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We give relations between main operators of quantum
mechanics on one of most general classes of nilpotent
Lie groups. Namely, we show relations between
momentum and position operators as well as Euler
and Coulomb potential operators on homogeneous
groups. Homogeneous group analogues of some
well-known inequalities such as Hardy’s inequality,
Heisenberg–Kennard type and Heisenberg–Pauli–
Weyl type uncertainty inequalities, as well as
Caffarelli–Kohn–Nirenberg inequality are derived,
with best constants. The obtained relations yield new
results already in the setting of both isotropic and
anisotropic R

n, and of the Heisenberg group. The
proof demonstrates that the method of establishing
equalities in sharper versions of such inequalities
works well in both isotropic and anisotropic settings.

1. Introduction
The uncertainty principle of Werner Heisenberg [1]
forms a fundamental element of quantum mechanics.
It is worth noting that his original argument, while
conceptually enlightening, was heuristic. The first
rigorously proven uncertainty relation for position and
momentum operators is due to Earle Kennard [2].
Meanwhile, more mathematical details were provided by
Wolfgang Pauli and Hermann Weyl. The interpretation
of uncertainty inequalities as spectral properties of
differential operators is widely present in the literature
starting from studies of Charles Fefferman [3,4].
Nowadays, there is a vast literature on uncertainty
relations and their applications. We refer to a recent
review article [5] for further discussions and references
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on this subject as well as to [6] for an overview of the history and the relevance of this type of
inequalities from a pure mathematical point of view.

The main aim of this note is to obtain uncertainty type relations on homogeneous (Lie) groups.
The setting of homogeneous groups was developed by Folland & Stein in [7], in particular, to
distill those results of harmonic analysis that depend only on the group and dilation structures.
It turns out that the class of homogeneous groups is one of most general subclasses of nilpotent
Lie groups and, in fact, it is often a working assumption when one is dealing with nilpotent
Lie groups. The Euclidean group (Rn; +), Heisenberg type groups, homogeneous Carnot groups,
stratified Lie groups, graded Lie groups are all special cases of the homogeneous groups. An
example of a (nine-dimensional) nilpotent Lie group that does not allow for any compatible family
of dilations was constructed by Dyer [8]. In particular, R

n with an anisotropic dilation structure gives
an important example of a homogeneous group, and the results of this note appear to be new
already in this setting. The language of Folland & Stein’s homogeneous groups is, however, very
convenient, as it allows for a perfect level of abstraction to make an exposition more clear.

The starting points of our analysis are the abstract position and momentum operators P and
M, which we assume to be linear operators, densely defined on L2, with their domains containing
C∞

0 , and such that C∞
0 is an invariant subspace for them. The main (and only) assumption in this

paper is that P and M satisfy the relations

2 Re(Pf iMf ) = (P ◦ (iM))|f |2 = E|f |2, (1.1)

for all f ∈ C∞
0 . The operator E is a given operator, the Euler operator of the space (e.g. (1.8)), so that

the position and momentum operators give its factorization as in the second equality in (1.1). The
Euler operator E characterizes the homogeneity property: a differentiable function f satisfies

f (λx) = λμf (x) for all λ > 0 if and only if Ef = μf .

Interestingly, these relations are enough to derive properties of uncertainty relation type, such
as Heisenberg–Kennard and Heisenberg–Pauli–Weyl type uncertainty inequalities. The property
that P and iM factorize the Euler operator also allows one to establish links between them and
other operators such as the radial operator, the dilations generating operator, and the Coulomb
potential operator, and prove some equalities and inequalities among them.

It seems to us a revealing fact that once operators P and iM factorize the Euler operator
and satisfy the additional relation in the first equality in (1.1), they must satisfy an uncertainty
principle.

If the space is the Euclidean R
n with isotropic (standard) dilations, then the operators

P := x and M := −i∇, (1.2)

i.e. the multiplication and the gradient (multiplied by −i) operators, satisfy (1.1). The same will
hold on general homogeneous Lie groups, as we show in example 2.1.

