1984b; Ogata et al., 2004).  

 

Table 2.5. PUFA composition of the lipid (mean % ± S.E.) of five tropical marine aquaculture fish (Ogata 

et al., 2004; Nayak et al., 2017). For Siganus sp. and Caranx fulvoguttatus: mean of 2 pooled samples 

from 10 fish); for Lutjanus argentimaculatus: mean of 3 fish. 

LC-PUFAs S. guttatus S. canaliculatus S. rivulatus L. argentimaculatus C. fulvoguttatus 

ARA 0.6 ± 0.0 4.0 ± 0.8 2.0 ± 0.1 3.5 ± 0.9 - 

EPA 1.1 ± 0.1 2.7 ± 0.9 0.4 ± 0.0 1.1 ± 0.0 - 

DHA 5.7 ± 0.2 12.0 ± 1.9 5.0 ± 0.4 4.1 ± 1.0 - 

Total (n-6) 18.6 ± 0.3 6.3 ± 0.9 - 8.2 ± 0.5 - 

Total (n-3) 

HUFA 
9.7 ± 0.4 18.4 ± 2.7 - 6.1 ± 0.0 - 

ARA/EPA 0.6 ± 0.0 1.58 ± 0.20 0.2 3.3 ± 0.8 1.0 

DHA/EPA 5.36 ± 0.10 4.76 ± 0.80 2.5 3.8 ± 0.8 5.8 

 

2.6. Gut MC and roles of LAB and B. subtilis in fish gut 

2.6.1. Gut MC of fish 
 

Bacteria found in most parts of the fish body, such as gills, the skin and on inner 

surfaces, are usually harmless, symbiotic and reflect the MC from the surrounding 

environment. However, none of the bacteria found in those organs are as important as 

those of GI tract (Hansen and Olafsen, 1989). The fish gut MC are divided into two 

main groups: the allochthonous MC (contain bacteria which pass through the lumen 

with food) and the autochthonous MC (contain potentially fish gut colonizing bacteria) 

(Ringø and Birkbeck, 1999; Romero et al., 2014). A normal gut MC is identified as a 

MC with colonies in most individuals’ gut of a fish population or the ones which are 

present in various tissues within a fish body, including gut tissues, but cause no harm 

to the fish (Berg, 1996; Romero et al., 2014). The gut MC is considered as an 

additional organ of the fish, which influences a wide variety of host’s functions, such as 

the growth performance and development, digestion, immune response and disease 

resistance (Rawls et al., 2004; Romero et al., 2014). The gut MC composition 

indicated the interactions between host and the natural environment (O'Hara and 

Shanahan, 2006; Dhanasiri et al., 2011; Dehler et al., 2017). The gut MC can also 
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provide extra nutrients and extracellular enzymes, fatty acids and vitamins, which are 

limited or cannot be produced by the host themselves (Dhanasiri et al., 2011), in 

return, the host offers a niche for some bacteria to benefit from their dietary life style. 

In general, it is important to understand the composition of the gut MC (Dhanasiri et 

al., 2011; van Kessel et al., 2011; Romero et al., 2014). Previous studies showed that 

there are several factors influencing the gut MC diversity and composition, such as the 

host organism itself (Li et al., 2014; Givens et al., 2015), the stage in the life cycle 

(Giatsis et al., 2014; Ingerslev et al., 2014a; Ingerslev et al., 2014b; Zarkasi et al., 

2014; Zarkasi et al., 2016), environmental factors (Hagi et al., 2004; Navarrete et al., 

2009; Navarrete et al., 2012; Romero et al., 2014) and dietary life style (Navarrete et 

al., 2013; Ingerslev et al., 2014a; Ingerslev et al., 2014b). In fact, the fish gut MC has 

stronger interactions and is more influenced by the outside environment, than it is the 

case in other vertebrates, because of the permanent contact with water (Austin, 2006; 

Ringø et al., 2010; Merrifield and Ringø, 2014). A gut MC of fish larvae could be 

detected shortly after the mouth opened, even before the first feeding happened, due 

to the drinking of water (Ingerslev et al., 2014a; Ingerslev et al., 2014b). At first 

feeding, the MC from the food is absorbed, attached and colonizing the gut of fish 

larvae (Austin, 2006; Benson et al., 2010; Ringø et al., 2010; Ingerslev et al., 2014a; 

Ingerslev et al., 2014b). More importantly, due to the digestion process, only specific 

bacteria are retained, others are released into the external environment or digested by 

the fish enzymes. In addition, the majority of bacteria in the gut content are symbiotic 

species (in the sense of mutual benefit), compared to the free-living bacteria. In other 

words, the gut MC is not made up passively from the seeding communities (Nayak, 

2010; Navarrete et al., 2012; Abid et al., 2013; Li et al., 2014; Llewellyn et al., 2014; 

Givens et al., 2015). Since the genetic background and ontogeny are very difficult to 

be influenced, feeding appeared to be the most convenient way to manipulate the gut 

MC. Most bacteria in the gut MC are delivered through food consumed by the fish 

(Cahill, 1990; Ringø and Birkbeck, 1999; Romero and Navarrete, 2006; Ingerslev et 

al., 2014a; Ingerslev et al., 2014b). The strong effects of feeding on the gut MC 

composition are also confirmed by Wu et al. (2012a); Wu et al. (2012b); Wu et al. 

(2013); and Hu et al. (2014). In aquaculture, the LAB and Bacillus sp., are widely 

used to control diseases and enhance the nutrient intake by the fish (Verschuere et 

al., 2000; Ringø et al., 2010). Their ability to colonize successfully the fish gut 

content was investigated by Balcázar et al. (2007); Ringø et al. (2010); Dawood et al. 
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(2016) and Navarrete et al. (2013). Bioencapsulation of bacteria in rotifers or Artemia 

is the most convenient way to deliver LAB and B. subtilis to the gut of fish larvae 

(Verschuere et al., 1999; Makridis et al., 2000b; Vadstein et al., 2013). The number 

and composition of bacteria of live food are influenced by the cultivation method and 

live food MC affects the gut MC of fish larvae (Attramadal et al., 2012a; Attramadal et 

al., 2012b). The beneficial effects of probiotics in the gut of fish larvae are diverse, e.g. 

(i) digestive enzyme excretion, (ii) immune stimulation, (iii) production of antagonistic 

compounds and (iv) competitive exclusion (De Schryver et al., 2012). Several studies 

reported that gut MC of fish larvae at first feeding was dominated by probiotics 

bioencapsulated in live food (Suzer et al. 2008; Vadstein et al., 2013). By contrast, in 

the later stage of larvae and juveniles, where the stomach barrier and gut MC have 

already been established, the presence of probiotics in the gut is dependent on the 

continuous addition of probiotics via feeding. Hence, the colonization success of 

intestinal epithelium by probiotics is still questioned (Makridis et al., 2000; Makridis et 

al., 2008; Bakke et al., 2013; Vadstein et al., 2013). 

 

The gut MC of fish is investigated in many studies, via culture-dependent (bacterial 

cultured ex vivo) and culture-independent techniques (16S rRNA amplication). The 

16S rRNA can be analyzed by DGGE, TGGE, T-RFLP, and pyrosequencing…). 

These studies have demonstrated the specificity of intestinal MC in fish (Amann, 

1995; Amann et al., 1995; Romero and Navarrete, 2006; Hovda et al., 2007; Kim et 

al., 2007; Navarrete et al., 2009; Nayak, 2010; Wu et al., 2010; Roeselers et al., 

2011; Green et al., 2013; Wu et al., 2013). However, the number of bacterial species 

identified in the fish gut is limited in these studies. For example, only 1% of bacteria 

are able to grow on culture media, and only predominant bacteria (>1% abundance) 

can be detected by DGGE or TGGE (Skrodenyte-Arbaciauskiene et al., 2008; 

Merrifield et al., 2009; Navarrete et al., 2009; Navarrete et al., 2012; Reveco et al., 

2014). In recent years, the technological development in advanced sequencing 

methods (for MC analysis, on amplified 16s rDNA sequences), for example, Roches' 

454 and Illumina MiSeq, NextSeq 500, and HiSeq 2000 have resolved the limitations 

of the previous technologies (Romero and Navarrete, 2006; Hovda et al., 2007; 

Navarrete et al., 2009; van Kessel et al., 2011; Geraylou et al., 2013; Green et al., 

2013; Star et al., 2013; Ingerslev et al., 2014a; Ingerslev et al., 2014b; Zarkasi et al., 

2014; Zarkasi et al., 2016). With these advanced molecular technologies, more 
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comprehensive results on diversity and composition of MC in the fish gut have been 

obtained (Austin, 2006; Kim et al., 2007; Namba et al., 2007; Lan and Love, 2012; 

Larsen et al., 2013; Reveco et al., 2014; Dehler et al., 2017; He et al., 2017). This is 

because readings of e.g. 100,000 sequences per biological sample provide enough 

information for the detection and enumeration of rare genera and/or species (DeSantis 

et al., 2006; Liu et al., 2007; Pruesse et al., 2007; Wang et al., 2007; Hamady and 

Knight, 2009; Romero et al., 2014). The main objective of fish gut MC studies is to 

generate scientific knowledge on community structure and function eventually allowing 

for gut MC manipulation, in order to enhance the fish growth performance, health and 

immune response (Romero et al., 2014). 
 

2.6.2. LAB and B. subtilis 
 

 

Lactic acid bacteria (LAB) are Gram-positive, non-mobile, non-sporulating and 

nutritionally fastidious bacteria, which convert nutrients (carbohydrates, amino acids, 

peptides, nucleic acid derivate and vitamins) into lactic acid as main product via 

fermentation metabolism (Stanier et al., 1975; Lauzon et al., 2014) (Table 2.6).  
 

Table 2.6. Basic differences between groups of LAB and B. subtilis, according to Ringø and Gatesoupe 

(1998); Moszer et al. (2002); Sonenshein et al. (2002), Merrifield and Ringø, (2014). 

No. Genus name Single cells Cells arrangement Fermentation 

1 Streptococcus cocci pair, chain homolactic 

2 Leucococcus cocci pair, chain heterolactic 

3 Enterococcus cocci pair, chain homolactic 

4 Vagococcus cocci, rods pair, chain homolactic 

5 Lactobacillus rods pair, chain homo/heterolactic 

6 Carnobacterium rods pair, chain heterolactic 

7 Pediococcus cocci tetra, cluster homolactic 

8 Aerococcus cocci tetra, cluster homolactic 

 

The LAB adapt and grow under different environmental conditions and are often found 

in the GI tract of terrestrial and aquatic animals (Tannock and Savage, 1974; Tannock 

et al., 1982; Finegold et al., 1983; Tannock, 1983; 1990; Ringø et al., 1995). LAB are 

basically considered as a favorable group of bacteria because of their antagonistic 

abilities against pathogens. They are commonly found as components in the gut MC of 

fish. The LAB included the genera Lactobacillus, Lactococcus, Leuconostoc, 

Enterococcus and Streptococcus. These genera can be isolated by culture-dependent 

methods from the fish gut content (Lauzon et al., 2014; Merrifield et al., 2014; 
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Merrifield and Carnevali, 2014; Merrifield and Ringø, 2014). B. subtilis are endospore 

forming Gram-positive bacteria (Moszer et al., 2002; Sonenshein et al., 2002). B. 

subtilis and its spores could be isolated from the fish gut and are widely used in 

aquaculture due to their immunostimulatory properties in the GI immune system 

(Gatesoupe, 1999). 
 

2.6.3. The roles of LAB and B. subtilis in fish gut 
 

The presence of LAB in the GI tract of fish was reported by Ringø et al. (1995); Ringø 

and Vadstein (1998); Merrifield and Ringø (2014). Upon hatching, the fish gut is 

sterile. After that, the gut is colonized by a variety of MC coming from the food and the 

external environment (Campbell and Buswell, 1983; Muroga et al., 1987; Munro et al., 

1994; Ringø and Strøm, 1994; Ringø et al., 1996). The gut MC is defined as 

autochthonous (bacteria can colonize the host’s epithelium/microvilli), or as 

allochthonous when they cannot (Ringø and Birkbeck, 1999; Merrifield et al., 2014; 

Hoseinifar et al., 2016). The larval gut MC composition is regulated by type of food and 

feeding, host physiology, MC in the water, stress and immunology (Ringø and 

Gatesoupe, 1998; Merrifield and Ringø, 2014). Rombout et al. (1984) described that 

the establishment of digestive enzymes influences the establishment of a healthy gut 

flora. Strøm and Olafsen (1990); Strøm and Ringø (1993) and Merrifield and Ringø 

(2014) reported that Gram-positive bacteria including LAB and B. subtilis could be 

delivered to the GI tract of larvae through feeding at their early life stage. However, the 

LAB and B. subtilis are seldom isolated from the gut of fish larvae in the wild. During 

the first few weeks after hatching, although the gut lengthens, twists and develops 

pouches for some specific functions, it is still very short compared to that of the adult 

fish. Based on the observation that LAB and B. subtilis are seldom isolated from the 

larval gut, various studies are performed on the possibility to help LAB and B. subtilis 

inhabit and colonize the GI tract of fish larvae and act as probiotics in the hatchery 

(Tannock et al., 1982; Gatesoupe, 1989; 1991a; Kjørsvik et al., 1991; Gildberg et al., 

1997; Ringø and Birkbeck, 1999; Gomez-Gil et al., 2000; Olafsen, 2001; Gatesoupe, 

2002; Hjelm et al., 2004; Planas et al., 2006; Bagheri et al., 2008; Suzer et al., 2008; 

Tovar-Ramírez et al., 2010).  

The LAB and B. subtilis are widely used in fish larval rearing as probiotics. Firstly, they 

are able to colonize the GI tract at early stage (Strøm and Olafsen, 1990; Strøm and 

Ringø, 1993; Merrifield and Ringø, 2014). Strøm and Ringø (1993) reported that upon 
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addition in the rearing water, LAB could constitute up to 70% of the total bacterial 

count in cod intestines. At first feeding, it is possible to enrich the rotifer B. plicatilis 

with Lactobacillus and Carnobacterium prior to feeding to the fish larvae (Gatesoupe, 

1994). At weaning to compound diets or in salmonids (fed directly on compound diets), 

the LAB and B. subtilis could be introduced by feeding the larvae with food 

impregnated with probiotics. In this way, probiotics could persist in the larval gut to up 

to 3 days (Muroga et al., 1987; Gildberg et al., 1995; Gildberg et al., 1997; Jöborn et 

al., 1997). Secondly, the LAB and B. subtilis could adhere to the mucus of the GI 

epithelium. The adhesion activity is the first step of the colonization of a microorganism 

(AFRC, 1989; Fuller, 1991; Havenaar and Huis, 1992; Collins and Gibson, 1999; 

Schrezenmeir and de Vrese, 2001). The presence of LAB and B. subtilis enhance the 

growth and feeding performance, survival, gut MC, ammonia and urea excretion in 

Atlantic cod (G. morhua) (Strøm and Ringø, 1993), Nile tilapia (O. niloticus) (Lara-

Flores et al., 2003), gilthead sea bream (S. aurata) (Suzer et al., 2008), Persian 

sturgeon (Acipenser persicus) (Askarian et al., 2009; Faramarzi et al., 2011; Hoseinifar 

et al., 2016) and red sea bream (P. major) (Dawood et al., 2016). Thirdly, LAB and B. 

subtilis presence in the gut mucosa provided antagonistic activity, by producing 

specific compounds such as lactic and other organic acids. These compounds 

inhibited the proliferation of other proteolytic bacteria, thus protecting the fish from 

pathogens (Shahani et al., 1977; Hurst, 1981; Stoffels et al., 1992; Merrifield et al., 

2014; Hoseinifar et al., 2016). Fourthly, some LAB and B. subtilis produce 

bacteriocins, bactericidal or bacteriostatic peptides, which are antibacterial 

substances, e.g. L. lactis releases nisin, which inhibits the growth of Aeromonas 

hydrophila.  B. subtilis also produces small molecular siderophores (<5 kDa) which 

have a wide spectrum of activity against bacterial pathogens in the fish intestine 

(Sugita et al., 1996; Sugita et al., 1998). Lastly, Balcázar et al. (2008) reported that L. 

plantarum and L. fermentum reduced the mucus adhesive capacity of A. hydrophila 

and A. salmonicida and Yersinia ruckeri. In conclusion, the use of probiotics should be 

considered in larviculture of fish, in order to improve health and quality of the fish 

larvae. However, Skjermo et al. (2015) reported that some probiotic bacteria, for 

example, Microbacterium (ID3-10), Ruegeria (RA4-1), Pseudoalteromonas (RA7-14) 

and Vibrio (RD5-30) are not predominant in the gut MC of fish, as they could not 

survive in the gut for a more than 4 days. Therefore, a constant input of probiotics 
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through feeding is highly recommended to provide a greater effectiveness for the 

control of infection caused by bacterial pathogens (Skjermo et al., 2015). 

 

In summary, the relative short time from initial feeding to oil globule exhaustion 

suggests that rabbit fish larvae will be more difficult to rear than either milkfish or 

seabass, as they would need very small live prey as starter food. Hence, a large-scale 

culture protocol for P. similis needs to be developed. After that, live food and probiotic 

feeding protocols using P. similis and B. rotundiformis as starter food will be tested 

from hatching to day 25. Also, the LC-PUFAs and gut MC compositions of wild and 

hatchery larvae will also be investigated. It was anticipated that this type of information 

on wild larvae would generate information to further optimise the larviculture of rabbit 

fish in the future. 
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Abstract 

 

P. similis and B. rotundiformis are commercially cultured rotifer species, which 

predominantly feed on microalgae. However, the importance of the bacterial community 

on growth performance of P. similis and B. rotundiformis culture is still unknown.  In this 

study, the effect of limiting the bacterial growth and, as a second aim, the effect of the 

addition of a small amount of live or dead bacteria on the growth performance and MC 

of P. similis or B. rotundiformis culture was evaluated for a 10 day culture period. A 

rotifer culture with non-manipulated MC and fed autoclaved algae was used as the first 

control, and a culture started in autoclaved sea water and fed autoclaved algae was 

used as the second control. In order to test a food effect, probiotics and other bacteria 

present in the culture system were killed (inhibited to grow) through the addition of an 

antibiotic (AB) mixture and the rotifer culture performance was compared to that of a 

culture to which live probionts were added. In the presence of the live probiotic mixture, 

both rotifers species showed a better growth performance than those without the 

presence of probiotic mixture or those with the AB added. In addition, the growth 

performance of the rotifer P. similis is more dependent on proliferating bacterial 

community than the rotifer B. rotundiformis. The supplementation of these probiotic 

bacteria not only increased the production of the rotifers, but also had a regulating effect 

on the microbiota. The bacterial density was below detection limit in TCBS, MRS agar 

and MA in all treatments using AB during the culture period for both rotifer species. 

 

Keywords: Rotifers, Proales similis; Brachionus rotundiformis; probiotics; growth 

performance; microbial community. 
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3.1. Introduction 

 

Rotifera are one of the smallest metazoa of which over 2200 species have been 

described. Although B. plicatilis was first regarded as a pest in a pond, Japanese 

researchers soon realized that they could be used as a suitable live food organism for 

the early stage of marine fish. The successful use of rotifers in the commercial 

hatchery operations of the red sea bream (P. major) encouraged investigations in the 

development of mass culture techniques of rotifers (Fukusho and Iwamoto, 1981; 

Fukusho, 1989; Dhert et al., 1995; Lavens and Sorgeloos, 1996; Hirata et al., 1998). 

The B. plicatilis species complex is a group of euryhaline rotifers in the Brachionidae 

family. They are raised in the aquaculture industry as a food for most fish larvae. A 

simple classification is still used in aquaculture based on 3 different morphotypes, 

namely super small (SS-type), small (S-type), and large (L-type) rotifers (Dhert et al., 

1995; Hagiwara et al., 1995; Lavens and Sorgeloos, 1996; Hagiwara et al., 2001) 

although DNA-based characterization has been developed (Gómez and Carvalho, 

2000; Papakostas et al., 2006) and currently classified into 15 species (Mills et al., 

2016). In 2009, Wullur et al. reported that P. similis, with a body size of 83 ± 11 μm in 

length and 40 ± 6 μm in width, is a very small rotifer with a potential as first food for 

small mouth marine fish larvae. In aquaculture, the P. similis has recently reported to 

be one of the most suitable live food for the first feeding stage of marine species with 

small mouth/special oesophagus, including the seven-band grouper E. 

septemfasciatus, rusty angelfish C. ferrugata, humphead wrasse C. undulatus and 

Japanese eel A. japonica (Wullur et al., 2009; 2011; Hirai et al., 2012; Hirai et al., 

2013; Wullur et al., 2013; Hagiwara et al., 2014).  Wullur et al. (2009) reported that P. 

similis, starting at 25 ind.mL-1, can reach 250 ind.mL-1 at day 8 without aeration, and 

2400 ind.mL-1 with aeration at day 11 at 25°C, 25 g.L-1 salinity. It was suggested that 

they could best be cultured with small microalgae such as N. oculata and C. vulgaris. 

In a batch culture, P. similis growth rate during the first 4 days of culture is usually 

lower than later on. This is a long lag-phase (Wullur et al., 2009). 
 

Bacteria are also known to be an important food for Brachionus spp. in natural 

conditions (Starkweather, 1980). Especially in the absence or low microalgae density, 

rotifers take up bacteria-size particles (Agasild and Nõges, 2005). Pseudomonas and 

Acinetobacter are common bacteria, which may constitute an important additional food 

https://en.wikipedia.org/wiki/Euryhaline
https://en.wikipedia.org/wiki/Rotifer
https://en.wikipedia.org/w/index.php?title=Brachionidae&action=edit&redlink=1
https://en.wikipedia.org/wiki/Aquaculture
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source for rotifers. Some Pseudomonas species, for instance, synthesize vitamin B12 

which can be a limiting factor for rotifers under culture conditions (Yu et al., 1988). The 

rotifer performance in bacteria-free conditions was worse than in a culture 

supplemented with a MC (Douillet, 1998; Rombaut et al., 1999; Tinh et al., 2006) 

indicating that bacteria are important to rotifers. Although bacteria can be considered 

as an alternative food for rotifers, they are considered to be a nuisance for a 

successful culture of marine fish larvae (bacteria associated with rotifers culture that 

might be harmful to the fish larvae (Gatesoupe et al., 1989) e.g. V. anguillarum 

(Planas et al., 2006), and several methods have been developed to limit the transfer of 

bacteria from rotifer cultures to larval tanks (Muroga and Yasunobu, 1987; 

Tanasomwang and Muroga, 1989; Munro et al., 1993; Vadstein et al., 1993; Munro et 

al., 1994; Skjermo et al., 1997; Verschuere et al., 1997; Skjermo and Vadstein, 1999; 

Makridis et al., 2000; Rombaut et al., 2003; Qi et al., 2009). LAB and B. subtilis were 

often added in the rotifer culture systems for the increasing the rotifer production. The 

addition of putative LAB and B. subtilis significantly increased the rotifer B. plicatilis 

population density and growth rate (Gatesoupe, 1991b; Harzevili et al., 1998a; 

Harzevili et al., 1998b; Hirata et al., 1998; Douillet, 2000). In addition, Planas and 

Cunha (1999) used terrestrial-origin LAB (L. casei, P. acidilactici and L. lactic) to 

improve the B. plicatilis growth rate by 8 – 13 times than those obtained in the 

controls.  

 

In the present study, the putative beneficial effect of a mixture of LAB and Bacillus 

subtilis on the growth performance of P. similis or B. rotundiformis was verified as well 

as their effect on the MC composition.  
 

3.2. Materials and methods 

 

Rotifers: P. similis (Okinawa strain, Japan) and B. rotundiformis (Bali strain, Indonesia) 

were obtained from the Lab. of Aquaculture Biology, Nagasaki University, Japan. The 

rotifers were maintained in 1 L Erlenmeyer flasks at 28 ± 1°C, and were fed N. oculata 

(Reed Mariculture, USA) daily at the density of 106 cells.mL-1. 
 

