Rothamsted Repository Download

J - Computer programs

Lu, B., Harris, P., Charlton, M., Brunsdon, C, Nakaya, T. and Gollini, I. 2019. GWmodel.

The publisher's version can be accessed at:

- https://cran.r-project.org/web/packages/GWmodel/GWmodel.pdf

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8w9yy.
© Rothamsted Research. Licensed under the Creative Commons CC BY.

Package 'GWmodel’

February 15, 2019

Type Package

Version 2.0-8
Date 2019-02-13
Title Geographically-Weighted Models
Depends R (>= 3.0.0),maptools ($>=0.5-2$), robustbase,sp,Rcpp, spdep
Imports methods, grDevices, stats,graphics,spacetime
LinkingTo Rcpp, RcppArmadillo
Suggests mvoutlier, RColorBrewer, gstat
Description In GWmodel, we introduce techniques from a particular branch of spatial statistics,termed geographically-weighted (GW) models. GW models suit situations when data are not described well by some global model, but where there are spatial regions where a suitably localised calibration provides a better description. GWmodel includes functions to calibrate: GW summary statistics, GW principal components analysis, GW discriminant analysis and various forms of GW regression; some of which are provided in basic and robust (outlier resistant) forms.
Author Binbin Lu[aut], Paul Harris[aut], Martin Charlton[aut], Chris Brunsdon[aut], Tomoki Nakaya[aut], Isabella Gollini[ctb]
Maintainer Binbin Lu <binbinluewhu.edu.cn>
License GPL (>= 2)
Repository CRAN
URL http://gwr.nuim.ie/
NeedsCompilation yes
Date/Publication 2019-02-15 10:10:08 UTC

R topics documented:

GWmodel-package 3
bw.ggwr 4
bw.gtwr 5
bw.gwda 6
bw.gwpca 8
bw.gwr 9
bw.gwr.lcr 10
bw.gwss.average 12
DubVoter 13
EWHP 14
EWOutline 15
Georgia 15
GeorgiaCounties 16
ggwr.basic 17
ggwr.cv 19
ggwr.cv.contrib 20
gtwr 21
gw.dist 23
gw.pcplot 24
gw.weight 25
gwda 26
gwpca 28
gwpca.check.components 31
gwpea.cv 32
gwpca.cv.contrib 33
gwpea.glyph.plot 34
gwpca.montecarlo. 1 35
gwpca.montecarlo. 2 37
gwr.basic 38
gwr.bootstrap 41
gwr.collin.diagno 44
gwr.cv 46
gwr.cv.contrib 47
gwr.hetero 48
gwr.lcr 49
gwr.lcr.cv 51
gwr.lcr.cv.contrib 53
gwr.mink.approach 54
gwr.mink.matrixview 56
gwr.mink.pval 56
gwr.mixed 58
gwr.model.selection 60
gwr.model.sort 62
gwr.model.view 63
gwr.montecarlo 64
gwr.multiscale 65
gwr.predict 69
gwr.robust 71
gwr.t.adjust 73
gwr.write 74
gwss 74
gwss.montecarlo 77
LondonBorough 78
LondonHP 79
USelect 80
Index 82
GWmodel-package Geographically-Weighted Models

Description

In GWmodel, we introduce techniques from a particular branch of spatial statistics, termed geographicallyweighted (GW) models. GW models suit situations when data are not described well by some global model, but where there are spatial regions where a suitably localised calibration provides a better description. GWmodel includes functions to calibrate: GW summary statistics, GW principal components analysis, GW discriminant analysis and various forms of GW regression; some of which are provided in basic and robust (outlier resistant) forms.

Details

Package:	GWmodel
Type:	Package
Version:	$2.0-5$
Date:	$2017-12-20$
License:	GPL (>=2)
LazyLoad:	yes

Note
Acknowledgements: We gratefully acknowledge support from Science Foundation Ireland under the National Development Plan through the award of a Strategic Research Centre grant 07-SRCI1168.

Beta versions can always be found at https://github.com/lbb220/GWmodel, which includes all the newly developed functions for GW models.

For latest tutorials on using GWmodel please go to: https://rpubs.com/gwmodel

Author(s)

Binbin Lu, Paul Harris, Martin Charlton, Chris Brunsdon, Tomoki Nakaya, Isabella Gollini
Maintainer: Binbin Lu binbinlu@whu.edu.cn

References

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software, 63(17):1-50, http://www.jstatsoft.org/v63/i17/
Lu B, Harris P, Charlton M, Brunsdon C (2014) The GWmodel R Package: further topics for exploring Spatial Heterogeneity using Geographically Weighted Models. Geo-spatial Information Science 17(2): 85-101, http://www.tandfonline.com/doi/abs/10.1080/10095020.2014.917453
bw.ggwr
Bandwidth selection for generalised geographically weighted regression (GWR)

Description

A function for automatic bandwidth selection to calibrate a generalised GWR model

Usage

bw.ggwr(formula, data, family ="poisson", approach="CV", kernel="bisquare", adaptive=FALSE, $\mathrm{p}=2$, theta=0, longlat=F,dMat)

Arguments

formula	Regression model formula of a formula object
data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
family	a description of the error distribution and link function to be used in the model, which can be specified by "poisson" or "binomial"
approach	specified by CV for cross-validation approach or by AIC corrected (AICc) approach
kernel	function chosen as follows:
	gaussian: wgt $=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
	exponential: wgt $=\exp (-\mathrm{vdist} / \mathrm{bw})$;
	bisquare: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
	tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
	boxcar: wgt=1 if dist < bw, wgt=0 otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) distance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous kernel function, a bandwidth can be specified either as a fixed distance or as a 'fixed quantity that reflects local sample size' (i.e. still an 'adaptive' distance but the actual local sample size will be the sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive bandwidths ensure sufficient (and constant) local information for each local calibration. This note is applicable to all GW models

Author(s)

Binbin Lu binbinlu@whu.edu.cn
bw.gtwr Bandwidth selection for GTWR

Description

A function for automatic bandwidth selection to calibrate a GTWR model

Usage

```
    bw.gtwr(formula, data, obs.tv, approach="CV",kernel="bisquare",adaptive=FALSE,
                p=2, theta=0, longlat=F,lamda=0.05,t.units = "auto",ksi=0, st.dMat,
                verbose=T)
```


Arguments

formula	Regression model formula of a formula object
data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
obs.tv	a vector of time tags for each observation, which could be numeric or of POSIXIt class
approach	specified by CV for cross-validation approach or by AIC corrected (AICc) approach
kernel	function chosen as follows:
	gaussian: wgt $=\exp \left(-.5^{*}(\text { vdist } / \mathrm{bw})^{\wedge} 2\right)$;
	exponential: wgt $=\exp (-\mathrm{vdist} / \mathrm{bw}) ;$
	bisquare: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
	tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
	boxcar: wgt= 1 if dist $<\mathrm{bw}$, wgt=0 otherwise

adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2 , i.e. the Euclidean distance an angle in radians to rotate the coordinate system, default is 0
theta	if TRUE, great circle distances will be calculated
lamglat	an parameter between 0 and 1 for calculating spatio-temporal distance
t.units	character string to define time unit an parameter between 0 and PI for calculating spatio-temporal distance, see de- tails in Wu et al. (2014)
st.dMat	a pre-specified spatio-temporal distance matrix verbose

Value

Returns the adaptive or fixed distance bandwidth

Note

The function is developed according to the articles by Huang et al. (2010) and Wu et al. (2014).

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Huang, B., Wu, B., \& Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24, 383-401.

Wu, B., Li, R., \& Huang, B. (2014). A geographically and temporally weighted autoregressive model with application to housing prices. International Journal of Geographical Information Science, 28, 1186-1204.
Fotheringham, A. S., Crespo, R., \& Yao, J. (2015). Geographical and Temporal Weighted Regression (GTWR). Geographical Analysis, 47, 431-452.

Description

A function for automatic bandwidth selection for GW Discriminant Analysis using a cross-validation approach only

Usage

```
bw.gwda(formula, data, COV.gw = T, prior.gw = T, mean.gw = T,
prior = NULL, wqda = F, kernel = "bisquare", adaptive
= FALSE, p = 2, theta = 0, longlat = F,dMat)
```


Arguments

formula	Model formula of a formula object
data	a Spatial*DataFrame for training, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
COV.gw	if true, localised variance-covariance matrix is used for GW discriminant analysis; otherwise, global variance-covariance matrix is used
mean.gw	if true, localised mean is used for GW discriminant analysis; otherwise, global mean is used
prior.gw	if true, localised prior probability is used for GW discriminant analysis; otherwise, fixed prior probability is used
prior	a vector of given prior probability
wqda	if TRUE, a weighted quadratic discriminant analysis will be applied; otherwise a weighted linear discriminant analysis will be applied
kernel	function chosen as follows:
	$\begin{aligned} & \text { gaussian: wgt }=\exp \left(-.5 *(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right) \\ & \text { exponential: } \mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw}) \end{aligned}$
	$\begin{aligned} & \text { bisquare: } \mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2 \text { if vdist }<\mathrm{bw}, \mathrm{wgt}=0 \text { otherwise; } \\ & \text { tricube: } \mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3 \text { if vdist }<\mathrm{bw}, \mathrm{wgt}=0 \text { otherwise; } \\ & \text { boxcar: } \mathrm{wgt}=1 \text { if dist }<\mathrm{bw}, \mathrm{wgt}=0 \text { otherwise } \end{aligned}$
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

Returns the adaptive or fixed distance bandwidth.

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) distance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous kernel function, a bandwidth can be specified either as a fixed distance or as a 'fixed quantity that reflects local sample size' (i.e. still an 'adaptive' distance but the actual local sample size will be the sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample
configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive bandwidths ensure sufficient (and constant) local information for each local calibration. This note is applicable to all GW models

Author(s)

Binbin Lu binbinlu@whu.edu.cn

bw.gwpca	Bandwidth selection for Geographically Weighted Principal Compo- nents Analysis $(G W P C A)$

Description

A function for automatic bandwidth selection to calibrate a basic or robust GWPCA via a crossvalidation approach only

Usage

```
bw.gwpca(data,vars,k=2, robust=FALSE,kernel="bisquare",adaptive=FALSE,p=2,
                theta=0, longlat=F,dMat)
```


Arguments

data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
vars	a vector of variable names to be evaluated
k	the number of retained components, and it must be less than the number of variables
robust	if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied
kernel	function chosen as follows: gaussian: wgt $=\exp \left(-.5^{*}(\text { vdist } / \mathrm{bw})^{\wedge} 2\right)$; exponential: wgt $=\exp (-v d i s t / b w)$; bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt $=0$ otherwise; boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) distance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous kernel function, a bandwidth can be specified either as a fixed distance or as a 'fixed quantity that reflects local sample size' (i.e. still an 'adaptive' distance but the actual local sample size will be the sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive bandwidths ensure sufficient (and constant) local information for each local calibration. This note is applicable to all GW models

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2015) Enhancements to a geographically weighted principal components analysis in the context of an application to an environmental data set. Geographical Analysis 47: 146-172

```
bw.gwr
```

Bandwidth selection for basic GWR

Description

A function for automatic bandwidth selection to calibrate a basic GWR model

Usage

bw.gwr(formula, data, approach="CV",kernel="bisquare", adaptive=FALSE, $p=2$, theta=0, longlat=F,dMat)

Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
approach specified by CV for cross-validation approach or by AIC corrected (AICc) approach

kernel	function chosen as follows: gaussian: wgt $=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$; exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$; bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; boxcar: wgt=1 if dist $<b w$, wgt $=0$ otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) distance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous kernel function, a bandwidth can be specified either as a fixed distance or as a 'fixed quantity that reflects local sample size' (i.e. still an 'adaptive' distance but the actual local sample size will be the sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive bandwidths ensure sufficient (and constant) local information for each local calibration. This note is applicable to all GW models

Author(s)

Binbin Lu binbinlu@whu.edu.cn
bw.gwr.lcr
Bandwidth selection for locally compensated ridge GWR (GWR-LCR)

Description

A function for automatic bandwidth selection for gwr.lcr via a cross-validation approach only

Usage

bw.gwr.lcr(formula, data, kernel="bisquare", lambda=0, lambda. adjust=FALSE, cn. thresh=NA, adaptive $=$ FALSE, $p=2$, theta $=0$, longlat $=\mathrm{F}, \mathrm{dMat}$)

Arguments

formula	Regression model formula of a formula object
data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
kernel	function chosen as follows:
	gaussian: wgt $=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
	exponential: wgt $=\exp (-\mathrm{vdist} / \mathrm{bw})$;
	bisquare: $w g t=\left(1-(v d i s t / b w)^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt $=0$ otherwise;
	tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
	boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
lambda	option for a globally-defined (constant) ridge parameter. Default is lambda=0, which gives a basic GWR fit
lambda.adjust	a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR without a local ridge adjustment (i.e. lambda $=0$, everywhere); or (ii) a penalised GWR with a global ridge adjustment (i.e. lambda is user-specified as some constant, other than 0 everywhere); if TRUE, use cn.tresh to set the maximum condition number. For locations with a condition number (for its local design matrix), above this user-specified threshold, a local ridge parameter is found
cn.thresh	maximum value for condition number, commonly set between 20 and 30
adaptive	if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) distance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous kernel function, a bandwidth can be specified either as a fixed distance or as a 'fixed quantity that reflects local sample size' (i.e. still an 'adaptive' distance but the actual local sample size will be the sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive bandwidths ensure sufficient (and constant) local information for each local calibration. This note is applicable to all GW models

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software 63(17): 1-50
bw.gwss.average Bandwidth selection for GW summary averages

Description

A function for automatic bandwidth selections to calculate GW summary averages, including means and medians, via a cross-validation approach.

Usage

bw.gwss.average(data, summary.locat, vars, kernel = "bisquare", adaptive = FALSE, $\mathrm{p}=2$, theta $=0$, longlat $=\mathrm{F}, \mathrm{dMat}$)

Arguments

data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
summary.locat	a Spatial*DataFrame object for providing summary locations, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
vars	a vector of variable names to be summarized
kernel	function chosen as follows: gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$; exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$; bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; boxcar: wgt $=1$ if dist $<b w$, wgt $=0$ otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

Returns the adaptive or fixed distance bandwidths (in a two-column matrix) for calculating the averages of each variable.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

DubVoter Voter turnout data in Greater Dublin(SpatialPolygonsDataFrame)

Description

Voter turnout and social characters data in Greater Dublin for the 2002 General election and the 2002 census. Note that this data set was originally thought to relate to 2004, so for continuity we have retained the associated variable names.