However, one can find other examples which satisfy (1.1), for instance (see example 2.2), if
{Xj} is a basis of a Lie algebra g of some homogeneous group G and exp−1

G
(x) =∑n

j=1 ej(x)Xj (see
(2.4)), then the position operators can be defined as f �→ ej(x)f , and the momentum operators can
be defined as f �→ νjXjf , where νj is the homogeneous degree of Xj. This is, for example, the case
on the Heisenberg group (see also [9] for many recent results in this setting).

Let us now very briefly review the main concepts of the homogeneous groups. For the general
background details on homogeneous groups, we refer to the book [7] by Folland & Stein as well
as to the recent monograph [10] by Fischer & Ruzhansky.

If a Lie group (on R
n) G has a property that there exist n-real numbers ν1, . . . , νn such that the

dilation

Dλ(x) := (λν1 x1, . . . , λνn xn), Dλ : R
n → R

n,

is an automorphism of the group G for each λ > 0, then it is called a homogeneous (Lie) group.
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A homogeneous quasi-norm on a homogeneous group G is a continuous non-negative function

G � x �→ |x| ∈ [0, ∞),

satisfying the properties

— |x−1| = |x| for all x ∈ G,
— |Dλ(x)| = λ|x| for all x ∈ G and λ > 0,
— |x| = 0 if and only if x = 0.

Let dx denote the Haar measure on G and let |S| denote the corresponding volume of a
measurable set S ⊂ G. Then, we have

|Dλ(S)| = λQ|S| and
∫
G

f (Dλ(x)) dx = λ−Q
∫
G

f (x) dx. (1.3)

A family of dilations of a Lie algebra g is a family of linear mappings of the form

Dλ = Exp(A lnλ) =
∞∑

k=0

1
k!

(ln(λ)A)k,

where A is a diagonalizable linear operator on g with positive eigenvalues, and each Dλ is a
morphism of the Lie algebra g, that is, a linear mapping from g to itself which respects the Lie
bracket

∀X, Y ∈ g, λ > 0, [DλX, DλY] = Dλ[X, Y].

Let us fix a basis {X1, . . . , Xn} of the Lie algebra g of the homogeneous group G such that

AXk = νkXk,

for each 1 ≤ k ≤ n, so that A can be taken to be

A = diag(ν1, . . . , νn). (1.4)

Then, each Xk is homogeneous of degree νk and also

Q = ν1 + · · · + νn,

which is called a homogeneous dimension of G. Homogeneous groups are necessarily nilpotent
and hence, in particular, the exponential mapping exp

G
: g → G is a global diffeomorphism, where

g is the Lie algebra of G. The decomposition of exp−1
G

(x) in the Lie algebra g defines the vector

e(x) = (e1(x), . . . , en(x)),

by the formula

exp−1
G

(x) = e(x) · ∇X ≡
n∑

j=1

ej(x)Xj, (1.5)

where ∇X = (X1, . . . , Xn). Alternatively, this means the equality

x = exp
G

(e1(x)X1 + · · · + en(x)Xn).

By homogeneity, this implies

rx := Dr(x) = exp
G

(rν1 e1(x)X1 + · · · + rνn en(x)Xn),

that is,
e(rx) = (rν1 e1(x), . . . , rνn en(x)).

We define

R := d
dr

, (1.6)
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that is, for all x ∈ G

d
d|x| f (x) =Rf (x), (1.7)

for each homogeneous quasi-norm |x| on a homogeneous group G. Defining the Euler operator

E = |x|R, (1.8)

it is not difficult to see that E is homogeneous of order zero (e.g. [11]). As G is a general
homogeneous group, it does not have to be stratified or even graded. Therefore, the notion of
a horizontal gradient does not make sense, and hence it is natural to work with the operator R.
For the horizontal versions of functional inequalities such as Hardy, Rellich and Caffarelli–Kohn–
Nirenberg inequalities we refer to [12] and references therein. Anisotropic L2-weighted Hardy
inequalities and L2-Caffarelli–Kohn–Nirenberg inequalities were studied in [13].

