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SCHATTEN CLASSES AND TRACES ON COMPACT GROUPS

JULIO DELGADO AND MICHAEL RUZHANSKY

Abstract. In this paper we present symbolic criteria for invariant operators on
compact topological groups G characterising the Schatten–von Neumann classes
Sr(L

2(G)) for all 0 < r ≤ ∞. Since it is known that for pseudo-differential ope-
rators criteria in terms of kernels may be less effective (Carleman’s example), our
criteria are given in terms of the operators’ symbols defined on the noncommutative

analogue of the phase space G×Ĝ, where G is a compact topological (or Lie) group

and Ĝ is its unitary dual. We also show results concerning general non-invariant
operators as well as Schatten properties on Sobolev spaces. A trace formula is de-
rived for operators in the Schatten class S1(L

2(G)). Examples are given for Bessel
potentials associated to sub-Laplacians (sums of squares) on compact Lie groups,
as well as for powers of the sub-Laplacian and for other non-elliptic operators on
SU(2) ≃ S3 and on SO(3).

1. Introduction

Let G be a compact topological (or Lie) group. In this paper we address the
problem of characterising the Schatten-von Neumann classes Sr of operators on the
Hilbert space L2(G) for 0 < r ≤ ∞. To do this, we make use of the global quantization
recently developed in [RT10a] and [RT13] as a noncommutative analogue of the Kohn-
Nirenberg quantization of operators on Rn. For brevity in the sequel we will refer to
Schatten-von Neumann classes simply as to Schatten classes.
In view of Carleman’s example [Car16] recalled below, it is well understood that

there is an obstruction when looking for good criteria in terms of kernels for ensuring
that an operator belongs to the Schatten class Sr below the index r < 2.
In this paper we show that using the notion of a matrix symbol of an operator

on a compact group, we can characterise or give sufficient conditions for operators in
Schatten classes Sr(L

2(G)) for all 0 < r ≤ ∞. Moreover, our characterisations do not
assume any regularity condition on the symbols. Criteria for operators with symbols
in Hörmander classes have been analysed, see e.g. Shubin [Shu01, Section 27], but the
regularity of symbols is required for the analysis there. Recently, there was a surge
of interest in finding criteria for Schatten classes in terms of symbols with lower
regularity, see e.g. [Tof06, Tof08, BT10]. In this paper we can drop the regularity
assumptions completely (at least in the considered settings) due to the technique
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of matrix quantization that we are using, instead of the traditional Kohn-Nirenberg
quantization in the manifold setting.
In particular, for operators acting on L2(G), in Corollary 3.3 we give the character-

isation of operators in the Schatten class Sr(L
2(G)), 0 < r ≤ ∞, in terms of symbols

of their powers, and in Theorem 3.5 we elaborate this to provide the characterisa-
tion of left-invariant operators in terms of their symbols. In particular, the class
S∞ of invariant bounded operators on L2(G) can be characterised by the uniform
boundedness of the operator matrix-norms of their symbol, see (3.1). Here we note
that symbolic criteria for the Lp-boundedness of operators on compact Lie groups,
the Mikhlin-Hörmander multiplier theorem and its extension to non-invariant ope-
rators for 1 < p < ∞, are presented in [RW13] and in [RW15]. The nuclearity of
pseudo-differential operators on the circle T1 has been recently analysed in [DW13]
but the situation in the present paper is much more subtle because of the necessarily
appearing non-trivial multiplicities of the eigenvalues of the Laplacian on the non-
commutative compact Lie groups; for 0 < r ≤ 1, the r-nuclearity on Lp-spaces on
compact Lie groups is addressed in [DR14d].
In order to illustrate the relevance of our symbolic criteria we briefly recall a clas-

sical result of Carleman ([Car16]) from 1916, who has constructed a periodic contin-

uous function κ(x) =
∞∑

k=−∞

cke
2πikx, i.e. a continuous function on the commutative

Lie group T1, for which the Fourier coefficients ck satisfy
∞∑

k=−∞

|ck|r = ∞ for any r < 2.

Now, considering the normal operator

(1.1) Tf = f ∗ κ
acting on L2(T1) one obtains that the sequence (ck)k forms a complete system of eigen-
values of this operator corresponding to the complete orthonormal system φk(x) =
e2πikx, Tφk = ckφk. The system φk is also complete for T ∗, T ∗φk = ckφk, the singular
values of T are given by sk(T ) = |ck| and hence

∞∑

k=−∞

sk(T )
r = ∞,

for r < 2. Therefore, the invariant operator T is not in Sr(L
2(T1)) for r < 2.

However, the continuous integral kernel K(x, y) = κ(x − y) satisfies any kind of
integral condition of the form

∫ ∫
|K(x, y)|sdxdy < ∞

due to the boundedness of K. This shows that already in the problem of finding
sufficient conditions for an operator to belong to the Schatten class Sr(L

2(T1)) with
r < 2, it is impossible to formulate a sufficient condition of this type for the kernel.
On the other hand, it is possible to find such criteria assuming additional regularity
of the kernel, the problem that was addressed in [DR14e], and a comparison between
kernel and symbol criteria in those cases was done in [DR14c]. However, here we are
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interested in exploring criteria with no regularity assumptions on the kernel (and on
the symbol).
In this work we will be looking to establish conditions imposed on symbols instead

of kernels characterising the operators from Schatten classes. We give examples of our
results on the torus Tn, on SU(2) and on SO(3). Since SU(2) ≃ S3 are globally diffeo-
morphic and isomorphic, with the product of matrices in SU(2) corresponding to the
quaternionic product on S3, our results immediately extend to S3 since the symbolic
calculus is stable under global diffeomorphisms preserving the groups structure (see
[RT10a, Section 12.5] or [RT13]). Moreover, in view of the recently resolved Poincaré
conjecture, any simply-connected closed 3-manifold M is globally diffeomorphic to S3

inducing the corresponding group structure on M . Thus, our criteria extend to such
M as well with no changes in formulations.
We observe that most of the results of this paper hold true for compact topological