Usage

data(DubVoter)

Format

A SpatialPolygonsDataFrame with 322 electoral divisions on the following 11 variables.
DED_ID a vector of ID
\mathbf{X} a numeric vector of x coordinates
Y a numeric vector of y coordinates
DiffAdd percentage of the population in each ED who are one-year migrants (i.e. moved to a different address 1 year ago)
LARent percentage of the population in each ED who are local authority renters
SC1 percentage of the population in each ED who are social class one (high social class)
Unempl percentage of the population in each ED who are unemployed
LowEduc percentage of the population in each ED who are with little formal education
Age18_24 percentage of the population in each ED who are age group 18-24
Age25_44 percentage of the population in each ED who are age group 25-44
Age45_64 percentage of the population in each ED who are age group 45-64
GenEl2004 percentage of population in each ED who voted in 2004 election

Details

Variables are from DubVoter.shp.

References

Kavanagh A (2006) Turnout or turned off? Electoral participation in Dublin in the early 21st Century. Journal of Irish Urban Studies 3(2):1-24
Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis. International Journal of Geographical Information Science 25 (10):1717-1736

Examples

```
data(DubVoter)
ls()
## Not run:
spplot(Dub.voter, names(Dub.voter)[4:12])
## End(Not run)
```

EWHP House price data set (DataFrame) in England and Wales

Description

A house price data set for England and Wales from 2001 with 9 hedonic (explanatory) variables.

Usage

data(EWHP)

Format

A data frame with 519 observations on the following 12 variables.
Easting a numeric vector, X coordinate
Northing a numeric vector, Y coordinate
PurPrice a numeric vector, the purchase price of the property
BldIntWr a numeric vector, 1 if the property was built during the world war, 0 otherwise
BldPostW a numeric vector, 1 if the property was built after the world war, 0 otherwise
Bld60s a numeric vector, 1 if the property was built between 1960 and 1969,0 otherwise
Bld70s a numeric vector, 1 if the property was built between 1970 and 1979, 0 otherwise
Bld80s a numeric vector, 1 if the property was built between 1980 and 1989, 0 otherwise
TypDetch a numeric vector, 1 if the property is detached (i.e. it is a stand-alone house), 0 otherwise
TypSemiD a numeric vector, 1 if the property is semi detached, 0 otherwise
TypFlat a numeric vector, if the property is a flat (or 'apartment' in the USA), 0 otherwise
FlrArea a numeric vector, floor area of the property in square metres

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Fotheringham, A.S., Brunsdon, C., and Charlton, M.E. (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Examples

```
###
data(EWHP)
head(ewhp)
houses.spdf <- SpatialPointsDataFrame(ewhp[, 1:2], ewhp)
    ####Get the border of England and Wales
data(EWOutline)
plot(ewoutline)
plot(houses.spdf, add = TRUE, pch = 16)
```


EWOutline

Outline of England and Wales for data EWHP

Description

Outline (SpatialPolygonsDataFrame) of the England and Wales house price data EWHP.

Usage

data(EWOutline)

Author(s)

Binbin Lu binbinlu@whu.edu.cn
Georgia Georgia census data set (csv file)

Description

Census data from the county of Georgia, USA

Usage

data(Georgia)

Format

A data frame with 159 observations on the following 13 variables.
AreaKey An identification number for each county
Latitude The latitude of the county centroid
Longitud The longitude of the county centroid
TotPop90 Population of the county in 1990
PctRural Percentage of the county population defined as rural

PctBach Percentage of the county population with a bachelors degree
PctEld Percentage of the county population aged 65 or over
PctFB Percentage of the county population born outside the US
PctPov Percentage of the county population living below the poverty line
PctBlack Percentage of the county population who are black
ID a numeric vector of IDs
\mathbf{X} a numeric vector of x coordinates
\mathbf{Y} a numeric vector of y coordinates

Details

This data set can also be found in GWR 3 and in spgwr.

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Examples

```
data(Georgia)
ls()
coords <- cbind(Gedu.df$X, Gedu.df$Y)
educ.spdf <- SpatialPointsDataFrame(coords, Gedu.df)
spplot(educ.spdf, names(educ.spdf)[4:10])
```

```
GeorgiaCounties Georgia counties data (SpatialPolygonsDataFrame)
```


Description

The Georgia census data with boundaries for mapping

Usage

data(GeorgiaCounties)

Details

This data set can also be found in GWR 3 and in spgwr.

Examples

```
data(GeorgiaCounties)
plot(Gedu.counties)
data(Georgia)
coords <- cbind(Gedu.df$X, Gedu.df$Y)
educ.spdf <- SpatialPointsDataFrame(coords, Gedu.df)
plot(educ.spdf, add=TRUE)
```

ggwr.basic

Description

This function implements generalised GWR

Usage

```
ggwr.basic(formula, data, regression.points, bw, family =
    "poisson", kernel = "bisquare", adaptive = FALSE, cv =
    T, tol = 1e-05, maxiter = 20, p = 2, theta = 0,
    longlat = F, dMat, dMat1)
    ## S3 method for class 'ggwrm'
    print(x, ...)
```


Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
regression.points
a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
bw bandwidth used in the weighting function, possibly calculated by bw.ggwr();fixed (distance) or adaptive bandwidth(number of nearest neighbours)
family a description of the error distribution and link function to be used in the model, which can be specified by "poisson" or "binomial"
kernel function chosen as follows:
gaussian: wgt $=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
exponential: wgt $=\exp (-v d i s t / b w) ;$
bisquare: $w g t=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt $=0$ otherwise;
tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt $=0$ otherwise

adaptive	if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
cv	if TRUE, cross-validation data will be calculated the threshold that determines the convergence of the IRLS procedure
tol	
maxiter	the maximum number of times to try the IRLS procedure the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0 if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix between regression points and observations, it can be calculated by the function gw. dist
dMat1	a square distance matrix between each pair of observations, it can be calculated by the function gw. dist an object of class "ggwrm", returned by the function gwr.generalised arguments passed through (unused)
\ldots	

Value

A list of class "ggwrm":
GW. arguments a list class object including the model fitting parameters for generating the report file
GW. diagnostic a list class object including the diagnostic information of the model fitting
glm.res an object of class inheriting from "glm" which inherits from the class "lm", see glm.
SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") integrated with fit.points,GWR coefficient estimates, y value,predicted values, coefficient standard errors and t-values in its "data" slot.
CV a data vector consisting of the cross-validation data

Note

Note that this function calibrates a Generalised GWR model via an approximating algorithm, which is different from the back-fitting algorithm used in the GWR4 software by Tomoki Nakaya.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Nakaya, T., A. S. Fotheringham, C. Brunsdon \& M. Charlton (2005) Geographically weighted Poisson regression for disease association mapping. Statistics in Medicine, 24, 2695-2717.
Nakaya, T., M. Charlton, S. Fotheringham \& C. Brunsdon. 2009. How to use SGWRWIN (GWR4.0). Maynooth, Ireland: National Centre for Geocomputation.
Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Examples

```
    data(LondonHP)
    ## Not run:
    DM<-gw.dist(dp.locat=coordinates(londonhp))
    bw.f1 <- bw.ggwr(BATH2~FLOORSZ,data=londonhp, dMat=DM)
    res.poisson<-ggwr.basic(BATH2~FLOORSZ, bw=bw.f1,data=londonhp, dMat=DM)
    bw.f2 <- bw.ggwr(BATH2~FLOORSZ, data=londonhp, dMat=DM,family ="binomial")
    res.binomial<-ggwr.basic(BATH2~FLOORSZ, bw=bw.f2,data=londonhp, dMat=DM,
        family ="binomial")
    ## End(Not run)
```

 ggwr.cv
 Cross-validation score for a specified bandwidth for generalised GWR

Description

This function finds the cross-validation score for a specified bandwidth for generalised GWR. It can be used to construct the bandwidth function across all possible bandwidths and compared to that found automatically.

Usage

```
ggwr.cv(bw, X, Y,family="poisson", kernel="bisquare",adaptive=F, dp.locat,
    \(\mathrm{p}=2\), theta=0, longlat=F,dMat)
```


Arguments

bw	bandwidth used in the weighting function;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
X	a numeric matrix of the independent data with an extra column of "ones" for the 1 st column
Y	a column vector of the dependent data
family	a description of the error distribution and link function to be used in the model, which can be specified by "poisson" or "binomial"
kernel	function chosen as follows: gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$; exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$; bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; boxcar: wgt $=1$ if dist $<\mathrm{bw}$, wgt $=0$ otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
dp.locat	a two-column numeric array of observation coordinates

p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

CV.score cross-validation score

Author(s)

Binbin Lu binbinlu@whu.edu.cn
ggwr.cv.contrib Cross-validation data at each observation location for a generalised GWR model

Description

This function finds the individual cross-validation score at each observation location, for a generalised GWR model, for a specified bandwidth. These data can be mapped to detect unusually high or low cross-validations scores.

Usage

ggwr.cv.contrib(bw, X, Y,family="poisson", kernel="bisquare", adaptive=F, dp.locat, $\mathrm{p}=2$, theta=0, longlat=F, dMat)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
X a numeric matrix of the independent data with an extra column of "ones" for the 1 st column

Y a column vector of the dependent data
family a description of the error distribution and link function to be used in the model, which can be specified by "poisson" or "binomial"
kernel function chosen as follows:
gaussian: wgt $=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$;
bisquare: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
tricube: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
dp.locat a two-column numeric array of observation coordinates
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

CV a data vector consisting of squared residuals, whose sum is the cross-validation score for the specified bandwidth

Author(s)

Binbin Lu binbinlu@whu.edu.cn

gtwr Geographically and Temporally Weighted Regression

Description

A function for calibrating a Geographically and Temporally Weighted Regression (GTWR) model.

Usage

gtwr(formula, data, regression.points, obs.tv, reg.tv, st.bw, kernel="bisquare", adaptive=FALSE, $\mathrm{p}=2$, theta=0, longlat=F,lamda=0.05,t.units = "auto",ksi=0, st.dMat)

Arguments

\(\left.$$
\begin{array}{ll}\text { formula } & \begin{array}{l}\text { Regression model formula of a formula object } \\
\text { data } \\
\text { a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame } \\
\text { as defined in package sp }\end{array} \\
\text { regression.points }\end{array}
$$ \quad \begin{array}{l}a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygons-

DataFrame as defined in package sp; Note that no diagnostic information will

returned if it is assigned\end{array}\right]\)| a vector of time tags for each observation, which could be numeric or of POSIXlt |
| :--- |
| class |

st.bw	spatio-temporal bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
kernel	function chosen as follows:
	gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
	exponential: wgt $=\exp (-\mathrm{vdist} / \mathrm{bw})$;
	bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
	tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
	boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
lamda	an parameter between 0 and 1 for calculating spatio-temporal distance
t.units	character string to define time unit
ksi	an parameter between 0 and PI for calculating spatio-temporal distance, see details in Wu et al. (2014)
st.dMat	a pre-specified spatio-temporal distance matrix

Value

A list of class "gtwrm":
GTW. arguments a list class object including the model fitting parameters for generating the report file

GTW. diagnostic a list class object including the diagnostic information of the model fitting
lm an object of class inheriting from "lm", see lm.

SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") integrated with fit.points, GTWR coefficient estimates, y value, predicted values, coefficient standard errors and t-values in its "data" slot.
timings starting and ending time.
this.call the function call used.

Note

The function implements GTWR model proposed by Huang et al. (2010) and Wu et al. (2014).

Author(s)

Binbin Lu <binbinlu@whu.edu. cn>

References

Huang, B., Wu, B., \& Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24, 383-401.
Wu, B., Li, R., \& Huang, B. (2014). A geographically and temporally weighted autoregressive model with application to housing prices. International Journal of Geographical Information Science, 28, 1186-1204.
Fotheringham, A. S., Crespo, R., \& Yao, J. (2015). Geographical and Temporal Weighted Regression (GTWR). Geographical Analysis, 47, 431-452.

```
gw.dist Distance matrix calculation
```


Description

Calculate a distance vector(matrix) between any GW model calibration point(s) and the data points.

Usage

gw.dist(dp.locat, rp.locat, focus=0, $p=2$, theta=0, longlat=F)

Arguments

dp.locat a numeric matrix of two columns giving the coordinates of the data points
rp.locat a numeric matrix of two columns giving the coordinates of the GW model calibration points
focus an integer, indexing to the current GW model point, if focus=0, all the distances between all the GW model calibration points and data points will be calculated and a distance matrix will be returned; if $0<$ focus<length(rp.locat), then the distances between the 'focus'th GW model points and data points will be calculated and a distance vector will be returned
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated

Value
Returns a numeric distance matrix or vector; matrix with its rows corresponding to the observations and its columns corresponds to the GW model calibration points.

Author(s)

Binbin Lu <binbinlu@whu.edu. cn>

See Also

dist in stats

Examples

```
dp<-cbind(sample(100), sample(100))
rp<-cbind(sample(10),sample(10))
#Euclidean distance metric is used.
dist.v1<-gw.dist(dp.locat=dp, focus=5, p=2, theta=0, longlat=FALSE)
#Manhattan distance metric is used.
#The coordinate system is rotated by an angle 0.5 in radian.
dist.v2<-gw.dist(dp.locat=dp, focus=5, p=1, theta=0.5)
#Great Circle distance metric is used.
dist.v3<-gw.dist(dp.locat=dp, focus=5, longlat=TRUE)
#A generalized Minkowski distance metric is used with p= 0.75 .
#The coordinate system is rotated by an angle 0.8 in radian.
dist.v4<-gw.dist(dp.locat=dp,rp.locat=rp, focus=5, p=0.75,theta=0.8)
################################
#matrix is calculated
#Euclidean distance metric is used.
dist.m1<-gw.dist(dp.locat=dp, p=2, theta=0, longlat=FALSE)
#Manhattan distance metric is used.
#The coordinate system is rotated by an angle 0.5 in radian.
dist.m2<-gw.dist(dp.locat=dp, p=1, theta=0.5)
#Great Circle distance metric is used.
#dist.m3<-gw.dist(dp.locat=dp, longlat=TRUE)
#A generalized Minkowski distance metric is used with p= 0.75 .
#The coordinate system is rotated by an angle 0.8 in radian.
dist.m4<-gw.dist(dp.locat=dp,rp.locat=rp, p=0.75,theta=0.8)
```

gw.pcplot Geographically weighted parallel coordinate plot for investigating multivariate data sets

Description

This function provides a geographically weighted parallel coordinate plot for locally investigating a multivariate data set. It has an option that weights the lines of the plot with increasing levels of transparency, according to their observation's distance from a specified focal/observation point.