We also refer to recent works of Ozawa and colleagues [14–16] for some of the abelian cases G ≡
R

n of our discussions in the case of the (standard) isotropic dilations and the Euclidean distance
‖ · ‖. We note that also in the abelian (both isotropic and anisotropic) cases of R

n our results provide new
insights in view of the arbitrariness of the homogeneous quasi-norm | · | which does not necessarily have
to be the Euclidean norm.

In §2, we give main results and their proofs.

2. Main results and proofs
Let us start by giving an example of position and momentum operators appearing as a special
case of operators P and M used in this paper. First, we give an example on general homogeneous
groups, and then another example on the Heisenberg group.

Example 2.1. Let G be a homogeneous Lie group. Let us define position and momentum
operators as

P := x, x ∈ G, and M := −i∇, (2.1)

where ∇ = (∂/∂x1, . . . , ∂/∂xn) is an anisotropic gradient on G consisting of partial derivatives
with respect to coordinate functions. Here, we understand P as the scalar multiplication by the
coordinates of the variable x, i.e. Pv =∑

xjvj, where xj are the coordinate functions of x ∈ G, (see
[10, section 3.1.4]) for the detailed discussion of these functions on homogeneous groups.

The operators P and M clearly satisfy the relation

2 Re(xf · ∇f ) = x · ∇|f |2 = E|f |2, (2.2)

where E is the Euler operator from (1.8), that is,

E = x · ∇ and R= x · ∇
|x| = d

d|x| .

Although xj and ∂/∂xj may have different degrees of homogeneity depending on j, the Euler
operator E is homogeneous of order zero. The last equality can be checked directly

d
d|x| f (x) = d

d|x| f
(

x
|x| |x|

)
= x

|x|
d

dx
f (x) = x · ∇

|x| f (x),

for any x ∈ G and differentiable function f . Here, we have used the fact that x/|x| does not depend
on |x|. In the notation (2.5), the relations (2.2) can be expressed as

2 Re(Pf iMf ) = (P ◦ (iM))|f |2 = E|f |2. (2.3)
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We note that the anisotropic gradient ∇ can be expressed in terms of the left-invariant group
gradient ∇X = (X1, . . . , Xn). Such relations are well known and can we written as

∂

∂xj
= Xj +

∑
1≤k≤n
νj<νk

pj,kXk,

for some homogeneous polynomials pj,k on G of homogeneous degree νk − νj > 0, (e.g. [10, section
3.1.5]).

Example 2.2. Consider the Heisenberg group H on R
3. As discussed in the introduction, the

exponential map of the group is globally invertible and its inverse map is given by the formula

exp−1
H

(x) = e(x) · ∇X ≡
3∑

j=1

ej(x)Xj, (2.4)

where ∇X = (X1, X2, X3) is the full gradient of H with X1 = (∂/∂x1) + 2x2(∂/∂x3), X2 = ∂/∂x2 −
2x1(∂/∂x3) and X3 = −4(∂/∂x3) as well as e(x) = (e1(x), e2(x), e3(x)) with e1(x) = x1, e2(x) = x2 and
e3(x) = − 1

4 x3. In this case, the position and momentum operators can be defined as

P := e(x), x ∈ G and M := −i∇X. (2.5)

It is clear that these operators satisfy the relations (2.3). Now, let us check the relation (1.8) between
the Euler operator EH := e(x) · ∇X and the radial operator RH = d/d|x|

EH = e(x) · ∇X = x1

(
∂

∂x1
+ 2x2

∂

∂x3

)
+ x2

(
∂

∂x2
− 2x1

∂

∂x3

)
− 1

4
x3

(
−4

∂

∂x3

)

= x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

= |x|
(

x1

|x|
∂

∂x1
+ x2

|x|
∂

∂x2
+ x3

|x|
∂

∂x3

)

= |x| d
d|x| = |x|RH.