groups, without assuming the differential Lie group structure, which we need only
in the statements involving differential operators. We follow [RT10a, Chapter 7] in
assuming that the unit element set {e} is closed so that the topological groups are
Hausdorff, and also refer to it for other background details on compact topological
groups and their representation theory.
Moreover, we can observe that the notion of matrix-valued symbols on compact

groups and our criteria become instrumental and can be used as a tool in questions
which may be formulated intrinsically on the group without referring to a particular
quantization.
For example, in Theorem 3.11, we conclude (by a simple argument) that Schatten

classes for left-invariant operators on Sobolev spaces Hs(G) are independent with
respect to the order s of the space.
To give another specific example of conclusions independent of the quantization

used, let L and Lsub denote the (negative-definite) Laplacian and the sub-Laplacian
on the group G = SU(2), respectively, (or, with the same conclusion, on the group
SO(3), or on the quaternionic sphere S3). Then we will show in Section 4 that for
0 < r < ∞, we have

(I −L)−α/2 ∈ Sr(L
2(S3)) if and only if αr > 3,

while
(I −Lsub)

−α/2 ∈ Sr(L
2(S3)) if and only if αr > 4.

Here the powers (I − Lsub)
−α/2 are well-defined since Lsub is hypoelliptic, which fol-

lows from Hörmander’s sum of the squares theorem (see also Greenfield and Wallach
[GW73] for a general framework for this, and [RTW14] for the associated hypoelliptic
symbolic calculus on compact Lie groups). We also give an example for the family of
operators

Hγ = iD3 − γ(D2
1 +D2

2), 0 < γ < ∞,

which are not covered by Hörmander’s sum of the squares theorem. The criterion
established in Theorem 3.5 allows one to easily conclude that the operators (I +
Hγ)

−α/2 are never in Schatten classes for 0 < γ ≤ 1, while for γ > 1 show that it is
in the class Sr if and only if αr > 4.
In Section 2 we make a short introduction to the global quantization on compact

groups. In Section 3 we give characterisations for general operators in Schatten classes
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Sr(L
2(G)) for 0 < r < ∞, elaborate this in the case of left-invariant operators, and

deduce several corollaries, including a criterion for Bessel potentials. In Proposition
3.12 we look at the example of powers of sums of squares of vector fields satisfying
Hörmander’s commutators condition to a certain order. In Section 4 we give examples
of our results on the torus Tn, and for powers of the Laplacian and sub-Laplacian on
SU(2) ≃ S3 and on SO(3). In Section 5 we derive a trace formula for left-invariant
operators.
The authors would like to thank Jens Wirth for discussions and remarks, and

Marius Măntoiu for a comment.

2. Preliminaries

In this section we recall some basic facts about the global matrix quantization on

a compact topological/Lie group G. Let Ĝ denote the set of equivalence classes of

continuous irreducible unitary representations of G. Since G is compact, the set Ĝ

is discrete. For [ξ] ∈ Ĝ, by choosing a basis in the representation space of ξ, we can
view ξ as a matrix-valued function ξ : G → Cdξ×dξ , where dξ is the dimension of the
representation space of ξ. By the Peter-Weyl theorem the collection

{√
dξ ξij : 1 ≤ i, j ≤ dξ, [ξ] ∈ Ĝ

}

is the orthonormal basis of L2(G). If f ∈ L1(G) we define its global Fourier transform
at ξ by

(2.1) FGf(ξ) ≡ f̂(ξ) :=

∫

G

f(x)ξ(x)∗dx,

where dx is the normalised Haar measure on G. Thus, if ξ is a matrix representation,

we have f̂(ξ) ∈ Cdξ×dξ . The Fourier inversion formula is a consequence of the Peter-
Weyl theorem, so that we have

(2.2) f(x) =
∑

[ξ]∈Ĝ

dξ Tr(ξ(x)f̂(ξ)).

Given a sequence of matrices a(ξ) ∈ Cdξ×dξ , we can define

(2.3) (F−1
G a)(x) :=

∑

[ξ]∈Ĝ

dξ Tr(ξ(x)a(ξ)).

This series can be interpreted distributionally or absolutely depending on the growth
of (the Hilbert-Schmidt norms of) a(ξ). We refer to [RT10a] for further discussion of
this background material. The Parseval identity takes the form

(2.4) ‖f‖L2(G) =


∑

[ξ]∈Ĝ

dξ‖f̂(ξ)‖2HS




1/2

, where ‖f̂(ξ)‖2
HS

= Tr(f̂(ξ)f̂(ξ)∗),

which gives the norm on ℓ2(Ĝ).

For each [ξ] ∈ Ĝ, the matrix elements of ξ are the eigenfunctions for the Lapla-
cian LG (or the Casimir element of the universal enveloping algebra), with the same



SCHATTEN CLASSES AND TRACES ON COMPACT GROUPS 5

eigenvalue which we denote by −λ2
[ξ], so that we have

(2.5) − LGξij(x) = λ2
[ξ]ξij(x) for all 1 ≤ i, j ≤ dξ.

The weight for measuring the decay or growth of Fourier coefficients in this setting is

〈ξ〉 := (1 + λ2
[ξ])

1
2 ,

the eigenvalues of the elliptic first-order pseudo-differential operator (I − LG)
1
2 .

For a linear continuous operator A from C∞(G) to D′(G) we define its matrix-
valued symbol σA(x, ξ) ∈ Cdξ×dξ by

(2.6) σA(x, ξ) := ξ(x)∗(Aξ)(x) ∈ C
dξ×dξ ,

where Aξ(x) ∈ Cdξ×dξ is understood as (Aξ(x))ij = (Aξij)(x), i.e. by applying A
to each component of the matrix ξ(x). Then one has ([RT10a], [RT13]) the global
quantization

(2.7) Af(x) =
∑

[ξ]∈Ĝ

dξ Tr(ξ(x)σA(x, ξ)f̂(ξ))

in the sense of distributions, and the sum is independent of the choice of a represen-

tation ξ from each equivalence class [ξ] ∈ Ĝ. If A is a linear continuous operator from
C∞(G) to C∞(G), the series (2.7) is absolutely convergent and can be interpreted
in the pointwise sense. We will also write A = Op(σA) for the operator A given by
the formula (2.7). The symbol σA can be interpreted as a matrix-valued function on

G×Ĝ. We refer to [RT10a, RT13] for the consistent development of this quantization
and the corresponding symbolic calculus.
If the operator A is left-invariant then its symbol σA does not depend on x. In this

case we will often just say that A is invariant.