Usage

gw.pcplot(data, vars, focus,bw, adaptive = FALSE, ylim=NULL, ylab="", fixtrans=FALSE, $\mathrm{p}=2$, theta=0, longlat=F,dMat,...)

Arguments

data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
vars	a vector of variable names to be evaluated an integer, indexing to the observation point
focus	
bw	
widthidth used in the weighting function;fixed (distance) or adaptive band-	
if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to	

Author(s)

Binbin Lu <binbinluewhu.edu.cn>

References

Harris P, Brunsdon C, Charlton M, Juggins S, Clarke A (2014) Multivariate spatial outlier detection using robust geographically weighted methods. Mathematical Geosciences 46(1) 1-31
Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2015) Enhancements to a geographically weighted principal components analysis in the context of an application to an environmental data set. Geographical Analysis 47: 146-172

```
gw.weight Weight matrix calculation
```


Description

Calculate a weight vector(matrix) from a distance vector(matrix).

Usage

gw.weight(vdist, bw, kernel, adaptive=FALSE)

Arguments

vdist	a distance matrix or vector
bw	bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
kernel	function chosen as follows:
	$\text { gaussian: wgt }=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right) ;$
	exponential: wgt $=\exp (-v d i s t / b w) ;$
	bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
	tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
	boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

Value

Returns a numeric weight matrix or vector; matrix with its rows corresponding to the observations and its columns corresponds to the GW model calibration points.

Note

The gaussian and exponential kernel functions are continuous and valued in the interval (0,1 ; while bisquare, tricube and boxcar kernel functions are discontinuous and valued in the interval $[0,1]$. Notably, the upper limit of the bandwidth is exactly the number of observations when the adaptive kernel is used. In this function, the adaptive bandwidth will be specified as the number of observations even though a larger number is assigned. The function will be the same as a global application function (i.e. all weights are 1) when the adaptive bandwidth is equal to or larger than the number of observations when using the boxcar kernel function.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

```
gwda GW Discriminant Analysis
```


Description

This function implements GW discriminant analysis.

Usage

```
gwda(formula, data, predict.data,validation = T, COV.gw=T,
                        mean.gw=T, prior.gw=T, prior=NULL, wqda =F,
                        kernel = "bisquare", adaptive = FALSE, bw,
                p = 2, theta = 0, longlat = F,dMat)
## S3 method for class 'gwda'
print(x, ...)
```


Arguments

formula	Model formula of a formula object
data	a Spatial*DataFrame for training, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
predict.data	a Spatial*DataFrame object for prediction, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp; if it is not given, the traing data will be predicted using leave-one-out cross-validation.
validation	If TRUE, the results from the prediction will be validated and the correct proportion will be calculated.
COV.gw	if true, localised variance-covariance matrix is used for GW discriminant analysis; otherwise, global variance-covariance matrix is used
mean.gw	if true, localised mean is used for GW discriminant analysis; otherwise, global mean is used
prior.gw	if true, localised prior probability is used for GW discriminant analysis; otherwise, fixed prior probability is used
prior	a vector of given prior probability
wqda	if TRUE, weighted quadratic discriminant analysis will be applied; otherwise weighted linear discriminant analysis will be applied
kernel	function chosen as follows:
	gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$; exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$;
	$\begin{aligned} & \text { bisquare: } w g t=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2 \text { if vdist }<\mathrm{bw}, \mathrm{wgt}=0 \text { otherwise; } \\ & \text { tricube: } \mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3 \text { if vdist }<\mathrm{bw}, \mathrm{wgt}=0 \text { otherwise; } \\ & \text { boxcar: } w g t=1 \text { if dist }<\mathrm{bw}, \mathrm{wgt}=0 \text { otherwise } \end{aligned}$
adaptive	if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
bw	bandwidth used in the weighting function, possibly calculated by bw.gwpea;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist
X	an object of class "gwda"
	arguments passed through (unused)

Value

A class of object "gwda"

Author(s)

Binbin Lu <binbinlu@whu.edu. cn>

References

Brunsdon, C, Fotheringham S, and Charlton, M (2007), Geographically Weighted Discriminant Analysis, Geographical Analysis 39:376-396

Lu B, Harris P, Charlton M, Brunsdon C (2014) The GWmodel R Package: further topics for exploring Spatial Heterogeneity using Geographically Weighted Models. Geo-spatial Information Science 17(2): 85-101
gwpca GWPCA

Description

This function implements basic or robust GWPCA.

Usage

gwpca(data, elocat, vars, $k=2$, robust $=$ FALSE, kernel = "bisquare",
adaptive $=$ FALSE, $\mathrm{bw}, \mathrm{p}=2$, theta $=0$, longlat $=\mathrm{F}, \mathrm{cv}=\mathrm{T}$, scores=F, dMat)
\#\# S3 method for class 'gwpca'
print(x, ...)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
elocat a two-column numeric array or Spatial*DataFrame object for providing evaluation locations, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
vars a vector of variable names to be evaluated
$k \quad$ the number of retained components; k must be less than the number of variables
robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied

kernel	function chosen as follows: gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$; exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$; bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; tricube: wgt $=\left(1-(v d i s t / b w)^{\wedge} 3\right)^{\wedge} 3$ if vdist $<b w$, wgt $=0$ otherwise; boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt $=0$ otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
bw	bandwidth used in the weighting function, possibly calculated by bw.gwpca;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
cv	If TRUE, cross-validation data will be found that are used to calculate the crossvalidation score for the specified bandwidth.
scores	if scores $=$ TRUE, the scores of the supplied data on the principal components will be calculated.
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist
x	an object of class "gwpca", returned by the function gwpca
	arguments passed through (unused)

Value

A list of class "gwpca":
\(\left.$$
\begin{array}{ll}\text { GW.arguments } & \begin{array}{l}\text { a list class object including the model fitting parameters for generating the report } \\
\text { file }\end{array} \\
\text { pca } & \begin{array}{l}\text { an object of class inheriting from "princomp", see princomp. }\end{array} \\
\text { loadings } & \begin{array}{l}\text { the localised loadings }\end{array}
$$

SDF SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame ob-

ject (see package "sp") integrated with local proportions of variance for each

principle components, cumulative proportion and winning variable for the 1 st

principle component in its "data" slot.\end{array}\right]\)	the localised scores of the supplied data on the principal components

Author(s)

Binbin Lu <binbinlu@whu.edu. cn>

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.
Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis. International Journal of Geographical Information Science 25:1717-1736
Harris P, Brunsdon C, Charlton M, Juggins S, Clarke A (2014) Multivariate spatial outlier detection using robust geographically weighted methods. Mathematical Geosciences 46(1) 1-31
Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2014) Geographically weighted methods and their use in network re-designs for environmental monitoring. Stochastic Environmental Research and Risk Assessment 28: 1869-1887

Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2015) Enhancements to a geographically weighted principal components analysis in the context of an application to an environmental data set. Geographical Analysis 47: 146-172

Examples

```
## Not run:
if(require("mvoutlier") && require("RColorBrewer"))
{
    data(bsstop)
    Data.1 <- bsstop[, 1:14]
    colnames(Data.1)
    Data.1.scaled <- scale(as.matrix(Data.1[5:14])) # standardised data...
    rownames(Data.1.scaled) <- Data.1[, 1]
    #compute principal components:
    pca <- princomp(Data.1.scaled, cor = FALSE, scores = TRUE)
    # use covariance matrix to match the following...
    pca$loadings
    data(bss.background)
    backdrop <- function()
        plot(bss.background, asp = 1, type = "l", xaxt = "n", yaxt = "n",
        xlab = "", ylab = "", bty = "n", col = "grey")
    pc1 <- pca$scores[, 1]
    backdrop()
    points(Data.1$XCOO[pc1 > 0], Data.1$YCOO[pc1 > 0], pch = 16, col = "blue")
    points(Data.1$XCOO[pc1 < 0], Data.1$YCOO[pc1 < 0], pch = 16, col = "red")
    #Geographically Weighted PCA and mapping the local loadings
    # Coordinates of the sites
    Coords1 <- as.matrix(cbind(Data.1$XCOO,Data.1$YCOO))
    d1s <- SpatialPointsDataFrame(Coords1,as.data.frame(Data.1.scaled))
    pca.gw <- gwpca(d1s,vars=colnames(d1s@data),bw=1000000,k=10)
    local.loadings <- pca.gw$loadings[, , 1]
    # Mapping the winning variable with the highest absolute loading
    # note first component only - would need to explore all components..
    lead.item <- colnames(local.loadings)[max.col(abs(local.loadings))]
    df1p = SpatialPointsDataFrame(Coords1, data.frame(lead = lead.item))
    backdrop()
```

```
    colour <- brewer.pal(8, "Dark2")[match(df1p$lead, unique(df1p$lead))]
    plot(df1p, pch = 18, col = colour, add = TRUE)
    legend("topleft", as.character(unique(df1p$lead)), pch = 18, col =
        brewer.pal(8, "Dark2"))
    backdrop()
    #Glyph plots give a view of all the local loadings together
    glyph.plot(local.loadings, Coords1, add = TRUE)
    #it is not immediately clear how to interpret the glyphs fully,
    #so inter-actively identify the full loading information using:
    check.components(local.loadings, Coords1)
    # GWPCA with an optimal bandwidth
    bw.choice <- bw.gwpca(d1s,vars=colnames(d1s@data),k=2)
    pca.gw.auto <- gwpca(d1s,vars=colnames(d1s@data),bw=bw.choice,k=2)
    # note first component only - would need to explore all components..
    local.loadings <- pca.gw.auto$loadings[, , 1]
    lead.item <- colnames(local.loadings)[max.col(abs(local.loadings))]
    df1p = SpatialPointsDataFrame(Coords1, data.frame(lead = lead.item))
    backdrop()
    colour <- brewer.pal(8, "Dark2")[match(df1p$lead, unique(df1p$lead))]
    plot(df1p, pch = 18, col = colour, add = TRUE)
    legend("topleft", as.character(unique(df1p$lead)), pch = 18,
    col = brewer.pal(8, "Dark2"))
    # GWPCPLOT for investigating the raw multivariate data
    gw.pcplot(d1s, vars=colnames(d1s@data),focus=359, bw = bw.choice)
}
## End(Not run)
```

gwpca.check. components
Interaction tool with the GWPCA glyph map

Description

The function interacts with the multivariate glyph plot of GWPCA loadings.

Usage

gwpca.check. components(ld,loc)

Arguments

ld
GWPCA loadings returned by gwpca
loc
a 2-column numeric array of GWPCA evaluation locations

Note

The function "check.components" (in the early versions of GWmodel) has been renamed as "gwpca.check.components", while the old name is still kept valid.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

See Also

gwpca.glyph.plot
gwpca.cv Cross-validation score for a specified bandwidth for GWPCA

Description

This function finds the cross-validation score for a specified bandwidth for basic or robust GWPCA. It can be used to construct the bandwidth function across all possible bandwidths and compared to that found automatically.

Usage

gwpca.cv(bw, x, loc, $\mathrm{k}=2$, robust=FALSE, kernel="bisquare", adaptive=FALSE, $\mathrm{p}=2$, theta=0, longlat=F,dMat)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
$x \quad$ the variable matrix
loc a two-column numeric array of observation coordinates
$k \quad$ the number of retained components; k must be less than the number of variables
robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied
kernel function chosen as follows:
gaussian: wgt $=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
exponential: wgt $=\exp (-v d i s t / b w)$;
bisquare: $w g t=\left(1-(v d i s t / b w)^{\wedge} 2\right)^{\wedge} 2$ if vdist $<b w$, wgt $=0$ otherwise;
tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

CV.score cross-validation score

Author(s)

Binbin Lu binbinlu@whu.edu.cn

Description

This function finds the individual cross-validation score at each observation location, for a GWPCA model, for a specified bandwidth. These data can be mapped to detect unusually high or low crossvalidations scores.

Usage

gwpca.cv.contrib(x,loc,bw, k=2, robust=FALSE,kernel="bisquare", adaptive=FALSE, $\mathrm{p}=2$, theta=0, longlat=F,dMat)

Arguments

x
loc a two-column numeric array of observation coordinates
bw bandwidth used in the weighting function;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
$k \quad$ the number of retained components; k must be less than the number of variables
robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied
kernel function chosen as follows:
gaussian: wgt $=\exp \left(-.5^{*}(\text { vdist } / \mathrm{bw})^{\wedge} 2\right)$;
exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$;
bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
tricube: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt $=0$ otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

CV a data vector consisting of squared residuals, whose sum is the cross-validation score for the specified bandwidth (bw) and component (k).

Author(s)

Binbin Lu binbinlu@whu.edu.cn
gwpca.glyph.plot Multivariate glyph plots of GWPCA loadings

Description

This function provides a multivariate glyph plot of GWPCA loadings at each output location.

Usage

gwpca.glyph.plot(ld,loc, r1=50, add=FALSE,alpha=1, sep.contrasts=FALSE)

Arguments

ld	GWPCA loadings returned by gwpca
loc	a two-column numeric array for providing evaluation locations of GWPCA cal- ibration argument for the size of the glyphs, default is 50; glyphs get larger as r1 is reduced r1
if TRUE, add the plot to the existing window.	
add	the level of transparency of glyph from function rgb() and ranges from 0 to max (fully transparent to opaque) alpha
sep.contrasts	
allows different types of glyphs and relates to whether absolute loadings are	
used (TRUE) or not	

Note

The function "glyph.plot" (in the early versions of GWmodel) has been renamed as "gwpca.glyph.plot", while the old name is still kept valid.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis. International Journal of Geographical Information Science 25:1717-1736
gwpca.montecarlo. 1 Monte Carlo (randomisation) test for significance of GWPCA eigenvalue variability for the first component only - option 1

Description

This function implements a Monte Carlo (randomisation) test for a basic or robust GW PCA with the bandwidth pre-specified and constant. The test evaluates whether the GW eigenvalues vary significantly across space for the first component only.