(a) Assumptions of this paper
In this paper, in particular, we show relations between abstract position P and momentum M
operators on homogeneous groups. These will be the operators providing a suitable factorization
for the Euler operator motivated by the relations (2.3). Although we could have worked
specifically with operators P and M from example 2.1, it is good to emphasize exactly which
of their properties we need to obtain the uncertainty principles and other functional relations.
However, we like to emphasize that in the setting of homogeneous groups and already in the
anisotropic R

n the subsequent results are new also for operators from example 2.1, and also in the
(usual) isotropic R

n in view of an arbitrary choice of a homogeneous quasi-norm | · |.
Thus, from now on, let P and M be linear operators, densely defined on L2(G), with their

domains containing C∞
0 (G), and such that C∞

0 (G) is an invariant subspace for them, that is,
P(C∞

0 (G)) ⊂ C∞
0 (G) and M(C∞

0 (G)) ⊂ C∞
0 (G). The main (and only) assumption in this paper is

that P and M satisfy the relations

2 Re(Pf iMf ) = (P ◦ (iM))|f |2 = E|f |2, (2.6)

for all f ∈ C∞
0 (G).

In particular, in view of equalities (2.3) in example 2.1, it is satisfied by the operators P and M
given in (2.5). However, surprisingly, we do not need their precise expressions from (2.5) to derive
subsequent properties presented in this paper: only the relation (2.6) is required for our further
analysis.

We denote by D(P) and D(M) the domains of operators P and M, respectively.
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(b) Position–momentum (PM) relations
In this subsection, we show relations between abstract position P and momentum M operators
on homogeneous groups satisfying equalities (2.6).

Theorem 2.3. Let G be a homogeneous group of homogeneous dimension Q. Then, for every f ∈
D(P)

⋂
D(M) with Pf �≡ 0 and Mf �≡ 0, we have

‖Pf‖2
L2(G) + ‖Mf‖2

L2(G) = Q‖f‖2
L2(G) + ‖Pf + iMf‖2

L2(G)

= ‖Pf‖L2(G)‖Mf‖L2(G)

⎛
⎝2 −

∥∥∥∥∥ Pf
‖Pf‖L2(G)

+ iMf
‖Mf‖L2(G)

∥∥∥∥∥
2

L2(G)

⎞
⎠

+ ‖Pf + iMf‖2
L2(G). (2.7)

Proof of theorem 2.3. There is a (unique) positive Borel measure σ on the unit quasi-sphere

S := {x ∈ G : |x| = 1}, (2.8)

such that for all functions f ∈ L1(G), we have the polar decomposition
∫
G

f (x) dx =
∫∞

0

∫
S

f (Dr(y))rQ−1 dσ (y) dr. (2.9)

We refer to Folland & Stein [7] for the proof (see also [10, section 3.1.7]). As C∞
0 (G) is dense

in L2(G), we need to show (2.7) for f ∈ C∞
0 (G) and then this implies that it is also true on

D(P)
⋂

D(M) by density. Using the above polar decomposition, formula (1.7) and equality (2.6),
we calculate

−2 Re
∫
G

Pf iMf dx = −
∫
G

PiM|f |2 dx = −
∫∞

0

∫
S

rQ 1
r

E|f |2 dσ (y) dr

= −
∫∞

0

∫
S

rQ d|f |2
dr

dσ (y) dr = Q
∫∞

0

∫
S

rQ−1|f |2 dσ (y) dr

= Q
∫
G

|f |2 dx = Q‖f‖2
L2(G).

