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ON KAC’S PRINCIPLE OF NOT FEELING THE BOUNDARY FOR

THE KOHN LAPLACIAN ON THE HEISENBERG GROUP

MICHAEL RUZHANSKY AND DURVUDKHAN SURAGAN

Abstract. In this note we construct an integral boundary condition for the Kohn
Laplacian in a given domain on the Heisenberg group extending to the setting of
the Heisenberg group M. Kac’s “principle of not feeling the boundary”. This also
amounts to finding the trace on smooth surfaces of the Newton potential associated
to the Kohn Laplacian. We also obtain similar results for higher powers of the
Kohn Laplacian.

1. Introduction

In a bounded domain of the Euclidean space Ω ⊂ Rd, d ≥ 2, it is very well known
that the solution to the Laplacian equation

(1.1) ∆u(x) = f(x), x ∈ Ω,

is given by the Green formula (or the Newton potential formula)

(1.2) u(x) =

∫

Ω

εd(x− y)f(y)dy, x ∈ Ω,

for suitable functions f supported in Ω. Here εd is the fundamental solution to ∆ in
Rd given by

(1.3) εd(x− y) =

{ 1
(2−d)sd

1
|x−y|d−2 , d ≥ 3,

1
2π

log |x− y|, d = 2,

where sd =
2π

d
2

Γ(d
2
)
is the surface area of the unit sphere in Rd.

An interesting question having several important applications is what boundary
conditions can be put on u on the (smooth) boundary ∂Ω so that equation (1.1)
complemented by this boundary condition would have the solution in Ω still given by
the same formula (1.2), with the same kernel εd given by (1.3). It turns out that the
answer to this question is the integral boundary condition

(1.4) −
1

2
u(x) +

∫

∂Ω

∂εd(x− y)

∂ny
u(y)dSy −

∫

∂Ω

εd(x− y)
∂u(y)

∂ny
dSy = 0, x ∈ ∂Ω,

where ∂
∂ny

denotes the outer normal derivative at a point y on ∂Ω. A converse question

to the one above would be to determine the trace of the Newton potential (1.2) on
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the boundary surface ∂Ω, and one can use the potential theory to show that it has
to be given by (1.4).
The boundary condition (1.4) appeared in M. Kac’s work [10] where he called it

and the subsequent spectral analysis “the principle of not feeling the boundary”.
This was further expanded in Kac’s book [11] with several further applications to
the spectral theory and the asymptotics of the Weyl’s eigenvalue counting function.
In [12] by using the boundary condition (1.4) the eigenvalues and eigenfunctions of
the Newton potential (1.2) were explicitly calculated in the 2-disk and in the 3-ball.
In general, the boundary value problem (1.1)-(1.4) has various interesting properties
and applications (see, for example, Kac [10, 11] and Saito [19]). The boundary value
problem (1.1)-(1.4) can also be generalised for higher degrees of the Laplacian, see
[13, 14].

In this note we are interested in and we give answers to the following questions:

• What happens if an elliptic operator (the Laplacian) in (1.1) is replaced by
a hypoelliptic operator? We will realise this as a model of replacing the
Euclidean space by the Heisenberg group and the Laplacian on Rd by a sub-
Laplacian (or the Kohn-Laplacian) on Hn−1. We will show that the boundary
condition (1.4) is replaced by the integral boundary condition (2.5) in this
setting (see also (1.11)).

• Since the theory of boundary value problems for elliptic operators is well
understood, we know that the single condition (1.4) on the boundary ∂Ω of a
bounded domain Ω guarantees the unique solvability of the equation (1.1) in
Ω. Is this uniqueness preserved in the hypoelliptic model as well for a suitably
chosen replacement of the boundary condition (1.4)? The case of the second
order operators is favourable from this point of view due to the validity of the
maximum principle, see Bony [1]. The Dirichlet problem has been considered
by Jerison [9]. The answer in the case of the boundary value problem in our
setting is given in Theorem 2.1.

• What happens if we consider the above questions for higher order equations?
In general, it is known that for higher order Rockland operators on stratified
groups, fundamental solutions may be not unique, see Folland [5] and Geller
[6], and for a unifying discussion see also the book [2]. However, for powers
of the Kohn Laplacian we still have the uniqueness provided that we impose
higher order boundary conditions in a suitable way, see Theorem 3.1.