Usage

gwpca.montecarlo.1(data, bw, vars, k = 2, nsims=99, robust = FALSE, kernel = "bisquare", adaptive $=$ FALSE, $\mathrm{p}=2$, theta $=0$, longlat $=\mathrm{F}$, dMat)
\#\# S3 method for class 'mcsims'
plot(x, sname="SD of local eigenvalues from randomisations", ...)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
bw bandwidth used in the weighting function, possibly calculated by bw.gwpea;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
vars a vector of variable names to be evaluated
k the number of retained components; k must be less than the number of variables
nsims the number of simulations for MontCarlo test
robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied
kernel function chosen as follows:
gaussian: wgt $=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$;
bisquare: wgt $=\left(1-(v d i s t / b w)^{\wedge} 2\right)^{\wedge} 2$ if vdist $<b w$, wgt $=0$ otherwise;
tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0

longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist
x	an object of class "mcsims", returned by the function gwpca.montecarlo. 1 or gwpca.montecarlo. 2
sname	the label for the observed value on the plot
\ldots	arguments passed through (unused)

Value
A list of components:

actual	the observed standard deviations (SD) of eigenvalues
sims	a vector of the simulated SDs of eigenvalues

Note

The function "montecarlo.gwpca.1" (in the early versions of GWmodel) has been renamed as "gwpca.montecarlo.1", while the old name is still kept valid.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis. International Journal of Geographical Information Science 25:1717-1736

Examples

```
## Not run:
data(DubVoter)
DM<-gw.dist(dp.locat=coordinates(Dub.voter))
gmc.res<-gwpca.montecarlo.1(data=Dub.voter, vars=c("DiffAdd", "LARent",
"SC1", "Unempl", "LowEduc"), bw=20,dMat=DM,adaptive=TRUE)
gmc.res
plot(gmc.res)
## End(Not run)
```

gwpca.montecarlo. 2 Monte Carlo (randomisation) test for significance of GWPCA eigenvalue variability for the first component only - option 2

Description

This function implements a Monte Carlo (randomisation) test for a basic or robust GW PCA with the bandwidth automatically re-selected via the cross-validation approach. The test evaluates whether the GW eigenvalues vary significantly across space for the first component only.

Usage

gwpca.montecarlo.2(data, vars, k = 2, nsims=99, robust = FALSE, kernel = "bisquare", adaptive $=$ FALSE, $p=2$, theta $=0$, longlat $=F, d M a t)$

Arguments

data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
vars	a vector of variable names to be evaluated
k	the number of retained components; k must be less than the number of variables
nsims	the number of simulations for MontCarlo test
robust	if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied
kernel	function chosen as follows:
	$\begin{aligned} & \text { gaussian: wgt }=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right) \\ & \text { exponential: wgt }=\exp (-\mathrm{vdist} / \mathrm{bw}) \end{aligned}$
	bisquare: $w g t=\left(1-(v d i s t / b w)^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
	tricube: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt $=0$ otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

A list of components:

actual	the observed standard deviations (SD) of eigenvalues
sims	a vector of the simulated SDs of eigenvalues

Note
The function "montecarlo.gwpca.2" (in the early versions of GWmodel) has been renamed as "gwpca.montecarlo.2", while the old name is still kept valid.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis. International Journal of Geographical Information Science 25:1717-1736

Examples

```
## Not run:
data(DubVoter)
DM<-gw.dist(dp.locat=coordinates(Dub.voter))
gmc.res.autow<-gwpca.montecarlo.2(data=Dub.voter, vars=c("DiffAdd", "LARent",
"SC1", "Unempl", "LowEduc"), dMat=DM,adaptive=TRUE)
gmc.res.autow
plot.mcsims(gmc.res.autow)
## End(Not run)
```

gwr.basic

Basic GWR model

Description

This function implements basic GWR

Usage

gwr.basic(formula, data, regression.points, bw, kernel="bisquare", adaptive=FALSE, $\mathrm{p}=2$, theta=0, longlat=F, dMat,F123.test=F, cv=T, W.vect=NULL)
\#\# S3 method for class 'gwrm'
print(x, ...)

Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
regression.points
a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp; Note that no diagnostic information will returned if it is assigned

bw	bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
kernel	function chosen as follows:
	gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
	exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$;
	bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
	tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
	boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist
F123.test	If TRUE, conduct three seperate F-tests according to Leung et al. (2000).
CV	if TRUE, cross-validation data will be calculated and returned in the output Spatial*DataFrame
W. vect	default NULL, if given it will be used to weight the distance weighting matrix
x	an object of class "gwrm", returned by the function gwr.basic
	arguments passed through (unused)

Value

A list of class "gwrm":
GW. arguments a list class object including the model fitting parameters for generating the report file

GW. diagnostic a list class object including the diagnostic information of the model fitting
lm an object of class inheriting from "lm", see lm.
SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") integrated with fit.points,GWR coefficient estimates, y value, predicted values, coefficient standard errors and t-values in its "data" slot.
timings starting and ending time.
this.call the function call used.
Ftest.res results of Leung's F tests when F123.test is TRUE.

Author(s)

Binbin Lu <binbinlu@whu.edu. cn>

References

Brunsdon, C, Fotheringham, S, Charlton, M (1996), Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geographical Analysis 28(4):281-298
Charlton, M, Fotheringham, S, and Brunsdon, C (2007), GWR3.0, http://gwr.nuim.ie/.
Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Leung, Y, Mei, CL, and Zhang, WX (2000), Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environment and Planning A, 32, 9-32.
Lu, B, Charlton, M, Harris, P, Fotheringham, AS (2014) Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data. International Journal of Geographical Information Science 28(4): 660-681

Examples

```
data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
##Compare the time consumed with and without a specified distance matrix
## Not run:
system.time(gwr.res<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=1000,
    kernel = "gaussian"))
system.time(DM<-gw.dist(dp.locat=coordinates(londonhp)))
system.time(gwr.res<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=1000,
    kernel = "gaussian", dMat=DM))
## specify an optimum bandwidth by cross-validation appraoch
bw1<-bw.gwr(PURCHASE~FLOORSZ, data=londonhp, kernel = "gaussian",dMat=DM)
gwr.res1<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=bw1,kernel = "gaussian",
                dMat=DM)
gwr.res1
## End(Not run)
data(LondonBorough)
nsa = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(561900,200900),
scale = 500, col=1)
## Not run:
if(require("RColorBrewer"))
{
    mypalette<-brewer.pal(6,"Spectral")
    x11()
    spplot(gwr.res1$SDF, "FLOORSZ", key.space = "right", cex=1.5, cuts=10,
    ylim=c(155840.8,200933.9), xlim=c(503568.2,561957.5),
    main="GWR estimated coefficients for FLOORSZ with a fixed bandwidth",
    col.regions=mypalette, sp.layout=list(nsa, londonborough))}
## End(Not run)
## Not run:
bw2<-bw.gwr (PURCHASE~FLOORSZ, approach="aic",adaptive=TRUE, data=londonhp,
                    kernel = "gaussian", dMat=DM)
gwr.res2<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=bw2,adaptive=TRUE,
                kernel = "gaussian", dMat=DM)
```

```
gwr.res2
if(require("RColorBrewer"))
{
    x11()
    spplot(gwr.res2$SDF, "FLOORSZ", key.space = "right", cex=1.5, cuts=10,
    ylim=c(155840.8,200933.9), xlim=c(503568.2,561957.5),
    main="GWR estimated coefficients for FLOORSZ with an adaptive bandwidth",
    col.regions=mypalette, sp.layout=list(nsa,londonborough))}
## End(Not run)
```


Description

This function implements bootstrap methods to test for coefficient variability found from GWR under model assumptions for each of four null hypotheses: MLR, ERR, SMA and LAG models. Global test statistic results are found, as well local observation-specific test results that can be mapped.

Usage

gwr.bootstrap(formula, data, kernel="bisquare", approach="AIC", R=99,k.nearneigh=4, adaptive=FALSE, $\mathrm{p}=2$, theta=0, longlat=FALSE,dMat, verbose=FALSE)
\#\# S3 method for class 'gwrbsm'
print(x, ...)

Arguments

adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist if TRUE and bandwidth selection is undertaken, the bandwidth searches are reported
x	an object of class "gwrbsm", returned by the function gwr.bootstrap
\ldots	arguments passed through (unused)

Value

A list of class "gwrbsm":

formula	Regression model formula of a formula object
results	modified statistics reported from comparisons between GWR and MLR, ERR, SMA and LAG
SDF	a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame ob- ject (see package "sp") integrated with fit.points,GWR coefficient estimates, y value,predicted values, coefficient standard errors and bootstrap p-values in its "data" slot.
timings	starting and ending time.
this.call	the function call used.

Note

This function implements the bootstrap methods introduced in Harris et al. (2017). It provides a global test statistic (the modified one given in Harris et al. 2017) and a complementary localised version that can be mapped. The bootstrap methods test for coefficient variability found from GWR under model assumptions for each of four null hypotheses: i) multiple linear regression model (MLR); ii) simultaneous autoregressive error model (ERR); iii) moving average error model (SMA) and iv) simultaneous autoregressive lag model (LAG).

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Harris, P., Brunsdon, C., Lu, B., Nakaya, T., \& Charlton, M. (2017). Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models. Spatial Statistics, 21, 241261.

Examples

\#\# Not run:
\#Example with the Georgia educational attainment data
data(Georgia)
data(GeorgiaCounties)
coords <- cbind(Gedu.df\$X, Gedu.df\$Y)
Gedu.spdf <- SpatialPointsDataFrame(coords, Gedu.df)
\#Make a SpatialPolygonDataFrame
require(RColorBrewer)
gSRDF <- SpatialPolygonsDataFrame(polygons(Gedu.counties), over(Gedu.counties, Gedu.spdf), match. ID=T)
mypalette. 1 <- brewer.pal(11,"Spectral")
X11 (width=9, height=8)
spplot(gSRDF, names(gSRDF)[c(5,7:9)], col.regions=mypalette.1,
cuts=10, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Georgia educational attainment predictor data")))
bsm.res <- gwr.bootstrap(PctBach~PctRural+PctEld+PctFB+PctPov, gSRDF, R=999, longlat=T)
bsm.res
\#local bootstrap tests with respect to: MLR, ERR, SMA and LAG models.
mypalette.local.test <- brewer. pal(10, "Spectral")
X11 (width=12, height=16)
spplot(bsm.res\$SDF, names(bsm.res\$SDF)[14:17], col.regions=mypalette.local.test, cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the MLR model null hypothesis")))

X11 (width=12, height=16)
spplot(bsm.res\$SDF, names(bsm.res\$SDF)[19:22], col.regions=mypalette.local.test, cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the ERR model null hypothesis")))
X11 (width=12, height=16)
spplot(bsm.res\$SDF, names(bsm.res\$SDF)[24:27], col.regions=mypalette.local.test, cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the SMA model null hypothesis")))

X11 (width=12, height=16)
spplot(bsm.res\$SDF, names(bsm.res\$SDF)[29:32], col.regions=mypalette.local.test, cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the LAG model null hypothesis")))
\#
\#Example with Dublin voter data
data(DubVoter)
X11 (width=9, height=8)
spplot(Dub.voter, names(Dub.voter)[c(5,7, 9, 10)], col.regions=mypalette.1, cuts=10, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Dublin voter turnout predictor data")))
bsm.res1 <- gwr.bootstrap(GenEl2004~LARent+Unempl+Age18_24+Age25_44, Dub.voter , $\mathrm{R}=999$)

```
bsm.res1
#local bootstrap tests with respect to: MLR, ERR, SMA and LAG models.
X11(width=11, height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[14:17], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the MLR model null
                    hypothesis")))
X11(width=11,height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[19:22], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the ERR model null
                                    hypothesis")))
X11(width=11,height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[24:27], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the SMA model
                                    null hypothesis")))
X11(width=11, height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[29:32], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the LAG model
                    null hypothesis")))
## End(Not run)
```

gwr.collin.diagno Local collinearity diagnostics for basic GWR

Description

This function provides a series of local collinearity diagnostics for the independent variables of a basic GWR model.

Usage

gwr.collin.diagno(formula, data, bw, kernel="bisquare", adaptive=FALSE, $\mathrm{p}=2$, theta=0, longlat=F,dMat)

Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
bw bandwidth used in the weighting function, probably calculated by bw.gwr or bw.gwr.lcr; fixed (distance) or adaptive bandwidth (number of nearest neighbours)

kernel	function chosen as follows: gaussian: wgt $=\exp \left(-.5^{*}(\text { vdist/bw })^{\wedge} 2\right)$; exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$; bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt $=0$ otherwise; tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt= 0 otherwise; boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt $=0$ otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

corr.mat Local correlation matrix
VIF Local Variance inflation factors (VIFs) matrix
local_CN Local condition numbers
VDP Local variance-decomposition proportions
SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") integrated with VIF, local_CN, VDP and corr.mat

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Wheeler D, Tiefelsdorf M (2005) Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems 7:161-187

Wheeler D (2007) Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A 39:2464-2481

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software, 63(17):1-50

Description

This function finds the cross-validation score for a specified bandwidth for basic GWR. It can be used to construct the bandwidth function across all possible bandwidths and compared to that found automatically.

Usage

gwr.cv(bw, X, Y, kernel="bisquare", adaptive=FALSE, dp.locat, p=2, theta=0, longlat=F,dMat, verbose=T)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive bandwidth(number of nearest neighbours)

X
a numeric matrix of the independent data with an extra column of "ones" for the 1st column
Y a column vector of the dependent data
kernel function chosen as follows:
gaussian: wgt $=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
exponential: wgt $=\exp (-v d i s t / b w)$;
bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt $=0$ otherwise;
tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
dp.locat a two-column numeric array of observation coordinates
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw. dist
verbose if TRUE (default), reports the progress of search for bandwidth

Value

CV.score cross-validation score

Author(s)

Binbin Lu binbinlu@whu.edu.cn

```
gwr.cv.contrib Cross-validation data at each observation location for a basic GWR model
```


Description

This function finds the individual cross-validation score at each observation location, for a basic GWR model, for a specified bandwidth. These data can be mapped to detect unusually high or low cross-validations scores.