Combining this with

‖Pf‖2
L2(G) + ‖Mf‖2

L2(G) = ‖Pf + iMf‖2
L2(G) − 2 Re

∫
G

Pf iMf dx,

we obtain the first equality in (2.7). On the other hand, we have

−2 Re
∫
G

Pf iMf dx = ‖Mf‖L2(G)‖Pf‖L2(G)

⎛
⎝2 −

∥∥∥∥∥ Pf
‖Pf‖L2(G)

+ iMf
‖Mf‖L2(G)

∥∥∥∥∥
2

L2(G)

⎞
⎠ .

This proves the second equality in (2.7). �

Equalities (2.7) imply the following Heisenberg–Kennard inequality:

Corollary 2.4. We have
Q
2

‖f‖2
L2(G) ≤ ‖Pf‖L2(G)‖Mf‖L2(G), (2.10)

which is also called the Kennard uncertainty inequality in the abelian case (see [17,18]).

The first equality in (2.7) implies the following Pythagorean type inequality:

Corollary 2.5. We have
‖
√

Qf‖2
L2(G) ≤ ‖Pf‖2

L2(G) + ‖Mf‖2
L2(G). (2.11)

Equalities (2.7) also imply the following:
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Corollary 2.6.

(i) Let f ∈ D(P)
⋂

D(M) with Pf �≡ 0 and Mf �≡ 0. Then, the equality case in the Heisenberg–
Kennard uncertainty inequality (2.10) holds, that is,

Q
2

‖f‖2
L2(G) = ‖Pf‖L2(G)‖Mf‖L2(G),

if and only if

‖Pf‖L2(G)iMf = ‖Mf‖L2(G)Pf .

(ii) For f ∈ D(P)
⋂

D(M), we have the Pythagorean equality

‖
√

Qf‖2
L2(G) = ‖Pf‖2

L2(G) + ‖Mf‖2
L2(G),

if and only if

Pf = iMf .

(c) Euler–Coulomb (EC) relations
Euler and Coulomb potential operators can be defined by

Ef := |x|Rf (2.12)

and

Cf := 1
|x| f , (2.13)

with the corresponding domains

D(E) = {f ∈ L2(G) : Ef ∈ L2(G)} (2.14)

and

D(C) =
{

f ∈ L2(G) :
1
|x| f ∈ L2(G)

}
. (2.15)

The Euler operator E defines the homogeneity on G: a C1-function f satisfies f (λx) = λμf (x) for all
λ > 0 if and only if Ef = μf .

The combination of the Euler operator and Coulomb potential defines an (radial derivative)
operator R by the formula

R := CE, (2.16)

see (1.7). Moreover, for each f ∈ C∞
0 (G\{0}) one has (see [11, Theorem 4.1])

∥∥∥∥ 1
|x|α Rf

∥∥∥∥2

L2(G)
=
(

Q − 2
2

− α

)2 ∥∥∥∥ f
|x|α+1

∥∥∥∥2

L2(G)
+
∥∥∥∥ 1

|x|α Rf + Q − 2 − 2α

2|x|α+1 f
∥∥∥∥2

L2(G)
, (2.17)

for all α ∈ R.
From (2.17) one can get different inequalities, for example, by dropping the second positive

term in the r.h.s of (2.17) (of course, one can obtain other inequalities by dropping the first term
of the r.h.s).

Remark 2.7. In the abelian case G = (Rn, +), n ≥ 3, we have Q = n, so for any homogeneous
quasi-norm | · | on R

n (2.17) implies a new inequality with the optimal constant

|n − 2 − 2α|
2

∥∥∥∥ f
|x|α+1

∥∥∥∥
L2(Rn)

≤
∥∥∥∥ 1

|x|α
x
|x| · ∇f

∥∥∥∥
L2(Rn)

, ∀α ∈ R, (2.18)

which in turn, by using Schwarz’s inequality with the standard Euclidean distance ‖x‖ =√
x2

1 + · · · + x2
n, implies the L2 Caffarelli–Kohn–Nirenberg inequality [19] for G ≡ R

n with the
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optimal constant

|n − 2 − 2α|
2

∥∥∥∥ f
‖x‖α+1

∥∥∥∥
L2(Rn)

≤
∥∥∥∥ 1

‖x‖α
∇f
∥∥∥∥

L2(Rn)
, ∀α ∈ R, (2.19)

for all f ∈ C∞
0 (Rn\{0}). Here, optimality of the constant (|n − 2 − 2α|)/2 was proved in [20,

Theorem 1.1. (ii)].

