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Abstract
Current clinical diagnosis is typically based on a combination of approaches including clinical examination of the patient,
clinical experience, physiologic and/or genetic parameters, high-tech diagnostic medical imaging, and an extended list of
laboratory values mostly determined in biofluids such as blood and urine. One could consider this as precision medicine
v1.0. However, recent advances in technology and better understanding of molecular mechanisms underlying disease will
allow us to better characterize patients in the future. These improvements will enable us to distinguish patients who have
similar clinical presentations but different cellular and molecular responses. Treatments will be able to be chosen more
“precisely”, resulting in more appropriate therapy, precision medicine v2.0. In this review, we will reflect on the potential
added value of recent advances in technology and a better molecular understanding of necrosis and inflammation for
improving diagnosis and treatment of critically ill patients. We give a brief overview on the mutual interplay between
necrosis and inflammation, which are two crucial detrimental factors in organ and/or systemic dysfunction. One of the
challenges for the future will thus be the cellular and molecular profiling of necroinflammation in biofluids. The huge
amount of data generated by profiling biomolecules and single cells through, for example, different omic-approaches is
needed for data mining methods to allow patient-clustering and identify novel biomarkers. The real-time monitoring of
biomarkers will allow continuous (re)evaluation of treatment strategies using machine learning models. Ultimately, we may
be able to offer precision therapies specifically designed to target the molecular set-up of an individual patient, as has begun
to be done in cancer therapeutics.

Facts

● Necrosis and inflammation are two auto-amplifying
detrimental factors in critically ill patients.

● Necrotic cells release damage-associated molecular
patterns and chemo-/cytokines.

● Biomolecules released by necrotic cells and immune
cells are circulating in biofluids of critically ill patients.

● The digitalization of monitoring intensive care patients
allows data mining methods and machine learning
models to finetune patient stratification and treatment
strategies.

Open questions

● Which circulating biomolecules and/or immune cell
profiles have prognostic value for disease progression
and mortality in critically ill patients?

● Is there therapeutic value in targeting novel biomarkers
of necrosis or inflammation?

● How will we evolve to a patient-driven medical care,
which allows a mutual secure interaction between
biomedical (pre-)clinical research, health care services,
and patients?

Edited by F. Pentimalli

* Tom Vanden Berghe
Tom.VandenBerghe@irc.vib-ugent.be

1 VIB Center for Inflammation Research, Ghent, Belgium
2 Department of Biomedical Molecular Biology, Ghent University,

Ghent, Belgium
3 Division of Intensive Care, Department of Internal Medicine,

Ghent University Hospital, Faculty of Medicine and Health
Sciences, Ghent University, Ghent, Belgium

4 Research Foundation Flanders, Brussels, Belgium

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/188632625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1038/s41418-018-0196-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41418-018-0196-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41418-018-0196-2&domain=pdf
http://orcid.org/0000-0002-1633-0974
http://orcid.org/0000-0002-1633-0974
http://orcid.org/0000-0002-1633-0974
http://orcid.org/0000-0002-1633-0974
http://orcid.org/0000-0002-1633-0974
mailto:Tom.VandenBerghe@irc.vib-ugent.be


● How big will be the impact of data mining, artificial
intelligence, and machine learning on reshaping critical
care?

Introduction

Patients with similar symptoms can have different diseases,
and not all patients with the same disease respond equally to
treatment [1]. To date, tailoring of medical treatment to the
characteristics and needs of individual patients, or precision
medicine, is predominately based on genetics. For example,
the FDA recently approved four new cancer treatments and
one treatment for cystic fibrosis for use in patients with
specific genetic characteristics. The challenge of 21st cen-
tury is to extend precision medicine beyond genetic strati-
fication, by implementing novel molecular diagnostics and
intervention strategies.

Critical illness is characterized by dysfunction of several
organ systems, or multiple organ dysfunction syndrome
(MODS), because of an inciting event—for instance, major
trauma, surgery, or infection. This is explained by a dys-
regulated inflammatory stress response, which leads to a
negative spiral where the effects of one organ dysfunction
impacts on other organs. MODS often shows substantial
individual variation in response to treatment due to indivi-
dual genetic differences, co-morbidities, frailty, and
dynamic disease fluctuations. More specifically, increased
inflammation along immunosuppression and necrosis can
occur dynamically and concurrently, originally coined as
necroinflammation [2]. Therefore, dynamic monitoring of
novel biomarkers for necrosis or inflammation is needed to
stratify critically ill patients for treatment with new necrosis
and/or inflammation intervention strategies [3]. The joined
forces of different emerging fields such as real-time bio-
molecule diagnostics, single cell sequencing, the multi-
plicity of omics approaches, electronic health recording,
data mining, and machine learning could potentially reshape
profoundly the landscape of healthcare in the near future.
Here, we will briefly review the current state of art on each
of these topics related to necroinflammation.