Bacterial preparation: Five LAB strains were used, namely: Lactobacillus plantarum 

(strain R22, isolated from the gut of Decapterus korehu, unpublished data), L. 

fermentum (strain TC19, isolated from fermented P. monodon), L. brevis (strain NC2, 

isolated from fermented beef), Pediococcus acidilactici (strain TC5, isolated from 
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fermented Penaeus monodon and P. pentosaceus (strain MC1t2, isolated from 

fermented bamboo shoot, unpublished data) and a strain of B. subtilis isolated from 

shrimp carapax (strain C10) (Bose, 2011). All were obtained from the Lab. of Food 

Technology, Hue Uni. of Agriculture and Forestry, Vietnam. The LAB were cultured on 

the de Man, Rogosa and Sharpe (MRS, pH = 8) agar (Oxoid, UK) and B. subtilis was 

cultured on marine agar (MA, pH = 8) (Merck, Germany). From the pure culture of 

each strain, a single colony was removed, placed directly into 5 mL of MRS broth (pH 

= 8, 20 g.L-1 NaCl) for the LAB or marine broth (pH = 8) for B. subtilis and incubated 

overnight at 37 °C (LAB) or 28°C (B. subtilis) on a horizontal shaker (Kuhner shaker, 

Switzerland; 140 rpm). After 24h, the bacteria suspension was centrifuged at 2200 xg 

(Sanyo Mistral 2000R, Japan) for 15 minutes. The pellet re-suspended in 0.85% sterile 

saline solution and the density adjusted to give an optical density of 1 at 600 nm. The 

Miles & Misra method provided viable colony counts (Miles et al., 1938) and then 10-

fold serial dilutions were made to have approximately 1 x 106 CFU.mL-1. This was the 

bacteria density used for all the probiotic assays performed in this study. 

 

Figure 3.1. P. similis and SS-type B. rotundiformis. Bar = 50 μm (Wullur et al., 2009). 

 

3.2.3. Experimental design 
 

3.2.3.1. Effect of ABs on the hatching success of P. similis and B. rotundiformis.  
 

To monitor the effects of AB on the hatchability of P. similis and B. rotundiformis, 40 

eggs of each rotifer species were collected and incubated individually in 22 g.L-1 

autoclaved sea water at 28 ± 1°C with the addition of a mixture of four ABs; rifampicin 
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(Sigma-A83907), ampicillin (Sigma-A0166), trimethoprim (Sigma-T7883) and 

gentamycin (Sigma-G1264) (1:1:1:1). Three different concentrations (10, 50 or 100 

mg.L-1 of each AB) were evaluated. The treatment without addition of AB served as 

control. The number of hatched rotifers was determined 12 h after the start of the 

incubation.  

 

3.2.3.2.  Growth of LAB and B. subtilis in autoclaved rotifer culture medium 

 

To test for the growth potential of probiotic bacteria in autoclaved rotifer culture 

medium, a mixture of the 6 probiotics was added (each strain at 106 CFU.mL-1.species-

1 day-1) to autoclaved water containing autoclaved algae at the same density as used 

during the rotifer tests. No rotifers were added. Water samples were collected every 

other day from day 2 for MC analysis through plating on MA (to check the total 

heterotrophic bacteria density), TCBS agar (Thiosulfate Citrate Bile Salts Sucrose, 

Merck, Germany) (to check for bacteria that can growth on TCBS) and MRS agar (to 

check the LAB density). The detection limit of the bacterial count was 20 CFU.mL-1. 

 

3.2.3.3. Effect of probiotics addition on the P. similis or B. rotundiformis performance 

 

Rotifer and ABs preparation: All rotifers used to start experiments were newly 

hatched axenic rotifers. The axenic rotifers (P. similis and B. rotundiformis) were 

obtained by treating amictic eggs with glutaraldehyde according to the method from 

Tinh et al. (2006). Four ABs namely rifampicin (Sigma-A83907), ampicillin (Sigma-

A0166), trimethoprim (Sigma-T7883) and gentamycin (Sigma-G1264) were prepared 

and added daily to the culture vials directly (each at 10 mg.L-1 in the vials).  
 

Experimental design for the effect of probiotics addition on the performance of 

rotifers: Two different groups of experiments were run in a P. similis culture and in a 

B. rotundiformis culture (Table 3.1). Both groups of experiments were run 

simultaneous, originating from the same batch of rotifers.  In the first group, a culture 

of P. similis or B. rotundiformis with non-manipulated MC served as the control (1 P 

Cont and 1 B Cont, respectively). In treatment 1 P AB and 1 B AB, a mixture of four 

AB (rifampicin, ampicillin, trimethoprim and gentamycin, each at 10 mg.L-1) was added 

to the culture system. In the second group, a culture of P. similis or B. rotundiformis 

started in autoclaved water and fed autoclaved algae served as the control (2 P Cont 

and 2 B Cont, respectively). A mixture of L. plantarum, L. fermentum, L. brevis, P. 
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acidilactici, P. pentosaceus and B. subtilis (106 CFU.mL-1 each, totally 6 x 106 

CFU.mL-1) and algae (106 cells.mL-1 day-1) were added daily to the P. similis or B. 

rotundiformis cultures. In order to investigate whether the effects of the mixture of LAB 

and B. subtilis on the rotifer growth performance are nutritional or probiotic effects, the 

bacteria were added alive (treatment 2 P Prob and 2 B Prob) or added alive with AB 

present in the cultures (to limit proliferation of probionts and other bacteria) (Treatment 

2 P Prob+AB and 2 B Prob+AB) (Table 1). All treatments were performed in 100 mL 

glass bottles containing 80 mL of seawater at a salinity of 22 g.L-1, with four replicates 

per treatment and kept in darkness for 10 days. Water temperature was 28 ± 1°C. 

Water was not exchanged and no aeration was supplied during the experiment. 

Rotifers and water samples were collected every other day from day 2 onwards to 

determine the rotifer and microbial densities through plating on MA, TCBS and MRS 

agar. The detection limit of bacteria count was 20 CFU.mL-1. Population growth rate of 

P. similis was compared to that of B. rotundiformis cultured in similar conditions. The 

growth rates (r) were calculated using the following equation (Krebs, 1985): 

 

(ln = natural logarithm, Nt = population after time t (days) and No = initial population) 

 

Table 3.1. Experimental design to test the effects of culture conditions on P. similis or B. rotundiformis 

performance and MC 

Treatment 

group 

P. similis 

culture 
Treatment description Aim 

B. rotundiformis 

culture 

Group 1 

1 P Cont 
Non-manipulated MC and 

non-autoclaved live algae 
 1 B Cont 

1 P AB 
1 P Cont or 1 B Cont + 

mixture of four ABs 

To test the effect of 

limiting bacterial growth 
1 B AB 

Group 2 

2 P Cont 
Started in autoclaved water 

and fed autoclaved algae 
 2 B Cont 

2 P Prob 

2 P Cont or 2 B Cont + 

mixture of 6 species of 

tentative probiotic bacteria 

To test the probiotic 

effect of some tentative 

probiotic bacteria 

2 B Prob 

2 P 

Prob+AB 

2 P Cont or 2 B Cont + 

mixture of 6 species of 

killed (inhibited to growth) 

tentative probiotic bacteria 

To test the feeding effect 

of the tentative probiotic 

bacteria 

2 B            

Prob+AB 
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3.2.3.4. Denaturing Gradient Gel Electrophoresis (DGGE) 
 

DNA extraction and PCR amplification: From each replicate, 1 mL of sample 

(rotifers included) was collected at day 0, 6 and 10. The samples were freeze dried 

and stored at − 20 °C until further processing. Total DNA was extracted using the 

DNeasy Blood and Tissue Kit (Qiagen, The Netherlands) according to the 

manufacturer's instructions. PCR amplification targeting the V3 region of the 16S rRNA 

gene was conducted as described by Boon et al. (2002) using bacterial primer 338f 

(5’-ACTCCTACGGGAGGCAGCAG-3’) with a 40-base GC clamp attached to its 5’ end 

and universal primer 518r (5’-ATTACCGCGGCTGCTGG-3’). The PCR protocol 

consisted of 95 °C for 5 min, followed by 32 cycles with 95 °C 30 s, 55 °C 30 s, and 

72 °C 60 s, and finally an elongation step at 72 °C for 10 min. 
 

Denaturing gradient gel electrophoresis (DGGE): The DGGE was performed using 

a Bio-Rad D Gene system (Bio-Rad, USA) (Boon et al., 2002). The denaturing 

gradient of the gel ranged between 45% and 60%. Electrophoresis was performed at a 

constant voltage of 38 V at 60 °C for 16 h. The DGGE gels were stained for 20 

minutes in a 1% gel-red solution and the bands were visualized using a UV 

transilluminator (Bio-Rad).  
 

Band sequencing: DGGE bands were cut out from the gel and incubated overnight at 

4°C in 30 μL of H2O. An aliquot (2 μL) was used in a PCR with the same primer set 

and primer protocol as used for DGGE, to reamplify the fragment. Aliquots (2 μL) of 

the products from the re-PCRs were cloned into a TA vector using the pGEM-T Easy 

Vector System I cloning kit (Promega) and then chemically transformed into the E. coli 

Top 10 (Invitrogen). The PCR cloning analysis of the E. coli colonies was conducted 

using the primers T7 (5’-TAATACGACTCACTATAGGG-3’) and 518R. The 

transformed E. coli colonies were plated overnight and the DNA was extracted using 

the Wizard® Plus SV Minipreps DNA Purification Systems (Promega). Aliquots (10 μL) 

were used for the sequencing reactions with T7 and SP6 (5’-

ATTTAGGTGACACTATAG-3’) primers at LGC Genomics GmbH, Germany. 

Nucleotide sequencing was performed using the BigDye Terminator v3.1 cycle 

sequencing kit (ABI). Sequences were analyzed on an ABI 3100 automatic sequencer.  

Generally, only a single strand of the DNA fragments were sequenced. This proved to 

be sufficient for the taxonomic identification of the cloned 16S rRNA gene fragments 

using the BLAST search function within the NCBI database.  
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3.2.4. Experimental design to test the effect of probiotics’ addition on the 

performance of rotifers in large-scale culture  
 

All treatments were performed in 400 L fiberglass cylindro-conical tanks containing 

200 L of sea water at a salinity of 22 g.L-1 and kept in darkness (four replicates per 

treatment). The experiment ran for 8 days. Water temperature was 28 ± 1°C. During 

the experiment, the seawater was not exchanged. Aeration was supplied by an air 

stone placed at the bottom center of each tank. Firstly, a culture of P. similis or B. 

rotundiformis started in filtered water (0.2 µm; Sartorius, Germany) and fed autoclaved 

algae with non-manipulated MC served as the control (control 1 and 2, respectively). 

Secondly, a culture of P. similis or B. rotundiformis cultured in filtered water (0.2 µm, 

Sartorius, Germany) and fed autoclaved algae (106 cells.mL-1.day-1) with the addition 

of a mixture of L. plantarum, L. fermentum, L. brevis, P. acidilactici, P. pentosaceus 

and B. subtilis (106 CFU.mL-1.species1 final density, totally 6 x 106 CFU.mL-1) and 

algae paste (106 cells mL-1.day-1) (treatment 1 and 2, respectively). Rotifers were 

collected every other day from day 2 onwards to determine the rotifer densities. 

Population growth rate of P. similis was compared to those from B. rotundiformis 

cultured in similar conditions. The population growth rates (r) were calculated using the 

equation (Krebs, 1985) and the exponential population growth rates (r-max) were 

calculated according to Kostopoulou and Vadstein (2007). 

3.2.5. Data analysis 
 

Significant differences between means of continuous variables (rotifer population 

densities) in different treatments of each group were analyzed using one-way repeated 

measures of variance (rmANOVA). The significant differences in hatching success 

were compared by Pearson Chi-square test. The significant differences in rotifer 

densities (at each sampling point), growth rates and number of bacteria between 

treatments were compared by one-way ANOVA, followed by the Tukey-Kramer tests 

for multiple comparisons. Student t-tests were used where applicable. Probability level 

of p<0.05 was considered significant. All tests were performed using the SPSS 

program 22.0. The DGGE patterns were processed by Bionumerics software 5.0 

(Applied Maths, Sint-Martens-Latem, Belgium) and analyzed as described by Bakke et 

al. (2013). The band position tolerance limit to consider bands as being identical was 

set at 1%.  
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3.3. Results 

 

3.3.1. Effect of ABs on hatching success of P. similis and B. rotundiformis 

 

The toxicity of AB was evaluated based on the hatching success of P. similis and B. 

rotundiformis. The AB did not affect the hatchability of the eggs of P. similis and B. 

rotundiformis as there were no significant differences in hatching success between the 

control treatment (no AB added) and all AB treatments. The hatching success was 

95% for P. similis eggs and from 95 to 100% for B. rotundiformis eggs (Pearson Chi-

square test, p>0.05, n = 40). 

 

3.3.2. Growth of LAB and B. subtilis in autoclaved rotifer culture medium 
 

During the 10-day period, TCBS counts were always below detection limit. The 

number of bacteria on MRS agar and MA increased from 5.7 ± 1.0 x 107 and 5.9 ± 1.7 

x 108 to 3.1  ± 0.3 x 108
 and 7.2 ± 0.7 x 109 CFU.mL-1, respectively.  

 

3.3.3. Effect of probiotics addition on the population densities and growth rates 

of P. similis or B. rotundiformis   

 

Overall, the population densities were significantly different among treatments during 

the experiment, except at the starting point (day 0) (Figure 3.2, rmANOVA, p<0.001). 

At each sampling time point, the population densities of P. similis and B. rotundiformis 

were significantly different among treatments, except at the starting point (day 0) 

(Figure 3.2, one-way ANOVA, p<0.001). 

 

In group 1 experiments, except day 2, the population densities of P. similis (Figure 

3.2A) and B. rotundiformis (Figure 3.2C) with the addition of a mixture of ANs 

(treatment 1 P AB: 75 ind.mL-1; treatment 1 B AB: 74 ind.mL-1 at day 10) were always 

significantly lower (56 – 228%) than the controls (without AB addition) (treatment 1 P 

Cont: 243 ind.mL-1, treatment 1 B Cont: 117 ind.mL-1 at day 10) (Tukey-Kramer, 

p<0.05).   

 

In group 2 experiments, the population densities of P. similis with the addition of the 

live mixture of bacteria (treatment 2 P Prob: 402 ind.mL-1 at day 10) was significantly 

higher than those in any other treatments from day 2 to day 10 (Tukey-Kramer, 

p<0.05). P. similis culture started in autoclaved water and fed autoclaved algae (2 P 



CHAPTER 3 

 
45 

Cont: 129 ind.mL-1 at day 10) showed a lower growth performance as compared to 

those fed algae and living probiotics (Tukey-Kramer, p<0.05), but showed higher 

population densities as compared to those fed probionts in the presence of AB 

(treatment 2 P Prob+AB) (Figure 3.2B). The same trend can be seen in B. 

rotundiformis cultures, where significant higher rotifer densities were observed in the 

treatment with putative probiotic bacteria addition (treatment 2 B Prob: 123 ind.mL-1 at 

day 10). The population densities of B. rotundiformis in the treatment using autoclaved 

water and algae with addition of the mixture of probionts in the presence of AB 

(treatment 2 B Prob+AB: 61 ind.mL-1 at day 10) was similar to the culture started in 

autoclaved water and fed autoclaved algae (2 B Cont: 66 ind.mL-1 at day 10) (Tukey-

Kramer, p>0.05) (Figure 3.2D).  

 

On day 10, the addition of the mixture of killed probionts resulted in a negative effect to 

P. similis performance compared to the treatment with the addition of a mixture of ABs, 

without addition of probionts (treatment 2 P Prob+AB: 47 ind.mL-1, compared to the 

treatment 1 P AB: 75 ind.mL-1) (Tukey-Kramer, p<0.05). The population density of P. 

similis with the addition of the live mixture of bacteria (402 ind.mL-1) was 755% higher 

than those fed probionts in the presence of AB (47 ind.mL-1) (Figure 3.2B). On the 

other hand, the population densities of B. rotundiformis with the addition of the live 

mixture of bacteria (123 ind.mL-1) were only 101% higher than those fed probionts in 

the presence of AB (61 ind.mL-1) (Table 3.2D) (Tukey-Kramer, p<0.05). 

 

From day 0 to day 10, the population growth rates of P. similis and B. rotundiformis 

were significantly different among treatments (Table 3.2, one-way ANOVA, p<0.001). 

The growth rate of P. similis with the addition of the live mixture of bacteria (treatment 

2 P Prob: 0.479 day-1) was significantly higher (16 – 118%) than any other treatment 

from both rotifer cultures (Table 3.2) (Tukey-Kramer, p<0.05).  On the other hand, 

there were no significant differences in the B. rotundiformis growth rates where 

putative probiotic bacteria were or were not added (treatment 2 B Prob: 0.412 day-1; 1 

B Cont: 0.407 day-1) (Tukey-Kramer, p>0.05). In addition, the growth rate of B. 

rotundiformis with the addition of the live mixture of bacteria (treatment 2 B Prob: 

0.412 day-1) was significantly higher than (20%) those from the treatment fed probionts 

in the presence of AB (treatment 2 B Prob+AB: 0.342 day-1) (Tukey-Kramer, p<0.05).  

Overall, the rotifer cultures with addition of a mixture of ABs resulted in lower 

population densities and growth rates of the rotifers than the treatments without 
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addition of the ABs. Secondly, the rotifer cultures in which live probiotics were added 

led to a higher population densities and growth rates than treatments in which 

probiotics were used in the presence of AB, and treatments started in autoclaved 

water and fed autoclaved algae, but without probiotics addition. Finally, the growth 

performance of the rotifer P. similis appears to be more dependent on the proliferating 

bacterial community than the rotifer B. rotundiformis. 
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Figure 3.2. Growth performance of P. similis (A, B); B. rotundiformis (C, D) under 5 different culture 

conditions (mean ± SD, n = 4). 1 P Cont and 1 B Cont: non-manipulated MC and unautoclaved algae; 

Treatment 1 P AB and 1 B AB: non-manipulated MC and unautoclaved algae + mixture of four AB; 2 P 

Cont and 2 B Cont: started in autoclaved water and fed autoclaved algae; Treatment 2 P Prob and 2 B 

Prob: started in autoclaved water and fed autoclaved algae + mixture of six species of tentative probiotic 

bacteria; Treatment 2 P Prob+AB and 2 B: Prob+AB started in autoclaved water, fed autoclaved algae + 

mixture of six species of AB killed tentative probiotic bacteria. Significant differences between means in 

continuous variables (rotifer population densities) between treatments of each group during experiments 

were analyzed using one-way repeated measures of variance (rmANOVA).  Different letters indicate 

significant differences in rotifer population densities among treatments at each sampling point (one-way 

ANOVA, Tukey-Kramer tests for multiple comparisons). 
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Table 3.2. P. similis and B. rotundiformis growth rates (day-1) in 10 days (from day 0 to 10) in all 

treatments (mean ± S.D., n=4) 

Cultures Treatments* Growth rate  

P. similis 

1 P Cont 0.354 ± 0.015d 

1 P AB 0.283 ± 0.019b 

2 P Cont 0.308 ± 0.023bc 

2 P Prob 0.479 ± 0.002f 

2 P Prob+AB 0.220 ± 0.030a 

B. rotundiformis 

1 B Cont 0.407 ± 0.005e 

1 B AB 0.356 ± 0.007d 

2 B Cont 0.349 ± 0.003d 

2 B Prob 0.412 ± 0.005e 

2 B Prob+AB 0.342 ± 0.012cd 

 (*) 1 P Cont and 1 B Cont: non-manipulated MC and unautoclaved algae; Treatment 1 P AB and 1 B AB: non-

manipulated MC and unautoclaved algae + mixture of four AB; 2 P Cont and 2 B Cont: started in autoclaved water 

and fed autoclaved algae; Treatment 2 P Prob and 2 B Prob: started in autoclaved water and fed autoclaved algae 

+ mixture of six species of tentative probiotic bacteria; Treatment 2 P Prob+AB and 2 B: Prob+AB started in 

autoclaved water, fed autoclaved algae + mixture of six species of AB killed tentative probiotic bacteria. Different 

letters from each column indicates significant differences in growth rates at day 10 among treatments across 

species (one-way ANOVA, Tukey-Kramer post-tests for multiple comparisons). 

 

3.3.4. Bacteria counts  
 

The MC in P. similis and B. rotundiformis cultures were assessed every 2 days by 

counting the number of colonies on TCBS agar, MRS agar and MA. Overall, the 

bacterial counts were significantly different among treatments during the experiment 

(rmANOVA, p < 0.001). At each sampling time point (day 2 and day 10), the bacteria 

counts were significantly different among treatments (one-way ANOVA, p<0.001) 

(Table 3.3). The number of bacteria on TCBS agar increased with time. In group 1, at 

day 10, the TCBS counts in the 1 B Cont (1.2 x 104 CFU.mL-1) were significantly 

higher than in the 1 P Cont (4.0 x 103 CFU.mL-1). This was also the case in group 2. At 

day 10, the TCBS counts in the 2 B Cont (3.1 x 104 CFU.mL-1) were significantly 

higher than in the treatment 2 P Prob and 2 B Prob (Tukey-Kramer, p<0.05). The 

TCBS counts of treatment 1 P AB, 1 B AB, 2 P Prob+AB and 2 B Prob+AB was under 

detection limit (Table 3.3A). The number of bacteria on MRS agar in group 1 increased 

in all treatments without AB addition during the culture period. In group 2, the bacteria 

density in both cultures which included live probiotic addition was significantly higher 

than in any other treatments, and the bacteria density in P. similis cultures was 
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significantly lower than those in B. rotundiformis culture, at both day 2 and day 10 (4.2 

x 104 CFU.mL-1 at the treatment 2 P Prob compared to 1.4 x 105 CFU.mL-1 at the 

treatment 2 B Prob at day 2, and 8.0 x 104
 CFU.mL-1 at the treatment 2 P Prob 

compared 4.3 x 105 CFU.mL-1 in treatment 2 B Prob at day 10) (Tukey-Kramer, 

p<0.05). A significant difference was observed in the treatments without live probiotic 

addition (5.3 x 102 CFU.mL-1 at the 2 P Cont and 1.3 x 103
 CFU.mL-1 at the 2 B Cont) 

(Tukey-Kramer, p<0.05) (Table 3.3B). In all growth media, the bacteria colonies were 

below detection limit in treatments with AB addition, while the number of bacteria 

increased in function of culture time in the other treatments. It seems that with or 

without addition of probiotics, the final bacterial density is around 108 CFU.mL-1 at day 

10 in all treatments without the AB addition (Table 3.3C). Most importantly, within the 

same conditions, the bacterial densities in P. similis cultures were always higher than 

those in B. rotundiformis cultures at day 10 (3 – 6x on TCBS, 2 – 9x on MRS, 5 – 23x 

on MA) (Table 3.3). 