Usage

gwr.cv.contrib(bw, X, Y, kernel="bisquare",adaptive=FALSE, dp.locat, p=2, theta=0, longlat=F,dMat)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
X a numeric matrix of the independent data with an extra column of "ones" for the 1st column
$Y \quad$ a column vector of the dependent data
kernel function chosen as follows:
gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$;
bisquare: $w g t=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt $=0$ otherwise;
tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
dp.locat a two-column numeric array of observation coordinates
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

CV a data vector consisting of squared residuals, whose sum is the cross-validation score for the specified bandwidth.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

```
gwr.hetero Heteroskedastic GWR
```


Description

This function implements a heteroskedastic GWR model

Usage

```
    gwr.hetero(formula, data, regression.points, bw, kernel="bisquare",
                    adaptive=FALSE, tol=0.0001,maxiter=50,verbose=T,
                        p=2, theta=0, longlat=F,dMat)
```


Arguments

formula	Regression model formula of a formula object
data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
regression.points	
	a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
bw	bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
kernel	function chosen as follows:
	gaussian: $\mathrm{wgt}=\exp \left(-.5 *(\text { vdist/bw })^{\wedge} 2\right)$;
	exponential: wgt $=\exp (-\mathrm{vdist} / \mathrm{bw})$;
	$\begin{aligned} & \text { bisquare: } w g t=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2 \text { if vdist }<\mathrm{bw}, \text { wgt }=0 \text { otherwise; } \\ & \text { tricube: } \mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3 \text { if vdist }<\mathrm{bw}, \text { wgt }=0 \text { otherwise; } \\ & \text { boxcar: } \text { wgt }=1 \text { if dist }<\mathrm{bw}, \text { wgt }=0 \text { otherwise } \end{aligned}$
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
tol	the threshold that determines the convergence of the iterative procedure
maxiter	the maximum number of times to try the iterative procedure
verbose	logical, if TRUE verbose output will be made from the iterative procedure
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") integrated with coefficient estimates in its "data" slot.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.
Harris P, Fotheringham AS, Juggins S (2010) Robust geographically weighed regression: a technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Annals of the Association of American Geographers 100(2): 286-306
Harris P, Brunsdon C, Fotheringham AS (2011) Links, comparisons and extensions of the geographically weighted regression model when used as a spatial predictor. Stochastic Environmental Research and Risk Assessment 25:123-138
gwr.lcr GWR with a locally-compensated ridge term

Description

To address possible local collinearity problems in basic GWR, GWR-LCR finds local ridge parameters at affected locations (set by a user-specified threshold for the design matrix condition number).

Usage

gwr.lcr(formula, data, regression.points, bw, kernel="bisquare", lambda=0, lambda.adjust=FALSE, cn. thresh=NA, adaptive=FALSE, $\mathrm{p}=2$, theta=0, longlat=F, $\mathrm{cv}=\mathrm{T}, \mathrm{dMat}$)
\#\# S3 method for class 'gwrlcr'
print(x, ...)

Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
regression.points
a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$, or a two-column numeric array
bw bandwidth used in the weighting function, possibly calculated by bw.gwr.lcr; fixed (distance) or adaptive bandwidth(number of nearest neighbours)
kernel function chosen as follows:
gaussian: wgt $=\exp \left(-.5^{*}(\text { vdist } / \mathrm{bw})^{\wedge} 2\right)$;
exponential: wgt $=\exp (-v d i s t / b w)$;
bisquare: $w g t=\left(1-(v d i s t / b w)^{\wedge} 2\right)^{\wedge} 2$ if vdist $<b w$, wgt $=0$ otherwise;
tricube: $w g t=\left(1-(v d i s t / b w)^{\wedge} 3\right)^{\wedge} 3$ if vdist $<b w$, wgt=0 otherwise;
boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
\(\left.\left.$$
\begin{array}{ll}\text { p } & \begin{array}{l}\text { the power of the Minkowski distance, default is 2, i.e. the Euclidean distance } \\
\text { option for a globally-defined (constant) ridge parameter. Default is lambda=0, } \\
\text { which gives a basic GWR fit }\end{array}
$$

lambda. adjust

a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR

without a local ridge adjustment (i.e. lambda=0, everywhere); or (ii) a penalised

GWR with a global ridge adjustment (i.e. lambda is user-specified as some

constant, other than 0 everywhere); if TRUE, use cn.tresh to set the maximum

condition number. Here for locations with a condition number (for its local

design matrix) above this user-specified threshold, a local ridge parameter is

found\end{array}\right] $$
\begin{array}{l}\text { maximum value for condition number, commonly set between 20 and 30 }\end{array}
$$\right\}\)| if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to |
| :--- |
| the number of nearest neighbours (i.e. adaptive distance); default is FALSE, |

Value

A list of class "rgwr":
SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") with coordinates of regression.points in its "data" slot.
GW. arguments parameters used for the LCR-GWR calibration
GW.diagnostic diagnostic information is given when data points are also used as regression locations
timings timing information for running this function
this.call the function call used.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Wheeler D (2007) Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A 39:2464-2481
Brunsdon C, Charlton M, Harris P (2012) Living with collinearity in Local Regression Models. GISRUK 2012, Lancaster, UK

Brunsdon C, Charlton M, Harris P (2012) Living with collinearity in Local Regression Models. Spatial Accuracy 2012, Brazil

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software 63(17): 1-50

Examples

```
data(DubVoter)
require(RColorBrewer)
# Function to find the global condition number (CN)
BKW_cn <- function (X) {
    p <- dim(X)[2]
    Xscale <- sweep(X, 2, sqrt(colSums(X^2)), "/")
    Xsvd <- svd(Xscale)$d
    cn <- Xsvd[1] / Xsvd[p]
    cn
}
#
X <- cbind(1,Dub.voter@data[,3:10])
head(X)
CN.global <- BKW_cn(X)
CN.global
## Not run:
# gwr.lcr function with a global bandwidth to check that the global CN is found
gwr.lcr1 <- gwr.lcr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter, bw=10000000000)
summary(gwr.lcr1$SDF$Local_CN)
# Find and map the local CNs from a basic GWR fit using the lcr-gwr function
#(note this is NOT the locally-compensated ridge GWR fit as would need to set
#lambda.adjust=TRUE and cn.thresh=30, say)
bw.lcr2 <- bw.gwr.lcr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter, kernel="bisquare", adaptive=TRUE)
gwr.lcr2 <- gwr.lcr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter, bw=bw.lcr2, kernel="bisquare", adaptive=TRUE)
if(require("RColorBrewer"))
        spplot(gwr.lcr2$SDF,"Local_CN",col.regions=brewer.pal(9,"YlOrRd"),cuts=8,
    main="Local CN")
## End(Not run)
```


Description

This function finds the cross-validation score for a specified bandwidth for GWR-LCR. It can be used to construct the bandwidth function across all possible bandwidths and compared to that found automatically.

Usage

$$
\begin{aligned}
& \text { gwr.lcr.cv(bw, X, Y, locs, kernel="bisquare", } \\
& \text { lambda=0, lambda. adjust=FALSE, cn. thresh=NA, } \\
& \text { adaptive=FALSE, } p=2 \text {, theta }=0 \text {, longlat=F,dMat) }
\end{aligned}
$$

Arguments

bw	bandwidth used in the weighting function;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
X	a numeric matrix of the independent data with an extra column of "ones" for the 1 st column
Y	a column vector of the dependent data
kernel	function chosen as follows: gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$; exponential: wgt $=\exp (-v d i s t / b w)$; bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; tricube: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; boxcar: wgt $=1$ if dist $<b w$, wgt $=0$ otherwise
locs	a two-column numeric array of observation coordinates
lambda	option for a globally-defined (constant) ridge parameter. Default is lambda=0, which gives a basic GWR fit
lambda.adjust	a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR without a local ridge adjustment (i.e. lambda $=0$, everywhere); or (ii) a penalised GWR with a global ridge adjustment (i.e. lambda is user-specified as some constant, other than 0 everywhere); if TRUE, use cn.tresh to set the maximum condition number. Here for locations with a condition number (for its local design matrix) above this user-specified threshold, a local ridge parameter is found
cn.thresh	maximum value for condition number, commonly set between 20 and 30
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

CV.score cross-validation score

Author(s)

Binbin Lu binbinlu@whu.edu.cn
gwr.lcr.cv.contrib Cross-validation data at each observation location for the GWR-LCR model

Description

This function finds the individual cross-validation score at each observation location, for a GWRLCR model, for a specified bandwidth. These data can be mapped to detect unusually high or low cross-validations scores.

Usage

gwr.lcr.cv.contrib(bw, X, Y, locs, kernel="bisquare", lambda=0, lambda. adjust=FALSE, cn. thresh=NA, adaptive=FALSE, $\mathrm{p}=2$, theta=0, longlat=F,dMat)

Arguments

bw bandwidth used in the weighting function; fixed (distance) or adaptive bandwidth(number of nearest neighbours)
X a numeric matrix of the independent data with an extra column of "ones" for the 1st column
$Y \quad a \quad$ column vector of the dependent data
locs a two-column numeric array of observation coordinates
kernel function chosen as follows:
gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
exponential: wgt $=\exp (-v d i s t / b w)$;
bisquare: $w g t=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt $=0$ otherwise;
tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
lambda option for a globally-defined (constant) ridge parameter. Default is lambda=0, which gives a basic GWR fit
lambda. adjust a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR without a local ridge adjustment (i.e. lambda=0, everywhere); or (ii) a penalised GWR with a global ridge adjustment (i.e. lambda is user-specified as some constant, other than 0 everywhere); if TRUE, use cn.tresh to set the maximum condition number. Here for locations with a condition number (for its local design matrix) above this user-specified threshold, a local ridge parameter is found

cn. thresh	maximum value for condition number, commonly set between 20 and 30
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

CV a data vector consisting of squared residuals, whose sum is the cross-validation score for the specified bandwidth.

Author(s)

Binbin Lu binbinlu@whu.edu.cn
gwr.mink.approach Minkovski approach for GWR

Description

This function implements the Minkovski approach to select an 'optimum' distance metric for calibrating a GWR model.

Usage

gwr.mink.approach(formula, data, criterion="AIC", bw, bw.sel.approach = "AIC", adaptive=F, kernel="bisquare", p.vals=seq(from=0.25, to=8, length.out=32), p.inf =T, theta.vals $=\operatorname{seq}($ from $=0$, to $=0.5 *$ pi, length.out=10), verbose $=F$, nlower = 10)

Arguments

formula	Regression model formula of a formula object data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp		
criterion	the criterion used for distance metric selection, AICc ("AICc") or cross-validation ("CV") score; default is "AICc"		
bw	bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed (distance) or adaptive bandwidth(number of nearest neighbours)		
bw. sel.approach			approach used to seclect an optimum bandwidth for each calibration if no band-
:---			
width (bw) is given; specified by CV for cross-validation approach or by AIC			
corrected (AICc) approach			

adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
kernel	function chosen as follows: gaussian: $w g t=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right) ;$ exponential: wgt $=\exp (-\mathrm{vdist} / \mathrm{bw}) ;$ bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist < bw, wgt=0 otherwise; tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist <bw, wgt=0 otherwise; boxcar: wgt=1 if dist <bw, wgt=0 otherwise
p.vals	a collection of positive numbers used as the power of the Minkowski distance
p.inf	if TRUE, Chebyshev distance is tried for model calibration, i.e. p is infinity
theta.vals	a collection of values used as angles in radians to rotate the coordinate system
verbose	if TRUE and bandwidth selection is undertaken, the bandwidth searches are reported
nlower	the minmum number of nearest neighbours if an adaptive kernel is used

Value

A list of:
diag.df a data frame with four columns (p, theta, bandwidth, $\mathrm{AICc} / \mathrm{CV}$), each row corresponds to a calibration
coefs.all a list class object including all the estimated coefficients

Note

The function "mink.approach" (in the early versions of GWmodel) has been renamed as "gwr.mink.approach", while the old name is still kept valid.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Lu, B, Charlton, M, Brunsdon, C \& Harris, P(2016). The Minkowski approach for choosing the distance metric in Geographically Weighted Regression. International Journal of Geographical Information Science, 30(2): 351-368.

Description

This function visualises the $\mathrm{AICc} / \mathrm{CV}$ results from the gwr.mink. approach.

Usage

gwr.mink.matrixview(diag.df, znm=colnames(diag.df)[4], criterion="AIC")

Arguments

diag.df the first part of a list object returned by gwr.mink.approach
znm the name of the forth column in diag.df
criterion the criterion used for distance metric selection in gwr.mink.approach

Note

The function "mink.matrixview" (in the early versions of GWmodel) has been renamed as "gwr.mink.matrixview", while the old name is still kept valid.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Lu, B, Charlton, M, Brunsdon, C \& Harris, P(2016). The Minkowski approach for choosing the distance metric in Geographically Weighted Regression. International Journal of Geographical Information Science, 30(2): 351-368.
gwr.mink.pval
Select the values of p for the Minkovski approach for GWR

Description

These functions implement heuristics to select the values of p from two intervals: $(0,2]$ in a 'backward' direction and (2, Inf) in a 'forward' direction.

Usage

```
gwr.mink.pval(formula, data, criterion="AIC", bw, bw.sel.approach = "AIC",
    adaptive=F, kernel="bisquare", left.interval=0.25,
            right.interval=0.5,drop.tol=3, theta0=0,verbose=F,nlower = 10)
gwr.mink.pval.forward(formula, data, bw, bw.sel.approach = "AIC",
    adaptive=F, kernel="bisquare", p.max=Inf,p.min=2,
    interval=0.5,drop.tol=3, theta0=0,verbose=F,nlower = 10)
gwr.mink.pval.backward(formula, data, bw, bw.sel.approach = "AIC",
    adaptive=F, kernel="bisquare", p.max=2,p.min=0.1,
    interval=0.5,drop.tol=3, theta0=0,verbose=F,nlower = 10)
## S3 method for class 'pvlas'
plot(x, ...)
```


Arguments

formula	Regression model formula of a formula object a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
criterion	the criterion used for distance metric selection, AICc ("AICc") or cross-validation ("CV") score; default is "AICc"
bw	bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed (distance) or adaptive bandwidth(number of nearest neighbours)

bw.sel.approach
approach used to seclect an optimum bandwidth for each calibration if no bandwidth (bw) is given; specified by CV for cross-validation approach or by AIC corrected (AICc) approach
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
kernel function chosen as follows:
gaussian: wgt $=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
exponential: wgt $=\exp (-v d i s t / b w)$;
bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt $=0$ otherwise;
boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
left.interval the step-size for searching the left interval (0,2] in a 'backward' direction
right.interval the step-size for searching the right interval (2, Inf) in a 'forward' direction
p.max the maximum value of p
p.min the minimum value of p
interval the step-size for searching the given interval in a 'backward' or 'forward' direction
drop.tol an AICc difference threshold to define whether the values of p to be dropped or not

theta0	a fixed rotation angle in radians
verbose	if TRUE and bandwidth selection is undertaken, the bandwidth searches are reported
nlower	the minmum number of nearest neighbours if an adaptive kernel is used
x	an object of class "pvlas", returned by these functions
\ldots	arguments passed through (unused)

Value

A list of:
$p . v a l s \quad a$ vector of tried values of p
cretion. vals a vector of criterion values (AICc or CV) for tried values of p
p.dropped a vector of boolean to label whether a value of p to be dropped or not: TRUE means to be dropped and FALSE means to be used for the Minkovski approach

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Lu, B, Charlton, M, Brunsdon, C \& Harris, P(2016). The Minkowski approach for choosing the distance metric in Geographically Weighted Regression. International Journal of Geographical Information Science, 30(2): 351-368.

```
gwr.mixed Mixed GWR
```


Description

This function implements mixed (semiparametric) GWR

Usage

gwr.mixed(formula, data, regression.points, fixed.vars, intercept.fixed=FALSE, bw, diagnostic=T, kernel="bisquare", adaptive=FALSE, $p=2$, theta=0, longlat=F,dMat)

Arguments

formula	Regression model formula of a formula object
data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
regression.points	
	a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
fixed.vars	independent variables that appeared in the formula that are to be treated as global
intercept.fixed	
	logical, if TRUE the intercept will be treated as global
bw	bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
diagnostic	logical, if TRUE the diagnostics will be calculated
kernel	function chosen as follows:
	gaussian: wgt $=\exp \left(-.5 *(\text { vdist/bw })^{\wedge} 2\right)$;
	exponential: wgt $=\exp (-\mathrm{vdist} / \mathrm{bw})$;
	bisquare: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
	tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
	boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value

A list of class "mgwr":
GW. arguments a list class object including the model fitting parameters for generating the report file
aic AICc value from this calibration
$d f$.used effective degree of freedom
rss residual sum of squares
SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") integrated with coefficient estimates in its "data" slot.
timings starting and ending time.
this.call the function call used.