Necrosis (re)defined

Rudolf Virchow (1821‒1902, Prussia), founder of the Cell
Theory (Omnis cellula e cellula) and cellular pathology,
referred to tissue injury as “parenchymatous inflammation”.
He postulated that tissue injury is caused by pathological
changes within the cells. In 1858, he introduced the notion
of cell death as the basis for pathology, with “necrobiosis”
being a physiological process of spontaneous wearing out

of living parts from the body and “necrosis” an accidental
process. Virchow’s necrobiosis‒necrosis dichotomy
resembles to some extent the current apoptosis‒necrosis
classification [4]. Together with cellular and molecular
insights into inflammation, came a shift into our under-
standing of the molecular interplay between cell death and
inflammation at the site of tissue injury. This emerging field
of research is crucial for understanding organismal home-
ostasis and how its processes contribute to a growing list of
inflammatory and degenerative pathologies. Cell death is
crucial as a mechanism for eliminating pathogens and reg-
ulating inflammation by exposing or releasing molecular
patterns, but excessive cell death during inflammation is
also one of the detrimental factors resulting in tissue
damage [5].

For decades, apoptosis was considered as the standard
cell death form during development, homeostasis, infection
and pathogenesis, whereas necrosis was mostly considered
as an “accidental” cell death in response to physico-
chemical insults. An increasing amount of genetic evidence,
as well as the discovery of chemical inhibitors of necrosis,
have radically changed this view, and revealed the
existence of multiple molecular pathways of necrosis [6].
The term “necrosis” comes from the Greek word “nekros”,
which means “dead body”. Cellular necrosis is defined
by rounding, swelling, cytoplasmic granulation, and
plasma membrane rupture with consequent leakage of
cellular contents into the extracellular space. Thus, the
destruction of vital cellular functions is essentially the
result of irreversible cell membrane damage. Multiple
modes of necrosis (cell death) share these morphological
hallmarks, and they are now examined for common or
distinct underlying signaling pathways. Attempts to define
and classify modes of necrosis and their underlying path-
ways have resulted in multiple neologisms, such as
necroptosis, parthanatos, oxytosis/ferroptosis, (n)etosis,
autoschizis, pyronecrosis, or pyroptosis emphasizing a
particular aspect [6].

In the human body, 1–5 million cells die every second.
It is imperative that their clearance occurs efficiently and
silently by phagocytes. This evolutionarily conserved pro-
cess, termed efferocytosis, is critical to the maintenance of
developmental and immune homeostasis [7]. As the goal
of efferocytosis is the quiet removal of cellular corpses
before the cells start to leak, one could theorize that part of
the program of apoptosis would be the packaging of dying
cells into immunologically inert pieces. However, in case
of insufficient or absent phagocytic capacity, apoptotic
cells, similar to necrotic cells, loose the integrity of the
plasma membrane, referred to as secondary necrosis.
Recently, the mechanism of action was found to be
dependent on CASP3-dependent cleavage of Gasdermin E
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[8, 9]. This important finding might challenge the generally
accepted dichotomy between non-leaky, immune-silent
apoptosis and leaky, immunogenic necrosis. This view
implies that apoptosis can be classified as a mode of
necrosis (Fig. 1), with the notion that this stage of secondary
necrosis is normally not reached in vivo owing to quick
phagocytosis by neighboring cells or phagocytes.

Necrosis-induced inflammatory response

For decades, the “self/non-self” model has been used as the
sole framework to differentiate between homeostatic (that
is, self and non-immunogenic) and pathogen-driven (that is,
non-self and immunogenic) forms of cell death. However,
the multitude of observations showing the propensity of
endogenous entities to initiate an immune response illustrate
the limitations of this model. Thus, the immune system has
evolved to recognize, respond to, and remember danger in
the form of damage-associated molecular patterns (DAMPs)
or microbe-associated molecular patterns (MAMPs), pre-
viously referred to as pathogen-associated molecular pat-
terns. This change in nomenclature was proposed because
symbiotic flora and other non-pathogenic environmental
microorganisms can also induce an immune-stimulatory
response (for instance, upon disruption of intestinal epi-
thelial barrier) [10], potentially boosting sepsis. For exam-
ple, although lipopolysaccharide (LPS)-induced shock is
generally considered a sterile shock model, antibiotics
pretreatment can protect indicating the presence of a

microbial component, probably caused by intestinal
ischemia and barrier loss [11]. Cells dying under
non-physiological conditions often reflects a pathological
process, which is potentially dangerous to the host. The
innate immune system developed mechanisms to detect this
potential danger [12]. The ensuing acute inflammatory
response rapidly delivers defenses that attempt to resolve
the injurious process and repair the damage. Similarly, cell
death will mobilize the adaptive immune system if immu-
nogenic antigens are present.