3. Schatten classes on L2(G)

In this section we study symbolic criteria for Schatten classes Sr(L
2(G)) in terms

of their full matrix-valued symbols, in particular we characterise invariant operators
in the Schatten classes Sr(L

2(G)).
We recall that if A ∈ Ψm(G) is a pseudo-differential operators in Hörmander’s

class Ψm(G), i.e. if all of its localisations to Rn are pseudo-differential operators with
symbols in the class Sm

1,0(R
n), then the matrix-symbol of A satisfies

‖σA(x, ξ)‖op ≤ C〈ξ〉m for all x ∈ G, [ξ] ∈ Ĝ.

Here and everywhere ‖ · ‖op denotes the operator norm of the matrix multiplication
by the matrix σA(x, ξ). For this fact, see e.g. [RT10a, Lemma 10.9.1] or [RT13], and
for the complete characterisation of Hörmander classes Ψm(G) in terms of matrix-
valued symbols see also [RTW14]. In particular, this motivates the appearance of
the operator norms of the matrix-valued symbols. However, since σA is in general a
matrix, other matrix norms become useful as well.
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We recall that if H is a complex Hilbert space, a linear compact operator A : H →
H belongs to the Schatten class Sr(H) if

∞∑

n=1

(sn(A))
r < ∞,

where sn(A) denote the singular values of A, i.e. the eigenvalues of |A| =
√
A∗A

with multiplicities counted. If 1 ≤ r < ∞ the class Sr(H) becomes a Banach space
endowed with the norm

‖A‖Sr =

(
∞∑

n=1

(sn(A))
r

) 1
r

.

If 0 < r < 1 the identity above only defines a quasi-norm with respect to which
Sr(H) is complete. The class S2(H) and S1(H) are usually known as the class of
Hilbert-Schmidt operators and the trace class, respectively.
In the case of r = ∞ we can put ‖A‖S∞

to be the operator norm of the bounded
operator A : L2(G) → L2(G). In this case it can be easily seen by the Plancherel
formula that for an invariant operator A, we have

(3.1) A ∈ S∞(L2(G)) if and only if sup
[ξ]∈Ĝ

‖σA(ξ)‖op < ∞,

see e.g. [RT10a, Section 10.5]. So, in the sequel we can assume that 0 < r < ∞. The
following lemma is a consequence of the definition of Schatten classes:

Lemma 3.1. Let A : H → H be a linear compact operator. Let 0 < r, t < ∞. Then
A ∈ Sr if and only if |A| rt ∈ St. Moreover, ‖A‖rSr

= ‖|A| rt ‖tSt
.

We will denote by ‖σ(x, ξ)‖Sr the Schatten-norm of order r of the matrix σ(x, ξ) ∈
Cdξ×dξ , for x, ξ fixed, viewed as a linear mapping on Cdξ .
We start by giving a simple criterion for Hilbert-Schmidt operators. On general

L2(µ) spaces the Hilbert-Schmidt operators are characterised by the square integrabil-
ity of the kernel with respect to the product measure µ⊗µ. It is also well known that
one can translate this characterisation in terms of symbols for pseudo-differential ope-
rators on the Euclidean space. We state below a characterisation of Hilbert-Schmidt
operators in terms of the matrix-valued symbol on compact Lie groups. This under-
lines the natural role played by the matrix-valued symbol on compact Lie groups.

The norm of L2(G× Ĝ) can be defined by

‖σ‖L2(G×Ĝ) =



∫

G

∑

[ξ]∈Ĝ

dξ‖σ(x, ξ)‖2HSdx




1
2

.

This is a natural norm in view of the Parseval identity (2.4).

Proposition 3.2. Let G be a compact Lie group. Let A : L2(G) → L2(G) be a linear
continuous operator with matrix-valued symbol σA(x, ξ). Then A is a Hilbert-Schmidt

operator if and only if σA ∈ L2(G× Ĝ). Moreover, ‖A‖HS = ‖σA‖L2(G×Ĝ).
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In particular, if σA(ξ) depends only on ξ, then A is Hilbert-Schmidt if and only if
its symbol σA satisfies

(3.2)
∑

[ξ]∈Ĝ

dξ‖σA(ξ)‖2HS < ∞.

Proof. The kernel of A is given by

(3.3) K(x, y) =
∑

[ξ]∈Ĝ

dξ Tr(ξ(x)σA(x, ξ)ξ(y)
∗).

We have ‖A‖2
HS

=
∫
G

∫
G
|K(x, y)|2dxdy =

∫
G

∫
G
|K(x, xz−1)|2dxdz. From (3.3) we

obtain

K(x, xz−1) =
∑

[ξ]∈Ĝ

dξ Tr(ξ(x)σA(x, ξ)ξ(xz
−1)∗)

=
∑

[ξ]∈Ĝ

dξ Tr(ξ(xz
−1)∗ξ(x)σA(x, ξ))

=
∑

[ξ]∈Ĝ

dξ Tr(ξ(z)σA(x, ξ))

=F−1
G σA(x, ·)(z),

with F−1
G defined in (2.3). We have formally

∫

G

∫

G

|K(x, xz−1)|2dxdz =

∫

G

∫

G

|F−1
G σA(x, ·)(z)|2dzdx

=

∫

G

∑

[ξ]∈Ĝ

dξ‖σA(x, ξ)‖2HSdx = ‖σA‖2L2(G×Ĝ)
.