We now continue with general homogeneous groups G. If α = 0 from (2.17), we obtain the
equality

‖Rf‖2
L2(G) =

(
Q − 2

2

)2 ∥∥∥∥ 1
|x| f

∥∥∥∥2

L2(G)
+
∥∥∥∥Rf + Q − 2

2|x| f
∥∥∥∥2

L2(G)
. (2.20)

Now by dropping the non-negative last term in (2.20), we immediately obtain a version of Hardy’s
inequality on G (see [11] for its weighted Lp version)∥∥∥∥ 1

|x| f
∥∥∥∥

L2(G)
≤ 2

Q − 2
‖Rf‖L2(G), Q ≥ 3. (2.21)

Note that in comparison to stratified (Carnot) group versions, here the constant is best for any
quasi-norm | · |.

We also note that equality (2.20) gives an explicit expression for the remainder in the sharper
form of the Hardy inequality. Estimates of the remainder in Hardy, Sobolev and other inequalities
are another interesting direction of research starting from [21–23].

Remark 2.8. In the abelian case G = (Rn, +), n ≥ 3, we have Q = n, so for any homogeneous
quasi-norm | · | on R

n it implies the inequality∥∥∥∥ f
|x|
∥∥∥∥

L2(Rn)
≤ 2

n − 2

∥∥∥∥ x
|x| · ∇f

∥∥∥∥
L2(Rn)

, (2.22)

which in turn, again by using Schwarz’s inequality with the standard Euclidean distance ‖x‖ =√
x2

1 + · · · + x2
n, implies the classical Hardy inequality for G ≡ R

n

∥∥∥∥ f
‖x‖

∥∥∥∥
L2(Rn)

≤ 2
n − 2

‖∇f‖L2(Rn),

for all f ∈ C∞
0 (Rn\{0}).

We also refer to a recent interesting paper of Hoffmann-Ostenhof & Laptev [24] on this subject
for Hardy inequalities with homogeneous weights, to [25] for many-particle versions and to many
further references therein.

By standard argument, the inequality (2.21) implies the following Heisenberg–Pauli–Weyl type
uncertainly principle on homogeneous groups (e.g. [26–29] for versions on abelian and stratified
groups):

Proposition 2.9. Let G be a homogeneous group of homogeneous dimension Q ≥ 3. Then, for each
f ∈ C∞

0 (G\{0}) and any homogeneous quasi-norm | · | on G we have

‖f‖2
L2(G) ≤ 2

Q − 2
‖Rf‖L2(G)‖ |x|f‖L2(G). (2.23)

Proof. From the inequality (2.21), we get

(∫
G

|Rf |2 dx
)1/2 (∫

G

|x|2|f |2 dx
)1/2

≥ Q − 2
2

(∫
G

|f |2
|x|2 dx

)1/2 (∫
G

|x|2|f |2 dx
)1/2

≥ Q − 2
2

∫
G

|f |2 dx,

where we have used the Hölder inequality in the last line. This shows (2.23). �
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Remark 2.10. In the abelian case G = (Rn, +), we have Q = n, so that (2.23) implies the
uncertainly principle with any quasi-norm |x|

(∫
Rn

|u(x)|2 dx
)2

≤
(

2
n − 2

)2 ∫
Rn

∣∣∣∣ x
|x| · ∇u(x)

∣∣∣∣2 dx
∫
Rn

|x|2|u(x)|2 dx, (2.24)

which in turn implies the classical uncertainty principle for G ≡ R
n with the standard Euclidean

distance ‖x‖ (∫
Rn

|u(x)|2 dx
)2

≤
(

2
n − 2

)2 ∫
Rn

|∇u(x)|2 dx
∫
Rn

‖x‖2|u(x)|2 dx,

which is the Heisenberg–Pauli–Weyl uncertainly principle on R
n.