For a long time, cell death has been misleadingly clas-
sified in a dichotomic manner. Thus, although apoptosis
was considered to be a physiological, regulated, and non-
immunogenic (or even tolerogenic), necrosis was viewed as
a pathological, incontrollable and immunogenic variant of
cellular demise [10]. Now it has become evident that such
clear-cut differences do not exist. To date, research on
immunogenic cell death is mainly performed in the context
of pathogen defense and anticancer (immuno)therapy. From
this field of research, we know that cell disruption induced
by freeze–thaw is unable to activate dendritic cells in vitro
[13] and fails to elicit protective immunity upon inoculation
in syngeneic mice [14, 15]. This could imply that it is not
merely cellular leakage that triggers an inflammatory
response. The genetic programs of cell death can also
actively transform DAMPs, altering their immunogenicity
and dictating the effects of cell death on phagocytes and the
immune response. This has fed the idea of the existence of
at least one factor other than antigenicity that explains why
some, but not all, forms of cell death are immunogenic.

Fig. 1 Schematic simplification of different modes of parenchymal and
immune cell death. Organismal homeostasis is based on a balance
between cell renewal and death, which is mediated by apoptosis.
Apoptotic blebbing allows quick phagocytic uptake and recycling,
which prevents leakage of the cellular content and subsequent
inflammation (Arrow 1). In the absence or lack of sufficient phagocytic
capacity (Arrow 2), apoptotic caspases cleave Gasdermin E (GSDME)
resulting in cell rupture, referred to as secondary necrosis. Similarly,
inflammatory caspases cleave Gasdermin D (GSDMD) to induce
pyroptosis. Necroptosis is executed by the concerted action of RIPK3

kinase activity and the pseudokinase MLKL, whereas ferroptosis is
fulfilled by free radical-induced lipid peroxidation catalyzed by Fe(II).
Neutrophils typically die by netosis along expelling neutrophil extra-
cellular traps (NETs), which is dependent on autophagy processes and
PAD4-mediated citrullination. Different molecular mechanisms exe-
cute plasma membrane rupture, resulting in cellular leakage, defined as
necrosis. Release of damage-associated molecular patterns (DAMPs)
and inflammatory signaling by necrotic cells subsequently induce
inflammation
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Therefore, similar to a vaccination procedure, it is proposed
that immunogenicity depends on two key factors: anti-
genicity and adjuvanticity [10]. The presence of neo-
antigens explains why dying cells can initiate an adaptive
immune response provided that the cells also emit adjuvant
signals as a consequence of cellular stress and death [16]. It
is tempting to assume that (at least some) auto-immune
disorders may originate from a situation in which an
unwarranted wave of cell death in mistakenly perceived as
immunogenic.

In addition, dying cells can also release chemo- and/or
cytokines in a cell autonomous way through for example
activation of nuclear factor -κB (NF-κB) that modulate the
inflammatory response [17, 18]. An accumulating body of
evidence shows also the implication of interleukin-1 (IL-1)
family cytokines in initiating an inflammatory response to
necrotic cells or cytotoxic stimuli [19]. Note that in the
context of immunogenic anti-cancer therapies, the con-
tribution of NF-κB-mediated inflammatory signaling is still
a matter of debate [15, 20]. Conclusively, both processes,
viz. DAMPs-induced immune responses and direct inflam-
matory signaling by necrotic cells, boost necroinflamma-
tion, and detrimentally contribute to disease progression.
Therefore, identification of the key drivers of necrosis-
initiated inflammation is likely to lead to major break-
throughs in the treatment of MODS.

Inflammation-induced necrosis

Although the immune system has evolved to protect the
host against infection, it is clear that responses can be
generated under absolutely sterile conditions. This is pain-
fully evident to anyone who has experienced blunt trauma
(e.g., banging a thumb with a hammer) after which the
affected site rapidly becomes inflamed. Trauma, bleeding,
cell injury, and irritant particles are among the many kinds
of sterile stimuli that can trigger various kinds of immune
responses, including both innate and adaptive ones [21].
Thus, inflammation essentially occurs in response to
infections as well as tissue injury, which results in per-
meabilizing local blood vessels to permit rapid ingress of
neutrophils, monocytes, and blood-born molecules (such as
complement, antibody, platelets, clotting factors, and acute
phase reactants) in an attempt to resolve the dangerous
situation. Cytokines and chemokines are key mediators of
this inflammatory response, which causes quite some dis-
turbance to tissue [19]. For example, infiltrating neutrophils
contain a battery of destructive proteases that after degra-
nulation are an important source of reactive oxygen species
(ROS) and can expel web-like chromatin structures known
as neutrophil extracellular traps (NETs) that neutralize and
kill pathogens as a consequence of netosis [22]. In addition,

high concentrations of ROS are injurious, because they
oxidize protein, lipids, and damage the DNA. The resulting
undesirable collateral tissue damage leads to further cell
death and inflammation.