Note
For an alternative formulation of mixed GWR, please refer to GWR 4, which provides useful tools for automatic bandwidth selection. This windows-based software also implements generalised mixed GWR.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Brunsdon C, Fotheringham AS, Charlton ME (1999) Some notes on parametric signficance tests for geographically weighted regression. Journal of Regional Science 39(3):497-524
Mei L-M, He S-Y, Fang K-T (2004) A note on the mixed geographically weighted regression model. Journal of regional science 44(1):143-157

Mei L-M, Wang N, Zhang W-X (2006) Testing the importance of the explanatory variables in a mixed geographically weighted regression model. Environment and Planning A 38:587-598
Nakaya T, Fotheringham AS, Brunsdon C, Charlton M (2005) Geographically Weighted Poisson Regression for Disease Association Mapping, Statistics in Medicine 24: 2695-2717

Nakaya T et al. (2011) GWR4.0, http://gwr.nuim.ie/.

```
gwr.model.selection Model selection for GWR with a given set of independent variables
```


Description

This function selects one GWR model from many alternatives based on the AICc values.

Usage

gwr.model.selection(DeVar=NULL, InDeVars=NULL, data=list(), bw=NULL, approach="CV", adaptive=F, kernel="bisquare", dMat=NULL, $\mathrm{p}=2$, theta=0, longlat=F)

Arguments

DeVar	dependent variable
InDeVars	a vector of independent variables for model selection data
a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp	
bw	bandwidth used in the weighting function, possibly calculated by bw.gwr approach
specified by CV $(\mathbf{c v})$ for cross validation approach or AIC (aic) for selecting bandwidth by AICc values	

adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
kernel	function chosen as follows:
	gaussian: wgt $=\exp \left(-.5 *(\text { vdist/bw })^{\wedge} 2\right)$;
	exponential: wgt $=\exp (-\mathrm{vdist} / \mathrm{bw})$;
	bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
	tricube: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
	boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt $=0$ otherwise
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated

Value

A list of:
model.list a list of all the tried GWR models consisted of formulas and variables.
GWR.df a data frame consited of four columns: bandwidth, AIC, AICc, RSS

Note

The algorithm for selecting GWR models consists of the following four steps:
Step 1. Start by calibrating all the possible bivariate GWR models by sequentially regressing a single independent variable against the dependent variable;
Step 2. Find the best performing model which produces the minimum AICc value, and permanently include the corresponding independent variable in subsequent models;
Step 3. Sequentially introduce a variable from the remaining group of independent variables to construct new models with the permanently included independent variables, and determine the next permanently included variable from the best fitting model that has the minimum AICc value;
Step 4. Repeat step 3 until all the independent variables are permanently included in the model.
In this procedure, the independent variables are iteratively included into the model in a "forward" direction. Note that there is a clear distinction between the different number of involved variables in a selection step, which can be called model levels.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Lu, B, Charlton, M, Harris, P, Fotheringham, AS (2014) Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data. International Journal of Geographical Information Science 28(4): 660-681

See Also

gwr.model.view, gwr.model.sort

gwr.model.sort	Sort the results of the GWR model selection function gwr.model.selection.

Description

Sort the results from the GWR model selection function gwr.model. selection

Usage

gwr.model.sort(Sorting.list, numVars, ruler.vector)

Arguments

Sorting.list	a list returned by function gwr.model. selection
numVars	the number of independent variables involved in model selection
ruler.vector	a numeric vector as the sorting basis

Note

The function sorts the results of model selection within individual levels.
The function "model.sort.gwr" (in the early versions of GWmodel) has been renamed as "gwr.model.sort", while the old name is still kept valid.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

See Also

gwr.model.selection, gwr.model.view
gwr.model.view Visualise the GWR models from gwr.model.selection

Description

This function visualises the GWR models from gwr.model. selection.

Usage

gwr.model.view(DeVar, InDeVars, model.list)

Arguments

DeVar dependent variable
InDeVars a vector of independent variables for model selection
model.list a list of all GWR model tried in gwr.model. selection

Note

The function "model.view.gwr" (in the early versions of GWmodel) has been renamed as "gwr.model.view", while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu. cn>

See Also

gwr.model.selection, gwr.model.sort

Examples

```
## Not run:
data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
DeVar<-"PURCHASE"
InDeVars<-c("FLOORSZ", "GARAGE1", "BLDPWW1", "BLDPOSTW")
model.sel<-gwr.model.selection(DeVar,InDeVars, data=londonhp,
kernel = "gaussian", dMat=DM,bw=5000)
model.list<-model.sel[[1]]
gwr.model.view(DeVar, InDeVars, model.list=model.list)
## End(Not run)
```

```
gwr.montecarlo
```

Monte Carlo (randomisation) test for significance of GWR parameter variability

Description

This function implements a Monte Carlo (randomisation) test to test for significant (spatial) variability of a GWR model's parameters or coefficients.

Usage

gwr.montecarlo(formula, data = list(), nsims=99, kernel="bisquare", adaptive=F, bw, $\mathrm{p}=2$, theta=0, longlat=F, dMat)

Arguments

formula	Regression model formula of a formula object
data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
nsims	the number of randomisations
kernel	function chosen as follows:
	gaussian: $\mathrm{wgt}=\exp \left(-.5 *(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
	exponential: wgt $=\exp (-\mathrm{vdist} / \mathrm{bw})$;
	bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise;
	tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; boxcar: wgt=1 if dist $<$ bw, wgt=0 otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
bw	bandwidth used in the weighting function, possibly calculated by bw.gwr
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist

Value
pmat A vector containing p-values for all the GWR parameters

Note

The function "montecarlo.gwr" (in the early versions of GWmodel) has been renamed as "gwr.montecarlo", while the old name is still kept valid.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Brunsdon C, Fotheringham AS, Charlton ME (1998) Geographically weighted regression - modelling spatial non-stationarity. Journal of the Royal Statistical Society, Series D-The Statistician 47(3):431-443
Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Charlton, M, Fotheringham, S, and Brunsdon, C (2007), GWR3.0.

Examples

```
## Not run:
data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
bw<-bw.gwr(PURCHASE~FLOORSZ, data=londonhp,dMat=DM, kernel="gaussian")
#See any difference in the next two commands and why?
res.mont1<-gwr.montecarlo(PURCHASE~PROF+FLOORSZ, data = londonhp,dMat=DM,
nsim=99, kernel="gaussian", adaptive=FALSE, bw=3000)
res.mont2<-gwr.montecarlo(PURCHASE~PROF+FLOORSZ, data = londonhp,dMat=DM,
nsim=99, kernel="gaussian", adaptive=FALSE, bw=300000000000)
## End(Not run)
```

gwr.multiscale Multiscale GWR

Description

This function implements multiscale GWR to detect variations in regression relationships across different spatial scales. This function can not only find a different bandwidth for each relationship but also (and simultaneously) find a different distance metric for each relationship (if required to do so).

Usage

gwr.multiscale(formula, data, kernel="bisquare", adaptive=FALSE, criterion="dCVR", max.iterations=2000, threshold=0.00001, dMats, p.vals, theta.vals, longlat=FALSE, bws0, bw.seled=rep(F, length(bws0)), approach = "AIC", bws.thresholds=rep(0.1, length(dMats)), bws.reOpts=5, verbose=F, hatmatrix=T, predictor.centered=rep(T, length(bws0)-1), nlower = 10)
\#\# S3 method for class 'multiscalegwr'
print(x, ...)

Arguments

hatmatrix	if TRUE the hatmatrix for the whole model will be calculated, and AICc, adjusted-
R2 values will be returned accordingly.	

Value

A list of class "psdmgwr":

SDF	a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame ob- ject (see package "sp") integrated with data locations,coefficient estimates from the PSDM GWR model,predicted y values, residuals, coefficient standard errors and t-values in its "data" slot.
GW. arguments	a list class object including the model fitting parameters for generating the report file
GW. diagnostic	a list class object including the diagnostic information of the model fitting
lm	an object of class inheriting from "lm", see lm.
bws.vars	bandwidths used for all the parameters within the back-fitting procedure
timings	starting and ending time.
this.call	the function call used.

Note

This function implements multiscale GWR to detect variations in regression relationships across different spatial scales. This function can not only find a different bandwidth for each relationship, but also (and simultaneously), find a different distance metric for each relationship (i.e. ParameterSpecific Distance Metric GWR, i.e. PSDM GWR). Note that multiscale GWR (MGWR) has also been referred to as flexible bandwidth GWR (FBGWR) and conditional GWR (CGWR) in the literature. All are one and the same model, but where PSDM-GWR additionally provides a different distance metric option for each relationship. An MGWR model is calibrated if no "dMats" and "p.vals" are specified; a mixed GWR model will be calibrated if an infinite bandwidth and another regular bandwidth are used for estimating the global and local parameters (again when no "dMats" and "p.vals" are specified). In other words, the gwr.multiscale function is specified with Euclidean distances in both cases. Note that the results from this function for a mixed GWR model and gwr.mixed might be different, as a back-fitting algorithm is used in gwr.multiscale, while an approximating algorithm is applied in gwr.mixed. The gwr.mixed function performs better in computational efficiency, but poorer in prediction accuracy.

Author(s)

Binbin Lu <binbinlu@whu.edu. cn>

References

Yang, W. (2014). An Extension of Geographically Weighted Regression with Flexible Bandwidths. St Andrews, St Andrews, UK.

Lu, B., Harris, P., Charlton, M., \& Brunsdon, C. (2015). Calibrating a Geographically Weighted Regression Model with Parameter-specific Distance Metrics. Procedia Environmental Sciences, 26, 109-114.
Lu, B., Brunsdon, C., Charlton, M., \& Harris, P. (2017). Geographically weighted regression with parameter-specific distance metrics. International Journal of Geographical Information Science, 31, 982-998.

Fotheringham, A. S., Yang, W. \& Kang, W. (2017). Multiscale Geographically Weighted Regression (MGWR). Annals of the American Association of Geographers, 107, 1247-1265.

Yu, H., A. S. Fotheringham, Z. Li, T. Oshan, W. Kang \& L. J. Wolf. 2019. Inference in multiscale geographically weighted regression. Geographical Analysis(In press).
Leong, Y.Y., \& Yue, J.C. (2017). A modification to geographically weighted regression. International Journal of Health Geographics, 16 (1), 11.
Lu, B., Yang, W. Ge, Y. \& Harris, P. (2018). Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Forthcoming Computers, Environment and Urban Systems.
Wolf, L.J, Oshan, T.M, Fotheringham, A.S. (2018). Single and multiscale models of process spatial heterogeneity. Geographical Analysis, 50(3): 223-246.

Murakami, D., Lu, B., Harris, P., Brunsdon, C., Charlton, M., Nakaya, T., \& Griffith, D. (2019) The importance of scale in spatially varying coefficient modelling. Forthcoming Annals of the Association of American Geographers.

Examples

```
data(LondonHP)
EUDM <- gw.dist(coordinates(londonhp))
#No bandwidth is selected, and bws0 values are used
## Not run:
###Similar as the basic GWR
res1<-gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, criterion="dCVR",kernel="gaussian",
adaptive=T, bws0=c(100, 100, 100),bw.seled=rep(T, 3), dMats=list(EUDM,EUDM,EUDM))
#FBGWR
res2<-gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, criterion="dCVR",kernel="gaussian",
adaptive=T, bws0=c(100, 100, 100), dMats=list(EUDM,EUDM,EUDM))
#Mixed GWR
res3<-gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, bws0=c(Inf, 100, 100, Inf),
                        bw.seled=rep(T, 3),kernel="gaussian", dMats=list(EUDM,EUDM,EUDM))
#PSDM GWR
res4<- gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, kernel="gaussian", p.vals=c(1,2,3))
## End(Not run)
```


Description

This function implements basic GWR as a spatial predictor. The GWR prediction function is able to do leave-out-one predictions (when the observation locations are used for prediction) and predictions at a set-aside data set (when unobserved locations are used for prediction).

Usage

gwr.predict(formula, data, predictdata, bw, kernel="bisquare", adaptive=FALSE, p=2,
theta=0, longlat=F,dMat1, dMat2)
\#\# S3 method for class 'gwrm.pred'
print(x, ...)

Arguments

formula	Regression model formula of a formula object
data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
predictdata	a Spatial*DataFrame object to provide prediction locations, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
bw	bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
kernel	function chosen as follows: gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$; exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$; bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt $=0$ otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat1	a pre-specified distance matrix between data points and prediction locations; if not given, it will be calculated by the given parameters
dMat2	a pre-specified sysmetric distance matrix between data points; if not given, it will be calculated by the given parameters
x	an object of class "gwrm.pred", returned by the function gwr.predict
	arguments passed through (unused)

Value

A list of class "gwrm.pred":
GW. arguments a list of geographically weighted arguments
SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") with GWR coefficients, predictions and prediction variances in its "data" slot.
this.call the function call used.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Harris P, Fotheringham AS, Crespo R, Charlton M (2010) The use of geographically weighted regression for spatial prediction: an evaluation of models using simulated data sets. Mathematical Geosciences 42:657-680
Harris P, Juggins S (2011) Estimating freshwater critical load exceedance data for Great Britain using space-varying relationship models. Mathematical Geosciences 43: 265-292

Harris P, Brunsdon C, Fotheringham AS (2011) Links, comparisons and extensions of the geographically weighted regression model when used as a spatial predictor. Stochastic Environmental Research and Risk Assessment 25:123-138
Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software, 63(17):1-50

Examples

```
## Not run:
data(LondonHP)
gwr.pred<-gwr.predict(PURCHASE~FLOORSZ, data=londonhp, bw=2000,kernel = "gaussian")
gwr.pred
#########Global OLS regression results and comparison with gstat functions
if(require("gstat"))
{
    mlr.g <- gstat(id = "xx1", formula = PURCHASE~FLOORSZ, data=londonhp)
    mlr.g1 <- predict(mlr.g, newdata = londonhp, BLUE = TRUE)
    mlr.g1
}
############
ols.pred<-gwr.predict(PURCHASE~FLOORSZ, data=londonhp, bw=100000000000000000000000)
ols.pred$SDF
## End(Not run)
```


Description

This function implements two robust GWR models.