The second equality is obtained from the Parseval identity (2.4). �

As a consequence of Lemma 3.1 with t = 2, and Proposition 3.2 we have:

Corollary 3.3. Let G be a compact Lie group. Let A : L2(G) → L2(G) be a linear
continuous operator with matrix-valued symbol σA(x, ξ). Let 0 < r < ∞. Then
A ∈ Sr(L

2(G)) if and only if

∑

[ξ]∈Ĝ

dξ

∫

G

‖σ
|A|

r
2
(x, ξ)‖2

HS
dx < ∞.

In particular, for invariant operators, i.e. for operators A with matrix-valued symbols
σA(ξ) depending only on ξ, we have that A ∈ Sr(L

2(G)) if and only if
∑

[ξ]∈Ĝ

dξ‖σ|A|
r
2
(ξ)‖2

HS
< ∞.

With the purpose of characterising invariant operators belonging to a Schatten
class Sr(L

2(G)) for 0 < r < ∞ we first establish a simple fact required for the
characterisation in the case of invariant operators:
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Lemma 3.4. Let A : L2(G) → L2(G) be a linear continuous operator with matrix-

valued symbol σA(ξ) depending only on ξ. Then, for each [ξ] ∈ Ĝ and 0 < r < ∞ we
have

σ|A|r(ξ) = |σA(ξ)|r.
Proof. Since A is invariant, we have

σA∗A(ξ) = σA∗(ξ)σA(ξ),

which can be expressed as σ|A|2(ξ) = |σA(ξ)|2. In general, since the operator |A| is
formally self-adjoint, its symbol σ|A|(ξ) is self-adjoint for every ξ; indeed, we have
σ|A|(ξ) = σ|A|∗(ξ) = σ|A|(ξ)

∗, the last equality because of the left-invariance of |A|.
Consequently, we can diagonalise σ|A|(ξ) by a unitary transformation, which means
that we can assume that σ|A|(η) is diagonal for some η ∈ [ξ]. Consequently, the
positivity of the symbol (of the positive operator |A|) implies that σ|A|r(η) = |σA(η)|r
for any 0 < r < ∞. Going back to the representation ξ we obtain the statement. �

We can now state the characterisation for invariant operators in Sr(L
2(G)). We

note here that since it is formulated for invariant operators, we do not need the
differential structure on G, so that all the arguments in the proof actually work in
the more general setting of compact topological groups.

Theorem 3.5. Let G be a compact topological group and let 0 < r < ∞. Let
A : L2(G) → L2(G) be a linear compact operator with matrix-valued symbol σA(ξ)
depending only on ξ. Then A ∈ Sr(L

2(G)) if and only if
∑

[ξ]∈Ĝ

dξ‖σA(ξ)‖rSr
< ∞.

Proof. By Corollary 3.3 A ∈ Sr(L
2(G)) if and only if

∑
[ξ]∈Ĝ dξ‖σ|A|

r
2
(ξ)‖2S2

< ∞. But

Lemma 3.4 gives us ‖σ
|A|

r
2
(ξ)‖S2 = ‖|σA(ξ)|

r
2‖S2. From Lemma 3.1 applied to the

matrix-symbol σA(ξ) for each ξ, we obtain ‖|σA(ξ)|
r
2‖2S2

= ‖|σA(ξ)|r‖S1 . Applying
Lemma 3.1 once more gives us ‖|σA(ξ)|r‖S1 = ‖σA(ξ)‖rSr

, concluding the proof.
�

Remark 3.6. The expression
∑

[ξ]∈Ĝ dξ‖σA(ξ)‖rSr
appearing in the condition of Theo-

rem 3.5 characterising invariant operators in Schatten classes comes from the norm

(3.4) ‖σA‖ℓrsch :=


∑

[ξ]∈Ĝ

dξ‖σA(ξ)‖rSr




1/r

.

For the analysis of spaces with norms ‖σA‖ℓrsch we refer to Hewitt and Ross [HR70,
Section 31] or Edwards [Edw72, Section 2.14]. Because of the Hausdorff-Young in-
equality for the Fourier transform in these spaces (see Kunze [Kun58]) we get the
following one-sided criteria for invariant operators:

Corollary 3.7. Let G be a compact Lie group and let the left-invariant operator A
be bounded on L2(G). Then it is of the form Af = f ∗ k with k ∈ D′(G) such that

sup[ξ]∈Ĝ ‖k̂(ξ)‖op < ∞. Moreover, we have the following properties:

(i) if k ∈ Lp(G) with 1 ≤ p ≤ 2, then A ∈ Sp′(L
2(G)) with 1

p
+ 1

p′
= 1;
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(ii) if A ∈ Sp(L
2(G)) with 1 ≤ p ≤ 2, then k ∈ Lp′(G) with 1

p
+ 1

p′
= 1.

Proof. The representation Af = f ∗ k follows from the Schwartz kernel theorem,

while the L2-boundedness implies that sup[ξ]∈Ĝ ‖k̂(ξ)‖op < ∞ by (3.1). We also have

σA(ξ) = k̂(ξ). Consequently, both properties (i) and (ii) follow from Theorem 3.5 and
from the Hausdorff-Young inequalities for the Fourier transform mapping between
Lp(G) and spaces with the norm

‖f̂‖
ℓp

′

sch

:=


∑

[ξ]∈Ĝ

dξ‖f̂(ξ)‖p
′

Sp′




1/p′

,

see also (3.4). �

The following lemma has been proved in [DR14a] and it will be useful here to
deduce other consequences.

Lemma 3.8. Let G be a compact Lie group. Then we have
∑

[ξ]∈Ĝ

d2ξ〈ξ〉−s < ∞ if and only if s > dimG.

This Lemma 3.8 and Theorem 3.5 yield the following corollary:

Corollary 3.9. Let G be a compact Lie group of dimension n and let A be an operator

with symbol σ(ξ). Let 0 < r < ∞. Suppose that ‖σ(ξ)‖Sr ≤ Cd
1/r
ξ 〈ξ〉−

s
r with some

s > n. Then A ∈ Sr(L
2(G)).