An auto-amplifying loop between necrosis
and inflammation drives MODS

Any disease that results in tissue injury increases the risk to
develop MODS. Causal etiologies include infections, burns,
severe trauma, and various other noninfectious inflamma-
tory conditions. It is considered as one of the major causes
of death in intensive care units (ICUs). The incidence of
MODS in European ICU patients is increasing over the last
decade from 39.7% in 2002 (SOAP study) to 51% in 2012
(ICON study) [23]. There are several proposed mechanisms
to explain the pathophysiology of MODS [24]. A dysre-
gulated immune response, or immune paralysis, in which
the homeostasis between pro-inflammatory and anti-
inflammatory reaction is lost is thought to be key in the
development of MODS. This chronic failure propagates
organ damage. The gut is thought to play an important role
in MODS owing to surplus of inflammatory mediators,
intestinal walls become hyperpermeable, which in turn,
propagates the inflammatory response. Acute kidney injury
(AKI) occurs in approximately half of ICU patients and is
also a common complication in MODS associated with poor
clinical outcomes [25, 26]. It is a syndrome that in the
majority of ICU patients occurs as a consequence of disease
(e.g., sepsis, trauma or shock), which evidently explains
part of the observed morbidity and mortality. However,
clinical data also show that AKI is not a mere innocent
bystander, but also plays an important role in the prognosis
of patients, as increasing severity of AKI also contributes to
worse outcomes [26, 27]. To date, steroids are still one of
the few treatment options for this dysregulated immune
response in critically ill patients with MODS. It is tempting
to speculate that the beneficial effects of steroid adminis-
tration in critical care is likely due to its multitude of
downstream targets in relation to necroinflammation [28].
However, large clinical studies on exogenous steroid
administration are showing conflicting results [29], with
some studies showing a mortality benefit [30, 31], whereas
other could not demonstrate a beneficial effect [32, 33].

Recent data from basic and clinical research have begun
to elucidate complex organ interactions in AKI between
kidney and distant organs, including heart, lung, spleen,
brain, liver, and gut [34]. The hypothesis of organ cross-talk
and distant organ injury, often referred to as remote organ
injury, has emerged over the last decade and may explain
the reason for the potential negative impact of AKI on
outcome [35]. Animal models clearly indicate that AKI
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induces distant organ dysfunction through different identi-
fied pathways, including inflammatory cascades, necrosis,
induction of remote oxidative stress, and differential
molecular expression [36]. Basically, the communication
between different organs can only occur through transpor-
tation of biomolecules and immune cells in biofluids. This
might also be a key detrimental factor in transplantation-
induced distant organ injury [37]. This concept was, for
example, illustrated in a rat allogeneic renal transplantation
model, in which ischemic allografts (stored 24 h before
transplantation), but not fresh immediately transplanted
allografts, led to remote lung injury [38]. Pharmacological
targeting of different modes of necrosis using a combined
treatment with cyclosporine A, 3-aminobenzamide and
necrostatin-1 attenuated lung injury. These experimental
data suggest that DAMPs released from necrotic renal cells,
mostly tubular cells, follow the circulation into the lung
capillaries, where they harm the pulmonary tissue by two
interconnected mechanisms: necrosis and inflammation
[39], referred to as kidney–lung cross-talk in the critically
ill patients [40]. Recently, it was found that this process
is also enhanced by neutrophil extracellular traps and
circulating histones [41]. A remote lung-injured tran-
scriptome analysis also identified ischemia-specific changes
that were distinguishable from those produced by uremia
and involved several pro-inflammatory and proapoptotic
pathways [42]. In summary, all these findings further
strengthen the potential role of necroinflammation in remote
organ damage.

A direct detrimental role for necrosis in MODS is also
extensively shown using mouse experimental models
reflecting systemic inflammatory response syndrome
(SIRS), sepsis, and AKI. RIPK3-deficient, MLKL-deficient,
and RIPK1 kinase death knockin mice are, to a different
extent, protected against tumor necrosis factor (TNF)-
induced SIRS [43–45]. A combined loss of CASP8
and RIPK3 provides a stronger protection against SIRS,
but also kidney ischemia–reperfusion injury compared with
loss of RIPK3 alone [43]. In kidney ischemia–reperfusion
injury, different modes of necrosis act in a mutual way
[43, 46], and ferroptosis of tubular kidney epithelium seems
to be a dominant mode of cell death [47]. Although RIPK1
kinase inhibitors (Necrostatins) protects against TNF-
induced SIRS [44, 48, 49], lipophilic radical traps such
as ferrostatins or liproxstatins protect against AKI [47, 50].
Note that labile iron is a known risk factor to develop
AKI in clinically relevant settings such as cardiac surgery-
associated AKI, rhabdomyolysis-induced AKI and contrast-
associated AKI [51, 52]. Iron chelation by desferoxamin
has become a standard control agent for AKI when
induced ex vivo in settings such as isolated renal
tubules or in vivo in models of acute renal failure [53].
These data suggest that blocking cell death pathways

could have therapeutic potential in context of SIRS
and AKI.