 

3.3.5. Denaturing Gradient Gel Electrophoresis (DGGE) 
 

The DGGE profiles obtained from the MC in all controls and treatments are shown in 

Figure 3.3. At day 6 and 10, the bands from the L. plantarum (band M1), B. subtilis 

(band M2), L. brevis (band M3), P. acidilactici (band M4), P. pentosaceus (band M4) 

and L. fermentum (band M5) were dominant in the treatments started in autoclaved 

water, fed autoclaved algae with the addition of the mixture of six species of tentative 

live or killed probiotic bacteria (columns 4, 5, 9, 10, 14, 15, 19 and 20) (the P. 

acidilactici and P. pentosaceus yield the same band on DGGE gel). In P. similis 

culture, two bands from Vibrio sp. (A1 and B1) appeared at day 6 of the treatments 

started in autoclaved water and fed autoclaved algae (column 3). At day 6 and 10, 

bands from Vibrio sp. (band A2 and B2) were also found in the same treatments. In B. 

rotundiformis culture, the bands from Vibrio sp. (band E1 and F1) were dominant at 

day 6 (column 13) in the treatments started in autoclaved water and fed autoclaved 

algae, whereas no Bacillus sp. or Lactobacillus sp. was visible at this point of the same 

treatment. However, the intensities of the Vibrio sp. bands (band E2 and F2) were 

reduced, while the bands from Bacillus sp. (band C) and Lactobacillus sp. (band D) 

were visible at day 10 (column 18). 
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Table 3.3A. Bacteria density (detected on TCBS agar) in all treatments* (mean ± S.D., CFU.mL-1, n=4) 

Group Treatment 
Days of culture 

2 4 6 8 10 

1 
1 P Cont 7.5 ± 4.1 x 101a 2.0 ± 0.9 x 102 1.3 ± 0.8 x 103 2.4 ± 1.5 x 103 4.0 ± 2.1 x 103a 

1 B Cont 4.8 ± 1.5 x 102b 8.5 ± 4.1 x 102 3.9 ± 1.7 x 103 7.2 ± 1.8 x 103 1.2 ± 0.5 x 104b 

2 

2 P Cont 2.5 ± 1.0 x 101ac 1.3 ± 0.5 x 102 1.1 ± 0.7 x 103 2.9 ± 0.8 x 103 5.9 ± 2.0 x 103a 

2 P Prob 1.5 ± 0.6 x 101c 3.0 ± 2.0 x 101 2.1 ± 1.4 x 102 5.5 ± 3.0 x 102 6.2 ± 1.6 x 102c 

2 B Cont 7.0 ± 3.8 x 101d 3.5 ± 1.9 x 102 3.0 ± 1.8 x 103 5.2 ± 0.7 x 103 3.1 ± 1.3 x 104d 

2 B Prob 4.0 ± 2.8 x 101ac 7.0 ± 3.2 x 102 1.6 ± 0.2 x 103 2.6 ± 1.1 x 103 6.8 ± 1.7 x 103ab 

 

 

Table 3.3B. Bacteria density (detected on MRS agar) in all treatments* (mean ± S.D., CFU.mL-1, n=4) 

Group Treatment 
Days of culture 

2 4 6 8 10 

1 
1 P Cont 0.5 ± 0.2 x 101a 1.5 ± 0.6 x 101 4.0 ± 1.6 x 101 2.8 ± 1.0 x 102  4.0 ± 1.7 x 102a 

2 B Cont 2.0 ± 1.0 x 101b 3.3 ± 0.1 x 101 8.8 ± 2.2 x 102 2.4 ± 1.0 x 103 3.7 ± 1.1 x 103b 

2 

2 P Cont 3.0 ± 1.2 x 101b 8.0 ± 2.8 x 101 2.3 ± 1.0 x 102 2.5 ± 1.7 x 102 5.3 ± 2.2 x 102a 

2 P Prob 4.2 ± 1.8 x 104d 4.6 ± 0.8 x 104 5.4 ± 1.5 x 104 6.8 ± 2.5 x 104 8.0 ± 2.8 x 104d 

2 B Cont 6.0 ± 2.8 x 101b 2.5 ± 1.7x 102 5.8 ± 1.7 x 102 1.1 ± 0.3 x 103 1.3 ± 0.4 x 103c 

2 B Prob 1.4 ± 0.4 x 105e 1.7 ± 0.3 x 105 3.8 ± 1.0 x 105 4.0 ± 0.9 x 105 4.3 ± 1.8 x 105e 

 

 

Table 3.3C. Bacteria density (detected on MA) in all treatments* (mean ± S.D., CFU.mL-1, n=4) 

Group Treatment 
Days of culture 

2 4 6 8 10 

1 
1 P Cont 2.4 ± 1.3 x 106abc 3.2 ± 1.0 x 106 8.5 ± 2.3 x 106 2.0 ± 0.9 x 107 2.5 ± 1.1x 108a 

1 B Cont 9.0 ± 6.4 x 106a 3.7 ± 3.4 x 108 4.4 ± 3.2 x 108 6.7 ± 1.2 x 108 1.9 ± 1.2 x 109bc 

2 

2 P Cont 6.5 ± 2.0 x 105b 4.0 ± 2.0 x 106 7.1 ± 3.5 x 107 8.9 ± 3.7 x 107 7.4 ± 2.7 x 108ac 

2 P Prob 4.9 ± 2.4 x 106a 7.5 ± 2.3 x 106 2.3 ± 1.5 x 107 5.4 ± 4.4 x 107 3.4 ± 2.3 x 108ad 

2 B Cont 1.1 ± 0.5 x 105bc 1.1± 0.3 x 106 2.5 ± 3.5 x 108 2.0 ± 1.9 x 108 4.0 ± 1.3 x 109b 

2 B Prob 3.8 ± 4.1 x 106ac 2.3 ± 3.4 x 107 3.9 ± 2.4 x 107 5.1 ± 1.3 x 108 8.0 ± 1.3 x 108cd 

1 P Cont & 1 B Cont: non-manipulated MC & unautoclaved algae; 1 P AB & 1 B AB: non-manipulated MC & unautoclaved 

algae + mixture of four AB; 2 P Cont & 2 B Cont: started in autoclaved water & fed autoclaved algae; 2 P Prob & 2 B Prob: 

started in autoclaved water, fed autoclaved algae & mixture of six species of tentative probiotic bacteria; 2 P Prob+AB & 2 

B Prob+AB: started in autoclaved water, fed autoclaved algae & mixture of six species of AB killed tentative probiotic 

bacteria. Different letters indicate significant differences in bacterial densities among treatments on the same sampling 

point (one-way ANOVA, Tukey-Kramer tests for multiple comparisons). All bacterial densities measured in AB treatments 

(not shown in the table) were below detectable levels. 
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Figure 3.3. DGGE gels (8% acrylamide, 45–60% denaturing gradient) of PCR products with primers 

338F-GC and 518R obtained from 1 P Cont & 1 B Cont: non-manipulated MC & unautoclaved algae; 1 

P AB & 1 B AB: non-manipulated MC, unautoclaved algae & mixture of four AB; 2 P Cont & 2 B Cont: 

started in autoclaved water & fed autoclaved algae; 2 P Prob & 2 B Prob: started in autoclaved water, 

fed autoclaved algae & mixture of 6 species of tentative probiotic bacteria; 2 P Prob+AB & 2 B 

Prob+AB: started in autoclaved water, fed autoclaved algae & mixture of 6 species of AB killed tentative 

probiotic bacteria. (Left) DNA from 1 P Cont, treatment 1 P AB, 2 P Cont, treatment 2 P Prob, treatment 

2 P Prob+AB on day 6 (columns 1–5) and day 10 (columns 6–10), respectively; (Right) DNA from 1 B 

Cont,  treatment 1 B AB, 2 B Cont, treatment 2 B Prob, treatment 2 B Prob+AB on day 6 (columns 11–

15), day 10 (columns 16–20), respectively; M: a marker produced from a template consisting of DNA 

from pure cultures of different probiotic strains used in the experiment (M1: L. plantarum strain R22, M2: 

B. subtilis strain C10, M3: L. brevis strain NC2, M4: P. acidilactici strain TC5 and/or P. pentosaceus strain 

MC1t2, M5: L. fermentum strain TC19); (-): negative controls.  
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3.3.6. Effect of probiotic addition on the rotifer performance in large-scale 

culture  

 

Overall, the population densities were significantly different among treatments, except 

at the starting point (day 0) (Figure 3.4, rmANOVA, p<0.001). The population densities 

of P. similis with the addition of the live mixture of bacteria (treatment 1: 819 ind.mL-1) 

was significantly higher (57%) than those started in autoclaved water and fed 

autoclaved algae (control 1: 522 ind.mL-1) at day 8 (t-test, p<0.05). The densities of B. 

rotundiformis with the addition of the live probiotic mixture (treatment 1: 205 ind.mL-1) 

was not significantly different from those started in autoclaved water and fed 

autoclaved algae (control 2: 186 ind.mL-1) at day 8 (t-test, p>0.05).  

 

 

Figure 3.4. Growth performance of (A) P. similis; (B) B. rotundiformis under 2 different culture conditions 

(mean ± SD, n = 4). Different letters indicate significant differences in each rotifer population density 

among treatments at each sampling point (t-test). 
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From day 0 to day 8, growth rates of P. similis and B. rotundiformis were significantly 

different among treatments (Table 3.4, one-way ANOVA, p<0.001). The growth rate of 

P. similis with the addition of the live probionts (treatment 1: 0.601 day-1) was 

significantly higher (9 – 14%) than other treatments from both rotifer cultures (Tukey-

Kramer, p<0.05). By contrast, there were no significant differences in B. rotundiformis 

growth rates where putative probionts were or were not added (treatment 2: 0.552; 

Control 2: 0.543 day-1) (Tukey-Kramer, p>0.05). The maximum growth rate (r-max) of 

the control 1 was 30.1 – 46.5% lower than those from any other treatment. The results 

indicated that the P. similis was more dependent on the proliferating bacterial 

community than the B. rotundiformis in large-scale culture conditions (Table 3.4). 

 

Table 3.4. P. similis and B. rotundiformis growth rates (r and r-max) (day-1) in 8 days (from day 0 to day 8) 

in all treatments (mean ± SD day-1, n=4) 

Cultures Treatments Growth rate (r)  Maximum growth rate (r-max)  

P. similis 
Control 1 0.527 ± 0.040a 1.277 ± 0.039a 

Treatment 1 0.601 ± 0.025b 1.578 ± 0.026b 

B. rotundiformis 
Control 2 0.543 ± 0.046a 1.742 ± 0.179b 

Treatment 2 0.552 ± 0.050a 1.739 ± 0.075b 

Control 1, 2: started in autoclaved water, fed autoclaved algae. Treatment 1, 2: started in autoclaved 

water, fed autoclaved algae & mixture of 6 tentative probiotics. Different letters indicate significant 

differences in each rotifer population density among treatments at each sampling point (t-test). 

 

3.4. Discussion 

 

The body size, length and width, of P. similis were 83 ± 11 μm and 40 ± 6 μm, 

respectively, 38.1% smaller and 60.3% narrower than B. rotundiformis. The best 

microalgae for the culture of P. similis is N. oculata (1.5 – 2 µm) and C. vulgaris (2 – 6 

µm) (Wullur et al., 2009). However, based on the results of this study, the effect of the 

bacterial community on growth performance of P. similis is important. 

 

Rotifer batch cultures have a complex MC and the MC have an important influence on 

rotifer performance (Miyakawa and Muroga, 1988; Tinh et al., 2006). Therefore, it is 

important to control or manipulate the MC associated with rotifer cultures to achieve 

good rotifer production (Planas and Cunha, 1999; Skjermo and Vadstein, 1999; Dhert 

et al., 2001). In the aquatic environment, only 30% of the bacteria can be found as free 

living organisms, while the majority (70%) is aggregated around organic substrate, 
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such as dead organisms, faecal pellets, molts of zooplankton, living phyto- and other 

zooplankton or around an inorganic core such as clay particles (Seki, 1969; Selmi et 

al., 2001; Grossart, 2010; Tang et al., 2010; Attramadal et al., 2012b). Bacteria and by 

extension the microbial loop are mainly considered important as a recycling pathway 

for C and N in many ecological food webs (Azam et al., 1983). In the rotifer’s digestive 

tract, bacteria can either be digested, be transient or commensal alive microflora. It is 

clear that bacteria enhance B. plicatilis culture performance, either added as pure free 

living strains (Rombaut et al., 1999; Douillet, 2000) or mixtures of lab cultured bacteria 

or commercial products (Douillet, 2000), compared to bacteria-free rotifer cultures. 

Furthermore, B. plicatilis sensu stricto had an increased growth performance in the 

presence of live microbial communities when the rotifers were fed baker’s yeast, while 

there was no effect observed when they were fed Chlorella. In this experiment, the 

addition of the mixture of killed probionts did not have any effect on the growth 

performance of B. rotundiformis culture. Similar results were obtained by Tinh et al. 

(2006), when heat-killed microbial communities were added. As 63% of marine 

bacteria dry weight is protein, bacteria can be a substantial source of proteins (Simon 

and Azam, 1989). Depending on the mixture of available food particles, 10 to 40% of 

the rotifer’s diet can consist of bacteria (Arndt, 1993). It was concluded that the rotifer 

densities and/or egg-to-female ratio dynamics in a eutrophic reservoir were 

significantly positively correlated with bacterial load (Ooms-Wilms, 1997; López et al., 

2007). 

  

In B. plicatilis culture, the use of a single (ampicillin at 100 μg.mL-1, kanamycin at 60 

μg.mL-1, nalidicic acid at 30 μg.mL-1 and streptomycine at 60 μg.mL-1) or a mixture of 4 

ABs (ampicillin at 100 μg.mL-1, kanamycin at 60 μg.mL-1, nalidicic acid at 30 μg.mL-1 

and streptomycine at 60 μg.mL-1), except chloramphenicol at 40 μg.mL-1, were earlier 

found not to affect rotifer reproduction or hatching success and did not show any 

teratogenic effects (Suga et al., 2011). In this study, the MCs in the P. similis and B. 

rotundiformis cultures were treated by the addition of a mixture of four ABs, namely: 

rifampicin, ampicillin, trimethoprim and gentamycin. No significant differences in 

hatching percentage were found between the AB free and the AB containing 

treatments, suggesting that the AB is non-toxic for rotifers. However, in the group 1, 

the population densities and growth rates of the cultures with addition of AB, with 

limiting bacterial proliferation (Table 3), were lower than those grown in non-
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manipulated MC cultures. It showed that the proliferating bacterial community was a 

very important factor in the growth performance of both rotifer species, pointing in the 

direction of the importance of the microbial loop.  

 

At this stage, it is important to mention that in the experiments of group 2, equal 

number of probionts and N. oculata were added to the culture. With an approximated 

cellular weight for bacteria of 0.2 pg (Heldal et al., 1985) and 10 pg for N. oculata 

(Brown et al., 1993), this means that supplemented probionts constituted around 10% 

of the food supplied to the cultures. Hence, in cultures in which AB were added 

(limiting bacterial proliferation, see Table 3), bacteria biomass was only a minor 

fraction of the total microbial biomass available to the rotifers. In the absence of AB, 

probionts can proliferate on waste products and constitute a non-quantified amount of 

the diet of the rotifers. It appears that in the presence of AB, the supplemented 

probionts do not have a positive nor negative effect on B. rotundiformis. Hence, they 

do not seem to be important for B. rotundiformis growth when N. oculata is the major 

food compound. For P. similis, the added probionts in the AB treatment seem to have 

an apparent negative effect. Keeping in mind that they only constitute a minor fraction 

of the total diet, it can be suggested that the added probionts do not constitute as such 

an important source of nutrients. In addition due to the AB presence, regrowth of 

bacteria and probionts (see Table 3) is limited, probably limiting P. similis growth (this 

interpretation assumes that the presence of active metabolizing bacteria, namely the 

standing MC in combination with the probionts, are beneficial for P. similis growth). As 

such, the effect of AB in the P. similis experiment of group 1 and group 2 seem to be 

similar, as limiting bacterial growth strongly suppresses growth. In the absence of AB, 

the addition of probionts has a major effect on both B. rotundiformis and P. similis. 

Here, it is important to compare growth relative to the control with and without AB. In 

comparison to the control without AB, the results seem to indicate that the proliferation 

of probionts in the cultures (relative a non-manipulated control) is very beneficial which 

can be due to the combination of additional bacterial biomass available which can 

have an additional specific probiotic effect. The data, however, do not allow to 

quantitatively distinguishing between a pure nutritional effect and a probiotic effect.  

The data do indicate that especially for P. similis the added probionts under conducive 

conditions for regrowth, are very beneficial for P. similis and do not have an anti-

nutritional effect (as could be concluded from the reduced growth rate of P. similis 
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when probionts and AB are added together). Also, under the same culture conditions, 

the bacterial densities on TCBS, MRS and MA were always lower in P. similis cultures 

than those from B. rotundiformis at day 10. Acknowledging that not all colonies 

growing on TCBS are actually Vibrio, these results seem to indicate that P.similis 

culture contain less Vibrio, an interpretation that would need confirmation by for 

instance 16S rDNA sequencing of individual colonies. The overall reduced bacterial 

counts indicate that P. similis can apparently ingest and digest the bacteria. In 

comparison with the control with AB it becomes clear that the growth performance of 

the rotifer P. similis is more dependent on the proliferating bacterial community than 

the rotifer B. rotundiformis. This is the new finding of this study, as there was no report 

so far about the relative importance of bacterial community for different rotifer species. 

 

The results from the DGGE analysis of MC in rotifer culture (rotifers and water) in the 

controls and treatments showed that bands from the L. plantarum (band M1), B. 

subtilis (band M2), L. brevis (band M3), P. acidilactici (band M4), P. pentosaceus 

(band M4) and L. fermentum (band M5) were dominant in the treatments started in 

autoclaved water, fed autoclaved algae with the addition of the mixture of six species 

of tentative live or killed probiotic bacteria at day 6 and day 10. On the other hand, 

these from LAB and B. subtilis were not present in other controls and treatments 

without the addition of probiotic bacteria. It explains that the LAB and B. subtilis could 

be absorbed by rotifers. Hence, this could give positive effects when feeding these 

rotifers to the fish larvae (to be tested). 

 

In conclusion, addition of proliferating bacteria, for example, live LAB and B. subtilis, 

from the beginning of P. similis and B. rotundiformis cultures, at the density of 106 

CFU.mL-1.species-1.day-1, enhances the rotifer production, alters the MC composition 

and allows shortening the culture period to 6 – 8 days, hence reduce the chance of 

protozoan contamination (which is one of the main reasons for the sudden collapse of 

P. similis culture), compared to 11 days as reported by Wullur et al. (2009). The P. 

similis takes more advantage from proliferating MC than the B. rotundiformis. 
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Abstract 

 

The rabbit fish (S. guttatus) is an increasingly popular species to cultivate in Vietnam. 

However, larviculture of rabbitfish is still unsuccessful, due to the lack of proper first 

feeding food for the larvae. In this study, different foods for rabbit fish larval rearing 

from hatching to day 25 were tested. The data generated from this study will provide 

valuable information in order to make an accurate assessment of the effects of 

nutrition on survival and growth rate of rabbit fish larvae. In the first experiment, P. 

similis and B. rotundiformis were tested as initial food for larvae. The data showed that 

the smaller rotifer P. similis was by far the better starter food for rabbit fish larvae than 

the bigger rotifer B. rotundiformis. The feeding incidence was earlier and significantly 

higher survival rates were obtained in the treatments fed P. similis, than those fed B. 

rotundiformis. The second experiment showed the importance of the SS-type B. 

rotundiformis on the survival and the total length of rabbit fish larvae when introduced 

into the culture system from day 6, which provided the best survivals, compared to the 

survival of larvae fed B. rotundiformis at other time points. Furthermore, the feeding of 

probiotic-enriched rotifers to the larvae did not have any effect on the ingestion of 

rotifers, such as first feeding incidence, feeding percentage at 36 and 96 hph and the 

amount of P. similis and B. rotundiformis in the gut. However, the results of this test 

showed that the larvae fed probiotic-enriched rotifers had significantly higher survival 

than the larvae fed non-enriched rotifers. Finally, the effect of different rearing 

protocols on the performance and survival of larvae from day 10 to 25 has also been 

tested. The results showed that rotifers still play an important role as food to the fish 

larvae beyond day 10. After that, Artemia was most suitable food to the larvae. The 

feeding schemes including Artemia and rotifers resulted in significantly higher survival 

and total length of larvae than the feeding scheme without Artemia. Compound diet 

was good for larvae when combined with rotifers and Artemia (Vinh Chau, Vietnam). 

 

Keywords: Rabbit fish, Siganus guttatus, larviculture; larval rearing; probiotics. 
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4.1. Introduction 

   

Rabbit fish (S. guttatus) belongs to the genus Siganus in the family Siganidae (Lam, 

1974). The cultivation of rabbit fish is increasingly popular in Southeast Asia and 

especially in Central Vietnam as there is an increasing demand from consumers (Hara 

et al., 1986a) and this species has a low trophic level, as they can be fed seaweed. 

However, lack of year-round-fry supply is one of the critical problems for farmers 

wanting to expand their rabbit fish culture (Hara et al., 1986b).  

     

The male rabbit fish becomes sexually mature at 10 months of age, while the female 

matures later, at around 12 months of age (Juario et al., 1985). The rabbit fish can 

spawn all year round (Hara et al., 1986a; Hara et al., 1986b). S. guttatus have no 

difficulties to spawn in captivity. Fish that are subjected to stress (such as handling) 

can still spawn without any need for hormonal treatment (Ayson, 1989). The eggs 

hatch after approximately 20 h. When rabbit fish larvae hatch, they are transparent 

with an approximate length of 1.7 mm (Hara et al., 1986a; Rachmansyah et al., 2007). 

During this early period, the larvae show high sensitivity to external stress and 

handling, which results in low survival. It is very important that the larvae of rabbit fish 

have an extra small size of food to be ingested (Hara et al., 1986b; Ayson, 1989). This 

has a great impact on the growth and survival of the fry. Up to day 6 after the larvae 

have hatched, most rotifers are still too big for the mouth of the fry. This causes big 

problems for farmers rearing fry of rabbit fish. Kohno et al. (1988) showed that 

ingestion of exogenous food started when the S. guttatus mouth had a size of 200 μm, 

which was 55.5 h after hatching. The ingested rotifers had a width of 125 μm. The 

width of the ingested rotifers was 55 – 70% of the width of the S. guttatus mouth. One 

commonly used rotifer is B. plicatilis which is fed to the larvae when the fry start eating 

exogenous food (Watanabe and Kiron, 1994). This species is approximately 90 to 340 

μm and is therefore expected to be a suitable food to S. guttatus. Kohno et al. (1988) 

showed that high mortality of S. guttatus fry occurred at different growth stages and 

when changing from endogenous to exogenous food.  
 

In this study, different foods for rabbit fish larval rearing from hatching to day 25 were 

tested. The data generated from this study provide valuable information on the effect 

of feeding strategies on rabbit fish survival and growth, and could be found essential 

in the establishment of industrial rabbit fish larviculture protocols.  
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4.2. Materials and methods 
  

4.2.1. Brood stocks and larval preparation 
       

Selected brood stocks were paired in a 2 m3 circular spawning tank. The females were 

induced with 2 IU of HCG.g-1 body weight every 24h until spawning. The males were 

not treated with hormones. Fertilized eggs attached to the plastic substrate were 

transferred to a 500L-hatching tank. After 20 hph, the number of newly hatched larvae 

was estimated and distributed to rearing tanks for experiments.  
 

4.2.2. Food preparation 
 

The rotifers P. similis (Okinawa strain, Japan), B. rotundiformis (Bali strain, Indonesia), 

B. plicatilis (Mie strain, Japan) were obtained from the Lab. of Aquaculture Biology, 

Nagasaki University, Japan. The rotifers were cultured at 28 ± 1°C in 400L fiberglass 

tank, and were fed N. oculata (strain CCMP525, Reed Mariculture, USA). The brine 

shrimp A. franciscana (Vinh Chau strain, Vinh Chau company, Vietnam) was hatched 

in 32 g.L-1 seawater and instar I nauplii were rinsed in seawater prior to feeding to the 

larvae. The compound diet used in the experiment was from C.P. Group (C.P. – 9000, 

0.4 – 0.6 mm in diameter, 42% crude protein). The whole sample of food was used for 

FAME analysis at the Lab. of Aquaculture & Artemia Reference Center, Ghent 

University. The FAME analysis followed the modified procedure of Lepage and Roy 

(1984), and conducted as described previously by Coutteau et al. (1995) (Table 4.1). 

4.2.3. Experimental design 
 

Experiment 1 (First feeding experiment): The aim of the experiment was to 

determine whether rabbit fish larvae could survive till 240 hph (10 days) under given 

feeding schemes. This experiment was conducted in 400L fiberglass tanks, containing 

300L of seawater (32 g.L-1) at 28 ± 1°C, pH = 8  ± 0.5. The larval density was 20 

larvae.L-1. The photoperiod was maintained at 12L:12D throughout the experiment. 

The seawater was filtered, ozonized and de-ozonized before pumping to the tank. 

During the experiment, the rearing water was not exchanged and an air stone placed 

at the bottom center of each tank provided aeration; 1 control and 2 feeding schemes 

are described in Table 4.2. Rotifers were fed to the larvae twice a day at 8 AM and 4 

PM. The rotifers in each tank were counted before adding new rotifers (top up) to 

maintain the same dry weight and encounter rate. Each treatment was conducted in 

triplicate. Ten larvae from each replicate were collected at 36, 48, 60, 96, 168 and 216 
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hph for the analysis of feeding incidence, percentage of feeding larvae and amount of 

rotifers in the gut using the method from Wullur et al. (2009; 2011). Feeding incidence 

and rotifer quantity in the gut was determined by dissecting the gut of the larvae under 

a stereomicroscope. The number of rotifers was counted based on the number of 

mastax (calcified jaw), which cannot be digested by the larvae (Akazawa et al., 2008). 

Ten days after hatching, all remaining larvae from each replicate were collected at the 

end of the experiment (240 hph) for survival calculation. 