Before we give several examples of this corollary in Section 4, let us apply it to
the Bessel potentials on G, also showing the sharpness of the obtained orders. As
before, we denote by LG a Laplacian on G, see Stein [Ste70] for a general discussion
on Laplacians on compact Lie groups. We recall that LG is a negative-definite second
order bi-invariant elliptic differential operators, the eigenvalues of (I − LG)

1/2 are
denoted by 〈ξ〉, and the symbol of its powers is

σ(I−LG)−α/2(ξ) = 〈ξ〉−αIdξ ,

where Idξ ∈ Cdξ×dξ is the identity matrix. In this case we then readily calculate

‖σ(I−LG)−α/2(ξ)‖Sr = d
1/r
ξ 〈ξ〉−α. In particular, this, together with the following propo-

sition, shows that the orders in Corollary 3.9 are sharp.

Proposition 3.10. Let G be a compact Lie group of dimension n. Then (I−LG)
−α/2

is in the Schatten class Sr(L
2(G)), 0 < r < ∞, if and only if αr > n.

Proof. We have ‖σ(I−LG)−α/2(ξ)‖Sr = d
1/r
ξ 〈ξ〉−α, so that

∑

[ξ]∈Ĝ

dξ‖σ(I−LG)−α/2(ξ)‖rSr
=
∑

[ξ]∈Ĝ

d2ξ〈ξ〉−αr,

and Proposition 3.10 follows from combining the criteria in Theorem 3.5 and in
Lemma 3.8. �
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We note that the statement of Proposition 3.10 can be extended to a more general
setting on compact manifolds, see [DR14b], as well as [DR14e] for a comparison,
so the more interesting setting for us here is that of non-elliptic operators that we
address in the next section.
We will now give some consequences regarding Schatten classes on Sobolev spaces.

The notion of global symbol and the characterisation given by Theorem 3.5 of Schat-
ten classes for left-invariant operators provide a simple proof of the independence with
respect to the scale of Sobolev spaces Hs(G) (defined by their localisations being in
Hs(Rn)).

Theorem 3.11. Let G be a compact Lie group, 0 < r < ∞ and s ∈ R. Let A :
Hs(G) → Hs(G) be a linear bounded operator with the matrix-valued symbol σA(ξ)
depending only on ξ. Then

A ∈ Sr(H
s(G)) if and only if

∑

[ξ]∈Ĝ

dξ‖σA(ξ)‖rSr
< ∞.

Consequently, if s1, s2 ∈ R and A is a left-invariant operator bounded on A : Hs1(G) →
Hs1(G) and A : Hs2(G) → Hs2(G), then

A ∈ Sr(H
s1(G)) if and only if A ∈ Sr(H

s2(G)).

Proof. We observe that if Au = λu with u ∈ Hs(G), writing

u = (I − L)− s
2 f,

with f ∈ L2(G) and L denoting a Laplacian on G, we get

A(I − L)− s
2f = λ(I −L)− s

2 f.

Hence we have
Ãf = λf, with Ã = (I − L) s

2A(I − L)− s
2 .

Thus Ã : L2(G) → L2(G) is bounded on L2(G) and

σÃ(ξ) = σ
(I−L)

s
2
(ξ)σA(ξ)σ(I−L)−

s
2
(ξ) = σA(ξ)

because all these operators are left-invariant and σ
(I−L)

s
2
(ξ) = 〈ξ〉sIdξ is diagonal.

Therefore, using Theorem 3.5, we obtain

A ∈ Sr(H
s(G)) ⇐⇒Ã ∈ Sr(L

2(G))

⇐⇒
∑

[ξ]∈Ĝ

dξ‖σÃ(ξ)‖rSr
< ∞

⇐⇒
∑

[ξ]∈Ĝ

dξ‖σA(ξ)‖rSr
< ∞,

completing the proof. �

Similar to Proposition 3.10 we can give a condition for powers of sub-Laplacians.
Let G be a compact Lie group of dimension n and let

Lsub = X2
1 + · · ·+X2

k

be the sum of squares of left-invariant vector fields X1, . . . , Xk, for which we assume
that the Hörmander commutator condition is satisfied of order κ ∈ N, i.e. the
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commutators of length κ span the Lie algebra of G. Since the operator Lsub is
formally self-adjoint, we can choose the bases in the representation spaces in such a
way that its symbol is diagonal, and we denote

σI−Lsub
(ξ) = diag{ν2

1(ξ), . . . , ν
2
dξ
(ξ)},

for some νj(ξ) ≥ 0. Then, following a-priori estimates by Rothschild and Stein [RS76],
it was shown in [GR15, Proposition 3.1] that there exist constants c, C > 0 such that

(3.5) c〈ξ〉1/κ ≤ νj(ξ) ≤ C〈ξ〉

holds for all [ξ] ∈ Ĝ and all 1 ≤ j ≤ dξ.

Proposition 3.12. Let G be a compact Lie group of dimension n. Let

Lsub = X2
1 + · · ·+X2

k

be the sum of squares of left-invariant vector fieldsX1, . . . , Xk satisfying the Hörmander
commutator condition of order κ. Then (I − Lsub)

−α/2 is in the Schatten class
Sr(L

2(G)), 0 < r < ∞, provided that αr > κn.

Proof. The statement follows readily from Theorem 3.5 using (3.5). Namely, we can
write

(3.6)
∑

[ξ]∈Ĝ

dξ‖σ(I−Lsub)
−

α
2
(ξ)‖rSr

=
∑

[ξ]∈Ĝ

dξ∑

j=1

dξνj(ξ)
−αr ≤ C

∑

[ξ]∈Ĝ

d2ξ〈ξ〉−
αr
κ .