There are also experimental data suggesting the ther-
apeutic potential of targeting inflammation in sepsis. Mice
deficient in the pathogen recognition receptors Toll-like
receptor 4 or intracellular NOD-like receptor family mem-
ber NLRP3 are protected against LPS-induced lethal shock
[54–56]. Both receptors are required to induce the produc-
tion of the inflammatory cytokines IL-1β and IL-18, which
depends on the proteolytic activity of CASP1. Blocking
pyroptosis by depleting mice from CASP11 also protects
against LPS-induced shock [57]. A phenotypic in vivo
screen revealed the superior therapeutic potential of neu-
tralizing simultaneously IL-1 and IL-18 in sepsis rather than
inhibiting the upstream inflammatory caspases CASP1 or
-11 by using different experimental mouse models for septic
shock [11]. In line with these data obtained in mice, patients
with septic shock who did not survive displayed higher IL-
18 levels than patients who survived [58, 59]. Also, in
critically ill AKI patients, higher IL-18 levels were asso-
ciated with non-recovery at day 60 and non-survival [60].
On the other hand, neutralization of IL-1 signaling using
Kineret® (Anakinra; ILRa) in clinical trials resulted only in
a marginal trend for increased survival [61], whereas IL-18
neutralization has not been evaluated in clinical studies so
far [62]. These data obtained in septic mice and patients
clearly underscore the need for patient stratification owing
to the heterogeneity in the pathology of sepsis [63]. In
addition to inflammasome-mediated pyroptosis and
inflammatory signaling, evidence is increasing showing a
potential detrimental role for NETs and/or netosis in MODS
and AKI (reviewed by [22]).

In summary, the experimental and preclinical support is
increasing that indicates four not-exclusive key phenomena
in the development of MODS: infection, inflammation,
parenchymal cell necrosis, and immune cell necrosis
(Fig. 2). These major processes result in the circulation of
MAMPs, chemo- and cytokines, activated immune cells,
and DAMPs, which in an auto-amplifying loop potentially
cause distant organ injury. Monitoring these biomolecules
and immune cells in biofluids will be crucial to stratify
patients and identify novel potential biomarkers with pre-
dictive value. Ultimately, combined intervention strategies
controlling infection, inflammation, and necrosis might be
the key to effective treatment of MODS.

Profiling necroinflammation in biofluids of
critically ill ICU patients

In the ICU, the complexity and ambiguity of critical illness
syndromes have been identified as fundamental justifica-
tions for the adoption of a precision approach to research
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and practice [64, 65]. This leads to considerable hetero-
geneity among patients, and conditions in which a “one size
fits all” approach to therapy can lead to widely divergent
results. Today a clinical diagnosis is typically based on a
combination of elements including anamnesis, physiologic
and/or genetic parameters, high-tech diagnostic medical
imaging, and an extended list of laboratory values deter-
mined in biofluids such as blood and urine (Fig. 3). One
could consider this as precision medicine v1.0. Experi-
mental rodent models mimicking MODS unravel a still
growing list of detrimental circulating biomolecules and
immune cell profiles [63], which could be potentially novel
biomarkers for stratification of critically ill patients. To pave
the way for precision medicine v2.0, a joint venture
between researchers and clinician will be crucial to daily
monitor a panel of biomarkers in biofluids, to pinpoint
correlations with survival and finally link an appropriate
intervention strategy to the molecular diagnostic profiling.

At present, AKI biomarkers have been successfully used to
identify patients who may benefit from a so-called AKI
bundle of care [66–68].

There are two problems at the basis of inconsistent
translatability in critical care [69]. One problem is lack
of reproducibility owing to false positive biomarker
selection or no robust statistical models. The other, more
importantly, is a lack of generalizability in moving from
a narrow well-defined study population into broader
applications in critical care. One way to improve trials
is to focus on not just size but also heterogeneity.
Dynamic disease fluctuations, for example, drive this
heterogeneity, which might also partially explain the still
disputed beneficial role of corticosteroids in critical care
[70]. Therefore, daily monitoring of potentially novel bio-
markers in biofluids is increasingly done to allow better
patient stratification [71, 72]. Patients with similar clinical
presentations typically have different cellular and molecular

Fig. 2 Hypothetical model
representing major detrimental
factors in multiple organ
dysfunction syndrome (MODS).
MODS mostly develops by the
concerted action of four factors:
(1) infection, (2) inflammation,
(3) parenchymal necrosis
(apoptosis, necroptosis, and
ferroptosis), and (4) immune cell
necrosis (pyroptosis and
netosis). These features are
responsible for the release of
biomolecules (MAMPs,
DAMPs, chemokines, and
cytokines) in biofluids and the
activation of immune cells,
which both are often
biohazardous worsening tissue
damage. Monitoring this in
biofluids will be crucial to
stratify patients and identify
novel potential biomarkers with
predictive value. Ultimately,
combined intervention strategies
controlling infection,
inflammation, and necrosis
might be the key to effective
treatment of MODS. MAMPs,
microbe-associated molecular
patterns; DAMPs, damage-
associated molecular patterns
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responses due to individual genetic differences and co-
morbidities. To deal with this form of heterogeneity,
an expanded list of novel biomarkers with predictive
value is needed to allow determining subtypes of clinically
similar patients. The list of potentially clinical relevant
biomarkers is growing for sepsis [73] (Table 1) as well
as AKI [74] (Table 2). Circulating DNA released form
dying cells [75] or microorganisms [76], coined cell-free