Usage

```
gwr.robust(formula, data, bw,filtered=FALSE,
kernel = "bisquare",adaptive = FALSE, p = 2,
    theta = 0, longlat = F, dMat, F123.test = F,
    maxiter=20,cut.filter= 3, cut1=2,cut2=3,delta=1.0e-5)
```


Arguments

formula	Regression model formula of a formula object
data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{~ s p}$
bw	bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed (distance) or adaptive bandwidth(number of nearest neighbours)
filtered	default FALSE, the automatic approach is used, if TRUE the filtered data approach is employed, as that described in Fotheringham et al. (2002 p.73-80)
kernel	function chosen as follows: gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$; exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$; bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; boxcar: wgt=1 if dist $<\mathrm{bw}$, wgt=0 otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist
F123.test	default FALSE, otherwise calculate F-test results (Leung et al. 2000)
maxiter	default 20, maximum number of iterations for the automatic approach
cut.filter	If filtered is TRUE, it will be used as the residual cutoff for filtering data; default cutoff is 3
cut1	default 2 , first cutoff for the residual weighting function. $\mathrm{wr}(\mathrm{e})=1$ if lel<=cut $1 *$ sigma

```
cut2 default 3, second cutoff for the residual weighting function. wr(e)=(1-(lel-2)^2)^2
    if cut1*sigma<lel<cut2*sigma, and wr(e)=0 if lel>=cut2*sigma; cut 1 and cut2
    refer to the automatic approach
delta default 1.0e-5, tolerance of the iterative algorithm
```


Value

A list of class "gwrm":

GW. arguments	a list class object including the model fitting parameters for generating the report file
GW. diagnostic	a list class object including the diagnostic information of the model fitting an object of class inheriting from "lm", see lm.
lm	a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame ob- ject (see package "sp") integrated with fit.points,GWR coefficient estimates, y value,predicted values, coefficient standard errors and t-values in its "data" slot.
SDF	Notably, E_weigts will be also included in the output SDF which represents the residual weighting when automatic approach is used; When the filtered approach is used, E_weight is a vector consisted of 0 and 1, where 0 means outlier to be
excluded from calibration.	

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Harris P, Fotheringham AS, Juggins S (2010) Robust geographically weighed regression: a technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Annals of the Association of American Geographers 100(2): 286-306

Examples

```
## Not run:
data(DubVoter)
bw.a <- bw.gwr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64,
data=Dub.voter, approach="AICc",kernel="bisquare", adaptive=TRUE)
bw.a
gwr.res <- gwr.basic(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64,
data=Dub.voter,bw=bw.a,kernel="bisquare", adaptive=TRUE,F123.test=TRUE)
print(gwr.res)
```

```
# Map of the estimated coefficients for LowEduc
names(gwr.res$SDF)
if(require("RColorBrewer"))
{
    mypalette<-brewer.pal(6,"Spectral")
    X11(width=10, height=12)
    spplot(gwr.res$SDF,"LowEduc",key.space = "right",
    col.regions=mypalette, at=c (-8, -6, -4, -2, 0, 2, 4),
    main="Basic GW regression coefficient estimates for LowEduc")
}
# Robust GW regression and map of the estimated coefficients for LowEduc
rgwr.res <- gwr.robust(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter,bw=bw.a,kernel="bisquare",
adaptive=TRUE,F123.test=TRUE)
print(rgwr.res)
if(require("RColorBrewer"))
{
    X11(width=10, height=12)
    spplot(rgwr.res$SDF, "LowEduc", key.space = "right",
    col.regions=mypalette, at=c (-8, -6, -4, -2, 0, 2, 4) ,
    main="Robust GW regression coefficient estimates for LowEduc")
}
## End(Not run)
```

gwr.t.adjust

Adjust p-values for multiple hypothesis tests in basic GWR

Description

Given a set of p -values from the pseudo t-tests of basic GWR outputs, this function returns adjusted p-values using: (a) Bonferroni, (b) Benjamini-Hochberg, (c) Benjamini-Yekutieli and (d) Fotheringham-Byrne procedures.

Usage

gwr.t.adjust(gwm.Obj)

Arguments

gwm. Obj an object of class "gwrm", returned by the function gwr.basic

Author(s)

Binbin Lu <binbinlu@whu.edu. cn>

References

Byrne, G., Charlton, M. and Fotheringham, S., 2009. Multiple dependent hypothesis tests in geographically weighted regression. In: Lees, B. and Laffan, S. eds. 10th International conference on geocomputation. Sydney.

```
    gwr.write Write the GWR results into files
```


Description

This function writes the calibration result of function gwr.basic to a text file and shape files

Usage

```
gwr.write( \(x, f n=\) "GWRresults")
gwr.write.shp(x,fn="GWRresults")
```


Arguments

$x \quad$ an object of class "gwrm", returned by the function gwr.basic
fn file name for the written results, by default the output files can be found in the working directory, "GWRresults.txt", "GWRresults(.shp, .shx, .dbf)"

Note

The projection file is missing for the writen shapefiles.
The functions "writeGWR" and "writeGWR.shp" (in the early versions of GWmodel) have been renamed respectively as "gwr.write" and "gwr.write.shp", while the old names are still kept valid.

Author(s)

Binbin Lu binbinlu@whu.edu.cn
gwss Geographically weighted summary statistics (GWSS)

Description

This function calculates basic and robust GWSS. This includes geographically weighted means, standard deviations and skew. Robust alternatives include geographically weighted medians, interquartile ranges and quantile imbalances. This function also calculates basic geographically weighted covariances together with basic and robust geographically weighted correlations.

Usage

```
gwss(data, summary.locat,vars,kernel="bisquare",adaptive=FALSE, bw,p=2,
            theta=0, longlat=F,dMat,quantile=FALSE)
## S3 method for class 'gwss'
print(x, ...)
```


Arguments

data	a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
summary.locat	a Spatial*DataFrame object for providing summary locations, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
vars	a vector of variable names to be summarized
bw	bandwidth used in the weighting function
kernel	function chosen as follows: gaussian: $\mathrm{wgt}=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$; exponential: $\mathrm{wgt}=\exp (-\mathrm{vdist} / \mathrm{bw})$; bisquare: wgt $=\left(1-(v d i s t / b w)^{\wedge} 2\right)^{\wedge} 2$ if vdist $<b w$, wgt=0 otherwise; tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}, \mathrm{wgt}=0$ otherwise; boxcar: wgt=1 if dist $<b w$, wgt $=0$ otherwise
adaptive	if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p	the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta	an angle in radians to rotate the coordinate system, default is 0
longlat	if TRUE, great circle distances will be calculated
dMat	a pre-specified distance matrix, it can be calculated by the function gw. dist
quantile	if TRUE, median, interquartile range, quantile imbalance will be calculated
x	an object of class "gwss", returned by the function gwss
	arguments passed through (unused)

Value

A list of class "lss":
SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") with local means,local standard deviations,local variance, local skew,local coefficients of variation, local covariances, local correlations (Pearson's), local correlations (Spearman's), local medians, local interquartile ranges, local quantile imbalances and coordinates.
\ldots other information for reporting

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.
Brunsdon C, Fotheringham AS, Charlton ME (2002) Geographically weighted summary statistics a framework for localised exploratory data analysis. Computers, Environment and Urban Systems 26:501-524

Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2014) Geographically weighted methods and their use in network re-designs for environmental monitoring. Stochastic Environmental Research and Risk Assessment 28: 1869-1887

Examples

```
## Not run:
data(EWHP)
data(EWOutline)
head(ewhp)
houses.spdf <- SpatialPointsDataFrame(ewhp[, 1:2], ewhp)
localstats1 <- gwss(houses.spdf, vars = c("PurPrice", "FlrArea"), bw = 50000)
head(data.frame(localstats1$SDF))
localstats1
##A function for mapping data
if(require("RColorBrewer"))
{
    quick.map <- function(spdf,var,legend.title,main.title)
    {
        x <- spdf@data[,var]
        cut.vals <- pretty(x)
        x.cut <- cut(x,cut.vals)
        cut.levels <- levels(x.cut)
        cut.band <- match(x.cut,cut.levels)
        colors <- brewer.pal(length(cut.levels), "YlOrRd")
        colors <- rev(colors)
        par(mar=c(1,1,1,1))
        plot(ewoutline,col="olivedrab",bg="lightblue1")
        title(main.title)
        plot(spdf,add=TRUE,col=colors[cut.band],pch=16)
        legend("topleft",cut.levels,col=colors,pch=16,bty="n",title=legend.title)
    }
    quick.map(localstats1$SDF, "PurPrice_LM", "1000's Uk Pounds",
    "Geographically Weighted Mean")
    par(mfrow = c(1, 2))
    quick.map(localstats1$SDF, "PurPrice_LSKe", "Skewness Level", "Local Skewness")
    quick.map(localstats1$SDF, "PurPrice_LSD", "1000's Pounds", "Local Standard Deviation")
    #Exploring Non-Stationarity of Relationships
    quick.map(localstats1$SDF, "Corr_PurPrice.FlrArea", expression(rho),
    "Geographically Weighted Pearson Correlation")
    #Robust, Quantile Based Local Summary Statistics
    localstats2 <- gwss(houses.spdf, vars = c("PurPrice", "FlrArea"),
    bw = 50000, quantile = TRUE)
    quick.map(localstats2$SDF, "PurPrice_Median", "1000 UK Pounds",
    "Geographically Weighted Median House Price")
```

\}
\#\# End(Not run)

```
gwss.montecarlo Monte Carlo (randomisation) test for gwss
```


Description

This function implements Monte Carlo (randomisation) tests for the GW summary statistics found in gwss.

Usage

```
gwss.montecarlo(data, vars, kernel = "bisquare",
                        adaptive = FALSE, bw, p = 2, theta = 0, longlat = F,
                        dMat, quantile=FALSE,nsim=99)
```


Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package $\mathbf{s p}$
vars a vector of variable names to be summarized
bw bandwidth used in the weighting function
kernel function chosen as follows:
gaussian: wgt $=\exp \left(-.5^{*}(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)$;
exponential: $w g t=\exp (-v d i s t / b w)$;
bisquare: $\mathrm{wgt}=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 2\right)^{\wedge} 2$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
tricube: wgt $=\left(1-(\mathrm{vdist} / \mathrm{bw})^{\wedge} 3\right)^{\wedge} 3$ if vdist $<\mathrm{bw}$, wgt=0 otherwise;
boxcar: wgt=1 if dist $<b w$, wgt=0 otherwise
adaptive if TRUE calulate the adaptive kernel, and bw correspond to the number of nearest neighbours, default is FALSE.
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw. dist
quantile if TRUE, median, interquartile range, quantile imbalance will be calculated
nsim default 99, the number of randomisations

Value

test probability of the test statistics of the GW summary statistics; if $\mathrm{p}<0.025$ or if $\mathrm{p}>0.975$ then the true local summary statistics can be said to be significantly different (at the 0.95 level) to such a local summary statistics found by chance.

Note

The function "montecarlo.gwss" (in the early versions of GWmodel) has been renamed as "gwss.montecarlo", while the old name is still kept valid.

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.
Brunsdon C, Fotheringham AS, Charlton ME (2002) Geographically weighted summary statistics a framework for localised exploratory data analysis. Computers, Environment and Urban Systems 26:501-524
Harris P, Brunsdon C (2010) Exploring spatial variation and spatial relationships in a freshwater acidification critical load data set for Great Britain using geographically weighted summary statistics. Computers \& Geosciences 36:54-70

Examples

```
## Not run:
data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
test.lss<-gwss.montecarlo(data=londonhp, vars=c("PURCHASE","FLOORSZ"), bw=5000,
    kernel ="gaussian", dMat=DM,nsim=99)
test.lss
## End(Not run)
```

LondonBorough London boroughs data

Description

Outline (SpatialPolygonsDataFrame) of London boroughs for the LondonHP data.

Usage

data(LondonBorough)

Author(s)

Binbin Lu binbinlu@whu.edu.cn

Description

A house price data set with 18 hedonic variables for London in 2001.

Usage

data(LondonHP)

Format

A SpatialPointsDataFrame object (proj4string set to "+init=epsg:27700 +datum=OSGB36").
The "data" slot is a data frame with 372 observations on the following 21 variables.
\mathbf{X} a numeric vector, X coordinate
Y a numeric vector, Y coordinate
PURCHASE a numeric vector, the purchase price of the property
FLOORSZ a numeric vector, floor area of the property in square metres
TYPEDETCH a numeric vector, 1 if the property is detached (i.e. it is a stand-alone house), 0 otherwise
TPSEMIDTCH a numeric vector, 1 if the property is semi detached, 0 otherwise
TYPETRRD a numeric vector, 1 if the property is in a terrace of similar houses (commonly referred to as a 'row house' in the USA), 0 otherwise
TYPEBNGLW a numeric vector, if the property is a bungalow (i.e. it has only one floor), 0 otherwise
TYPEFLAT a numeric vector, if the property is a flat (or 'apartment' in the USA), 0 otherwise
BLDPWW1 a numeric vector, 1 if the property was built prior to 1914,0 otherwise
BLDPOSTW a numeric vector, 1 if the property was built between 1940 and 1959, 0 otherwise
BLD60S a numeric vector, 1 if the property was built between 1960 and 1969, 0 otherwise
BLD70S a numeric vector, 1 if the property was built between 1970 and 1979, 0 otherwise
BLD80S a numeric vector, 1 if the property was built between 1980 and 1989, 0 otherwise
BLD90S a numeric vector, 1 if the property was built between 1990 and 2000, 0 otherwise
BATH2 a numeric vector, 1 if the property has more than 2 bathrooms, 0 otherwise
GARAGE a numeric vector, 1 if the house has a garage, 0 otherwise
CENTHEAT a numeric vector, 1 if the house has central heating, 0 otherwise
BEDS2 a numeric vector, 1 if the property has more than 2 bedrooms, 0 otherwise
UNEMPLOY a numeric vector, the rate of unemployment in the census ward in which the house is located
PROF a numeric vector, the proportion of the workforce in professional or managerial occupations in the census ward in which the house is located

Author(s)

Binbin Lu binbinlu@whu.edu.cn

References

Fotheringham, A.S., Brunsdon, C., and Charlton, M.E. (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.
Lu, B, Charlton, M, Harris, P, Fotheringham, AS (2014) Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data. International Journal of Geographical Information Science 28(4): 660-681

Examples

```
data(LondonHP)
data(LondonBorough)
ls()
plot(londonborough)
plot(londonhp, add=TRUE)
```

Results of the 2004 US presidential election at the county level (SpatialPolygonsDataFrame)

Description

Results of the 2004 US presidential election at the county level, together with five socio-economic (census) variables. This data can be used with GW Discriminant Analysis.