Therefore, (3.6) is finite for αr > κn in view of Lemma 3.8. �

For the case of the Laplacian, we have κ = 1, so that we recover the condition in
Proposition 3.10. For κ ≥ 2, however, the condition αr > κn in Proposition 3.12
can be improved in a number of cases. This requires a more careful analysis of the
maximal weight lattice and will be addressed elsewhere. In Corollary 4.6, following
explicit calculations, we give its improvement in the case of the group SU(2).
Assuming κ = 2 for simplicity, we note that the corresponding condition αr > 2n

in Proposition 3.12 is related to subelliptic estimates for the sub-Laplacian that we
now briefly indicate. Indeed, since Lsub is a sum of squares associated to a system of
vector fields satisfying the Hörmander condition of order κ = 2, we have

‖u‖H1 ≤ C‖(I − Lsub)u‖L2,

see e.g. Rothschild and Stein [RS76]. It follows then that ‖(I − Lsub)
−1u‖H1 ≤

C‖u‖L2, and hence, by interpolation,

(3.7) ‖(I − Lsub)
−su‖Hs ≤ C‖u‖L2,

for any s ≥ 0. Before we apply this, we observe that on the other hand, if δ is the
delta-distribution at the unit element of the group, we have

FG((I − Lsub)
−β

2 δ)(ξ) = σ
(I−Lsub)

−
β
2
(ξ)δ̂(ξ) = diag{νj(ξ)−β}Idξ .
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Taking β = αr
2
, we get

‖FG((I − Lsub)
−αr

4 δ)(ξ)‖2
ℓ2(Ĝ)

=
∑

[ξ]∈Ĝ

dξ‖FG((I − Lsub)
−αr

4 δ)(ξ)‖2
HS

=
∑

[ξ]∈Ĝ

dξ∑

j=1

dξνj(ξ)
−αr.

By Plancherel Theorem, and combining this with the equality in (3.6), we get
∑

[ξ]∈Ĝ

dξ‖σ(I−Lsub)
−

α
2
(ξ)‖rSr

= ‖(I − Lsub)
−αr

4 δ‖2L2(G).

Since the Laplacian and the sub-Laplacian commute, using (3.7), we get

‖(I − Lsub)
−αr

4 δ‖L2 ≤ C‖δ‖
H−

αr
4
< ∞

for αr
4
> n

2
, i.e. for αr > 2n, the same order as in Proposition 3.12. Although the sub-

elliptic estimate (3.7) is sharp, the possibility of improving the orders for Schatten
classes, such as the one that we obtain in Corollary 4.6, can be explained by the fact
that we only need to apply (3.7) to the delta-distribution, in which case the Sobolev
order can be actually better.

4. Examples on Tn, SU(2) ≃ S3 and SO(3)

We now give some examples of our results on the torus Tn, SU(2) and SO(3).
In particular, this shows that the notion of the matrix-valued symbol becomes in-
strumental and can be used as a tool for deriving properties of operators defined
intrinsically on the group.

4.1. The torus Tn. We start with a few simple observations in the case of the torus.

If G = Tn = Rn/Zn, we have T̂n ≃ Zn, and the collection {ξk(x) = e2πix·k}k∈Zn is
the orthonormal basis of L2(Tn), and all dξk = 1. If an operator A is invariant on
Tn, its symbol becomes σA(ξk) = ξk(x)

∗Aξk(x) = Aξk(0). In general, on the torus we

will often simplify the notation by identifying T̂n with Zn, and thus writing ξ ∈ Zn

instead of ξk ∈ Zn. The toroidal quantization

(4.1) Af(x) =
∑

ξ∈Zn

e2πix·ξσA(x, ξ)f̂(ξ)

has been analysed extensively in [RT10b] and it is a special case of (2.7), where we

have identified, as noted, T̂n with Zn. As a consequence of Theorem 3.5 and Corollary
3.9 on the torus, we obtain:

Corollary 4.1. Let A : L2(Tn) → L2(Tn) be a linear continuous operator with symbol
σA(ξ) depending only on ξ. Let 0 < r < ∞, then A belongs to Sr(L

2(Tn)) if and only
if its symbol σA satisfies

(4.2)
∑

ξ∈Zn

|σA(ξ)|r < ∞.
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In particular, A belongs to Sr(L
2(Tn)) provided that

(4.3) |σA(ξ)| ≤ C〈ξ〉−
s
r ,

for some s > n.

Remark 4.2. Corollary 4.1 implies that a necessary condition for nuclearity (r = 1)
on L2(Tn) for operators with symbol only depending on ξ is the continuity of the
corresponding kernel. Indeed, since

K(x, y) =
∑

ξ∈Zn

ei(x−y)ξσA(ξ),

the continuity of K follows from the fact that σA ∈ ℓ1(Zn). An analogue of this
property on general G was given in Corollary 3.7.

The result concerning the Bessel potentials in Proposition 3.10 in the case of
Sr(L

2(Tn)) becomes as follows:

Proposition 4.3. Let ∆ be the Laplacian on the torus Tn and let 0 < r < ∞. Then
(I −∆)−

α
2 belongs to Sr(L

2(Tn)) if and only if αr > n.

Proof. We give a direct simple proof of this. The symbol of the operator T = (I −
∆)−

α
2 is positive, hence T being a multiplier operator, it is positive definite and

|T | =
√
T ∗T = T . Thus, the singular values of T agree with the values of its symbol

〈ξ〉−α. Therefore, T ∈ Sr(L
2(Tn) if and only if αr > n. �

4.2. The groups SU(2) ≃ S3 and SO(3). We now consider the case of the non-
commutative group G = SU(2), the group of the unitary 2 × 2 matrices of determi-
nant one. The same results as given below hold for the 3-sphere S3 if we use the
identification SU(2) ≃ S3, with the matrix multiplication in SU(2) corresponding to
the quaternionic product on S3, with the corresponding identification of the symbolic
calculus, see [RT10a, Section 12.5]. Consequently, the results below extend to any
simply-connected closed 3-manifold in view of the resolved Poincaré conjecture, see
the discussion in the introduction. More generally, they can be extended to general
closed manifolds, see [DR14b].
The details of the global quantization (2.7) on SU(2) have been worked out in