DNA (cf-DNA), is also gaining interest as a potential bio-
marker in MODS [3]. However, more work must be done
in order to determine the origin of cf-DNA namely
parenchymal cell necrosis versus immune cell necrosis
[77, 78]. The translatability of these potentially novel bio-
markers will critically depend on new technologies such
as real-time immunodiagnostics to allow instant decision
making [72].

Fig. 3 Schematic roadmap toward precision medicine v2.0 in critical
care. Critical care mostly implies life-threatening situations involving
systemic infection, inflammation, and organ dysfunction. Biofluids are
an easily accessible source of liquid biopsies that can be used to
monitor the evolution of the patient’s critical illness. To date, a clinical
diagnosis is typically based on a combination of approaches including
physiologic and/or genetic parameters, high-tech diagnostic medical
imaging and an extended list of laboratory values determined in bio-
fluids. Blood, urine, saliva, lymphatics, semen, mucus and cerebral
spinal fluid (CSF), pleural, peritoneal, and bone marrow fluid are

easily accessible biofluids. The cellular and molecular profiling of
necrosis and inflammation in biofluids using cutting-edge technologies
such as real-time immunodiagnostics, next-generation sequencing, and
mass spectrometry will pave the way for precision medicine v2.0 in
critical care. This is needed for data-mining approaches to allow
patient-clustering, identify novel biomarkers, and develop novel
intervention strategies controlling necrosis and inflammation. The real-
time monitoring of biomarkers will allow continued (re)evaluation of
treatment strategies using machine-learning models
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In addition to monitoring biomolecules as biomarkers,
immune cell profiling has also resulted in potentially
interesting biomarkers that need further validation. For
example, prolonged lymphopenia [79, 80], CD64 expres-
sion on neutrophils [81, 82], Tregs increase [83, 84], pro-
longed depletion of dendritic cells [85], increased PD-1/PD-
L1 expression on monocytes and neutrophils [86, 87], and
increased BTLA expression on innate immune cell popu-
lation [88] all have been shown to associate with disease
severity and mortality. To date, unbiased -omics approaches
to profile proteome [89], lipidome [90], glycome [91],
metabolome [92], exome [93], and (epi-)genome [94, 95]
are also extending precision oncology and start to be
explored in ICU critical care in an attempt to create new
predictive biomarkers [96] (Fig. 3). Profiling noncoding
RNA might also have predictive value for disease severity
and mortality. For example, long non-coding RNAs were
investigated in sepsis [97, 98] and kidney injury [99], as

well as miRNA profiles in sepsis [100, 101] and kidney
injury [102]. Cutting-edge omics approaches such as oxi-
dative proteomics [103], oxidative lipidomics [104], gly-
coprotomics [105], cellular glycomics [106], and single cell
sequencing evolve quickly toward clinical diagnostic use.
For example, single cell RNA sequencing [107], single cell
genomics [108, 109], single cell epigenomics [110], single
cell proteomics [111], single cell lipidomics [112], and
single cell metabolomics [113] will undoubtedly be essen-
tial for profiling the differential immune cell responses in
critically ill patients, and create prognostic value. Note that
proteomics [114] and next-generation sequencing [76, 115]
can also be used to identify the origin of MAMPs to
diagnose the type of infection. It is however questionable if
the current health economic evidence is high enough to
support the more widespread use of whole-exome or -gen-
ome sequencing in clinical practice [116]. On the other
hand, targeted sequencing or mass spectrometric analysis of

Table 1 Potential biomarkers
with predictive value for sepsis
in critical illness

Target Biofluid Disease Association Ref.

HMGB1 Plasma Severe blunt chest
trauma

Risk of sepsis [134]

Plasma Septic shock Non-survival Higher APACHE II
scores Increased pro-inflammatory
cytokines

[135]

Plasma ARDS ICU mortality [136]

Cleaved
cytokeratine 18

Plasma Severe sepsis Sepsis severity Mortality [137]

Plasma Liver Transplantation One-year non-survival [138]

CASP3 Serum Severe sepsis Early mortality [139]

sTREM Blood Septic shock Non-survival [140,
141]

DcR3 Serum Sepsis Biomarker sepsis [142]

Procalcitonin Serum Critically ill Adjunctive diagnostic marker to
differentiate sepsis from SIRS

[143,
144]

IL-18 Plasma ARDS Morbidity and mortality [145]

Serum Sepsis Sepsis [146,
147]