Moreover, we have the following Pythagorean relation for the Euler operator:

Proposition 2.11. We have

‖Ef‖2
L2(G) =

∥∥∥∥Q
2

f
∥∥∥∥2

L2(G)
+
∥∥∥∥Ef + Q

2
f
∥∥∥∥2

L2(G)
, (2.25)

for any f ∈ D(E).

Proof. Taking α = −1, from (2.17) we obtain (2.25) for any f ∈ C∞
0 (G\{0}). As D(E) ⊂ L2(G) and

C∞
0 (G\{0}) is dense in L2(G), this implies that (2.25) is also true on D(E) by density. �

Simply by dropping the positive term in the r.h.s, (2.25) implies

Corollary 2.12. We have

‖f‖L2(G) ≤ 2
Q

‖Ef‖L2(G), (2.26)

for any f ∈ D(E).

(d) Radial-dilations-Coulomb (RRgC) relations
A generator of dilations operator can be defined by

Rg := −i
(
R + Q − 1

2
C
)

, (2.27)

with the domain

D(Rg) = {f ∈ L2(G) : Rf ∈ L2(G), Cf ∈ L2(G)}. (2.28)

Note that the generator of dilations operator Rg and the Coulomb potential operator have the
following special commutation relation:

Lemma 2.13. For any f ∈ C∞
0 (G\{0}), we have

[Rg, C]f = iC2f , (2.29)

where [Rg, C] =RgC − CRg.

Proof of lemma 2.13. Denoting r := |x| we have C = 1/r, and from (1.7) it follows that Rg =
−i(d/dr + (Q − 1)/2r). Thus, a direct calculation shows

[Rg, C]f =RgCf − CRgf

= −i
(

− 1
r2 + 1

r
d
dr

+ Q − 1
2r2 − 1

r
d
dr

− Q − 1
2r2

)
f = i

1
r2 f = iC2f .

�
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Lemma 2.14. Operators Rg and C are symmetric.

Proof of lemma 2.14. It is a straightforward that C is symmetric, that is,

∫
G

(Cf )f̄ dx =
∫
G

fCf dx.

Now, we need to show that

∫
G

(Rgf )f̄ dx =
∫
G

fRgf dx (2.30)

for any f ∈ C∞
0 (G\{0}). As D(Rg) ⊂ L2(G) and C∞

0 (G\{0}) is dense in L2(G) it follows that (2.30)
is also true on D(Rg) by density if it is valid on C∞

0 (G\{0}). Using the polar decomposition with
Rg = −i(d/dr + (Q − 1)/2r), we obtain

∫
G

(Rgf )f̄ dx = −i
∫∞

0

∫
S

rQ−1
(

df
dr

+ Q − 1
2r

f
)

f̄ dσ (y) dr

= −i
∫∞

0

∫
S

df
dr

f̄ rQ−1 dσ (y) dr − i
Q − 1

2

∫∞

0

∫
S

rQ−1 f
r

f̄ dσ (y) dr

= i
∫∞

0

∫
S

f
df̄
dr

rQ−1 dσ (y) dr

+ i(Q − 1)
∫∞

0

∫
S

rQ−1 f
r

f̄ dσ (y) dr − i
Q − 1

2

∫∞

0

∫
S

rQ−1 f
r

f̄ dσ (y) dr

=
∫∞

0

∫
S

rQ−1f
(

−i
df
dr

− i
Q − 1

2r
f
)

dσ (y) dr =
∫
G

fRgf dν,

proving that Rg is also symmetric. �

For any symmetric operators A and B in L2 with domains D(A) and D(B), respectively, a
straightforward calculation (e.g. [16, Theorem 2.1]) shows the equality

− i
∫
G

([A, B]f )f̄ dν = ‖Af‖L2(G)‖Bf‖L2(G)

⎛
⎝2 −

∥∥∥∥∥ Af
‖Af‖L2(G)

+ i
Bf

‖Bf‖L2(G)

∥∥∥∥∥
2

L2(G)

⎞
⎠ , (2.31)

for f ∈ D(A) ∩ D(B) with Af �≡ 0 and Bf �≡ 0, which will be useful in our next proof.