We now describe the setting of this paper. The Heisenberg group Hn−1 is the space
Cn−1 × R with the group operation given by

(1.5) (ζ, t) ◦ (η, τ) = (ζ + η, t+ τ + 2 Im ζη),

for (ζ, t), (η, τ) ∈ Cn−1 × R. Writing ζ = x + iy with xj , yj, j = 1, ..., n− 1, the real
coordinates on Hn−1, the left-invariant vector fields

X̃j =
∂

∂xj
+ 2yj

∂

∂t
, j = 1, ..., n− 1,

Ỹj =
∂

∂yj
− 2xj

∂

∂t
, j = 1, ..., n− 1,
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T =
∂

∂t
,

form a basis for the Lie algebra hn−1 of Hn−1.
On the other hand, Hn−1 can be viewed as the boundary of the Siegel upper half

space in Cn,

Hn−1 = {(ζ, zn) ∈ C
n : Im zn = |ζ |2, ζ = (z1, ..., zn−1)}.

Parameterizing Hn−1 by z = (ζ, t) where t = Re zn, a basis for the complex tangent
space of Hn−1 at the point z is given by the left-invariant vector fields

Xj =
∂

∂zj
+ iz

∂

∂t
, j = 1, . . . , n− 1.

We denote their conjugates by Xj ≡ Xj =
∂

∂zj
− iz ∂

∂t
. The operator

(1.6) �a,b =

n−1
∑

j=1

(aXjXj + bXjXj), a+ b = n− 1,

is a left-invariant, rotation invariant differential operator that is homogeneous of
degree two (cf. [3]). This operator is a slight generalisation of the standard sub-
Laplacian or Kohn-Laplacian �b on the Heisenberg group Hn−1 which, when acting
on the coefficients of a (0, q)-form can be written as

�b = −
1

n− 1

n−1
∑

j=1

((n− 1− q)XjXj + qXjXj).

Folland and Stein [4] found that a fundamental solution of the operator �a,b is a
constant multiple of

(1.7) ε(z) = ε(ζ, t) =
1

(t+ i|ζ |2)a(t− i|ζ |2)b
,

and defined the Newton potential (volume potential) for a function f with compact
support contained in a set Ω ⊂ Hn−1 by

(1.8) u(z) =

∫

Ω

f(ξ)ε(ξ−1z)dν(ξ),

with dν being the volume element (the Haar measure on Hn−1), coinciding with the
Lebesgue measure on Cn−1 × R. More precisely, they proved that

�a,bu = ca,bf,

where the constant ca,b is zero if a and b = −1,−2, . . . , n, n+ 1, . . . , and ca,b 6= 0 if a
or b 6= −1,−2, . . . , n, n+ 1, . . . In fact, then we can take

ca,b =
2(a2 + b2)Vol(B1)

(2i)n
(n− 1)!

a(a− 1)...(a− n + 1)
(1− exp(−2iaπ))

for a 6∈ Z, see the proof of Theorem 1.6 in Romero [16]. Similar conclusions by a
different methods were obtained by Greiner and Stein [8]. For a more general analysis
of fundamental solutions for sub-Laplacians we can refer to Folland [5] as well as to
a discussion and references in Stein [20]. The Kohn Laplacian and its generalisations
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may be considered as natural models for dealing with sums of squares also on more
general manifolds, as it is now well known, see e.g. Rothschild and Stein [17].
In the above notation, the distribution 1

ca,b
ε is the fundamental solution of �a,b,

while ε satisfies the equation

(1.9) �a,bε = ca,bδ.

However, although we could have rescaled ε for it to become the fundamental solution,
we prefer to keep the notation yielding (1.9) in order to follow the notation of [4] and
[16] to be able to refer to their results directly.

Throughout this paper we assume that ca,b 6= 0, i.e. both

a and b 6= −1,−2, . . . , n, n+ 1, . . . .

In addition, without loss of generality we may also assume that a, b ≥ 0.