IL-18BP Serum Sepsis Sepsis [148]

Cytokine panel Plasma Sepsis Mortality [149]

Ang1 Plasma Severe sepsis Low levels predict poor outcome and
high mortality risk

[150]

Ang2 Plasma Severe sepsis Organ dysfunction and injury [150,
151]

Endocan Plasma Sepsis Severity of illness and mortality [152,
153]

Cell-free DNA Plasma Critically ill Sepsis and mortality [154,
155]

Critically ill No predictive value [156]

Magnesium Serum Critically ill Mortality [157]

CHI3L1 (YKL40) Serum Sepsis Sepsis [158]

Ang Angiopoietins, ARDS acute respiratory distress syndrome, CHI3L1 chitinase 3 like 1, DcR3 soluble
decoy receptor 3, SLE systemic lupus erythematosus, sTREM-1 soluble triggering receptor expressed on
myeloid cells 1
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robust biomarkers will probably become standard medical
analysis techniques in clinical laboratory in the future. The
justification for this expensive equipment will likely depend
on the number of robust biomarkers, and their added value,
e.g., the survival of the patient.

How to deal with the data revolution
in critical care?

“Big data in health” is defined by high volume, high
diversity biological, clinical, environmental, and lifestyle
information collected from single individuals to large
cohorts, in relation to their health and wellness status, at one
or several time points [117]. Big data come from a variety
of sources, such as clinical trials, electronic health records,

patient registries and databases, multidimensional data from
genomic, epigenomic, transcriptomic, proteomic, metabo-
lomic, and microbiomic measurements, and medical ima-
ging. More recently, data are being integrated from social
media, socioeconomic or behavioral indicators, occupa-
tional information, mobile applications, or environmental
monitoring [118]. A major challenge for preclinical and
clinical research is to obtain and achieve access to sufficient
high quality, informative data. We need to progress from
incomprehensible networks or ranking tables to a user-
friendly and intuitive format.

Another major issue is the transferability of medical data
between countries. Ownership of data by patients could
overcome these obstacles. Presently, the patients do not
have control over the access privileges to their medical
records and remain unaware of the true value of the data

Table 2 Potential biomarkers
with predictive value for acute
kidney injury in critical illness

Target Biofluid Disease Association Ref.

AGT Urine ADHF AKI [159]

BPIFA2 Urine, blood Critically ill Early diagnosis of acute kidney injury [160]

Calprotectin Urine Critically ill Distinction between prerenal and
intrinsic acute kidney injury

[161,
162]

CHI3L1 (YKL40) Urine Critically ill Early diagnosis of acute kidney injury [163,
164]

Cystatin C Urine,
plasma

Critically ill Early diagnosis of acute kidney injury [165,
166]

HSP72 Urine Critically ill Early diagnosis of acute kidney injury [167]

IGFBP7 Urine Critically ill Early diagnosis of acute kidney injury [168–
170]

IL-18 Urine Critically ill Early diagnosis of acute kidney injury [171]

Urine AKI Mortality [171]

Urine Cirrhosis Diagnosis of acute tubular necrosis [172]

Urine HIV Proximal tubular dysfunction [173]

KIM-1 Urine Critically ill Early diagnosis of acute kidney injury [174]

L‑FABP Urine,
plasma

AKI Mortality [166,
175]

MCP-1 Urine Cardiac surgery AKI [176]

microRNA Urine Cardiac surgery Severe AKI and poor postoperative
outcome

[177]

Urine Critically ill AKI predisposition [178]

NAG Urine Critically ill Tubular damage [179]

Netrin-1 Urine Critically ill Early diagnosis of acute kidney injury [166,
180]

NGAL Urine,
plasma

Critically ill Early diagnosis of acute kidney injury [181,
182]

SBP-1 Urine Critically ill Early diagnosis of acute kidney injury [183]

TIMP-2 Urine Critically ill Early diagnosis of acute kidney injury [168–
170]

AGT angiotensinogen, ADHF acute decompensated heart failure, AKI acute kidney injury, BPIFA2 BPI fold-
containing family A member 2, CHI3L1 chitinase 3 like 1, HIV human immunodeficiency virus, HSP heat
shock protein, IGFBP7 insulin-like growth factor binding protein 7, KIM-1 kidney injury molecule-1, L-
FABP liver‑type fatty acid‑binding protein, MCP-1 monocyte chemotactic protein 1, NAG N‑ace-
tyl‑β‑D‑glucosaminidase; NGAL neutrophil gelatinase-associated lipocalin, SBP-1 selenium-binding protein
1, TIMP-2 tissue inhibitor of metalloproteinase 2
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they have. The USA have taken steps toward a “patient-
driven economy” [119]. In such a scenario, the patient owns
his/her data. By integrating the use of mobile devices, this
could create a mutually interactive platform between bio-
medical (pre-)clinical research, health care services and
patients through a world-standard public health record,
although many challenges remain in achieving this [120].
For example, there is a need to have a much higher level of
security than is possible today. One suggestion was to
explore blockchain technology, which could be described as
a distributed database that is used to maintain a con-
tinuously growing list of cryptographic records/blocks in a
peer-to-peer network of users [121]. Originally used as the
technology underlying “Bitcoin” to assure secure transac-
tions, it might also be very suitable for application in
healthcare. Essentially, projects fail more often because of
the underappreciation of the complexities of ethical, legal,
and social factors than for technological reasons. Data
continue to increase at an exponential rate and the need for
cross-border exchange of biomedical and healthcare data,
cloud-storage, and cloud-computing is inevitable [122,
123]. Until many issues of data safety and security are
solved, local solutions will be favored [124, 125].