 

Table 4.1. Fatty acids (% of composition) of food used in experiments 

Fatty acids P. similis B. rotundiformis B. plicatilis Artemia  Compound diet 

14:0 4.03 1.10 1.52 2.16 3.64 

14:1(n-5) 0.97 1.13 0.98 0.95 0.12 

16:0 17.42 14.05 12.81 12.35 24.41 

16:1(n-7) 15.07 5.86 7.72 12.20 3.26 

18:0 7.38 4.22 3.62 3.52 4.13 

18:1(n-9) 7.92 2.34 3.31 14.85 13.09 

18:1(n-7) 7.27 3.98 3.62 9.80 2.30 

18:2(n-6) 2.44 5.55 4.49 3.58 12.44 

18:3(n-6) 0.14 0.09 0.05 0.46 0.05 

18:3(n-3) 0.53 2.56 2.87 2.22 3.31 

18:4(n-3) 0.41 0.48 0.71 1.02 1.27 

20:1(n-9) 0.40 1.27 1.12 0.27 4.17 

20:1(n-7) 2.23 0.87 0.72 0.17 0.24 

20:3(n-6) 0.27 1.69 1.82 0.19 0.10 

20:4(n-6) 2.33 4.41 5.35 2.74 0.63 

20:4(n-3) 2.25 1.56 1.34 0.36 0.32 

22:0 1.27 0.52 0.49 0.21 0.22 

20:5(n-3) 6.00 4.51 6.44 11.58 4.94 

22:5(n-3) 2.62 3.89 3.42 0.04 0.47 

22:6(n-3) 0.00 0.00 0.00 0.09 10.40 

Others 24.05 42.15 40.10 24.44 24.65 

Total 100 100 100 100 100 

DHA/EPA 0.00 0.00 0.00 0.01 2.11 

 

Table 4.2. Description of the feeding schemes from hatching to 240 hph 

Treatments Description of feeding schemes 

Control Starvation control 

Treatment 1  P. similis only (1 mg DW.L-1.day-1~ 29 ind.mL-1.day-1) 

Treatment 2  B. rotundiformis only (1 mg DW.L-1.day-1 ~ 5.6 ind.mL-1.day-1) 
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Experiment 2 (Optimization of rearing protocol from hatching to 240 hph): Based 

on the results obtained in experiment 1, a second experiment to optimize the rearing 

protocol from hatching to 240 hph (10 days) was conducted. Basically, the timing of 

the introduction of B. rotundiformis, with a background feeding of P. similis, was 

tested. The same tanks, water volume, temperature, salinity, pH, photoperiod, water 

exchange and aeration were applied as described in experiment 1; 2 controls and 4 

feeding treatments are described in Table 4.3. The aims of this experiment were to 

determine a suitable feeding scheme resulting in the highest larval survival at 240 hph 

and the highest growth rate during the first 240 hph. In this experiment, the non-fed 

treatment served as a negative control (control 1). The best feeding scheme from 

experiment 1 (P. similis) was used as positive control (control 2). In the other four 

treatments, the addition of B. rotundiformis started on day 5 (treatment 1), 6 (treatment 

2), 7 (treatment 3) or 8 (treatment 4). One mg.L-1 DW of rotifer was added daily for all 

treatments until the end of the experiment. Before B. rotundiformis was added, the 

ration of P. similis was maintained at 1 mg DW per day. When B. rotundiformis was 

added, the amount of P. similis was reduced to 0.5 mg DW per day, combining with 

0.5 mg DW per day of B. rotundiformis. Rotifers were provided to the fish larvae twice 

a day at 8AM and 4PM. The rotifers in each tank were counted before adding new 

rotifers (top up) to maintain the same dry weight and encounter rate. Each treatment 

was conducted in triplicate. Ten larvae from each replicate were collected at 36, 96, 

120, 168, 192 and 216 hph for analyzing the feeding incidence, percentage of feeding 

larvae and amount of rotifers in the gut (Wullur et al., 2011) as described in the section 

4.2.3.1. A hundred larvae from each replicate were collected at 240 hph for larval total 

length measurement using the Optika Vision 2.0 (Ponteranica, Italy). All remaining 

larvae from each replicate were collected at 240 hph for defining the survival. 
 

Table 4.3. Description of feeding schemes from hatching to 240 hph 

Treatments Description of the feeding scheme 

Control 1 Starvation control 

Control 2  P. similis (1 mg DW.L-1.day-1 ~ 29 ind.mL-1.day-1) 

Treatment 1  
Control 2 (DW of P. similis reduces by half from day 5) + B. rotundiformis (0.5 mg DW.L-1.day-1 ~ 

2.8 ind.mL-1.day-1 from day 5) 

Treatment 2  
Control 2 (DW of P. similis reduces by half from day 6) + B. rotundiformis (0.5 mg DW.L-1.day-1 ~ 

2.8 ind.mL-1.day-1 from day 6) 

Treatment 3  
Control 2 (DW of P. similis reduces by half from day 7) + B. rotundiformis (0.5 mg DW.L-1.day-1 ~ 

2.8 ind.mL-1.day-1 from day 7) 

Treatment 4  
Control 2 (DW of P. similis reduces by half from day 8) + B. rotundiformis (0.5 mg DW.L-1.day-1 ~ 

2.8 ind.mL-1.day-1 from day 8) 
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Experiment 3 (Effect of the addition of the mixture of LAB and B. subtilis on the 

performance and survival of larvae from hatching to 240 hph): The aim of this 

experiment was to determine whether probiotic-enriched rotifers play an important role 

in the performance of rabbit fish larvae till 240 hph (10 days). The experimental design 

was identical to experiment 1 described above. Two feeding schemes were conducted 

as mentioned in Table 4.4. Rotifers were provided to the larvae twice a day (8AM & 

4PM). The rotifers in each tank were counted before adding new rotifers (top up) to 

maintain the same dry weight and encounter rate. Each treatment was conducted in 4 

replicates. In treatment 2, both rotifers were enriched with a mixture of L. plantarum, L. 

fermentum, L. brevis, P. acidilactici, P. pentosaceus and B. subtilis (106 CFU.mL-

1.strain-1, totally 6 x 106.CFU.mL-1) following the method described in chapter 2. From 

each replicate, 10 larvae were collected at 36, 96, 120, 144, 168, 216 hph for the 

analysis of feeding incidence, % of feeding larvae and amount of rotifers in gut using 

the method from Wullur et al. (2011) as described in the section 4.2.3.1. At 240 hph, 

100 larvae of each replicate were collected for length measurement (Optika Vision 2.0, 

Ponteranica, Italy) and all remaining larvae from each replicate were collected for 

survival calculation.  
 

Table 4.4. Feeding schemes used in two treatments from hatching to 240 hph 

Treatments Description of the feeding scheme 

Treatment 1 

Non-probiotic-enriched P. similis (1mg DW.L-1.day-1 ~ 29 ind.mL-1.day-1 before B. rotundiformis 

added, 0.5 mg DW.L-1.day-1 ~ 14.5 ind.ml-1.day-1 after B. rotundiformis added) + non-probiotic-

enriched B. rotundiformis (0.5 mg DW.L-1.day-1 ~ 2.8 ind.mL-1.day-1 starting on day 6)  

Treatment 2 Same as treatment 1, but probiotic-enriched rotifers were fed to the larvae 

 

Experiment 4 (Effect of different feeding schemes on the performance and 

survival of larvae from day 10 to day 25): The aim of this experiment was to 

determine which feeding regime resulted in the highest larval survival from day 10 to 

25. The experiment was conducted in the same tank size, water volume, temperature, 

salinity, pH, photoperiod and aeration as described in experiment 1. Four feeding trials 

were described (Table 4.5). The larval density was 118 larvae.tank-1. Rotifers and 

Artemia instar I were fed to the larvae twice a day at 8AM and 4PM. The rotifers and 

Artemia in each tank were counted before adding new rotifers and Artemia instar I (top 

up) to maintain the same dry weight and encounter rate. Compound diet was fed to 

the larvae 4 times.day-1 at 6AM, 10AM, 2PM and 6PM. Each treatment was conducted 

in triplicate. Three larvae from each replicate were collected daily from day 10 to 13 for 

the analysis of feeding incidence, percentage of feeding larvae under a 
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stereomicroscope. All remaining larvae from each replicate were collected at the end 

(day 25) for survival calculation and larval length measurement (Optika Vision 2.0, 

Ponteranica, Italy). 

 

Table 4.5. Feeding schemes used in four treatments from day 10 to day 25 

Treatments Description of the feeding scheme 

Treatment 1 Artemia instar I + B. plicatilis (1 g DW.tank-1.day-1 each)  

Treatment 2 Compound diet + B. plicatilis (1 g DW.tank-1.day-1 each) 

Treatment 3 Artemia instar I + compound diet (1 g DW.tank-1.day-1 each) 

Treatment 4 Artemia instar I + B. plicatilis + compound diet (2/3 g DW.tank-1.day-1 each) 

 

4.2.4. Data analysis 
 

All data that present % values have been arcsine transformed for statistical analysis. 

The Skewness/Kurtosis test was used to check the normal distribution of dataset. If 

the dataset was normal distributed, the significant differences between means in 

feeding incidence, percentage of feeding larvae, amount of rotifers in gut, larval length 

and survival at each sampling point between treatments were detected by one-way 

ANOVA, followed by the Tukey-Kramer post-tests for multiple comparisons. Student t-

test was used where applicable. If the dataset was not normal distributed, the Kruskal-

Wallis and Wilcoxon tests were used for multiple comparisons. The statistical 

significance of the differences of the standard deviations of larval length among 

treatments was detected by F-Fisher test. The significant levels of 0.05 (p ≤ 0.05) 

indicate that the differences between some of the standard deviations are statistically 

significant. All tests were run by Microsoft Excel 2010, SPSS 22.0 and STATA 13.1.  
 

4.3. Results 

 

4.3.1. Experiment 1: First feeding experiment 
 

Feeding incidence and percentage, amount of rotifers in larval gut content: At 

each sampling time point, the percentage of larvae feeding on rotifers was significantly 

different among treatments, except at 96 hph (student t-test, p<0.05) (Table 4.6). The 

first feeding incidence of larvae was at 36 hph in the treatment with larvae fed P. 

similis (treatment 1: 57%) and at 60 hph in the treatment with larvae fed B. 

rotundiformis, which was 53% at treatment 2. The percentage of feeding larvae was 

100% at 48 hph (larvae fed P. similis) and at 96 hph (larvae fed B. rotundiformis). 

From 36 to 216 hph, the amount of rotifers in larval gut in the larvae fed P. similis 

increased from 44 to 578 ng DW of rotifers per larvae. From 60 to 216 hph, the rotifer 
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ingestion by the larvae fed B. rotundiformis increased from 169 to 2252 ng DW of 

rotifers per larvae. From 96 to 216 hph, the B. rotundiformis ingestion by the larvae 

was higher than those fed P. similis (84% at 96 hph, 390% at 216 hph) (Table 4.7).  

 

Survival at 240 hph: The survival was significantly different among treatments (one-

way ANOVA, p<0.001). In the starvation control, all larvae died between 72 – 96 hph. 

The survival of larvae fed P. similis was 7.2 ± 0.4%, which was significantly higher 

(167%) than those fed B. rotundiformis (2.7 ± 0.1%) (Tukey Kramer, p<0.05).  

 

Table 4.6: Feeding incidence and % (mean ± S.D.) of fish larvae that ate at sampling points (36, 48, 60 and 96 hph) 

in all treatments (student t-test, different letters from each column indicate significant differences among treatments 

on the same sampling point, n=3). 

Treatments* Feeding 

incidence 

Feeding %        

36 hph 

Feeding %        

48 hph 

Feeding %        

60 hph 

Feeding %        

96 hph 

Treatment 1 36 hph 57 ± 15b 100 ± 0a 100 ± 0a 100 ± 0a 

Treatment 2 60 hph 0 ± 0a 0 ± 0a 53 ± 15b 100 ± 0a 

 

Table 4.7. Amount of rotifers (mean ± S.D.) in the larval gut at sampling points (36, 48, 60, 96, 168 and 216 hph) in 

all treatments (student t-test, different letters from each column indicate significant differences among treatments 

on the same sampling point, n=3). 

Treatments* 
The weight of rotifers in the larval gut content (ng DW.gut-1) 

36 hph 48 hph 60 hph 96 hph 168 hph 216 hph 

Treatment 1 44 ± 11b 123 ± 11b 171 ± 9a 235 ± 13a 431 ± 17a 578 ± 77a 

Treatment 2 0 ± 0a 0 ± 0a 169 ± 68a 433 ± 86b 1788 ± 169b 2252 ± 347b 

Treatment 1: larvae fed P. similis (1 mg DW.L-1.day-1). Treatment 2: larvae fed B. rotundiformis (1 mg DW.L-1.day-1). 

 

4.3.2. Experiment 2: Optimization of rearing protocol from hatching to 240 hph 
 

Feeding incidence, % of feeding larvae and amount of rotifers in larval gut: The 

first feeding incidence of larvae on rotifers in all treatments, except the starvation 

control, was observed at 36 hph. At 36 hph, there was no significant difference in the 

% of feeding larvae in all treatments (Table 4.8). At 36 hph, the % of feeding larvae 

ranged from 73 (treatment 1) to 80 (control 2, treatment 2 and 3).  At 96 hph, the % of 

feeding larvae was 100% in all treatments (ANOVA, p>0.05), except the starvation 

control (no feeding). The amount of rotifers (either P. similis or B. rotundiformis) in the 

larval gut content was shown in Table 4.9. At 36 and 96 hph, there was no significant 

difference in the amount of P. similis in the larval gut in all treatments (Tukey-Kramer, 

p<0.05). However, after B. rotundiformis was introduced (from 144 hph), the amount of 

P. similis in the larval gut reduced by 19 – 41% as the larvae started to feed 

predominantly on B. rotundiformis. There was no significant difference in the amount 
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of B. rotundiformis in the larval gut in all treatment at each sampling points. At 120 

hph, the amount of B. rotundiformis in the larval gut was 552 ng DW.gut-1 in treatment 

1. At 216 hph, the amount of B. rotundiformis in the larval gut ranged from 2139 ng 

DW.gut-1 in treatment 2 to 2258 ng DW.gut-1 in treatment 3 (Tukey-Kramer, p>0.05). 

At 120 hph, the total amount of rotifers ingested by larvae co-fed both rotifers was 115 

– 149% higher than those still fed solely P. similis, and the difference increased to 270 

– 390% at 216 hph in the total amount of rotifers ingested by the larvae co-fed both 

rotifers (treatment 1 to 4) and those fed solely P. similis (control 2). 

 

Table 4.8. Feeding incidence and % (mean ± S.D., n=3) of larvae that ate at sampling points (36 and 96 hph) in all 

treatments (one-way ANOVA, Tukey-Kramer tests for multiple comparisons, different letters from each column 

indicate significant differences among treatments at same sampling point)  

Treatments* First feeding incidence Feeding % 36 hph Feeding % 96 hph 

Control 2 36 hph 80 ± 6a 100a 

Treatment 1 36 hph 73 ± 6a 100a 

Treatment 2 36 hph 80 ± 6a 100a 

Treatment 3 36 hph 80 ± 10a 100a 

Treatment 4 36 hph 70 ± 20a 100a 

 

Table 4.9. The amount of rotifers (mean ± S.D.) in the larval gut content at sampling points (36, 96, 120, 144, 168, 

192 and 216 hph) in all treatments (one-way ANOVA, Tukey-Kramer tests for multiple comparisons, different letters 

from each column indicate significant differences in the weight of each rotifers in the larval gut content among 

treatments at the same sampling point, n=3) and number of stars from each column indicate significant differences 

in the weight of both rotifers combined in the larval gut content among treatments at the same sampling point, n=3) 

Food Treatment 
The weight of rotifers in the larval gut content (ng DW.gut-1) 

36 hph 96 hph 120 hph 144 hph 168 hph 192 hph 216 hph 

P. similis 

Control 2 54 ± 10a 274 ± 30b* 354 ± 33a* 379 ± 27b* 431 ± 40b* 526 ± 45b* 634 ± 54b* 

Treatment 1 56 ± 8a 261 ± 19b 329 ± 56a 267 ± 25a 210 ± 37a 217 ± 25a 210 ± 20a 

Treatment 2 51 ± 19a 245 ± 38b 395 ± 24b 269 ± 18a 227 ± 39a 235 ± 37a 194 ± 20a 

Treatment 3 56 ± 13a 264 ± 16b 391 ± 25b 397 ± 30b 221 ± 26a 223 ± 19a 222 ± 16a 

Treatment 4 53 ± 9a 249 ± 22b 410 ± 25b 393 ± 32b 422 ± 38b 247 ± 31a 203 ± 20a 

B. 

rotundiformis 

Treatment 1 - - 552 ± 47c 1123 ± 60c 1644 ± 110c 1807 ± 86c 2177 ± 97c 

Treatment 2 - - - 1085 ± 97c 1537 ± 95c 1719 ± 76c 2139 ± 122c 

Treatment 3 - - - - 1556 ± 66c 1662 ± 85c 2258 ± 94c 

Treatment 4 - - - - - 1700 ± 128c 2145 ± 68c 

Both rotifers 

combined 

Control 2 54 ± 10* 274 ± 30* 354 ± 33* 379 ± 27* 431 ± 40* 526 ± 45* 634 ± 54* 

Treatment 1 56 ± 8* 261 ± 19* 881 ± 86** 1390 ± 81** 1854 ± 127** 2024 ± 111** 2387 ± 82** 

Treatment 2 51 ± 19* 245 ± 38* 395 ± 24* 1354 ± 115** 1766 ± 100** 1954 ± 77** 2333 ± 114** 

Treatment 3 56 ± 13* 264 ± 16* 391 ± 25* 397 ± 30* 1777 ± 87** 1886 ± 98** 2480 ± 88** 

Treatment 4 53 ± 9* 249 ± 22* 410 ± 25* 393 ± 32* 422 ± 38* 1947 ± 149** 2348 ± 73** 

Treatment 1: control 2 + B. rotundiformis (0.5 mg DW.L-1.day-1 from day 5). Treatment 2: control 2 + B. rotundiformis (0.5 mg 

DW.L-1.day-1 from day 6). Treatment 3: control 2 + B. rotundiformis (0.5 mg DW.L-1.day-1 from day 7). Treatment 4: control 2 + B. 

rotundiformis (0.5 mg DW.L-1.day-1 from day 8). 
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Survival at 240 hph: The survival was significantly different among treatments (Figure 

4.1, one-way ANOVA, p<0.001). The survival in the treatment where B. rotundiformis 

was added on day 6 was significantly higher than in any other treatment (13.7%) 

(Tukey-Kramer, p<0.05), which was 94% higher than those without B. rotundiformis 

addition and 69% higher than those with B. rotundiformis added on day 8.  

 

Figure 4.1. Survival (%) at 240 hph (mean ± S.D.) in all treatments (one-way ANOVA, Tukey-Kramer tests for multiple 

comparisons, different letters indicate significant differences in survival at 240 hph, n=3). No feeding: starvation control. 

Only P. similis: fed P. similis (1 mg DW.L-1.day-1). Day 5: control 2 + B. rotundiformis (0.5 mg DW.L-1.day-1 from day 5). 

Day 6: control 2 + B. rotundiformis (0.5 mg DW.L-1.day-1 from day 6). Day 7: control 2 + B. rotundiformis (0.5 mg DW.L-

1.day-1 from day 7). Day 8: control 2 + B. rotundiformis (0.5 mg DW.L-1.day-1 from day 8). 

 

The larval length at 240 hph: The larval length (mean ± S.D.) was significantly 

different among treatments at 240 hph (Kruskal-Wallis, p=0.011) (Table 4.10). There 

were no significant differences in the larval length of treatment 1 (B. rotundiformis 

added from day 5, 3.69 mm), treatment 2 (B. rotundiformis added from day 6, 3.67 

mm), treatment 3 (B. rotundiformis added from day 7, 3.62 mm) and treatment 4 (B. 

rotundiformis added from day 8, 3.59 mm) and control 2 (no B. rotundiformis added, 

3.37 mm) (Kruskal-Wallis, p>0.05), except those between treatment 1 and control 2 

(Kruskal-Wallis, p<0.05) (Table 4.10). The larval length in control 2 and all treatments 

had no normal distribution. The larval length in treatment 2 was a right-skewed 

distribution (skewness coefficient (SC) = 0.04), while the larval length in control 2 (SC 

= -0.08), treatment 1 (SC = -0.02), treatment 3 (SC = -0.16) and (treatment 4, SC = -

0.39) were left-skewed distributions (Skewness/Kurtosis). There were no significant 

differences in the standard deviations of larval length in the control 2 and all 

treatments (F-Fisher, p>0.05), except between treatment 1 (0.140 ± 0.002 mm) and 

control 2 (0.160 ± 0.008 mm) (p=0.0055), treatment 1 and 2 (0.160 ± 0.007 mm) 

(p=0.0044). The larval length distributions in treatment 1 were significantly sharper 

than those obtained in control 2 and treatment 2 (Figure 4.2). 
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Table 4.10. Average larval length (mm, mean ± S.D., n=3)  at 240 hph in all treatments. Different letters from 

the same row indicate significant differences in the larval length at 240 hph between treatments) 

Treatments Control 2 Treatment 1 Treatment 2 Treatment 3 Treatment 4 

Larval length (mm) 3.37 ± 0.01a 3.69 ± 0.02b 3.67 ± 0.01b 3.62 ± 0.02b 3.59 ± 0.02b 

 

 

 

 

Figure 4.2. Larval length distributions from 3 replicates in control and treatments at 240 hph.  

Control 2: fed P. similis (1mg DW.L-1.day-1). Treatment 1: control 2 + B. rotundiformis (0.5 mg DW.L-1.day-1 from day 5). 

Treatment 2: control 2 + B. rotundiformis (0.5 mg DW.L-1.day-1 from day 6). Treatment 3: control 2 + B. rotundiformis (0.5 

mg DW.L-1.day-1 from day 7). Treatment 4: control 2 + B. rotundiformis (0.5 mg DW.L-1.day-1 from day 8). 

 

4.3.3. Experiment 3: Effect of the addition of LAB and B. subtilis on the 

performance and survival of larvae from hatching to 240 hph. 

 

Feeding incidence and % of feeding larvae of fish according to rearing time: The 

first feeding incidence was observed at 36 hph in both treatments and the % of 

feeding larvae ranged from 70% in treatment 1 to 73% in treatment 2. From 96 hph, all 

larvae were feeding in both treatments (t-test, p>0.05) (Table 4.11). 
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Amount of rotifers in the gut: There were no significant differences in the amount of 

P. similis in larval gut between treatments at each sampling point (t-test, p>0.05). At 

168 hph, the amount of P. similis in the gut of both treatments decreased. There were 

no significant differences in the rotifer amount in gut between treatments at each 

sampling point (treatment 1: 49 – 2268 ng DW.gut-1 at 36 & 216 hph, respectively; 

treatment 2: 52 – 2363 ng DW.gut-1 at 36 and 216 hph, respectively) (t-test, p>0.05) 

(Table 4.12).  
 

Survival at 240 hph: The survival of larvae in treatment fed probiont-enriched rotifers 

(16.1 ± 0.7%) was 22% higher than those fed non probiont-enriched rotifers (13.2 ± 

0.4%) (t-test, p<0.05). 
 

The larval length: At 240 hph, the larval length (mean ± S.D.) in treatment 2 (3.64 ± 

0.03 mm) was significantly higher than those from treatment 1 (3.53 ± 0.01 mm) 

(Wilcoxon, p>0.05). The larval length in both treatments had no normal distribution. 

The larval length in treatment 2 (SC = -0.58) and 1 (SC = -0.09) had left-skewed 

distributions (Skewness/Kurtosis). Curve analysis of larval length revealed a 

significantly higher standard deviation in treatment 1 (0.22 ± 0.014 mm), compared to 

those obtained in treatment 2 (0.19 ± 0.028 mm) at 240 hph (F-Fisher, p=0.0023). It 

showed that the curve of larval length observed in treatment 2 was significantly 

sharper than those obtained in treatment 1 (Figure 4.3). 
 

Table 4.11. Feeding incidence and percentage of feeding larvae (mean ± S.D.) of fish larvae in all treatments 

at 36 and 96 hph (student t-test, different letters from each column indicate significant differences in 

percentage of feeding larvae among treatments at the same sampling point, n=4),  

Treatments Feeding incidence Feeding % at 36 hph Feeding % at 96 hph 

Treatment 1 36 hph 70 ± 8a 100 ± 0a 

Treatment 2 36 hph 73 ± 10a 100 ± 0a 

 

Table 4.12. Amount of rotifers (mean ± S.D.) in larval gut content at sampling points (36, 96, 144, 168 and 

216 hph) in all treatments (student t-test, different letters from each column indicate significant differences 

among treatments at the same sampling point, n=4) 

Food 
Treatments* The amount of P. similis in the larval gut content (ind.gut-1) 

36 hph 96 hph 144 hph 168 hph 216 hph 

P. similis 
Treatment 1 49 ± 13a 228 ± 32a 322 ± 46a 221 ± 25a 198 ± 19a 

Treatment 2 52 ± 11a 238 ± 26a 353 ± 42a 235 ± 29a 217 ± 22a 

B. rotundiformis 
Treatment 1 - - 1082 ± 129b 1426 ± 101b 2070 ± 224b 

Treatment 2 - - 1124 ± 96b 1506 ± 86b 2145 ± 193b 

Both rotifers 

combined 

Treatment 1 49 ± 13a 228 ± 32a 1404 ± 117b 1646 ± 89b 2268 ± 233b 

Treatment 2 52 ± 11a 238 ± 26a 1477 ± 133b 1741 ± 107b 2363 ± 192b 
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Figure 4.3. The larval total length distributions at 240 hph from four replicates in two treatments. 