[RT10a, Chapter 12], to which we also refer for the details on the representation
theory of the group G = SU(2). In this case, we can enumerate the elements of its

dual as Ĝ ≃ 1
2
N0, with N0 = {0} ∪ N, so that

ŜU(2) = {[tℓ] : tℓ ∈ C
(2ℓ+1)×(2ℓ+1), ℓ ∈ 1

2
N0}.

The dimension of each tℓ is dtℓ = 2ℓ + 1, and there are explicit formulae for tℓ as
functions of Euler angles in terms of the so-called Legendre-Jacobi polynomials, see
[RT10a, Chapter 11]. The Laplacian on SU(2) has eigenvalues λ2

tℓ = ℓ(ℓ+1), so that

we have
〈
tℓ
〉
≈ ℓ. If A : L2(SU(2)) → L2(SU(2)) is a continuous linear operator, its

matrix-symbol is denfined by

σA(x, ℓ) ≡ σA(x, t
ℓ) := tℓ(x)∗Atℓ(x), ℓ ∈ 1

2
N0.

Corollary 3.9 in this case becomes:
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Corollary 4.4. Let A : L2(SU(2)) → L2(SU(2)) be an invariant operator with matrix
symbol σA(ℓ). Let s > 3 and let 0 < r < ∞. If there is a constant C > 0 such that

‖σA(ℓ)‖Sr ≤ Cℓ
1−s
r

for all ℓ ∈ 1
2
N, then A ∈ Sr(L

2(SU(2))).

We now discuss examples of two operators with diagonal symbols, the Laplacian
and the sub-Laplacian.
If LSU(2) denotes the Laplacian on SU(2), we have LSU(2)t

ℓ
mn(x) = −ℓ(ℓ+ 1)tℓmn(x)

for all ℓ,m, n and x ∈ G, so that the symbol of I − LSU(2) is given by

σI−LSU(2)
(x, ℓ) = (1 + ℓ(ℓ+ 1))I2ℓ+1,

where I2ℓ+1 ∈ C(2ℓ+1)×(2ℓ+1) is the identity matrix. Hence, σI−LSU(2)
(x, ℓ) is diagonal

and independent of x. Consequently, for (I − LSU(2))
−α

2 we have ‖σ
(I−LSU(2))

−
α
2
‖Sr ≈

ℓ−αℓ
1
r . Therefore, by Corollary 4.4, (I −LSU(2))

−α
2 is in Sr(L

2(SU(2))) provided that

ℓ−α ≤ Cℓ−
s
r for s > 3, which agrees with Proposition 3.10:

Corollary 4.5. Let 0 < r < ∞. Then the operator (I−LSU(2))
−α

2 is in Sr(L
2(SU(2)))

if and only if α > 3
r
.

To give a slightly different example, we shall now consider the group SO(3) of the
3×3 real orthogonal matrices of determinant one. For the details of the representation
theory and the global quantization of SO(3) we refer the reader to [RT10a, Chapter

12]. The dual in this case can be identified as Ĝ ≃ N0, so that

ŜO(3) = {[tℓ] : tℓ ∈ C
(2ℓ+1)×(2ℓ+1), ℓ ∈ N0}.

The dimension of each tℓ is dtℓ = 2ℓ + 1. The Laplacian on SO(3) has eigenvalues
λ2
tℓ
= ℓ(ℓ+ 1), so that we have

〈
tℓ
〉
≈ ℓ. By the same argument as above, Corollary

4.5 also holds for the Laplacian on SO(3).
Let us fix three invariant vector fields D1, D2, D3 on SO(3) corresponding to the

derivatives with respect to the Euler angles. We refer to [RT10a, Chapter 11] for the
explicit formulae for these. However, for our purposes here we note that the sub-
Laplacian Lsub = D2

1 +D2
2, with an appropriate choice of basis in the representation

spaces, has the diagonal symbol given by

(4.4) σLsub
(ℓ)mn = (m2 − ℓ(ℓ+ 1))δmn, m, n ∈ Z, −ℓ ≤ m,n ≤ ℓ,

where δmn is the Kronecker delta, and where it is customary to let m,n run from −ℓ
to ℓ rather than from 0 to 2ℓ + 1. The operator Lsub is a second order hypoelliptic
operator and we can define the powers (I − Lsub)

−α/2. These are pseudo-differential
operators with symbols

σ(I−Lsub)−α/2(ℓ)mn = (1 + ℓ(ℓ+ 1)−m2)−α/2δmn,

with m,n ∈ Z, −ℓ ≤ m,n ≤ ℓ. We now have

‖σ(I−Lsub)−α/2(ℓ)‖Sr =
(
Tr(σ(I−Lsub)−α/2(ℓ))r

) 1
r =

(
ℓ∑

m=−ℓ

(
1 + ℓ(ℓ+ 1)−m2

)−αr
2

) 1
r

,
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where ℓ ∈ N0. Comparing with the integral
∫ R

−R

(1 +R2 − x2)−
αr
2 dx ≈ CR−αr

2

∫ R

0

(1 +R− x)−
αr
2 dx ≈ CR−αr

2 ,

for αr > 2 and large R, it follows that
∑ℓ

m=−ℓ (1 + ℓ(ℓ+ 1)−m2)
−αr

2 is of order ℓ−
αr
2 .

Hence, ‖σ(I−Lsub)−α/2(ℓ)‖Sr is of order ℓ−
α
2 . Therefore, we have

∑

[ξ]∈ŜO(3)

dξ‖σ(I−Lsub)−α/2(ξ)‖rSr
≈ C

∑

ℓ∈N

ℓ1−
αr
2 ,

and as a consequence of Theorem 3.5, we obtain

Corollary 4.6. Let 0 < r < ∞. Then the operator (I − Lsub)
−α

2 belongs to the
Schatten class Sr(L

2(SO(3))) if and only if α > 4
r
. The same conclusion holds if we

replace SO(3) by SU(2) or by S3 (with a quaternionic sub-Laplacian).