Data mining and machine learning models
key to precision medicine 2.0?

A wealth of data are being collected in ICUs across the
world, not only by standard clinical data management sys-
tems but also by clinical trials and researcher-driven clinical
studies. These data need to be filtered from artifacts and
standardized to a uniform readable format to allow clinical
data mining approaches [126, 127]. Data mining is the
process of pattern discovery and extraction where huge
amount of data is involved. In the context of intensive care,
this approach could be the key to identifying novel bio-
markers and allow patient stratification (Fig. 3). One of the
biggest benefits of the data-driven approach to biomarker
discovery is the possibility of discovering novel patho-
biology in the heterogeneity of critical illness compared to
hypothesis-driven studies of familiar biomolecules. For
example, data mining techniques are currently employed to
try to predict mortality [128], one of the key issues in
intensive care. Better patient stratification is also needed to
improve the success rates of clinical trials, and critically
depends on data mining methods including generalization,
characterization, classification, clustering, association, evo-
lution, pattern matching, data visualization, and meta-rule
guided mining [129]. Dimensionality reduction and visua-
lization techniques are exciting areas of research, which
have the potential of redefining the single input monitoring
approach currently applied in clinical practice. Looking

even further forward, there is a need for integrative and
interactive machine learning solutions, with teams of
machine learning researchers and clinicians—who are
directly involved in patient care and data acquisition—
working in tandem to generate actionable insight and value
from the increasingly large and complex critical care data
[127]. Connecting daily monitoring of an increasing set of
circulating biomolecules and immune cells in critically ill
patients to data mining will feed machine-learning approa-
ches. This form of artificial intelligence allows in a feedback
loop continued reevaluation of novel patient stratification
strategies and novel biomarkers/therapies targeting necrosis
and inflammation (Fig. 3). In clinical practice, this approach
will: (1) improve outcomes for individual patients through
personalization of predictions, (2) allow earlier diagnosis
and detection of adverse drug reactions, (3) provide better
treatments and decision support for clinicians in cyclic
processes, and (4) assist in understanding the progression of
rare diseases. The multidimensional signatures will hope-
fully deliver a much higher predictive power than the single
biomarkers used today. These improvements should even-
tually lead to lowered costs for the healthcare system.

Conclusion and perspectives

Early advances in precision medicine have been illustrated
in oncology, where both diagnosis and treatment are
increasingly based on genomic features. Better success rates
from the treatment of HER2-positive breast cancer [130]
and EGFR-positive lung cancer [131] highlight the potential
of precision medicine to lead to widespread changes in
clinical practice. Growing interest is also reflected in new
large-scale precision health projects, such as the NIH-
sponsored Precision Medicine Initiative in the United States
and the NHS-sponsored 100,000 Genomes project in Great
Britain, as well as by citizen support for such ventures
[132]. The promise of precision medicine is to have the
right treatment for the right patient at the right time to
maximize effectiveness [133]. In critical care, it will be
important to follow a step-by-step procedure. For instance,
try to answer urgent clinical questions first (such as best
treatment option upon diagnosis of the type of infection),
and then pose new ones that may not have been previously
answerable (such as whether there are molecular subtypes in
MODS, sepsis, or AKI). As omics and big data technologies
proliferate, so too will studies utilizing them as biomarkers
in critical illness (studying the genome, epigenome, tran-
scriptome, proteome, metabolome, lipidome, microbiome,
…). In all cases, we must remember the extreme hetero-
geneity of critical illness, and strive for generalizable
disease-defining diagnostics and robust biomarkers that can
help the entire spectrum of critical care research and
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delivery [69]. Ultimately, combined intervention strategies
controlling infection, inflammation, and necrosis might be
the key to effective treatment of MODS. It is not a matter if,
but how quickly the landscape of intensive care will pro-
foundly reshape. This will undoubtedly occur hand in hand
along reshaping global health care. Although many chal-
lenges remain in achieving this, the evolution toward a
patient-driven medical care, in which cloud-storage/com-
puting and/or peer-to-peer technologies such as blockchain
are needed, is probably inevitable. The role of mobile
devices in this will definitely gain importance and could
become a central player in providing a mutually interactive
platform between biomedical (pre-)clinical research, health
care services and patients.
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