Treatment 1: larvae fed non-enriched rotifers: P. similis (0.5 – 1 mg DW.L-1.day-1 after and before B. rotundiformis, 

respectively) + B. rotundiformis (0.5 mg DW.L-1.day-1). Treatment 2: Same as treatment 1, but rotifers were 

probiotic-enriched prior to feeding to larvae.  

 

4.3.4. Experiment 4: Effect of different rearing protocols to the performance and 

survival of the larvae from day 10 to 25 
 

Feeding incidence and percentage: The first feeding incidence of the larvae on 

Artemia and compound diet was noted on day 11 (Table 4.13). The % of feeding 

larvae on Artemia in 4 treatments from day 10 to 15 was noted in Table 4.14. On day 

11, there were no significant differences in the % of feeding larvae on Artemia (from 22 

to 33%) (one-way ANOVA, Tukey-Kramer, p>0.05). On day 12, the % of feeding 

larvae on Artemia was significantly different among treatments (one-way ANOVA, 

p<0.001). On day 12, Artemia were found in all the larval gut content from treatment 3 

(Artemia + compound diet), which is significantly higher than those from treatment 1 

(Artemia + rotifers, 67%) or treatment 4 (Artemia + rotifers + compound diet, 56%) 

(Tukey Kramer, p<0.05). On day 11, the larvae started to eat compound diet. At this 

day, there were no significant differences on the % of feeding larvae on compound 

diet, ranging from 11 to 22% (one-way ANOVA, p>0.05). On day 12, the % of feeding 

larvae on compound diet was significantly different among treatments (one-way 

ANOVA, p<0.001). On day 12, 100% of the larvae at treatment 3 (Artemia + 

compound diet) and treatment 5 (Artemia + rotifers + compound diet) was found with 

compound diet in the gut, which is significantly higher than those from treatment 2 

(compound diet + rotifers, 78%) (Tukey-Kramer, p<0.05). On day 13, 100% larvae 

from treatment 2, 3 and 4 were found with compound diet in the gut (Table 4.14). 
 

Survival on day 25: On day 25, the survival was significantly different among 

treatments (Figure 4.4, one-way ANOVA, p<0.001). The survival in treatment 1 (100% 
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live food, Artemia + rotifers, 94%) was 12 – 114% higher than any other treatment 

(Tukey-Kramer, p<0.05). It was followed by treatment 4 (Artemia + rotifers + 

compound diet, 84%) (Tukey-Kramer, p>0.05). The lowest survival was noted in 

treatment 3 (Artemia + compound diet, 44%) (Tukey-Kramer, p<0.05). 
 

Larval total length on day 25: On day 25, the larval length (mean ± S.D.) was 

significantly different among treatments (Kruskal-Wallis, p<0.031, n=3, different 

sample size) (Table 4.15). There were no significant differences in the larval length of 

all treatments (treatment 1: Artemia + rotifers, 16.6 mm; treatment 2: compound diet + 

rotifers, 14.6 mm; treatment 3: Artemia + compound diet, 16.3 mm; treatment 4: 

Artemia + rotifers + compound diet, 16.3 mm) (Kruskal-Wallis, p>0.05), except 

between those from treatment 1 and 2 (Kruskal-Wallis, p<0.05) (Table 4.15). The 

larval length in treatments 1, 2 and 4 had a normal distribution, except for those 

observed in treatment 3, which was right-skewed (SC = 0.55) (Skewness/Kurtosis). 

The result of the curve analysis showed no significant differences in the standard 

deviations of larval total length among treatments (F-Fisher, p>0.05) (Figure 4.5). 

 

Table 4.13. Start day of feeding on Artemia instar I and compound diet. 

Treatments Feeding incidence on Artemia Feeding incidence on compound diet 

Treatment 1 Day 11 - 

Treatment 2 - Day 11 

Treatment 3 Day 11 Day 11 

Treatment 4 Day 11 Day 11 

 

Table 4.14. The % of feeding larvae (mean ± S.D.) on Artemia instar I and compound diet from day 10 to 13 in all 

treatments (one-way ANOVA, Tukey-Kramer for multiple comparisons, different letters from each column indicate 

significant differences in the percentage of feeding larvae among treatments on different sampling points, n=3) 

Treatments Day 10 Day 11 Day 12  Day 13  

 The percentage of larvae feeding on Artemia (%) 

Treatment 1 0 ± 0a 22 ± 6b 67 ± 0b 100 ± 0c 

Treatment 2 - - - - 

Treatment 3 0 ± 0a 33 ± 10b 100 ± 0 c 100 ± 0c 

Treatment 4 0 ± 0a 22 ± 6b 56 ± 6b 100 ± 0c 

 The percentage of larvae feeding on compound diet (%) 

Treatment 1 - - - - 

Treatment 2 0 ± 0a 22 ± 6a 78 ± 6a 100 ± 0b 

Treatment 3 0 ± 0a 11 ± 6a 100 ± 0b 100 ± 0b 

Treatment 4 0 ± 0a 22 ± 6a 100 ± 0b 100 ± 0c 

Treatment 1: fed Artemia + rotifers (1g DW.tank-1.day-1 each). Treatment 2: fed compound diet + rotifers (1g DW.tank-1.day-1 each). 

Treatment 3: fed Artemia + compound diet (1g DW.tank-1.day-1 each). Treatment 4: fed Artemia + rotifers + compound diet (2/3g 

DW.tank-1.day-1 each). 
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Figure 4.4. Survival (%, mean ± S.D.) on day 25 in all treatments (one-way ANOVA, Tukey-Kramer for multiple comparisons, 

different letters between columns indicate significant differences in the survival among treatments on day 25, n=3).  

 

Table 4.15. Average larval length (mm, mean ± S.D., n=3) at day 10 in all treatments. Different letters in the same 

row indicate significant differences in the larval length at day 10 between treatments. 

Treatments Treatment 1 Treatment 2 Treatment 3 Treatment 4 

Larval length (mm) 16.6 ± 1.5a 14.6 ± 2.0b 16.3 ± 1.5ab 16.3 ± 0.9ab 

 

  

  

Figure 4.5. The larval length distributions on day 25 in 3 replicates in 4 treatments. 

Treatment 1: fed Artemia + rotifers (1g DW.tank-1.day-1 each). Treatment 2: fed compound diet + rotifers (1g DW.tank-1.day-1 each). 

Treatment 3: fed Artemia + compound diet (1g DW.tank-1.day-1 each). Treatment 4: fed Artemia + rotifers + compound diet (2/3g 

DW.tank-1.day-1 each). 

 

4.4. Discussion 

 

It is difficult to rear the rabbit fish larvae in the period from hatching up to 6 days 

because of several reasons (Hara et al., 1986a; Duray, 1998b). Firstly, the length of 

newly hatched larvae are approximate 1.50 mm (Hara et al., 1986a), which is smaller 
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than other species, such as seabass (1.72 mm) and milkfish (3.46 mm) (Bagarinao, 

1986). Furthermore, the yolk sac at hatching (0.0251 μL) is smaller than that of 

seabass larvae (0.0859 μL) and milkfish (0.4744 μL) (Bagarinao, 1986). After 41 – 57 

hph, the yolk sac of S. javus larvae was completely absorbed. Furthermore, the rabbit 

fish larvae were very sensitive to stress and handling, which resulted in a low survival 

during the early stages (within 6 days after hatching) (Hara et al., 1986a; Ayson, 1989; 

Diani et al., 1990; Duray, 1998b). Hara et al. (1986b) and Ayson (1989) reported that 

having a food small enough to be ingested is indispensable for larval rabbit fish before 

day 6.  
 

In this study, P. similis and B. rotundiformis were tested as initial food for larvae in the 

first experiment. The feeding incidence was earlier and significantly higher survival 

was obtained in the treatments fed P. similis, than those fed B. rotundiformis. This is 

due to the size difference between the two rotifers. The body size, length and width, of 

P. similis were 38.1% smaller and 60.3% narrower than B. rotundiformis (Wullur et al., 

2009). The DW of B. rotundiformis was 5x higher than P. similis. Although the larvae 

ingested more food (in DW) when they fed on B. rotundiformis, their survival was low 

due to the delay in start feeding. In addition, the yolk-sac of rabbit fish larvae is 

exhausted at 48 – 72 hph (Bryan and Madraisau, 1977; Juario et al., 1985; Bagarinao, 

1986; Hara et al., 1986b; Kohno et al., 1988; Duray, 1998b). Kohno et al. (1986) found 

that at 55.5 hph, when the S. guttatus mouth had a size of 200 μm, the rabbitfish 

larvae could start feeding on exogenous food. At this stage, the B. rotundiformis is still 

too big (Kohno et al., 1986; Watanabe and Kiron, 1994). This was confirmed by the 

results from experiment 1, where the feeding incidence of larvae on B. rotundiformis 

occurred at 60 hph. This causes big problems for rearing fry of rabbit fish. Some 

studies suggested mixed species of plankton, fertilized oyster eggs or oyster D-larvae 

for initial feeding, but this resulted in poor or inconsistent survival (May et al., 1974; 

Popper and Gundermann, 1976; Popper et al., 1976; Kitajima et al., 1980). In previous 

studies, a smaller fraction of Brachionus sp. was obtained either by selecting small-

sized individuals through screening, or isolating and culturing small-sized rotifers 

(Fukusho and Iwamoto, 1980; 1981; Fukusho and Okauchi, 1982; Tsukashima et al., 

1983). Especially the study of Tsukashima et al. (1983) obtained good results in 

siganid larval rearing using a combination of both above methods, while Kitajima et al. 

(1980) obtained mass mortality when using large Brachionus rotifers (280 µm). Rotifer 
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B. rotundiformis were still considered to be one of the most suitable food for siganid 

larvae, until the rotifer P. similis was discovered. 
 

In this study, the first feeding incidence and survival indicated that P. similis is by far 

the better starter food for rabbit fish larvae than the SS-type B. rotundiformis. The 

studies of  Wullur et al. (2009; 2011); Hirai et al. (2013); Wullur et al. (2013); Hagiwara 

et al. (2014) also concluded that P. similis has been proven to be one of the most 

suitable live foods for the first feeding stage of a variety of marine species with a very 

small mouth, e.g. seven-band grouper E. septemfasciatus, the rusty angelfish C. 

ferrugata, the humphead wrasse C. undulatus and special oesophagus, e.g. Japanese 

eel A. japonica. The importance of P. similis after the first feeding period (from day 5 or 

6 onwards) has been questioned. In fact, due to the difference in DW, the fish larvae 

ingest more DW by feeding on B. rotundiformis than P. similis. Thus, the second 

experiment of this study was carried out in order to investigate the importance of P. 

similis as the only food, in comparison to co-feeding with the B. rotundiformis (the 

latter from day 5 onwards or later). The amount of rotifers in the gut and the survival of 

the fish larvae in control 2 of experiment 2 confirmed the results of experiment 1. The 

results from this experiment showed the importance of the B. rotundiformis for the 

survival of rabbit fish larvae when introduced into the culture system from day 6 

onwards. Indeed, the introduction of B. rotundiformis at day 6 resulted in the best 

survival of all treatments. From the moment B. rotundiformis was introduced in the 

tank, while the amount of ingested P. similis remained constant, the number of B. 

rotundiformis increased with time. Related to the size of the food, Hara et al. (1986b), 

Kohno et al. (1988), Ayson (1989) reported that size of the food has a great impact on 

the growth and survival of the larvae before day 6. Up to day 6 after the larvae had 

hatched, most rotifer strains, even the B. rotundiformis are still too big for the mouth of 

the larvae (200 μm at first feeding), and after day 6, the B. rotundiformis was more 

suitable than P. similis for the feeding of siganid larvae. In addition, the B. 

rotundiformis is heavier in DW than P. similis (Wullur et al., 2011), therefore, feeding 

predominantly on a bigger prey could clearly help fish larvae to increase the energy-

per-catch of prey, fostering improved survival and growth (Lotrich, 1973; Kitajima et 

al., 1979; Tanaka et al., 2005; Akazawa et al., 2008; Wullur et al., 2009; 2011; Wullur 

et al., 2013). Previous studies indicated that size, motion and color are important 

factors for the food selection of larvae (Utne‐Palm, 1999; Shaw et al., 2003; Tanaka 



CHAPTER 4 
 

 
77 

et al., 2005; Akazawa et al., 2008). Wullur et al. (2011) observed that the swimming 

behavior and color of these two rotifers were similar; therefore, the preference of rabbit 

fish larvae to P. similis before day 6 was likely related to the smaller body size. The 

change of preference by the rabbit fish larvae to a bigger rotifer (B. rotundiformis) from 

day 6 onwards could improve feeding efficiency and survival of the larvae. In this 

study, despite the biomass of P. similis ingested by the fish larvae being always lower 

than the biomass of B. rotundiformis, performance of rabbit fish larvae in terms of 

survival in the former case, was always better There is a possible effect of prey body 

size on prey digestibility by fish larvae. Smaller prey provides larger surface to volume 

ratio, probably making it more accessible to digestive enzymes. The digestion might 

even be more enhanced by the fact that small amount of ingested feed tend to stay 

longer in the digestive tract  (Tseitlin, 1980). 

After the most appropriate co-feeding scheme was found, the experiment on the 

effects of the addition of probiotic-enriched rotifers on the larval rearing was 

performed. The amount of rotifers in the larval gut in treatment 1 of this experiment 

confirmed results of experiment 2. The addition of probionts to the rotifer culture did 

not have any effect on the ingestion of rotifers, however, the results of this test showed 

that the larvae fed probiotic-enriched rotifers had significantly higher survival than the 

larvae fed non-enriched rotifers. The feeding of probionts-enriched rotifers to the 

larvae did lead to bigger larvae, which had a more homogenous size, and more right-

skewed distribution than those in treatment 1 (without probionts-enriched rotifers). The 

effects of the addition of L. plantarum and L. helveticus and L. lactis to the rotifer 

culture prior to feeding to turbot larvae were tested by Gatesoupe (1991b) and 

Harzevili et al. (1998a). The addition of L. plantarum and L. helveticus to the rotifer 

culture improved the survival and mean weight of turbot larvae, reduce aerobic 

bacterial loads and inhibit the growth of V. anguillarum in the water. The MC of rotifers 

plays an important role to shape the larval gut MC, and thus deliver a direct effect to 

the performance of fish larvae (Dawood et al., 2016; Le et al., 2017). Attramadal et al., 

2012a, 2012b confirmed that the bacteria composition associated with live food affects 

the gut MC of fish larvae. Hence, the manipulation of the MC in live food culture (e.g. 

bioencapsulation) could be beneficial to the fish larvae. In fact, the application of 

bioencapsulation of bacteria via rotifers or Artemia to deliver LAB and B. subtilis to the 

gut of fish larvae has been reported by Makridis et al. (2000) and Vadstein et al., 

(2013). The presence of probiotics in the larval gut could increase digestive enzyme 
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excretion; improve immunostimulation, enhance production of antagonistic compounds 

and surpress the growth of pathogens (De Schryver et al., 2012). In conclusion, the 

bioencapsulation of LAB and B. subtilis should be applied in the rabbit fish larviculture 

to increase the survival and improve the performance of the larvae, although the mode 

of action in this particular case remains to be established. 
 

In this study, the effect of different rearing protocols on the performance and survival 

of larvae from day 10 to 25 has also been tested. The results of this experiment 

showed that rotifers still play an important role as a food source to the fish larvae 

beyond day 10. In treatment 3, when rotifers were not available, the fish larvae did not 

eat anything at 240 hph, resulting in the lowest survival compared to other treatments. 

In this study, the size of rotifer B. plicatilis (230 μm) was smaller than Artemia instar I 

(500-600 μm) and compound diet (400 – 600 μm) (Hagiwara et al., 1995; Lavens and 

Sorgeloos, 1996). At 240 hph, the larvae were still unable to feed on Artemia instar I or 

compound diet. This is due to the size and the ability of the larvae to recognize the 

Artemia instar I and compound diet as food. Therefore, it would take 1-2 days for the 

larvae to be able to feed on a new food (weaning period). In conclusion, without 

rotifers in the feeding scheme (co-fed Artemia instar I and compound diets), the 

survival of the fish larvae was significantly lower than those in other treatments with 

the addition of rotifers. The importance of rotifers after day 10 was also proven by 

Juario et al. (1985); Bagarinao (1986); Ordonio-Aguilar (1995); Pechmanee (1997); 

Duray (1998b); Rachmansyah et al. (2007); Moorhead and Zeng (2017) where rotifers 

were still co-fed to the fish larvae until day 17 to 20 in various species of fish, including 

siganids. After that, Artemia appeared to be the most suitable for the larvae. 

Compound diet was good for larvae when combined with rotifers and Artemia instar I 

(Vinh Chau, Vietnam). The feeding schemes including Artemia instar I and rotifers 

resulted in significantly higher survival and total length of larvae than the feeding 

scheme without Artemia instar I. Furthermore, the treatment in which the larvae were 

co-fed Artemia instar I and rotifers gave the best survival (94%). However, since 

Artemia is more expensive compared to the compound diets, the treatment in which 

Artemia instar I, rotifers and compound diets are co-fed, which still ended up with 84% 

survival, would be important to be considered from a commercial point of view in the 

larval rearing. The role of Artemia in the co-fed schemes with compound diets in larval 

rearing of marine fishes, was reported by Juario et al. (1985); Bagarinao (1986); Hara 
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et al. (1986a); Hara et al. (1986b); Hara et al. (1986c); Ayson (1989); Ordonio-Aguilar 

(1995); Quinitio and Duray (1996); Pechmanee (1997); Rosenlund et al. (1997); Duray 

(1998b); Canavate and Fernández-Dıaz (1999); Sugama et al. (2001); Marte (2003); 

Rachmansyah et al. (2007); Moorhead and Zeng (2017). It was found that co-feeding 

in a number of commercially important species, such as European sea bass (D. 

labrax), gilthead sea bream (S. aurata), turbot (S. maximus), Senegal sole (S. 

senegalensis) and Atlantic halibut (H. hippoglossus), under commercial hatchery 

conditions, resulted in the highest survival when the live-compound diet ratio was 1:1 

(Rosenlund et al., 1997; Canavate and Fernández-Dıaz, 1999). On day 25, there was 

no difference in the body length distribution. However, the average larval total length 

was significantly higher in larvae fed Artemia instar I + rotifers than in those fed 

compound diet + rotifers. It showed that Artemia instar I in the diet would improve the 

food efficiency ratio and thus, increases the larvae size compared to the compound 

diets. In fact, Artemia ingested by the fish larvae transfer their digestive enzymes to 

the fish larvae (by autolysis or as zymogens), thus, improving the larval endogenous 

digestive system (Cahu and Infante, 2001; Kolkovski, 2001). Moreover, the length of 

larvae fed Artemia + compound diet had a right-skewed distribution, while those from 

other treatments were normal. Without the rotifers in the diet, feeding opportunities 

decreased for smaller larvae, which enabled a hierarchic structure to emerge. Once 

the hierarchic structure occurs, differential growth begins, and the variability in growth 

between larger and smaller individuals increases with time as larger fish inhibit the 

feeding activity of smaller fish, resulting in mortalities of smaller larvae due to 

starvation and cannibalism. Hence, the larval length distribution skewed to the right 

(Gershanovich, 1983; Onders et al., 2008; 2011). Therefore, larvae should be graded 

at this stage (day 25) to reduce the heterogeneity in the larval length, which might lead 

to the cannibalism among larvae.  
 

In conclusion, the co-feeding of probiotic-enriched P. similis and B. rotundiformis (with 

the ratio 1:1), where B. rotundiformis was added from day 6, resulted in the highest 

survival of fish larvae at 240 hph. After that, co-feeding of Artemia-rotifers (1:1) or 

Artemia-rotifers-compound diets (1:1:1) in the fish larval rearing from day 10 to day 25 

resulted in the best survival during the larval rearing. 
 

The current protocol did not include LC-PUFA enrichment of the live food, a common 

practice in marine fish larviculture (see table 4.1). It was hypothesized that data on the 
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PUFA composition of wild larvae entering into lagoons would provide information on 

the natural PUFA content of wild larvae and hence provide further information on the  

nutritional requirements of rabbit fish. In addition the larviculture protocol of rabbit fish 

as developed above includes a consistent application of probionts, with apparent 

successful results. It was anticipated that the microbial community composition (MCC) 

in hatchery larvae would be considerably different from larvae caught in the wild. 

Knowledge on the composition of microbial communities in wild rabbit fish larvae might 

also provide information on how to further optimise larval rearing protocols. Hence in 

the next chapter PUFA content and MCC in wild larvae were analysed and compared 

to those from hatchery reared larvae as obtained by the current protocol. 
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Abstract 

In this study, the PUFA composition of body tissue and the gut MC of hatchery and 

wild larvae of rabbit fish at 3 different locations in Vietnam (ThuanAn, QuangNam and 

BinhDinh) over a period of 3 years were investigated. Results from this study showed 

that rabbit fish larvae contained high proportion of ARA. The ARA proportion of wild 

larvae was stable between sampling locations over the three-year period, and no 

significant differences were detected in the ARA level between wild and hatchery 

samples. The DHA/EPA ratios in fish larvae were very high and varied between 

locations. The PUFA composition is within the normal range in the wild. The difference 

between temperatures at the 3 locations are negatively correlated with the DHA 

content and the DHA/EPA ratio, but not the EPA content. The results of Illumina 

analysis of 16S libraries of wild samples showed that the location affected the gut MC 

composition. The bacteria that were identified in the rabbit fish gut content were mainly 

belonging in the Proteobacteria, Bacteroidetes, Fusobacteria, Actinobacteria and 

Firmicutes phyla. In addition, the gut MC diversity and composition of hatchery larvae, 

which were fed probiotic-enriched rotifers, was completely different than those in the 

gut of wild larvae. The probiotic strains (Lactobacillus plantarum, L. fermentum, L. 

brevis, Pediococcus acidilactici, P. pentosaceus and B. subtilis) were predominant in 

the hatchery larvae. Next, relative genetic distances between ThuanAn and 

BinhDinh/QuangNam were bigger than those between BinhDinh-QuangNam. More 

importantly, sampling location had significant impacts on the MC. The diversity of gut 

MC increased significantly from the north to the south.  In conclusion, the current larval 

rearing protocol is reliable in terms of PUFA profile and probiotics. The hatchery larvae 

should not be treated differently in the future.  

 

Keywords: rabbit fish, Siganus guttatus, PUFA, microbial community, Illumina 
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5.1. Introduction 

 

The rabbit fish (S. guttatus), a native species in Southeast Asia, including Central 

Vietnam, is an important commercial fish in this area (Juario et al., 1985; Hara et al., 

1986c; Mien et al., 2000; Ayson et al., 2014). So far, the fingerlings of this species for 

aquaculture were only obtained from the wild. They were collected at the river mouths 

in the Central Vietnam, mainly in Thua Thien Hue, Quang Nam and Binh Dinh 

provinces. The smallest larvae size, which was observed in the river mouths at the 

collecting points, is 14 – 18 mm (Juario et al., 1985; Hara et al., 1986c; Mien et al., 

2000; Ayson et al., 2014). Since 2015, artificial reproduction of rabbit fish has been 

introduced in Vietnam, and hatchery larvae have been provided to the aquaculture 

sector (Le et al., 2017). It is essential to gain insight into the overall health of hatchery 

larvae, which might provide important hints to further improve the farming of larvae. 

Previous studies showed that long chain unsaturated fatty acids in the food play an 

important role in the growth performance and stress resistance of the fish larvae 

(Dhert et al., 1990; Dhert et al., 1992; Ako et al., 1994a). Comprehension of the 

nutritional requirements for the PUFA content, the DHA/EPA ratio in marine fish larvae 

can contribute to the establishment of an optimal diet for larval rearing (Watanabe et 

al., 1978a; Watanabe et al., 1982).  
 

Besides the PUFA content, the investigation of gut MC composition is also important 

(Romero et al., 2014). The gut MC composition is affected by the interaction between 

host nutrition, environment and genetic factors (McFall-Ngai et al., 2013). A 

comprehensive understanding of the gut MC is necessary to explain its function in the 

overall health status of fish, especially in thelarval stage (Ringø et al., 2010; Bakke et 

al., 2013; Giatsis et al., 2014). In recent years, the amplicon sequencing techniques, 

such as Roches’ 454, Illumina MiSeq, NextSeq 500 and HiSeq 2000 have provided 

valuable alternatives to tackle the limitations of older techniques, such as direct 

bacterial culturing and 16S rRNA amplification followed by DGGE, TTGE or T-RFLP in 

terms of e.g. number of bacteria identified (Romero and Navarrete, 2006; Hovda et al., 

2007; Navarrete et al., 2009; van Kessel et al., 2011; Geraylou et al., 2013; Green et 

al., 2013; Star et al., 2013; Ingerslev et al., 2014a; Ingerslev et al., 2014b; Zarkasi et 

al., 2014; Zarkasi et al., 2016). By using the molecular technologies in combination 

with the sequencing technique, the diversity and MC composition in the fish gut have 

been described in more details (Austin, 2006; Kim et al., 2007; Namba et al., 2007; Wu 
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et al., 2010; Lan and Love, 2012; Wu et al., 2012a; Larsen et al., 2013). Previous 

studies showed that the composition of gut MC had a crucial function in fish 

development, nutrient digestion, immune function and protection from invasive 

pathogens (Bird et al., 2010; Nayak, 2010; Wong and Rawls, 2012; Engel and Moran, 

2013; Viaud et al., 2013; Romero et al., 2014). 
 