Theorem 2.15. Let G be a homogeneous group of homogeneous dimension Q. Then, for every f ∈
D(R) ∩ D(C), we have

‖Rf‖2
L2(G) = ‖Rgf‖2

L2(G) + (Q − 1)(Q − 3)
4

‖Cf‖2
L2(G) (2.32)

and

‖Cf‖L2(G) = ‖Rgf‖L2(G)

⎛
⎝2 −

∥∥∥∥∥ Rgf
‖Rgf‖L2(G)

+ i
Cf

‖Cf‖L2(G)

∥∥∥∥∥
2

L2(G)

⎞
⎠ , (2.33)

for Rgf �≡ 0 and Cf �≡ 0.
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Proof of theorem 2.15. As in the proof of theorem 2.3, we can calculate

‖Rgf‖2
L2(G) =

∥∥∥∥Rf + Q − 1
2|x| f

∥∥∥∥2

L2(G)

= ‖Rf‖2
L2(G) + (Q − 1) Re

∫
G

(Rf )
1
|x| f dx +

∥∥∥∥Q − 1
2|x| f

∥∥∥∥2

L2(G)

= ‖Rf‖2
L2(G) + (Q − 1) Re

∫∞

0

∫
S

rQ−1
(

d
dr

f
)

1
r

f dσ (y) dr +
∥∥∥∥Q − 1

2|x| f
∥∥∥∥2

L2(G)

= ‖Rf‖2
L2(G) + Q − 1

2

∫∞

0

∫
S

rQ−2 d
dr

|f |2 dσ (y) dr + (Q − 1)2

4
‖Cf‖2

L2(G)

= ‖Rf‖2
L2(G) − (Q − 1)(Q − 2)

2

∫∞

0

∫
S

rQ−1 1
r2 |f |2 dσ (y) dr + (Q − 1)2

4
‖Cf‖2

L2(G)

= ‖Rf‖2
L2(G) − (Q − 1)(Q − 2)

2

∫
G

|Cf |2 dx + (Q − 1)2

4
‖Cf‖2

L2(G)

= ‖Rf‖2
L2(G) − (Q − 1)(Q − 3)

4
‖Cf‖2

L2(G).

This proves (2.32). Using (2.29) and lemma 2.14 with (2.31), we obtain

‖Cf‖2
L2(G) = −i

∫
G

[Rg, C]f f̄ dx

= ‖Rgf‖L2(G)‖Cf‖L2(G)

⎛
⎝2 −

∥∥∥∥∥ Rgf
‖Rgf‖L2(G)

+ i
Cf

‖Cf‖L2(G)

∥∥∥∥∥
2

L2(G)

⎞
⎠ .

As above because C∞
0 (G) is dense in L2(G), it implies that this equality is also true on D(R) ∩ D(C)

by density. �

The equality (2.32) implies that

Corollary 2.16. Let Q ≥ 3. The generator of dilations and Coulomb potential operator are bounded by
the (radial) operator R, that is,

‖Rgf‖L2(G) ≤ ‖Rf‖L2(G) (2.34)

and √
(Q − 1)(Q − 3)

2
‖Cf‖L2(G) ≤ ‖Rf‖L2(G). (2.35)

The equality (2.33) implies that

Corollary 2.17. The Coulomb potential operator is bounded by the generator of dilations operator with
relative bound 2, that is,

‖Cf‖L2(G) ≤ 2‖Rgf‖L2(G). (2.36)
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