We also present another example of an operator (on SO(3)) which is not covered
by Hörmander’s sum of squares theorem. Namely, we consider the following family
of ‘Schrödinger operators’

Hγ = iD3 − γ(D2
1 +D2

2),

for a parameter 0 < γ < ∞. For γ = 1 it was shown in [RTW14] that H1 + cI is
globally hypoelliptic if and only if 0 6∈ {c+ℓ(ℓ+1)−m(m+1) : ℓ ∈ N, m ∈ Z, |m| ≤ ℓ}.
The matrix-symbol of I +Hγ is given by

(4.5) σI+Hγ (ℓ)mn = (1 +m− γm2 + γℓ(ℓ+ 1))δmn, m, n ∈ Z, −ℓ ≤ m,n ≤ ℓ,

where as before δmn is the Kronecker delta, and we let m,n run from −ℓ to ℓ rather
than from 0 to 2ℓ+1. Similarly to the case of γ = 1 above, for γ ≥ 1 one shows that
the second order differential operator I +Hγ is globally hypoelliptic and its powers
are pseudo-differential operators with symbols

σ(I+Hγ)−α/2(ℓ)mn = (1 +m− γm2 + γℓ(ℓ+ 1))−α/2δmn,

with m,n ∈ Z, −ℓ ≤ m,n ≤ ℓ. We now have

‖σ(I+Hγ )−α/2(ℓ)‖rSr
= Tr |σ(I+Hγ)−α/2(ℓ)|r =

ℓ∑

m=−ℓ

∣∣1 +m− γm2 + γℓ(ℓ+ 1)
∣∣−αr

2 ,

where ℓ ∈ N0. In order to estimate this sum, we consider the integral

(4.6)

∫ R

−R

|1 + x− γx2 + γR2 + γR|−αr
2 dx.

Using the inequality −R ≤ x ≤ R and from the identity 1 + x− γx2 + γR2 + γR =
1 + (R + x) + γ(R2 − x2) + γR−R, we get 1 + x− γx2 + γR2 + γR ≥ (γ − 1)R. In
particular, if γ > 1 we obtain

∫ R

−R

(1 + x− γx2 + γR2 + γR)−
αr
2 dx ≈ CR−αr

2 ,
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for large R. Therefore, for γ > 1,

ℓ∑

m=−ℓ

(
1 +m− γm2 + γℓ(ℓ+ 1)

)−αr
2

is of order ℓ−
αr
2 . Hence, ‖σ(I+Hγ)−α/2(ℓ)‖Sr is of order ℓ

−α
2 in this case. Consequently,

if γ > 1 we obtain
∑

[ξ]∈ŜO(3)

dξ‖σ(I+Hγ)−α/2(ξ)‖rSr
≈ C

∑

ℓ∈N

ℓ1−
αr
2 .

Thus, if γ > 1 we get

(I +Hγ)
−α/2 ∈ Sr if and only if αr > 4 (γ > 1).

Now, let us consider the case 0 < γ ≤ 1. If −1 6∈ {γℓ(ℓ+1)−γm2+m) : ℓ ∈ N0, m ∈
Z, |m| ≤ ℓ}, or, more generally, if −c 6∈ {γℓ(ℓ+1)− γm2 +m) : ℓ ∈ N0, m ∈ Z, |m| ≤
ℓ}, the operator cI + Hγ is invertible, and we can define its real powers as above.
Arguing as above, the corresponding modification of the integral (4.6) does not decay
with respect to R, so by the characterisation of Schatten classes in Theorem 3.5 we
get

(cI +Hγ)
−α/2 /∈ Sr for all 0 < r < ∞ and α ∈ R (0 < γ ≤ 1).

A similar result holds then also on SU(2) ≃ S3.

5. A trace formula in the trace class S1(L
2(G))

In this section we give trace formulae for operators on compact topological groups.
We start by recalling the definition of the trace of operators on Hilbert spaces.
Let T : H → H be an operator in S1(H) and let {φk}k be any orthonormal basis

for the Hilbert space H . Then, the series
∞∑
k=1

〈Tφk, φk〉H is absolutely convergent and

the sum is independent of the choice of the orthonormal basis {φk}k. Thus, we can
define the trace Tr(T ) of any linear operator T : H → H in S1(H) by

Tr(T ) =
∞∑

k=1

〈Tφk, φk〉H ,

where {φk : k = 1, 2, . . . } is any orthonormal basis for H .
We will apply the definition above to the orthonormal basis of L2(G) given by

{√
dξ ξij : 1 ≤ i, j ≤ dξ, [ξ] ∈ Ĝ

}
.

Theorem 5.1. Let G be a compact topological group. Let A be a left-invariant oper-
ator in S1(L

2(G)) with matrix-valued symbol σA(ξ). Then its trace is given by

(5.1) TrA =
∑

[ξ]∈Ĝ

dξ Tr(σA(ξ)).
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Proof. Let A be a left-invariant operator which belongs to S1(L
2(G)). We denote

σ = σA, and the formula

K(x, y) =
∑

[ξ]∈Ĝ

dξ Tr(ξ(x)σ(ξ)ξ(y)
∗)

represents the integral kernel of A. We will calculate 〈Aηℓm, ηℓm〉L2(G) for 1 ≤ ℓ,m ≤
dη, [η] ∈ Ĝ. We observe that

Tr(ξ(x)σ(ξ)ξ(y)∗) =

dξ∑

i,j=1

(ξ(x)σ(ξ))ijξ(y)ij .

Hence

Aηℓm(x) =

∫

G

∑

[ξ]∈Ĝ

dξ Tr(ξ(x)σ(ξ)ξ(y)
∗)ηℓm(y)dy

=

∫

G

∑

[ξ]∈Ĝ

dξ

dξ∑

i,j=1

(ξ(x)σ(ξ))ijξ(y)ijηℓm(y)dy

=

∫

G

∑

[ξ]∈Ĝ

dξ

dξ∑

i,j=1

dξ∑

k=1

ξ(x)ikσ(ξ)kjξ(y)ijηℓm(y)dy.

Now, since 〈ξik, ηℓm〉L2(G) = d−1
ξ δ(i,j),(ℓ,m) by the orthonormality of the system {

√
dξξij},

we obtain

〈Aηℓm, ηℓm〉L2(G) = dηd
−1
η σ(η)mm = σ(η)mm

Therefore,
∑

[η]∈Ĝ

∑

ℓ,m

〈Aηℓm, ηℓm〉L2(G) =
∑

[η]∈Ĝ

∑

ℓ,m

σ(η)mm =
∑

[η]∈Ĝ

dη Tr(σ(η)),

concluding the proof. �
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