The aim of this study was to investigate the PUFA content and gut MC composition of 

wild rabbit fish larvae from three different locations (Thua Thien Hue, Quang Nam and 

Binh Dinh) over a 3-year period (2014 to 2016) and to compare them with the PUFA 

content and gut MC of hatchery larvae. This might provide further insight into the 

overall health status of hatchery larvae.  
 

5.2. Materials and methods 
 

5.2.1. Location and sampling procedure 
 

Wild larvae were collected from 3 different river mouths in Central Vietnam. Location 1 

(namely ThuanAn) was in Thua Thien Hue province (13°45'42.4"N 109°14'45.5"E). 

Location 2 (namely QuangNam) was in Quang Nam province (15°52'38.1"N 

108°24'00.2"E). Location 3 (namely BinhDinh) was in Binh Dinh province 

(16°34'46.0"N 107°37'17.5"E). These larvae were collected between 8th and 10th of 

June in the year 2014, 2015 and 2016, when the wild larvae first appeared in the river 

mouths (Figure 5.1). Water parameters at sampling points (water temperature, salinity 

and pH) were measured at 2 meters depth using an electronic device (Horiba, Japan) 

at 5 different points at the sampling areas (Figure 5.1). Larvae were collected by 

fishing net in the morning between 7 – 8 AM, washed with nuclease free water 

(Promega, USA), and subsequently kept on ice and transported to the laboratory for a 

freeze-dried process. The freeze-dried samples were preserved at -20 °C for the 

FAME and gut MC analysis. The hatchery larvae were obtained from a batch of larvae 

fed rotifers enriched with a mixture of L. plantarum, L. fermentum, L. brevis, P. 

acidilactici, P. pentosaceus and B. subtilis (106 CFU.mL-1 of each species, totally 6 x 

106 CFU.mL-1) following the method described by Le et al. (2017). From the hatchery 

(25 days old larvae) and each wild sampling year + location, 10 larvae were collected 

for FAME analysis and 10 larvae were collected for gut MC analysis. The FAME and 

gut MC analysis were done on each individual (for each multivariate dataset: sample 

size = 1 and sample number = 10). The details on sampling locations, time, larval 

length and abiotic factors of both wild and hatchery larvae were noted in Table 5.1. 
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Figure 5.1. Sampling locations of wild rabbit fish over a three-year period (2014-2016). Location 1: ThuanAn (Thua 

Thien Hue province); location 2: QuangNam (Quang Nam province); location 3: BinhDinh (Binh Dinh province) 

(Source: https://www.google.com/maps/@15.34538,108.3821484,7.84z). Sampling locations (star) and coral reef 

breeding ground (circle) of wild rabbit fish. A: ThuanAn; B: QuangNam; C: BinhDinh (Source: A. 

https://www.google.be/maps/@16.3975183,107.9632426,9.7z?hl=en; B. 

https://www.google.be/maps/@15.9331892,108.6010506,9.7z?hl=en; C. 

https://www.google.be/maps/@13.7129966,109.1235103,9.7z?hl=en) 

 

Table 5.1 Sampling location, time, larval length and abiotic factors of wild and hatchery larvae (mean ± S.D., n=10 

for larval length, n=5 for abiotic factors). No significant differences were found in the average larval length between 

datasets (ANOVA, n=10). 

No Time Location  Origin/Province Larval length (mm) Temperature (°C)  Salinity (g.L-1) pH 

1 June 2016 Hatchery Hatchery-reared 17.53 ± 1.17a 30.1 ± 0.1 28.2 ± 0.1 7.7 ± 0.1 

2 

June 2014 

ThuanAn Thua Thien Hue 17.49 ± 0.87a 26.8 ± 0.3 27.2 ± 0.2 7.6 ± 0.2 

3 QuangNam Quang Nam 17.88 ± 0.79a 27.4 ± 0.4 27.5 ± 0.3 7.7 ± 0.1 

4 BinhDinh Binh Dinh 17.31 ± 1.13a 29.7 ± 0.3 28.2 ± 0.2 7.7 ± 0.1 

5 

June 2015 

ThuanAn Thua Thien Hue 17.26 ± 0.74a 27.1 ± 0.3 27.3 ± 0.2 7.5 ± 0.1 

6 QuangNam Quang Nam 17.35 ± 0.91a 28.6 ± 0.2 27.9 ± 0.2 7.7 ± 0.1 

7 BinhDinh Binh Dinh 17.33 ± 0.94a 30.3 ± 0.3 28.4 ± 0.2 7.7 ± 0.1 

8 

June 2016 

ThuanAn Thua Thien Hue 17.14 ± 1.02a 27.0 ± 0.2 27.5 ± 0.3 7.6 ± 0.1 

9 QuangNam Quang Nam 17.30 ± 0.95a 29.3 ± 0.2 28.4 ± 0.2 7.7 ± 0.1 

10 BinhDinh Binh Dinh 17.39 ± 0.96a 30.5 ± 0.4 28.5 ± 0.2 7.8 ± 0.2 

https://www.google.com/maps/@15.34538,108.3821484,7.84z
https://www.google.be/maps/@16.3975183,107.9632426,9.7z?hl=en
https://www.google.be/maps/@15.9331892,108.6010506,9.7z?hl=en
https://www.google.be/maps/@13.7129966,109.1235103,9.7z?hl=en
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5.2.2. FAME analysis  
 

Whole fish were used for FAME analysis at the Lab. of Aquaculture & ARC, Ghent 

University, Belgium. The FAME analysis followed the modified procedure of Lepage 

and Roy (1984), was conducted as described by Coutteau et al. (1995). The method 

employs a direct acid catalyzed transesterification without prior lipid extraction using 

methanol/acetyl chloride (20/1). The PUFAs were extracted with hexane, redissolved 

in iso-octane and analyzed by on column injection in a Chrompack CP9001 

chromatograph operating with hydrogen (100kPa) as carrier gas and flame ionization 

detection, equipped with a 2.5 m methyl deactivated precolumn connected to a 50 m 

polar capillary column (BPX70, SGE, Australia) (0.32 mm internal diameter, 0.25 µm 

layer thickness). Temperature was programmed to rise from 85°C to 182°C. Peaks 

were identified by comparison with reference standards (Nu-Check Prep, USA). 
 

5.2.3. Illumina sequencing for gut MC analysis 
 

The freeze-dried fish samples were first hydrated in sodium phosphate buffer prior to 

extraction. After that, the gut was removed from the fish larvae. The DNA of the gut 

content was extracted using the FastDNA Spin Kit for Soil (MP Biochemicals, USA), 

according to the manufacturer's instructions. The DNA concentration in the extract was 

then normalized to the final value of 1 ng/µL, and the extracts were sent to LGC 

Genomics (Berlin, Germany) for Illumina on the Miseq platform. The Illumina protocol 

was written by Kim De Paepe and corrected by Berthold Fartmann (LGC genomics, 

Germany). First, the bacterial 16S rRNA gene was amplified using a primers 341F 

CCTACGGGNGGCWGCAG (forward) and 785R GACTACHVGGGTATCTAAKCC 

(reverse) (Klindworth et al., 2013). The PCR reaction was carried out in 20 µL volume 

of MyTaq buffer containing 1.5 units of MyTaq DNA polymerase (Bioline, USA) and 2 

µL of BioStabII PCR Enhancer (Sigma, USA). For each DNA sample, both primers 

carried the same unique 10-nt barcode sequence. The PCR protocol consisted of an 

initial denaturation step at 96°C for 2 minutes; followed by 20 cycles at 96°C for 15 

sec, 50°C for 30 sec, 70°C for 90 sec. Gel electrophoresis was carried out to 

determine the DNA concentration of amplicons of interest. Up to 48 samples carrying 

different barcodes were pooled together (20 ng DNA of each sample). To remove the 

primer dimer and other by-products, the pooled samples were purified with one volume 

AMPure XP beads (Agencourt, USA), followed by a MinElute columns (Qiagen, The 

Netherlands) purification step. The purified DNA (100 ng) was used to construct 

Illumina libraries by means of adaptor ligation, using the Ovation Rapid DR Multiplex 
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System 1-96 (NuGEN, USA). The libraries were pooled together, and the size of DNA 

fragments was determined with gel electrophoresis. An Illumina MiSeq using V3 

Chemistry (Illumina) was used to finalize the sequencing. The sequencing quality was 

assessed by including a mock community (in triplicates) in the sequencing run. The 

mock community is an in-house assembled community that was pooled together from 

10 distinct strains based on equal qPCR copies (De Paepe et al., 2017).  
 

5.2.4. MC data analysis 
 

Amplicon sequence processing: The mothur software package (1.39.5) was used to 

process the amplicon sequencing data on a GNU/Linux 3.16.0-46-generic x86_64 

system in accordance with the guidelines of Schloss et al. (2009). Forward and 

reverse reads were assembled into contigs by a heuristic approach, taking the Phred 

quality scores into account. Ambiguous contigs or contigs with unsatisfying overlap 

were removed, and the remaining sequences were aligned to the mothur formatted 

silva seed v123 database. Sequences that did not align within the region that was 

targeted by the primer set or sequences with homopolymer stretches with a length >12 

were removed. The sequences were pre-clustered, allowing 1 mismatch for every 100 

bp of sequence. Chimeric sequences were removed with UCHIME (Edgar et al., 

2011). The sequences were classified with a naive Bayesian classifier, using the RDP 

16S rRNA gene training set, v.14 with an 85% cut-off for the pseudobootstrap 

confidence score. Taxa annotated as unknown, Archaea, Chloroplast, Mitochondria, 

Eukarya at the kingdom level were excluded. Sequences were binned into operational 

taxonomic units (OTUs) at a 3% dissimilarity level, as identified by the preceding 

classification step. A table containing the abundances of the OTUs, and their 

taxonomic assignments was generated. 
 

Amplicon data processing: Samples were rescaled by taking the proportions of each 

OTU, multiplying it with the minimum sample size, and rounding to the nearest integer 

according to the “common-scale” approach (McMurdie and Holmes, 2014). 

Rarefaction curves were generated for each sample to evaluate sampling depth 

sufficiency (Sanders, 1968; Hurlbert, 1971). Statistical analyses were carried out with 

R studio version 3.3.1 (R Development Core Team, 2013). Community analysis was 

carried out using the phyloseq (McMurdie and Holmes, 2013) and vegan (Oksanen et 

al., 2016) packages. The MC composition of the biological replicates of 3 locations and 

over 3 years was statistically compared with analysis of variance (ANOVA, aov 
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function) to validate that the community showed no significant difference between 

biological replicates. Heat maps were generated on different phylogenetic levels 

(phylum and class), using the weighted average values of the biological replicates 

(heat map package). The interactions between the year and location factors in the 

order-based Hill’s numbers (Hill, 1973) were determined with two-way ANOVA 

(ANOVA function of the car package, v2.1-5, on a lm object with interaction). As no 

interaction between the year and location factors in Hill’s numbers order 1st and 2nd 

(H1 and H2) was found, the significant differences in the H1 and H2 between different 

locations and years were determined with one-way ANOVA. There was interaction 

between the year and location factors in Hill’s numbers order 0 (H0) between different 

locations and years. However, there was no systematic trend in the interactive effect, 

occluding a biological interpretation. For convenience, the significant differences in the 

H0 between different locations and years were further determined with one-way 

ANOVA. The Hill order 0 (H0) represented the OTU richness in the gut MC of larvae. 

The Hill order 1 (H1, the exponential of Shannon’s entropy index) represented the 

observed OTUs numbers with the exclusion of rare species in the gut MC of larvae. 

The Hill order 2 (H2, the inverse of Simpson’s concentration index) represented the 

abundance only of the more plentiful OTUs in a sample, and can therefore be 

regarded as a measure of "dominant OTUs concentration" (Whittaker, 1965; Hill, 

1973). Non-metric multidimensional scaling (NMDS) plots were generated based on 

the Bray-Curtis (BC) distance measure. Significant differences in MC composition 

between different locations and years were determined via pair-wise Permutational 

ANOVA (PERMANOVA) with Bonferroni correction (adonis function, vegan package).  
 

Relative distance of MC 3 locations and its relation to temperature: Relative 

distances between the MC centroids of each location were determined based on the 

NMDS data and compared with geographical distance. The PERMANOVA was used 

to evaluate the effect of temperature on the DHA and EPA content, DHA/EPA ratio 

and gut MC at 3 locations using the adonis function (vegan). The Spearman’s rank 

order correlation (rho) was used to determine significant correlations between 

temperature and the DHA and EPA content, DHA/EPA ratio and gut MC. 
 

Data deposition: The raw fastq files that were used to create the OTU table and used 

as a basis for the MC analysis in this paper, have been deposited in the European 

Nucleotide Archive (ENA) database (accession numbers PRJEB21048). 
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5.2.5. LC-PUFA data analysis 

 

Significant differences in DHA/EPA ratios between groups were analyzed using one-

way ANOVA, followed by Tukey-Kramer test for multiple comparisons. Differences 

were considered significant at p < 0.05. All tests were performed using SPSS 22.0. 
 

5.3. Results 

 

5.3.1. PUFA compositions and its relation with water temperature 

 

There were no significant differences in the ARA levels (2.0 – 4.2%) between wild and 

hatchery larvae (Tukey-Kramer, p>0.05), except for QuangNam samples (Tukey-

Kramer, p<0.05). The DHA/EPA ratio QuangNam and BinhDinh samples decreased 

from 2014 to 2016 (8.1 in 2014 to 5.6 in 2016 and 4.0 in 2014 to 2.9 in 2016, 

respectively) (Tukey-Kramer, p<0.05), but it was stable in ThuanAn (4.1 in 2016 and 

4.6 in 2014) (Tukey-Kramer, p>0.05). The DHA/EPA ratio of hatchery larvae was 5.4, 

which was within the range of the wild sample (2.9 – 8.1) (Table 5.2). Difference 

between temperatures at 3 locations was negatively correlated with DHA content 

(rho=-0.6658) and DHA/EPA ratio (rho=-0.4397), but not EPA content (rho=-0.0568) of 

fish larvae (Table 5.3). 
 

Table 5.2. PUFAs (composition in percentage, mean ± SD) of the hatchery and wild larvae from 3 locations over 3 

years. Different letters on the same rows indicate significant differences in PUFA content between 

locations/hatchery for the DHA/EPA ratio (Tukey-Kramer test, n = 10). 

PUFAs 
ThuanAn QuangNam BinhDinh Hatchery 

2014 2015 2016 2014 2015 2016 2014 2015 2016 2016 

ARA 2.3 ± 0.2 2.8 ± 0.6 2.0 ± 0.7 4.2 ± 0.8 4.1 ± 0.6 4.0 ± 0.4 3.7 ± 0.4 3.4 ± 0.3 3.4 ± 0.3 3.1 ± 0.5 

EPA 2.6 ± 0.4 2.5 ± 0.4 2.4 ± 0.5 1.9 ± 0.2 2.1 ± 0.4 1.7 ± 0.2 2.3 ± 0.3 2.6 ± 0.8 2.5 ± 0.6 1.7 ± 0.2 

DHA 11.8 ± 1.1 10.8 ± 0.8 9.7 ± 1.6 15.3 ± 1.5 14.9 ± 2.3 9.8 ± 1.6 9.0 ± 1.5 7.2 ± 1.1 6.8 ± 0.7 8.8 ± 0.4 

DHA/EPA 4.6 ± 0.4a 4.5 ± 0.8a 4.1 ± 0.8a 8.1 ± 1.0b 7.3 ± 0.9b 5.6 ± 1.3c 4.0 ± 0.9a 3.1 ± 1.0d 2.9 ± 0.9e 5.1 ± 0.4cf 

 

Table 5.3. The correlation between temperature and PUFAs in wild larvae 

No. Factors p-value (PERMANOVA) Spearman’s rho 

1 Temperature and DHA <0.0001 -0.6658 

2 Temperature and EPA 0.5946 -0.0568 

3 Temperature and DHA/EPA ratio <0.0001 -0.4397 

 

5.3.2. Gut MC of hatchery and wild larvae in 3 locations over 3 years 
 

Diversity measurements of the hatchery and wild larval gut MC: There were 

significant differences in the Hill order 0, 1, 2 of hatchery and wild larval gut MC from 3 

locations (ANOVA, p<0.0001) (Figure 5.2). The H0, H1 and H2 of the hatchery larval 

gut MC were significantly lower than those from wild (ANOVA, p<0.001).  
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Figure 5.2. Hill numbers of the gut MC of the hatchery (Hatchery) and wild larvae from 3 locations 

(ThuanAn, QuangNam, BinhDinh) over 3 years. Upper figure: comparison between wild larvae from 3 

locations and between wild and hatchery larvae. Lower figure: comparison between wild samples over 3 

years (pooled sample over locations and years, ANOVA; n=30 for wild and n=10 for hatchery larvae). 

 

In the wild, the H0 increased significantly from the north to south (p<0.05). The highest 

H0 was observed in BinhDinh larvae (128.7 OTUs), which was 19% higher than those 

from QuangNam (108.6 OTUs), 57% higher than those ThuanAn (82.1 OTUs) 

(p<0.05) and 455% higher than those from the hatchery larvae (23.2 OTUs) (p<0.05). 
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Similarly, the H1 in the gut MC from the BinhDinh was 19.8 OTUs, which was 16, 49 

and 904% higher than those from QuangNam (17.1 OTUs), ThuanAn (13.3 OTUs) and 

hatchery (1.9 OTUs) (p<0.05), respectively. The highest H2 in the gut MC was in 

BinhDinh (10.2 OTUs) and QuangNam (8.9 OTUs) (p>0.05) (15 – 38% and 536 – 

629% higher than those from ThuanAn (7.4 OTUs) and hatchery (1.4 OTUs) (p<0.05), 

respectively. There were significant differences in the H0 of the gut MC between years 

(2014: 111, 2015: 106, 2016: 100 OTUs) (ANOVA, p<0.05). The H1 and H2 of the gut 

MC in 2014 (H1: 19; H2: 10 OTUs) were significantly higher than those in 2016 (H1: 

15; H2: 8 OTUs) (p<0.05). There were no significant differences in the H1 and H2 

between the gut MC in 2015 (H1: 16; H2: 8 OTUs) and those in 2014 and 2016. 

Phylogeny of gut MC of hatchery and wild larvae over a 3-year period: The 

Firmicutes were the most predominant phylum in the gut MC of wild (35 – 61%) and 

hatchery larvae (99%), except for ThuanAn in 2016, which was dominated by the 

Actinobacteria (35%) and Proteobacteria (34%). Other dominant OTUs belonged to 

the phylum Verrucomicrobia (< 22.3%), and Bacterioides (< 16.2%) (Figure 5.3). The 

Clostridia were the most predominant class in the gut MC in all natural locations (10 – 

39%), except for the ThuanAn in 2016, which was dominated by the Actinobacteria 

(34%) and Alphaproteobacteria (26%). Other OTUs belonged to the classes 

Deltaproteobacteria (7 – 17%), Verrucomicrobiae (10 – 21%) and Erysepelotrichia (8 – 

18%). The detectable classes were Betaproteobacteria (<4%), Fusobacteria (<4%), 

Bacteroidia (<4%), Gammaproteobacteria (<3%), Spirochaetia (<3%), 

Epsilonproteobacteria (<2%), Flavobacteria (<1%). The Bacilli was the most 

predominant class in the hatchery larval gut (98%) (Figure 5.4). Only OTUs present at 

an average relative abundance ≥0.1% were considered for analysis. The OTUs from 

Clostridiales (from 27 to 52%) was predominant in the gut of wild larvae, while OTUs 

from Pediococcus (83%) and Lactobacillus (15%) were predominant in the gut of 

hatchery larvae. The less predominant OTUs in the wild larval gut were from 

Akkermansia (<20%), Lachnospiraceae (<12%), Ruminococcaceae (<10%), 

Firmicutes (<10%), Bacteria (<10%), Bacteroidales (<7%). The Norcadia OTUs were 

high in larval gut from ThuanAn (10 – 24%) and QuangNam in 2014 (14%), but they 

were undetectable in all remaining samples. The Vibrio OTUs were 0.1 – 1.1% in the 

wild larvae, and were undetectable in the hatchery larval gut (Figure 5.5). 

NMDS analysis of MC in hatchery and wild larvae in 3 locations in 3 years: There 

were no significant differences in the MC of the wild larvae over 3 years (p>0.05) 
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(Figure 5.6A). Significant differences in community composition of the larval gut MC 

were detected between the 3 locations in the wild (p=0.0001), and between the 

hatchery and 3 locations in the wild (p=0.0001) (Figure 5.6B).  

Relative distance of MC from three locations and its relation to temperature: The 

relative genetic distances between 3 locations over 3 years and the effect of location 

on the MC were shown in Table 5.4. The distance between BinhDinh-ThuanAn was 

1.07, QuangNam-ThuanAn was 0.68 and BinhDinh-QuangNam was 0.42. Difference 

between temperatures at the 3 locations were positively correlated with the genetic 

differences between MCs (rho=0.941). 
 

 

 

Figure 5.3. Heat map showing the square root transformed relative abundance in phylum level of the gut MC of the hatchery 
(Hatchery) and wild larvae from 3 locations (ThuanAn, QuangNam, BinhDinh) over 3 years. Weighted averages of the 
replicates are presented and no significant differences (ANOVA, n=10) were observed between replicates. 

Figure 5.4. Heat map showing the square root transformed relative abundance in class level of the gut MC of the hatchery 
(Hatchery) and wild larvae from 3 locations (ThuanAn, QuangNam, BinhDinh) over 3 years. Weighted averages of the 
biological replicates are presented and no significant differences (ANOVA, n = 10) were observed between replicates. 
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Figure 5.5. Heat map showing the square root transformed relative abundance in OTU level of the 
gut microbial of the hatchery-reared (Hatchery) and wild larvae from the three locations (ThuanAn, 
QuangNam, BinhDinh) over a three-year period. Weighted averages of the biological replicates are 
presented and no significant differences (ANOVA, n = 10) were observed between the biological 
replicates. The OTUs abundance of ≥ 0.1% were considered for analysis. 
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Figure 5.6. NMDS analysis of gut MC of hatchery and wild larvae from 3 different locations (ThuanAn, 

QuangNam, BinhDinh) over 3 years. A: distribution by years. B: distribution by location.  

 

Table 5.4. Relative genetic distance between locations and its relation to temperature 

No. Location 1 Location 2 Relative genetic distance 

1 BinhDinh QuangNam 0.42 

2 BinhDinh ThuanAn 1.07 

3 QuangNam ThuanAn 0.68 

 Factors p-value (PERMANOVA) Spearman’s rho 

1 Location and temperature 0.001 0.941 

 

 

5.4. Discussion 

 

The rabbit fish are herbivores, and they can be fed seaweed and aquatic plants for 

grow-out culturing. Although rabbit fish can synthesize PUFAs (Li et al., 2010; Xie et 

al., 2016), there is still lack of information about the importance of dietary PUFAs they 

require, especially in the larval phase. The understanding of the nutritional 

requirements of marine fish and rabbit fish in particular, especially their need for 

PUFAs is crucial for developing specific compound diets and/or live food enrichment 

protocols (Kitajima et al., 1979; Watanabe et al., 1982). The PUFA requirements are 

also important for designing brood stock diets that can optimize e.g. egg quality 

(Watanabe et al., 1984a; Watanabe et al., 1984b; Izquierdo et al., 2001). This study 

showed that rabbit fish larvae contained a high proportion of ARA. The ARA content of 

wild larvae was stable between sampling locations over 3 years (between 1.96 and 
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4.19%), and no significant differences were detected in the ARA level between wild 

and hatchery samples. The ARA levels in rabbit fish of this study were similar to other 

studies on rabbit fish (Ogata et al., 2004; Suloma and Ogata, 2011) and other rabbit 

fish, e.g. S. virgatus, S. canaliculatus (Ogata et al., 2004; Suloma and Ogata, 2011; 

Monroig et al., 2012), and S. fuscescens (Osako et al., 2006; Jiarpinijnun et al., 2017). 