Usage

data(USelect)

Format

A SpatialPolygonsDataFrame with 3111 electoral divisions on the following 6 variables.
winner Categorical variable with three classes: i) Bush, ii) Kerry and iii) Borderline (supporting ratio for a candidate ranges from 0.45 to 0.55)
unemploy percentage unemployed
pctcoled percentage of adults over 25 with 4 or more years of college education
PEROVER65 percentage of persons over the age of 65
pcturban percentage urban
WHITE percentage white

References

Robinson, A. C. (2013). Geovisualization of the 2004 Presidential Election. In: NATIONAL INSTITUTES OF HEALTH, P. S. U. (ed.). Penn State: http://www.personal.psu.edu/users/a/ c/acr181/election.html.
Foley, P. \& Demsar, U. (2012). Using geovisual analytics to compare the performance of geographically weighted discriminant analysis versus its global counterpart, linear discriminant analysis. International Journal of Geographical Information Science, 27, 633-661.

Examples

```
data(USelect)
ls()
```


Index

*Topic GTWR, spatio-temporal heterogeneities
bw.gtwr, 5
gtwr, 21
*Topic GW, PCP
gw.pcplot, 24
*Topic GWDA
bw. gwda, 6
gwda, 26
*Toріс GWR, prediction
gwr.predict, 69
*Topic Heteroskedastic, GWR gwr.hetero, 48
*Topic London, Boroughs
LondonBorough, 78
*Topic Minkovski approach, GWR, distance metric, selection gwr.mink.pval, 56
*Topic Minkovski approach, GWR, result visualization
gwr.mink.matrixview, 56
*Topic Monte Carlo, GWPCA
gwpca.montecarlo.1, 35
gwpca.montecarlo.2, 37
*Topic MonteCarlo , test
gwr.montecarlo, 64
*Topic bandwidth, GW mean, GW median, $G W$ average
bw. gwss. average, 12
*Topic bandwidth
bw. ggwr, 4
bw.gwr, 9
*Topic basic, GWR
gwr.basic, 38
*Topic collinearity,diagnostic, GWR gwr.collin.diagno, 44
*Topic cv, GWPCA
gwpca.cv, 32
gwpca.cv.contrib, 33
*Topic cv, GWR
ggwr.cv, 19
ggwr.cv.contrib, 20
gwr.cv, 46
gwr.cv.contrib, 47
gwr.lcr.cv, 51
gwr.lcr.cv.contrib, 53
*Topic data,house price
EWHP, 14
LondonHP, 79
*Topic datasets
DubVoter, 13
Georgia, 15
GeorgiaCounties, 16
USelect, 80
*Topic distance metric, selection gwr.mink. approach, 54
*Topic distance, matrix gw.dist, 23
*Topic generalised, GWR ggwr.basic, 17
*Topic glyph plot, GWPCA
gwpca. check. components, 31 gwpca.glyph.plot, 34
*Topic gwr, p-values, adjustment gwr.t.adjust, 73
*Topic gwr, write, shape files gwr.write, 74
*Topic local, summary stastics gwss, 74
*Topic mixed, GWR
gwr.mixed, 58
*Topic model selection, view, visualization
gwr.model.view, 63
*Topic model specification, variable
selection, gwr
gwr.model.selection, 60
*Topic model, sort
gwr.model.sort, 62
*Topic multi-scale, flexible
bandwidth,
parameter-specific distance
metrics, GWR
gwr. bootstrap, 41
*Topic multiscale, flexible bandwidth,
parameter-specific distance
metrics, GWR
gwr.multiscale, 65
*Topic outline,England, Wales
EWOutline, 15
*Topic package
GWmodel-package, 3
*Topic ridge, GWR
gwr.lcr, 49
*Topic ridge, bandwidth, GWR
bw.gwr.lcr, 10
*Topic robust, GWPCA, bandwidth bw. gwpca, 8
*Topic robust, GWPCA
gwpca, 28
*Topic robust, GWR
gwr. robust, 71
*Topic test, summary stastics
gwss.montecarlo, 77
*Topic weight, matrix
gw.weight, 25
AICc (gwr.model.selection), 60
AICc_rss (gwr.model.selection), 60
bias.bs (gwr.bootstrap), 41
bisq_wt_mat (gw.weight), 25
bisq_wt_vec (gw.weight), 25
bw.ggwr, 4
bw.gtwr, 5
bw.gwda, 6
bw. gwpca, 8, 27, 29, 35
bw.gwr, 9, 22, 26, 39, 48, 54, 57, 59, 60, 64,

$$
69,71
$$

bw.gwr.lcr, 10
bw.gwr1 (gwr.mink. approach), 54
bw.gwr3 (gwr.bootstrap), 41
bw.gwss.average, 12
cd_dist_mat (gw.dist), 23
cd_dist_smat (gw.dist), 23
cd_dist_vec (gw.dist), 23
check. components
(gwpca.check.components), 31
ci.bs (gwr.bootstrap), 41

Ci_mat (gwr.basic), 38
confusion.matrix (gwda), 26
coordinate_rotate (gw.dist), 23
dist, 24
Dub.voter (DubVoter), 13
DubVoter, 13
ehat (gwr.model.selection), 60
eu_dist_mat (gw.dist), 23
eu_dist_smat (gw.dist), 23
eu_dist_vec (gw.dist), 23
EWHP, 14, 15
ewhp (EWHP), 14
EWOutline, 15
ewoutline (EWOutline), 15
exp_wt_mat (gw.weight), 25
exp_wt_vec (gw.weight), 25
extract.mat (gwr.model.selection), 60

F1234.test (gwr.basic), 38
formula, 4, 5, 7, 9, 11, 17, 21, 27, 38, 41, 42, $44,48,49,54,57,59,64,66,69,71$
gauss_wt_mat (gw.weight), 25
gauss_wt_vec (gw.weight), 25
Gedu. counties (GeorgiaCounties), 16
Gedu.df (Georgia), 15
Generate.formula (gwr.model.selection), 60
generate.lm.data (gwr.bootstrap), 41
Georgia, 15
GeorgiaCounties, 16
get.before.ti (gtwr), 21
get.ts (gtwr), 21
get.uloat (gtwr), 21
ggwr.aic (bw.ggwr), 4
ggwr.basic, 17
ggwr.cv, 19
ggwr.cv.contrib, 20
glm, 18
glyph.plot (gwpca.glyph.plot), 34
gold (bw.gwr), 9
grouping.xy (gwda), 26
gtwr, 21
gtwr.aic (bw.gtwr), 5

```
gtwr.cv(bw.gtwr),5
gw.average.cv (bw.gwss.average), 12
gw.dist, 4, 7, 8, 10-12, 18, 20, 21, 23, 25, 27,
                29, 33, 34, 36, 37, 39, 42, 45-48, 50,
                52,54,59,61,64,71,75,77
gw.fitted (gwr.model.selection), 60
gw.mean.cv (bw.gwss.average), 12
gw.median.cv (bw.gwss.average), 12
gw.pcplot, 24
gw.reg1 (gwr.predict), }6
gw.weight, 25
gw_reg (gwr.basic), 38
gwda, 26
GWmodel (GWmodel-package), 3
GWmodel-package, 3
gwpca, 28, 29, 31, 34
gwpca.check.components, 31
gwpca.cv, 32
gwpca.cv.contrib, 33
gwpca.glyph.plot, 32, 34
gwpca.montecarlo.1, 35, 36
gwpca.montecarlo.2, 36,37
gwr.aic (bw.gwr), 9
gwr.aic1 (gwr.mink.approach), 54
gwr.backfit (gwr.multiscale), }6
gwr.basic, 38, 39, 73, 74
gwr.binomial (ggwr.basic), 17
gwr.bootstrap, 41, 42
gwr.collin.diagno,44
gwr.cv, 46
gwr.cv.contrib,47
gwr.cv1 (gwr.mink.approach), 54
gwr.fitted (ggwr.basic), 17
gwr.generalised, 18
gwr.generalised (ggwr.basic), 17
gwr.hetero,48
gwr.lcr, 10, 49,50
gwr.lcr.cv, 51
gwr.lcr.cv.contrib,53
gwr.mink.approach, 54, 56
gwr.mink.matrixview,56
gwr.mink.pval,56
gwr.mixed, 58,67
gwr.model.selection, 60, 62, 63
gwr.model.sort, 62, 62, 63
gwr.model.view, 62, 63
gwr.montecarlo,64
gwr.multiscale, 65,67
gtwr.cv (bw.gtwr), 5
gw.average.cv (bw.gwss.average), 12
gw.dist, 4, 7, 8, 10-12, 18, 20, 21, 23, 25, 27, \(29,33,34,36,37,39,42,45-48,50\), \(52,54,59,61,64,71,75,77\)
gw.fitted (gwr.model.selection), 60
gw.mean.cv (bw.gwss.average), 12
gw.median.cv (bw.gwss.average), 12
gw.pcplot, 24
gw.reg1 (gwr.predict), 69
.weight, 25
gw_reg (gwr.basic), 38
gwda, 26
GWmodel (GWmodel-package), 3
GWmodel-package, 3
gwpca, 28, 29, 31, 34
gwpca. check. components, 31
gwpca.cv, 32
gwpca.cv.contrib, 33
gwpca.glyph.plot, 32, 34
gwpca.montecarlo.1, 35, 36
gwpca.montecarlo.2, 36, 37
gwr.aic (bw.gwr), 9
gwr.aic1 (gwr.mink.approach), 54
gwr.backfit (gwr.multiscale), 65
gwr.basic, 38, 39, 73, 74
gwr.binomial (ggwr.basic), 17
wr coll in diagno, 44
gwr.cv, 46
gwr.cv.contrib, 47
gwr.cv1 (gwr.mink.approach), 54
gwr.fitted (ggwr.basic), 17
gwr.generalised, 18
gwr.generalised (ggwr.basic), 17
gwr.hetero, 48
gwr.lcr, 10, 49, 50
gwr.lcr.cv, 51
gwr.lcr.cv.contrib, 53
gwr.mink. approach, 54, 56
gwr.mink.matrixview, 56
gwr.mink.pval, 56
gwr.mixed, 58, 67
gwr.model.selection, 60, 62, 63
gwr.model.sort, 62, 62, 63
gwr.model.view, 62, 63
gwr.multiscale, 65, 67
```

gwr.poisson (ggwr.basic), 17
gwr.predict, 69, 69
gwr.q (gwr.mixed), 58
gwr.q2 (gwr.multiscale), 65
gwr.robust, 71
gwr.t.adjust, 73
gwr.write, 74
gwr_diag (gwr.basic), 38
gwrt.err (gwr.bootstrap), 41
gwrt.lag (gwr.bootstrap), 41
gwrt.mlr (gwr.bootstrap), 41
gwrt.sma (gwr.bootstrap), 41
gwrtvar (gwr.bootstrap), 41
gwss, 74, 75, 77
gwss.montecarlo, 77
list, $18,66,72$
lm, 22, 39, 67, 72
local. corr (gwss), 74
LondonBorough, 78
londonborough (LondonBorough), 78
LondonHP, 78, 79
londonhp (LondonHP), 79
md_dist_mat (gw.dist), 23
md_dist_smat (gw.dist), 23
md_dist_vec (gw.dist), 23
mink. approach (gwr.mink.approach), 54
mink.matrixview (gwr.mink.matrixview), 56
mk_dist_mat (gw.dist), 23
mk_dist_smat (gw.dist), 23
mk_dist_vec (gw.dist), 23
model.selection.gwr
(gwr.model.selection), 60
model.sort.gwr (gwr.model.sort), 62
model.view.gwr (gwr.model.view), 63
montecarlo.gwpca. 1 (gwpca.montecarlo.1), 35
montecarlo.gwpca. 2
(gwpca.montecarlo.2), 37
montecarlo.gwr (gwr.montecarlo), 64
montecarlo.gwss (gwss.montecarlo), 77
par, 25
parametric.bs (gwr.bootstrap), 41
plot.mcsims (gwpca.montecarlo.1), 35
plot.pvlas (gwr.mink.pval), 56
POSIXlt, 5, 21

```
princomp, 29
print.ggwrm(ggwr.basic), 17
print.gtwrm(gtwr), 21
print.gwda (gwda), 26
print.gwpca (gwpca), 28
print.gwrbsm(gwr.bootstrap), 41
print.gwrlcr(gwr.lcr),49
print.gwrm(gwr.basic), 38
print.gwrm.pred (gwr.predict), }6
print.gwss (gwss), 74
print.mgwr (gwr.mixed),58
print.multiscalegwr (gwr.multiscale), 65
pval.bs (gwr.bootstrap), 41
ridge.lm(gwr.lcr), 49
robustSvd (gwpca), 28
rss (gwr.model.selection), }6
rwpca (gwpca), 28
sdist.mat (gtwr), 21
se.bs (gwr.bootstrap), 41
splitx (gwda), 26
st.dist (gtwr), 21
tdist.mat (gtwr), 21
ti.dist(gtwr), 21
ti.distm (gtwr), 21
ti.distv (gtwr), 21
tri_wt_mat (gw.weight), 25
tri_wt_vec (gw.weight), 25
USelect, }8
USelect2004 (USelect), 80
vector, 66
wlda (gwda), 26
wlda.cr (bw.gwda), }
wmean (gwda), 26
wpca (gwpca), 28
wprior (gwda), 26
wqda (gwda), 26
wqda.cr (bw.gwda), }
writeGWR (gwr.write), 74
wt.median (gwpca), 28
wvarcov (gwda), 26
```