Now, in analogy to the elliptic boundary value problem (1.1)–(1.4) for the Laplacian
∆ in Rd, we consider the hypoelliptic boundary value problem for the sub-Laplacian
�a,b on Hn−1, namely the equation

(1.10) �a,bu = ca,bf

in a bounded set Ω ⊂ Hn−1 with smooth boundary ∂Ω. The first aim of this paper
is to find a boundary condition of the Newton potential u on ∂Ω such that with this
boundary condition the equation (1.10) has a unique solution, which is the Newton
potential (1.8).
Basing our arguments on the analysis of Folland and Stein [4] and Romero [16] we

show that the boundary condition (1.4) for the Laplacian in Rd is now replaced by
the integral boundary condition (2.5) in this setting, namely by the condition

(1.11) (ca,b −H.R(z))u(z)−

∫

∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉+ p.v.Wu(z) = 0, z ∈ ∂Ω,

on the boundary ∂Ω, where H.R(z) is the so-called half residue, and where the second
and the third term can be interpreted as coming from the suitably defined respectively
single and double layer potentials S and W for the problem. See Section 2 for the
definitions and the precise statement.

In Section 2 by using properties of fundamental solutions we construct a well-
posed boundary value problem for the differential equation (1.10) with the required
properties. In Section 3 we generalise this result for higher powers of the Kohn
Laplacian. Throughout this paper we may use notations from [16], [15] and [18].

2. The Kohn Laplacian

Let Ω ⊂ Hn−1 be an open bounded domain with a smooth boundary ∂Ω ∈ C∞.
Consider the following analogy of the Newton potential on the Heisenberg group

(2.1) u(z) =

∫

Ω

f(ξ)ε(ξ, z)dν(ξ) in Ω,

where ε(ξ, z) = ε(ξ−1z) is the rescaled fundamental solution (1.7) of the sub-Laplacian,
satisfying (1.9). As we mentioned u is a solution of (1.10) in Ω. The aim of this sec-
tion is to find a boundary condition for u such that with this boundary condition the
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equation (1.10) has a unique solution in C2(Ω), say, and this solution is the Newton
potential (2.1).

We recall a few notions and properties first. For z = (ζ, t) ∈ Hn−1, we define its
norm by |z| := (|ζ |4 + |t|2)1/4. As any (quasi-)norm on Hn−1, this satisfies a triangle
inequality with a constant, and allows for a polar decomposition. For 0 < α < 1,
Folland and Stein [4] defined the anisotropic Hölder spaces Γα(Ω) by

Γα(Ω) =







f : Ω → C : sup
z1,z2∈Ω

z1 6=z2

|f(z2)− f(z1)|

|z−1
2 z1|α

< ∞







.

For k ∈ N and 0 < α < 1, one defines Γk+α(Ω) as the space of all f : Ω → C such
that all complex derivatives of f of order k belong to Γα(Ω).
A starting point for us will be that if f ∈ Γα(Ω) for α > 0 then u defined by (2.1) is

twice differentiable in the complex directions and satisfies the equation �a,bu = ca,bf .
We refer to Folland and Stein [4], Greiner and Stein [8], and to Romero [16] for three
different approaches to this property. Moreover, Folland and Stein have shown that
if f ∈ Γα(Ω, loc) and �a,bu = ca,bf , then f ∈ Γα+2(Ω, loc). These results extend those
known for the Laplacian, in suitably redefined anisotropic Hölder spaces.
We record relevant single and double layer potentials for the problem (1.10). In

[9], Jerison used the single layer potential defined by

S0g(z) =

∫

∂Ω

g(ξ)ε(ξ, z)dS(ξ),

which, however, is not integrable over characteristic points. On the contrary, the
functional

Sg(z) =

∫

∂Ω

g(ξ)ε(ξ, z)〈Xj, dν(ξ)〉,

where 〈X, dν〉 is the canonical pairing between vector fields and differential forms, is
integrable over the whole boundary ∂Ω. Moreover, it was shown in [16, Theorem 2.3]
that if the density of g(ξ)〈Xj, dν〉 in the operator S is bounded then Sg ∈ Γα(Hn−1)
for all α < 1. Parallel to S, it is natural to use the operator

(2.2) Wu(z) =

∫

∂Ω

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉

as a double layer potential. Our main result for the sub-Laplacian is the following
justification of formula (1.11) in the introduction:

Theorem 2.1. Let ε(ξ, z) = ε(ξ−1z) be the rescaled fundamental solution to �a,b, so
that

(2.3) �a,bε = ca,bδ on Hn−1.