The ARA content plays an important role in improving growth, survival and stress 

resistance of fish larvae (Bell et al., 1997; Bessonart et al., 1999; Tocher et al., 2000; 

Koven et al., 2001; Bell and Sargent, 2003). In fact, rabbit fish can synthesize ARA, 

since they have fatty acyl desaturases (Fads) in their body (Li et al., 2010; Xie et al., 

2016). However, the main sources of body ARA content in wild larvae are still unclear. 

Macro algae (red and brown algae), phyto- and zooplankton are amongst the ARA-rich 

resources, which can be consumed by the wild and hatchery larvae (Johns et al., 

1979). The current study indicates that ARA content in hatchery rabbit fish larvae 

seems to be very similar to ARA levels found in wild larvae (over 3 years), indicating 

that hatchery larvae have no ARA deficiencies. It remains to be established in much 

more detail whether rabbit fish larvae are basically synthesizing sufficient ARA 

themselves using the current protocol or if at least part of the ARA content is acquired 

through the food. In marine fish species, the DHA/EPA ratio was reported to be 

variable between individuals, locations and sampling time points (Sargent and Whittle, 

1981; Sargent et al., 1999a; Sargent et al., 1999b), e.g. in chum salmon (O. keta) 

(Sasaki et al., 1989); red snapper (L. argentimaculatus), rabbit fish (S. guttatus and S. 

canaliculatus), coral trout (Plectropomus leopardus) and striped jack (Caranx 

fulvoguttatus) (Ogata et al., 2004; Monroig et al., 2012). The EPA content, DHA 

content and DHA/EPA ratio influence the reproductive performance of brood stocks, 

egg quality, embryo development, hatchability, larvae quality, and survival of marine 

fish larvae (Watanabe et al., 1984a; Watanabe et al., 1984b; Izquierdo et al., 2001). In 

this study, the DHA/EPA ratios in wild larvae were very high. The ratios varied 

between locations and years. The DHA/EPA ratios in wild and hatchery larvae were 

first reported by Ogata et al. (2004). These values are very similar to those obtained in 

this study, either for the wild or hatchery larvae. In both studies, DHA/EPA ratios in 

hatchery larvae are located inside the range of DHA/EPA ratios found in wild larvae. 

Therefore, since the PUFAs of hatchery larvae are within the range of the wild larvae, 

the current larval rearing protocol is reliable in term of PUFA content and there seems 

to be no need to treat the hatchery larvae differently in the future (for instance there 
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seems to be no need to feed them HUFA enriched life food). In addition, difference 

between temperatures at the 3 locations is negatively correlated with the DHA content 

and the DHA/EPA ratio, but not with the EPA content. A negative correlation of DHA 

content with seawater temperature was reported between 15 and 30°C in the spotted 

pim (Pimelodus maculatus) (De Torrengo and Brenner, 1976), between 5 and 25°C in 

common carp (C. carpio) (Farkas et al., 1980), between 22 and 29°C in European sea 

bass (D. labrax) (Skalli et al., 2006), between 15 and 19°C in rainbow trout (O. mykiss) 

(Mellery et al., 2016) and between 6 and 12°C in Atlantic salmon (S. salar) (Sissener 

et al., 2017). In this study, while the EPA content of the rabbit fish remained stable, the 

fluctuation of DHA content resulted in the fluctuation in the DHA/EPA ratio in the 

samples from 3 locations over 3 years. During the early stage, temperature can impact 

the FA composition in 2 ways: (i) metabolism (efficiency and consumption rates) and 

(ii) homeoviscous adaptation (Sinensky, 1974). The increase of the DHA content as 

temperature decreases as caused by homeoviscous adaptation (additional DHA 

production for maintaining membrane fluidity for metabolic efficiency) mainly occurs 

in fish at low temperature, e.g. between 0 and 8°C in Pacific cod (G. macrocephalus) 

(Laurel et al., 2012). Hence the current data rather point into the direction of 

temperature modulated activity of enzymes involved in PUFA metabolism. However, 

the temperature range across these 3 locations is narrow and hence more research 

could reveal a causal link. 

 

Beside PUFA content, the fish gut MC has been reported to be involved in a wide 

variety of activities in fish physiology, such as digestive ability, uptake of nutrients, 

metabolism, signaling development and disease resistance (Nayak, 2010; Wong and 

Rawls, 2012). In earlier studies, the fish gut MC was investigated based on the 

measurement of phylogenetic relationships by Woese and Fox (1977). Since then, 

several molecular approaches for the gut MC studies were developed, such as 16S 

amplification followed by DGGE, TTGE, T-RFTL analysis (Romero and Navarrete, 

2006; Hovda et al., 2007; Navarrete et al., 2009; Green et al., 2013). In recent years, 

the rapid development in advanced molecular techniques, e.g. Illumina MiSeq, 

allowing researchers to conduct in-depth studies on the diversity, composition and 

ubiquity of the gut MC (van Kessel et al., 2011; Geraylou et al., 2013; Star et al., 2013; 

Ingerslev et al., 2014a; Ingerslev et al., 2014b; Zarkasi et al., 2014; Gilbert et al., 

2015). This is the first study on rabbit fish gut MC by 16S amplification via Illumina 
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approach. In this study, we compared the gut MC of hatchery and wild larvae from 3 

locations over 3 years to understand the potential relationship between locations and 

time with respect to the gut MC composition. The bacteria that were identified in the 

rabbit fish gut content were mainly belonging in the Proteobacteria, Bacteroidetes, 

Fusobacteria, Actinobacteria and Firmicutes phyla, which was similar to the studies 

on other fish gut MCs using 16S amplification on marine herbivores, e.g. whitecheek 

surgeonfish (A. nigricans), daisy parrotfish (Chlorurus sordidus), bulbnose 

unicornfish (Naso tonganus) and sixbar angelfish (P. sexstriatus); marine omnivores, 

e.g. black rockcod (Notothenia coriiceps) (Sullam et al., 2012), blunt snout bream 

(Megalobrama amblycephala) (Li et al., 2014); marine carnivores, e.g. blackfin icefish 

(Chaenocephalus aceatus), long-snout seahorse (H. guttulatus), two-spot red 

snapper (L. bohar), sole (S. senegalensis) and grass puffer (Takifugu niphobles); 

estuarine carnivores, e.g. grouper (E. coioides) and longjaw mudsucker (Gillichthys 

mirabilis) (Sullam et al., 2012); freshwater herbivores, e.g. grass carp (C. idellus) (Li 

et al., 2014; Liu et al., 2016); freshwater omnivores, e.g. zebra fish (D. rerio), guppy 

(Poecilia reticulata) (Sullam et al., 2012), common carp (C. carpio); silver carp (H. 

molitrix), bighead carp (H. nobilis), mandarin fish (Siniperca chuatsi) (Li et al., 2014; 

Liu et al., 2016); freshwater carnivores e.g. rainbow trout (O. mykiss), yellowhead 

catfish (Pelteobagrus fulvidraco), Atlantic salmon (S. salar), brown trout (S. trutta) 

(Sullam et al., 2012; Li et al., 2014; Dehler et al., 2017). Moreover, OTUs from Vibrio 

sp. were up to 1.1% in the gut MC composition of the wild larvae, which is similar to 

the Vibrio sp. prevalence is the gut of other fishes, e.g. cod larvae (approx. 1%) 

(Bakke et al., 2015). No OTUs from Vibrio sp. were found in the gut MC of hatchery 

larvae. It might be due to the dominance of LAB and B. subtilis in the gut MC of 

hatchery larvae.  The dominance of LAB and B. subtilis in the gut MC could limit the 

adhesion process of bacteria pathogens to the epithelium (Olsson et al., 1992; 

Spencer and Chesson, 1994; Jin et al., 1996; Ouwehand and Conway, 1996; Bomba 

et al., 1997; Jöborn et al., 1997; Velraeds et al., 1997; Hansen and Olafsen, 1999; 

Merrifield et al., 2010; Pérez et al., 2010; Merrifield and Ringø, 2014; Hoseinifar et al., 

2016). Also, the presence of LAB and B. subtilis in the gastrointestinal tract and 

eventually gut mucosa could provide antagonistic activity, by producing specific 

compounds such as lactic and other organic acids. These compounds inhibited the 

proliferation of other proteolytic bacteria, thus protecting the fish from bacterial 

pathogens (Shahani et al., 1977; Hurst, 1981; Stoffels et al., 1992; Merrifield et al., 
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2014; Hoseinifar et al., 2016). Some LAB and B. subtilis produce bacteriocins, 

bactericidal or bacteriostatic peptides, which are antibacterial substances (Lewus et 

al., 1991).  B. subtilis also produces small molecular siderophores (<5 kDa) which 

have a wide spectrum of activity against bacteria pathogens in the fish intestine 

(Sugita et al., 1996; Sugita et al., 1998). It remains to be established to what degree 

the used probiotics interfere with the gut MC through these mechanisms. 

 

The differences in the gut MC between 3 locations might relate to the differences in 

temperatures, current direction and food quality. Firstly, there is a positive correlation 

of temperature differences at the 3 locations over 3 years with the genetic differences 

between gut MC. Significant impact of environment temperature on the gut MC has 

been reported not only in other fish species (e.g. silver carp (H. molitrix) (Ye et al., 

2014), but also in the other ectotherm animals (e.g. tadpoles (Kohl and Yahn, 2016)). 

Secondly, the flow direction of water currents in Central Vietnam can explain the 

correlation of genetic distances of the MC and locations. In June, the currents usually 

flow from BinhDinh to ThuanAn and the currents are partially blocked by the Hai Van 

pass (peninsular mountains), which are located between ThuanAn and QuangNam 

(MARD, 2016a). The change of the current direction might create differences in the 

water bodies between 3 locations, hence affecting the water MC and resulting in the 

separation of the gut MC in ThuanAn from other locations in the south (QuangNam 

and BinhDinh). Lastly, it might be that difference in the food quality at the 3 locations is 

shaping the MCs and difference in cellulose content of the food is potentially important 

in shaping the MC. In summary, location seems to shape gut MC. Several abiotic 

factors such as water temperature, water current, quality of the local food could be the 

driving factors, alone or in combination. A more extensive monitoring program in term 

of gut MC characterization and abiotic factors in combination with experimental 

approaches could reveal which abiotic factors is the main driver of the gut MC of rabbit 

fish. 

 

The gut MC composition of wild and hatchery larvae in this study was completely 

different. This can be explained by the special conditions such as feeding and probiotic 

additions in the hatchery. During the rearing, the hatchery larvae were fed probiotic-

enriched rotifers from first feeding until sampling. The probiotics added daily to rotifers 

culture included L. plantarum, L. fermentum, L. brevis, P. acidilactici, P. pentosaceus 

and B. subtilis (Bose, 2011; Le et al., 2017) at 106 CFU.mL-1 for each strain. 



CHAPTER 5 
 

 
101 

Apparently wild larvae did not take up these species through their natural food. 

Secondly, the biotic factor, which is the trophic level of rabbit fish in this study, might 

impact the gut MC. At the time the rabbit fish larvae migrate to the river mouth (14-18 

mm in length, which is equivalent to the 25-day old larvae in the hatchery), they 

already become herbivores and are predominantly grazing on seaweed and aquatic 

plants (Pillai, 1962; Rosario, 1975; Alcala and Alcazar, 1979; Alcala, 1979; Tseng and 

Chan, 1982; Anon, 1983; Gundermann et al., 1983; Urmaza Sr, 1983; Kishimoto, 

1984; Lichatowich et al., 1984; Juario et al., 1985; Hara et al., 1986c). However, low 

trophic level herbivores, which consume aquatic plants as food, usually lack cellulase. 

As a result, they need cellulase-producing bacteria to convert part of the food into 

short-chain fatty acids. Hence, the gut MC is important for the herbivorous fish to 

break down indigestible food components into digestible components and nutrients 

(Saha et al., 2006; Ray et al., 2012). Indeed, the gut MC of herbivores also contained 

a high relative abundance of potentially cellulose-degrading bacteria, belonging to the 

orders Clostridiales and Fusobacteriales (Liu et al., 2016). In our study, these orders 

were dominant in the wild larvae, but it was not the case in the hatchery. The trophic 

level of hatchery larvae was kept differently from the nature. By feeding probiotic-

enriched rotifers to the larvae, they were forced to feed as carnivores. In summary, 

rabbit fish larvae can harbor totally different gut MC and be apparently healthy (wild 

versus hatchery). Hence, gut MC must be shaped by the prevailing environmental 

conditions, which in the wild might be food, temperature and local water MC. In the 

hatchery, it is shaped through continuous supply of probiotics via live food (rotifers).  

  

This is the first study to compare the fish gut MC of wild and hatchery larvae of a 

marine herbivorous species in general, and of rabbit fish in particular. This study 

contains baseline scientific data. It might be useful for the establishment of protocols 

for larval rearing and growth out of rabbit fish. For instance as the hatchery larvae, fed 

live feed, will need to switch to natural food upon stocking in ponds, it can become of 

interest to verify if gut MC management is of importance in the process (switch from 

hatchery to pond). 
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6.1. Context of this study 
 

Rabbit fish (S. guttatus) larviculture has been targeted by aquaculturists since the 1980s. 

However, rabbit fish larvae are difficult to rear in the first feeding period (from hatching up 

to 6 days) because of their small mouth size at opening and first feeding, and its small 

yolk-sac volume (Bagarinao, 1986; Hara et al., 1986a; Duray, 1998b), which results in 

low survival from hatching to day 24 (0 – 1.1%) (Gorospe et al., 2011). 
 

In the early development of fish larvae, the transition from endogenous to exogenous 

feeding is a critical period. In the artificial condition, mass mortality was observed at this 

stage. The survival of fish larvae is variable depending on fish species, abiotic factors, 

age of brood stocks, egg quality, MC, spawning and rearing conditions (Lillelund, 1965; 

Blaxter, 1969; May, 1974; Kjørsvik et al., 1990; Tamaru et al., 1994; Brinkmeyer and Holt, 

1998; Olsen et al., 1999; Baskerville-Bridges and Kling, 2000; Hamlin and Kling, 2001; 

Olafsen, 2001; Puvanendran and Brown, 2002; Cahu et al., 2003; Yúfera et al., 2005; 

Palazzi et al., 2006; Yúfera and Darias, 2007; Bobe and Labbé, 2010). The survival of 

fish larvae in the first couple of weeks after mouth opening and first feeding ranged from 

the best survivals recorded of 91% in sea bream (S. aurata) (Yúfera et al., 2005; Yúfera 

and Darias, 2007) to 85% in Senegal sole (S. senegalensis) (Yúfera et al., 2005; Yúfera 

and Darias, 2007),  82% in grey mullet (M. cephalus) (Tamaru et al., 1994), 75% in 

European seabass (D. labrax) (Cahu et al., 2003), 60% in common sole (S. solea) 

(Palazzi et al., 2006); 46% in red drum (S. ocellatus) (Brinkmeyer and Holt, 1998), 41% in 

Atlantic cod (G. morhua)  (Baskerville-Bridges and Kling, 2000; Puvanendran and Brown, 

2002); 38% in haddock (M. aeglefinnus) (Hamlin and Kling, 2001) and  25% in Atlantic 

halibut (H. hippoglossus) (Olsen et al., 1999). The main reasons for the mass mortalities 

of fish larvae at first feeding stage were identified as (i) lack or insufficient food at first-

feeding in nature; (ii) low quality of first-feeding food; (iii) changes in environmental 

conditions and (iv) microbial interference (Hunter, 1981). Especially food quality was an 

important factor affecting the survival of larvae (Kaji et al., 1996; Fernandez-Diaz and 

Yúfera, 1997; Cahu et al., 1998; Hamlin and Kling, 2001; Robin and Vincent, 2003; 

Papandroulakis et al., 2005; Yúfera et al., 2005). It is important to understand the early 

development of fish larvae in terms of nutritional requirements. The duration of the period 

of the larvae transition from endotrophic to exotrophic life is largely dependent on the 

water temperature and the yolk-sac volume of the larvae (Howell, 1980; Bagarinao, 1986; 

Arul, 1991; Polo et al., 1991; Buckley et al., 2000; Parra and Yúfera, 2001; Hardy and 
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Litvak, 2004). In order to achieve high survival, it is necessary to find a food which is 

suitable in size and composition, thus matching the mouth size of larvae and the 

development of the digestive system (Yúfera and Darias, 2007). More importantly, the 

energy obtained from the food should be higher than the energy spent by the larvae for 

catching the food. Moreover, feeding behavior and feeding incidence were also 

considered as important factors for the performance of fish larvae at first feeding 

(Bagarinao, 1986; Yúfera and Darias, 2007). The feeding behavior of larvae is depended 

on the food density, the food distribution, and the larvae aggressiveness towards the 

food. The term of Point of No Return (PNR) was used to indicate the inability of 50% of 

larvae to catch food actively in the first feeding stage. At this point, the larvae were still 

alive but too weak to catch food even when food became available. The PNR can also be 

called “irreversible starvation” (Yin and Blaxter, 1987). Each marine fish species has its 

own PNR, which ranges from 3 days to 20 days. A delay in the introduction of food in this 

period might result in high deformity, low feeding percentage, digestive problems and low 

survival of the fish larvae (Yin and Blaxter, 1987; Miller et al., 1988; Arul, 1991; Yúfera et 

al., 1993; Gwak and Tanaka, 2001; Dou et al., 2002; Gisbert et al., 2004). In conclusion, 

it is crucial to find a proper-sized live food for each type of fish larvae to avoid the PNR.  
 

Within this Ph.D. study, we focused on the critical food size and probiotics affecting the 

larviculture of rabbit fish. In the first experiment, we aimed at verifying the importance of 

the proliferating bacterial community on the growth of very small rotifers P. similis. 

Subsequently, a new protocol of the large-scale culture of P. similis was established 

(chapter 3). Profiting from the technology of large-scale culture of P. similis, in chapter 4, 

we studied the effects of different live food size and different type of live food combined 

or not with probiotics addition on rabbit fish larval rearing from hatching to day 25. The 

experiments included a co-feeding approach including live food: P. similis, B. 

rotundiformis, B. plicatilis, Artemia and compound diets as it was anticipated that co-

feeding would yield good results. The LC-PUFA composition and intestinal MC of wild 

rabbit fish larvae from 3 different locations in Central Vietnam over 3 years, and the 

hatchery larvae were compared in order to understand the nutritional requirements and 

gut MC of the rabbit fish larvae (chapter 5). It is anticipated that this knowledge will allow 

to further optimizing the larviculture. 

6.2. The addition of proliferating bacterial community to optimize the culture 

of the very small rotifers (P. similis)  
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In previous studies, microalgae were reported to be the most appropriate food for the 

culture of P. similis (Wullur et al., 2009, 2011). After that, Wullur et al. (2011) described a 

large-scale culture of P. similis in 50L tanks, to provide enough rotifers for rearing the 

larvae, using very small microalgae species such as N. oculata and C. vulgaris. However, 

P. similis showed a slower growth rate during the first 4 days than in the later stage 

(Wullur et al. 2009). It was hypothesized that, the bacterial community might have some 

possible influence on the growth performance of the P. similis, perhaps not directly, but 

nevertheless very important.  In the present study, the effect of limiting the bacterial re-

growth, through the addition of an AB mixture, and the effect of the addition of a small 

amount of live or dead bacteria (a mixture of LAB and B. subtilis) on the population 

growth, growth rate and MC of P. similis culture was investigated for a period of 10 days. 

For comparison purpose, the bigger rotifer B. rotundiformis culture was included as a 

control. The results showed that in the presence of a proliferating bacterial community, 

both rotifers species showed a better population growth rate than those without the 

presence of a proliferating bacterial community. In addition, the growth performance 

of the smaller rotifer P. similis proved to be more dependent on a proliferating bacterial 

community than the bigger rotifer B. rotundiformis. This proliferating bacterial community 

not only increased the production of the rotifers but also had a regulating effect on the 

MC composition of rotifer culture water. The importance of bacteria in rotifer cultures was 

first reported by Starkweather et al. (1979), when the rotifer B. calyciflorus were cultured 

on the bacterium A. aerogenes under laboratory conditions. Although the feeding rates 

on bacteria were lower compared to bigger particles, it was found that this rotifer species 

can be cultured for more than 40 generations solely on A. aerogenes without any 

noticeable negative effects on reproductive rate or lengthening of the cohort generation 

time (Starkweather et al., 1979). Later, Arndt (1993) reported that bacteria could be a 

substantial part of the food for certain rotifer species, namely belonging to the 

Brachionidae. Depending on the mixture of available food particles, 10 - 40% of the 

rotifer diet could consist of bacteria. However, as the grazing rate was low compared to 

the bacteria growth rates, the effect on the bacteria population in the culture tank will be 

low (Arndt, 1993). In addition, Agasild and Nõges (2005) stated that in the conditions with 

a limited amount of microalgae, rotifers could switch to the uptake of bacteria-sized 

particles for food. Some bacteria, such as Pseudomonas species, can synthesize vitamin 

B12 and subsequently be beneficial to rotifers (Yu et al., 1988). Rotifer culture in bacteria-
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free conditions showed lower population growth and growth rate than those in the culture 

with the presence of bacteria. It meant that bacteria were one of the important factors, 

which contributed to the reproduction of rotifers (Douillet, 1998; Rombaut et al., 1999; 

Tinh et al., 2006). Among many bacteria strains used to manipulate the MC in rotifer 

culture, LAB and B. subtilis appeared to be the most popular. Live LAB and B. 

subtilis were reported to enhance the production of the rotifer B. plicatilis (Gatesoupe, 

1991b; Harzevili et al., 1998a; Hirata et al., 1998; Douillet, 2000). The addition of L. 

casei, P. acidilactici and L. lactis increased the growth rate of B. plicatilis by 8-13 times 

compared to those obtained in the controls. In this study, 5 strains of LAB and 1 strain of 

B. subtilis were used to investigate the effects on the maximum population density, 

growth rate and MC of P. similis and B. rotundiformis. The results showed that the 

proliferating bacterial community was a very important factor in the growth performance 

of both P. similis and B. rotundiformis cultures, pointing in the direction of the importance 

of the microbial loop.  In comparison to the control without AB, the results seem to 

indicate that the proliferation of probionts in the cultures is very beneficial which can be 

due to the combination of additional available bacterial biomass (nutritional effects) and 

probiotic effects. However, the data did not allow us to quantitatively distinguish the 

effects from both factors. To quantify the contribution of bacteria biomass to the growth of 

P. similis, different types of experiments should be performed. The standing microbial 

and algal community could be quantified by e.g. flow cytometry and supplemented 

(spiked) with labelled (3H or 13C) probiotics in a short-term experiment (e.g. 1h). 

Subsequently, label incorporated into P. similis biomass could be determined. The data 

however allowed us to conclude that the rotifer P. similis is more dependent on the 

proliferating bacterial community than the rotifer B. rotundiformis in both experimental 

and large-scale culture conditions.  
 

Finally, a large-scale culture protocol (200 L) of P. similis using proliferating bacteria was 

established. It is recommended to add live bacteria, e.g. LAB and B. subtilis daily, at 106 

CFU.mL-1.species-1.day-1 to the rotifer cultures to enhance the rotifer production, improve 

the MC composition and reduce the culture period from 11 to 6 – 8 days. 
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6.3. Larviculture of rabbit fish (S. guttatus) 

 

Rabbit fish is an important cultured species in tropical countries. In chapter 4, new larval 

rearing protocols were designed, based on using P. similis as first food for the rabbit fish 

larvae. The study on the larval rearing of rabbit fish (from hatching to 25 dph) was divided 

into 2 phases: (i) the first feeding phase was accounted from hatching to day 10 and (ii) 

the second phase was delineated from day 10 to 25 (Duray, 1998b). In the first 

experiment, we aimed to answer the question on whether the rabbit fish could survive up 

to 240 hph using P. similis or B. rotundiformis as starter food. In this study, the larvae fed 

smaller rotifer P. similis had significantly higher survival at 240 hph than those fed the 

bigger rotifer B. rotundiformis as starter food. Indeed, the effect of live food size on fish 

larvae with small mouth/special oesophagus at first feeding was reported for many 

marine fish species, such as the seven-band grouper, rusty angelfish, humphead wrasse; 

and Japanese eel (Shirota, 1970; Fernández-Díaz et al., 1994; Busch, 1996; Munk, 

1997; Planas and Cunha, 1999; Østergaard et al., 2005; Yúfera and Darias, 2007; Wullur 

et al., 2009; 2011; Hirai et al., 2012; Hirai et al., 2013; Wullur et al., 2013; Hagiwara et al., 

2014). This experiment showed that also for rabbit fish the very small rotifer P. similis is a 

better starter food than the bigger rotifer B. rotundiformis.  
 

In the previous studies on rabbit fish larval rearing in the Philippines, most of the rotifers, 

which belonged to the group B. plicatilis complex, were still too big on 6 dph (Hara et al., 

1986c; Kohno et al., 1988; Ayson, 1989). Several studies explained that during the first 

few days of larval development, a rapid increase of mouth size (jaws) certainly helped the 

larvae to catch a bigger size of food and to increase ingestion rate, increasing the 

survival (Shirota, 1970; Polo et al., 1992; Fernández-Díaz et al., 1994; Doi et al., 1997; 

Olsen et al., 2000). In order to increase the survival, the second experiment was 

conducted testing several co-feeding schemes of P. similis and B. rotundiformis.  
 

In general, the combination of food of two different sizes always resulted in increased 

survival, compared to the mono-diet scheme. Previous studies showed that the food size 

had a great impact on the growth and survival of the fish larvae in general, and the ratio 

of the food over mouth size should be ranging from 0.2 to 0.7 depending on species and 

the stage of larval development. The mouth size of rabbit fish and its function at early 

stage of development are indicated in Table 6.1.  
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Table 6.1. Rabbit fish mouth size and its function at early stage.  

Age   

(hph) 

Mouth    

size (μm) 

Food     

size (μm) 
Function References 

30.5 – 32 80 – 110 16 – 77 Mouth opening, learning how to eat 
Ordonio-Aguilar (1995); 

Duray and Kohno (1990) 

36 125 25 – 88 Start to eat P. similis (40 – 80μm) This study 

55.5 – 60 200 40 – 140 Start to eat B. rotundiformis (90 – 150μm) 
Duray and Kohno (1990); 

This study 

82.5 219 44 – 153 Start to eat B. plicatilis (142 – 203μm)  
Kohno et al. (1988); Hara 

et al. (1986a) 
 

Moreover, a ratio close to the upper limit of the range was ideal for food uptake by the 

larvae (Shirota, 1970; Fernández-Díaz et al., 1994; Busch, 1996; Munk, 1997; Planas 

and Cunha, 1999; Østergaard et al., 2005; Yúfera and Darias, 2007). It is easier for 

the fish larvae to have a net energy gain by catching bigger slow moving prey, which is 

still within the limits of their mouth size (Hunt von Herbing and Gallager, 2000). The 

highest larvae mortality occurs in the few days or weeks after hatching as a larva shifts 

from endogenous (reliant on yolk) to exogenous feeding (reliant on external prey) 

(Hewitt and George, 1987; Houde, 1989). During this time, relatively slow-swimming 

larvae may be unable to capture fast-moving preys; food limitation may result in 

starvation after the yolk has been absorbed. Lack of appropriate prey may be the most 

important factor influencing larval fish survival (Hunt von Herbing and Gallager, 2000). 

The attack rate and successful ingestion by the larvae are positively correlated with 

the larval length and age. When food was totally absent, the initial increase in larval 

length was absolutely dependent on the preserved energy of the yolk. In case the food 

density is low or the food size is small, the swimming time is increased in order to 

maintain the ingestion threshold (Munk and Kiorboe, 1985; Puvanendran and Brown, 

2002). Therefore, size and energy content of the food were an important factor 

affecting the larval survival. In fact, the DW of B. rotundiformis is 6-fold higher than P. 

similis. It was assumed that larvae feeding on the bigger B. rotundiformis obtained 

more energy-per-catch than those feeding on the smaller P. similis (Wullur et al., 

2011). From 5 dph, the mouth and body size (Bagarinao, 1986; Hara et al., 1986b) of 

larvae increased, B. rotundiformis should be added and P. similis should be gradually 

replaced to obtain a positive energy balance for the larvae.  
 

The co-feeding regime in experiment 2 (chapter 4) leads to good survival of larvae at 

240 hph (13.7%) compared to the current methods used in aquaculture. In this 

experiment, both rotifer species were cultured without any bacteria enrichment. 
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However, when probiotic-enriched rotifers were used, the larval survival increased 

from 13 to 16% at 240 hph (experiment 3, chapter 4), and this survival was higher than 

in the previous report from a culture in the Philippines in 2011 (<1% survival) (Gorospe 

et al., 2011). The effect of LAB and Bacillus sp. via feeding to marine fish larviculture 

is summarized in Table 6.2. It seems that the probiotic-enriched rotifers were the key 

factor for the significantly higher survival of the fish larvae. The probiotics delivered to 

the fish larvae through their feeding activity on e.g. probiotic-enriched rotifers improves 

the larval performance. In term of probiotic traceability, LAB and Bacillus sp. used for 

bacteria bioencapsulation in live food (via rotifers and Artemia, continuous feeding) 

could be traced in the gut MC of seabass (D. labrax) (Picchietti et al., 2009) and 

seabream (S. aurata) (Suzer et al., 2008; Avella et al., 2010; Arığ et al., 2013) This 

was not the case for the grouper (E. coioides) (via copepods, continuous feeding) 

(Sun et al., 2013). There was no information in the probiotic traceability in the rabbit 

fish (S. rivulatus) (via pellets) (El‐Dakar et al., 2007), turbot (S. maximus) (via rotifers 

and Artemia) (Gatesoupe, 1989; Garcia-de-la-Banda I. et al., 1992), Dentex (D. 

dentex) (via pellets) (Hidalgo et al., 2006).  
 

Table 6.2. Application of LAB and Bacillus sp. via live food to marine fish larviculture 

Probiotics Target species Food  Traceability References 

B. subtilis Rabbit fish (S. rivulatus)  pellets N/A El‐Dakar et al. (2007) 

Bacillus sp.; B. toyoi; L. 

plantarum, L. helveticus 

L. bulgaricus  

Turbot (S. maximus)  
rotifers, 

Artemia 
N/A 

Gatesoupe (1989); 

Garcia-de-la-Banda I. 

et al. (1992) 

L. delbrueckii, B. 

subtilis 
Seabass (D. labrax)  

rotifers, 

Artemia 
Yes 

Carnevali et al. (2006); 

Picchietti et al. (2009); 

Md et al. (2015) 

Lactobacillus sp., 

Bacillus sp. 
Sea bream (S. aurata)  rotifers Yes 

Suzer et al. (2008); 

Avella et al. (2010); 

Arığ et al. (2013)  

B. pumilus, B. clausii Grouper (E. coioides)  copepod No Sun et al. (2013) 

B. toyoi, B. cereus Dentex (D. dentex) pellets N/A Hidalgo et al. (2006) 

 

There were several studies on the presence of probiotics on the fish gut MC using new 

generation sequencing method (Illumina HiSeq high-throughput sequencing of 16S 

rRNA gene). In fact, LAB can be found in the gut MC of farmed species fed compound 

diet, e.g. rainbow trout (O. mykiss) (up to 4% of OTU abundance) (Ingerslev et al., 

2014b) and Atlantic salmon (S. salar) (Dehler et al., 2017), however, they cannot be 

detected in wild samples, e.g. common carp (C. carpio), silver carp (H. molitrix), 
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bighead carp (H. nobilis), mandarin fish (Siniperca chuatsi), grass carp (C. idellus) (Liu 

et al., 2016). In fact, the compound diet might contain probiotics and hence the 

probiotics can be traced from the fish gut content, however, this is not the case in the 

wild samples.  
 

The probiotic examination of gut microbiota during the larval stage (from 1 to 49 dph) 

using Illumina HiSeq high-throughput sequencing of 16S rRNA gene was first reported 

on rainbow trout (O. mykiss) (Ingerslev et al., 2014b), and was compared to the results 

from our study (Table 6.3).  It seems that the feeding of powdered P. acidilactici via 

compound diet resulted in low abundance of P. acidilactici OTUs in the gut MC of the 

rainbow trout; even when they are fed probiotics continuously. In our study, the 

putative LAB and Bacillus sp. were used for long-term enrichment via rotifers and were 

fed continuously to the larvae. They could be traced and were eventually predominant 

in the fish gut MC. In conclusion, it seems that the combination of continuous putative 

probiotic enrichment via live food to the larvae improve the traceability of probiotics 

(LAB and Bacillus sp.) from the fish gut MC. 
 

Table 6.3. Examination of probiotics in the gut MC of fish larvae using Illumina HiSeq high-throughput 

sequencing of 16S rRNA gene 

Components Rabbit fish Rainbow trout 

Probiotics 5 strains of LAB, 1 strain of B. subtilis P. acidilactici 

Type putative (growth on MRS broth) powder (Bactocell®) 

Probiotic OTUs 

abundance in gut MC 
up to 99% up to 7% 

Food use rotifers, Artemia compound diet 

Continuous supply of 

probiotics 
yes yes 

Sampling day 25 26 

Reference This study Ingerslev et al. (2014b) 

 

Lastly, the effect of the feeding protocol for the larval rearing from day 10 to day 25 on 

the larval survival was also studied (experiment 4, chapter 4). The co-feeding Artemia 

and rotifers gave the best larval survival (94%). The second best larval survival was 

observed in the larvae co-fed Artemia, rotifers and pellets, 84%). When Artemia was 

not used in the feeding scheme, the survival was lower than treatments with Artemia 

addition. It indicated that Artemia has a crucial role in rabbit fish larval rearing after day 

10, as it became the most important food of the larvae (Hara et al., 1986a). The 
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advantages of Artemia in the second stage of larval rearing of rabbit fish were earlier 

reported by Duray (1998b) and Ayson et al. (2014). The lowest survivals were 

obtained in the treatment without rotifers addition, 44%. These results showed that 

besides Artemia, rotifers were also important for the larval rearing at this stage. Within 

a fish larval batch, the smaller larvae would need rotifers as an alternative food until 

they can reach the size, that can catch Artemia. Duray (1998b) and Ayson et al. 

(2014) suggested that rotifers should be included in the feeding scheme up to day 20 

for siganids larval rearing. In terms of economic aspects, addition of compound diet 

could be considered in the larval rearing because the price per kg of Artemia is 20-fold 

higher than for compound diet. Therefore, operational cost could be reduced by 

compound diets inclusion into the feeding scheme. From this study, it is suggested 

that pellets (compound diets) can be co-fed with rotifers and Artemia for cost-

effectiveness.  

 

In summary, we recommend a feeding scheme for the larval rearing of rabbit fish from 

day 0 to 25 (Figure 6.1). Basically, from hatching to 240 hph, the very small rotifer P. 

similis must be used as primary food. The bigger rotifer B. rotundiformis should be 

introduced from day 6. At this point the biomass of P. similis should be reduced. From 

day 10 to day 25, rotifers are still important in the diets of the larvae. At this stage, as 

the larvae grow, bigger rotifer (e.g. L-type B. plicatilis) should be provided. All 3 rotifers 

species (P. similis, B. rotundiformis and B. plicatilis) should be enriched with probiotics 

prior to feeding to the larvae. Artemia nauplii (Vinh Chau, Vietnam) become effective 

when introduced from day 11. More importantly, there is no obligation to enrich the live 

food (rotifers and Artemia) with PUFAs prior to feeding to the larvae, as the rabbit fish 

themselves can synthesize PUFAs and stay healthy. Pellets (compound diets) can be 

co-fed with rotifers and Artemia for the cost-effectiveness. There are basic differences 

in the feeding scheme recommended for the larval rearing of the rabbit fish (small 

mouth size at opening, 80 μm) (this study), compared to those from the Asian seabass 

(big mouth size at opening – 220 μm) (Duray and Juario, 1988). With the much bigger 

mouth size at opening, the Asian seabass can immediately consume the L-type B. 

plicatilis as starter food. Also, Chlorella sp. was used following the green water 

technique. Hence, it is not necessary to use P. similis as starter food for the Asian 

seabass. The use of Artemia and compound diet is apparently similar in both fish 

species. The current protocol was applied on a larger production scale in 3 different 
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trials (in 3 different months) in 4,000 L culture tanks (containing 2,000 L of seawater at 

stocking, totally 40,000 larvae.tank-1). The production was stable at 5,000 – 6,000 

larvae.tank-1 at day 25 and between 15,000 – 20,000 larvae were produced in total for 

grow-out culture (to the farmers and others).  

 

 

 

 Figure 6.1. Feeding schemes for the larval rearing of fish with small mouth size – rabbit fish (S. 

guttatus) (this study) and big mouth size – Asian seabass (L. calcarifer) (Duray and Juario, 1988) 

Artemia (2.2 – 3.3 g DW.m3-1.day-1); pellets (1.1 – 2.2 g 
DW. m3-1.day-1) 

 

Time of rearing (day) 

0   1    2                  6                  10 11                 15                       20                      25                    

P. similis (probiotic enriched, 29 
ind.mL-1.day-1 before day 6, 14.5 

ind.mL-1.day-1 after day 6  

B. rotundiformis (probiotic enriched, 2.8 ind.mL-1.day-1) before day 10, B. 
plicatilis (probiotic enriched, 1.84 – 2.74 ind.mL-1.day-1) after day 10 

 

Feeding scheme for rabbit fish 

Compound diet 
 

Time of rearing (day) 

0   1                  5                      10                      15                     20                     25                    

B. plicatilis (10 – 15 ind.mL-1.day-1, reduce to 5 ind.mL-1.day-1
 after day 15) 

Artemia salina (1 ind.ml-1.day-1 before 
day 20, 2 ind.mL-1.day-1 after day 20) 

 

Feeding scheme for Asian seabass 

Chlorella sp. (1 – 2 x 105 cells.mL-1) 
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6.4. PUFA and gut MC composition of wild rabbit fish larvae from 3 

sampling locations over 3 years and from the hatchery 
 

In order to understand the larval nutritional requirements, the PUFA composition of 

the wild and hatchery larvae was determined in this study. The wild larvae were 

collected in 3 different locations over 3 years in the Central Vietnam where the 

migrating rabbit fish have been found abundantly. Results of this study showed that 

both wild and hatchery larvae contained a high proportion of ARA and DHA. The 

DHA/EPA ratios were also very high (3:1 – 8:1). In general, herbivores (rabbit fish) 

contain a higher proportion of ARA compared to omnivores and carnivores. This could 

be explained by the fact that ARA is abundant in macro and micro-algae, which is the 

main food of herbivores (Bell et al., 1997; Bessonart et al., 1999; Tocher et al., 2000; 

Koven et al., 2001; Bell and Sargent, 2003; Ogata et al., 2004; Osako et al., 2006; 

Suloma and Ogata, 2011; Monroig et al., 2012; Jiarpinijnun et al., 2017). In addition, 

siganid species contain the fatty acid desaturase and elongase enzymes in their body 

(Li et al., 2010; Morais et al., 2012). More importantly, siganids were reported to have 

Δ6/Δ5 Fads enzymatic activities essential for the biosynthesis of HUFAs using C18 

PUFAs as starting substrate, which is unique amongst marine teleost (Xie et al., 

2016). Although most marine teleost cannot synthesize HUFAs themselves, it is 

possible to influence the FA metabolism of fish larvae, e.g. sea bream (S. aurata) 

(Seiliez et al., 2003) and sea bass (D. labrax) (Vagner et al., 2007) by a long-term 

nutritional conditioning on low HUFA compound diet (3 months). It is suggested that if 

the larvae were fed the low HUFA diet for long time, the Δ6 desaturase transcription 

of sea bass larvae was positively modulated by the HUFA-deprived diet (Vagner et 

al., 2007). In our study, the rabbit fish were also fed with low HUFA content in the food 

(rotifers and Artemia) for 25 days (Table 6.4), and they are still healthy.  
 

Table 6.4. LC-PUFAs (% of composition) of feed used in the hatchery 

Fatty acids P. similis B. rotundiformis B. plicatilis Artemia  Compound diet 

ARA 2.33 4.41 5.35 2.74 0.63 

EPA 6.00 4.51 6.44 11.58 4.94 

DHA 0.00 0.00 0.00 0.09 10.40 

DHA/EPA 0.00 0.00 0.00 0.01 2.11 

 

It is evident to conclude that the HUFA supplementation in the diet of rabbit fish is 

apparently less essential compared other marine teleosts, e.g. sea bass and sea 
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bream. The understanding of HUFA/PUFA synthesis by rabbit fish under aquaculture 

feeding schemes is important to optimise the larval and broodstock nutritional 

schemes. 
 

Gut MC reflected the trophic level, life stage, host species, nutrition and 

environmental conditions (Sullam et al., 2012; Navarrete et al., 2013; Wong et al., 

2013; Giatsis et al., 2014; Ingerslev et al., 2014a; Ingerslev et al., 2014b; Li et al., 

2014; Givens et al., 2015; Liu et al., 2016; Zarkasi et al., 2016; Zha, 2017). It also 

plays important roles in the larval development, stress handling and disease 

resistance (O'Hara and Shanahan, 2006; Fjellheim et al., 2007; Dhanasiri et al., 

2011). Factors that influence the gut MC of fish are summarized in Table 6.5.  
 

Table 6.5. Factors influencing the gut MC of fish  

  

The gut MC of rabbit fish larvae was also investigated both in wild and hatchery 

reared larvae by the Illumina NGS analysis. The NMDS analysis, based on the Bray-

Curtis dissimilarity index showed that the gut MC of larvae between locations and 

hatchery, but not between years, was not only different in terms of diversity, but also 

different in terms of composition. The understanding the factors modulating the 

composition of the gut MC is important for development of fish larvae (van Kessel et 

al., 2011). In this study, the differences in abiotic factors between locations, e.g. 

changes in water temperature, current direction and food quality, might impact the gut 

MC of rabbit fish in the wild. The fish gut MC from southern locations showed 

significant higher diversity than those from the north. During the sampling, the water 

temperature was measured and there is a positive correlation between changes in 

Factors References 

Nutrition, dietary 

supplementation, probiotic 

addition 

Ferguson et al. (2010); Ringø et al. (2012); Geraylou et al. (2013); 

Navarrete et al. (2013); Wong et al. (2013); Ingerslev et al. (2014a); 

Ingerslev et al. (2014b); Lobo et al. (2014); Merrifield and Carnevali 

(2014); Dawood et al. (2016); Zarkasi et al. (2016); Zhang et al. 

(2017); Zhou et al. (2017) 

Environmental and 

ecological factors 

Benson et al. (2010); Wong and Rawls (2012); Sullam et al. (2012); 

Yan et al. (2016); Dehler et al. (2017);  

Host genetic factors & MC Pérez et al. (2010); Benson et al. (2010); Givens et al. (2015)  

Feeding habit, trophic level Li et al. (2014); Liu et al. (2016) 

Life stage & development Stephens et al. (2016); Yan et al. (2016); Li et al. (2017c) 

Physiological factors Wong et al. (2013); Dehler et al. (2017) 
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water temperature and the relative distances of the gut MC among locations in this 

case. As fish are ectotherms, their body temperature always fluctuates following their 

environment; we need to understand how environmental temperature affects the gut 

MC. This study suggests that small environmental temperature differences influence 

to the fish gut MC. However, a causal link remains to be established. Other 

environmental parameters such as water current and difference in local food quality, 

as drivers of MC composition should be further investigated.  
 

Next, the biotic factor (trophic level) also plays an important role in the genetic 

differences between the fish gut MC in the wild and hatchery. At the age of sampling 

(25 days old), while wild larvae are assumed to start consuming seaweed as food, the 

hatchery larvae are forced to feed on live food. This might impact the gut MC 

composition of the larvae, in term of cellulose-degrading bacteria.  Low trophic level 

species usually contain high proportions of cellulose-degrading bacteria such as 

species belonging to the orders Clostridiales and Fusobacteriales. These orders were 

also predominant in the wild samples, but not in the hatchery. In the wild, the larvae 

feed predominantly on seaweed and aquatic plants. The presence of cellulose 

degrading bacteria, such as Clostridiales and Fusobacteriales, in the gut, strongly 

indicates that these larvae have already herbivorous feeding habit. These bacteria 

can convert cellulose into absorbable short chain fatty acids (Mohamed et al., 2008; 

Thong-On et al., 2012; Engel and Moran, 2013; Douglas, 2015; Amato, 2016; Liu et 

al., 2016). These bacteria were not predominant in hatchery larvae, where the larvae 

were not fed any seaweed and aquatic plants in the diets. In addition, Saha et al. 

(2006); Zhou et al. (2009); Singh et al. (2010); Wu et al. (2012a); Wu et al. (2012b); 

Wu et al. (2013); Ye et al. (2014) and Hu et al. (2014) reported that different fish 

species or same fish species fed on different trophic levels and on dietary inputs had 

strong differences in the gut MC structure and diversity. Hence, the identification of 

gut MC does indicate that gut MC might be shaped by food in the wild. In the hatchery 

larvae, there was no proof to state that the gut MC of hatchery larvae was shaped 

through feeding, however, it might be shaped by the continuous addition of probiotics. 

In fact, the gut MC could be manipulated through the continuously input of bacteria 

strains (Burr et al., 2005; Tinh et al., 2008; Nayak, 2010). The effects of continuous 

feeding of probiotics on shaping the gut MC diversity and composition were confirmed 

in Siberian sturgeon (A. baerii) (Geraylou et al., 2013), gilthead sea bream (S. aurata 
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L.) (Cerezuela et al., 2013) and Atlantic salmon (S. salar L.) (Abid et al., 2013; Zarkasi 

et al., 2016). On the other hand, without the continuous input of probiotics, the gut MC 

manipulation of fish larvae was rather difficult, e.g. in Atlantic cod larvae (G. morhua 

L.) (Skjermo et al., 2015). It is suggested that continuous or repeated addition of 

probiotics to the fish larvae is necessary for the manipulation of gut MC of fish larvae 

(Skjermo et al., 2015).  
 

In conclusion, this is the first report where a specific protocol for the large-scale 

culture of P. similis was developed. In turn this allowed for the reliable production of 

rabbit fish fingerlings. The new protocol can be the basis for further experiments on 

the production of fingerlings at larger scale. Despite the differences in the body 

DHA/EPA ratio of rabbit fish larvae caught in the  wild and grown in the hatchery, the 

DHA/EPA ratio profile of hatchery larvae is still within the natural range. This suggests 

that rabbit fish larvae/fingerlings synthesise PUFA/HUFA themselves, an observation 

that is supported by recent publications and that merits further investigation. Hatchery 

larvae are growing well using a protocol that provides “continuous probiotic-enriched 

live food”. This practice together with the supply of live food shapes the MC in the gut 

of rabbit fish grown in the hatchery and makes the MC composition completely 

different from the MC present in wild larvae.  
 

6.5. Future perspectives 

 

As this is the first study pointing in the direction of reliable production of rabbit fish 

fingerlings, many production parameters can be investigated. The outcome of these 

studies could be used to further optimise rabbit fish larviculture. 

6.5.1. Live food production 

In relation to live food production it could be considered to replace live algae by dried 

algae (N. oculata) in P. similis culture (with probiotic addition) because the use of dried 

algae has many advantages: (i) lower price, (ii) longer shelf life, (iii) protozoan free and 

(iv) always available.  
 

The LAB and B. subtilis strains used within works are selected based on their in vitro 

characters (e.g. based on their ability to growth at 20 g.L-1 salinity) and the probiotic 

screening process has not been optimized exclusively for rabbit fish. Hence, further 
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screening and in vivo testing could be done to obtain the best probiotics for rabbit fish 

larviculture in the future.  
 

6.5.2. Larviculture protocol and nutritional requirement of rabbit fish 
 

This protocol should be the basis for further experiments on the larviculture of rabbit 

fish at commercial scale. Besides nutrition and probiotics, more parameters should be 

tested, e.g. like the impact of water management technique (recirculating systems and 

matured water), the influence of abiotic factors (e.g. continuous light, light intensity and 

light spectrum, but also oxygen supply systems to satisfy the oxygen requirement 

without causing too much turbulence, not to disturb the fragile larvae). Although not a 

topic of this research, broodstock nutrition and conditioning should be investigated, in 

order to improve the survival and performance of rabbit fish larvae. 
 

 

Both literature data and this thesis suggest that rabbit fish can produce sufficient 

PUFA/HUFA on their own. It could be importance to establish in detail which PUFA 

precursors (if at all) are required and need to be supplemented through the feed to 

optimize PUFA/HUFA production in rabbit fish.  
 

6.5.3. The gut MC investigation of rabbit fish larvae 
 

The gut MC of the hatchery larvae using the current protocol is dominated by the 

supplemented probiotics and is lacking microbial species that might be essential to 

feed on algae in ponds. It could be important to verify if the gut MC needs to be 

conditioned to facilitate the transfer from the environmental conditions in the hatchery 

to the environmental conditions in the pond.  Alternatively it could be that the dynamics 

of the shift in MC composition as larvae are being switched from carnivorous to 

herbivorous feeding behavior is so strong that MC conditioning is obsolete. Linked to 

this, the performance and growth of larvae from the hatchery should be verified while 

cultured in the grow-out system and compared with the performance of wild larvae. 
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