For any f ∈ Γα(Ω), the Newton potential (2.1) is the unique solution in C2(Ω)∩C1(Ω)
of the equation

(2.4) �a,bu = ca,bf
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with the boundary condition

(2.5) (ca,b −H.R(z))u(z) + lim
δ→0

∫

∂Ω\{|ξ−1z|<δ}

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉−

∫

∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉 = 0, for z ∈ ∂Ω,

where H.R(z) is the so-called half residue given by the formula

(2.6) H.R(z) = lim
δ→0

∫

∂Ω\{|ξ−1z|<δ}

〈∇a,bε(ξ, z), dν(ξ)〉,

with

∇a,bg =

n−1
∑

j=1

(aXjgXj + bXjgXj).

The half residue H.R.(z) in (2.6) appears in the jump relations for the problem
(2.4) in the following way. The double layer potential Wu in (2.2) has two limits

W+u(z) = lim
z0→z

z0∈Ω

∫

∂Ω

u(ξ)〈∇a,bε(ξ, z0), dν(ξ)〉

and

W−u(z) = lim
z0→z

z0 6∈Ω

∫

∂Ω

u(ξ)〈∇a,bε(ξ, z0), dν(ξ)〉,

and the principal value

W 0u(z) = p.v. Wu(z) = lim
δ→0

∫

∂Ω\{|ξ−1z|<δ}

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉.

We note that this principal value enters as the second term in the integral boundary
condition (2.5). It was proved in [16, Theorem 2.4] that for sufficiently regular u (e.g.
u ∈ Γα(Ω)) and z ∈ ∂Ω these limits exist and satisfy the jump relations

W+u(z)−W−u(z) = ca,bu(z),

W 0u(z)−W−u(z) = H.R.(z)u(z),

W+u(z)−W 0u(z) = (ca,b −H.R.(z))u(z),(2.7)

the last property (2.7) following from the first two by subtraction.

Proof of Theorem 2.1. Since the solid potential

(2.8) u(z) =

∫

Ω

f(ξ)ε(ξ, z)dν(ξ)

is a solution of (2.4), from the aforementioned results of Folland and Stein it follows
that u is locally in Γα+2(Ω, loc) and that it is twice complex differentiable in Ω. In
particular, it follows that u ∈ C2(Ω) ∩ C1(Ω).
The following representation formula can be derived from the generalised second

Green’s formula (see Theorem 4.5 in [16] and cf. [15]), for u ∈ C2(Ω) ∩ C1(Ω) we
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have

(2.9) ca,bu(z) = ca,b

∫

Ω

f(ξ)ε(ξ, z)dν(ξ) +

∫

∂Ω

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉−

∫

∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉, for any z ∈ Ω.

Since u(z) given by (2.8) is a solution of (2.4), using it in (2.9) we get

(2.10)

∫

∂Ω

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉 −

∫

∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉 = 0,

for any z ∈ Ω.

It is easy to see that the fundamental solution, i.e. the function ε(z) in (1.7) is
homogeneous of degree −2n + 2, that is

ε(λz) = λ−2a−2bε(z) = λ−2n+2ε(z) for any λ > 0,

since a+ b = n−1. It follows that ε and its first order complex derivatives are locally
integrable. Since ε(ξ, z) = ε(ξ−1z), we obtain that as z approaches the boundary, we
can pass to the limit in the second term in (2.10).
By using this and the relation (2.7) as z ∈ Ω approaches the boundary ∂Ω from

inside, we find that

(2.11) (ca,b −H.R(z))u(z) + lim
δ→0

∫

∂Ω\{|ξ−1z|<δ}

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉−

∫

∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉 = 0, for any z ∈ ∂Ω.

This shows that (2.1) is a solution of the boundary value problem (2.4) with the
boundary condition (2.5).

Now let us prove its uniqueness. If the boundary value problem has two solutions
u and u1 then the function w = u − u1 ∈ C2(Ω) ∩ C1(Ω) satisfies the homogeneous
equation

(2.12) �a,bw = 0 in Ω,

and the boundary condition (2.5), i.e.

(2.13) (ca,b −H.R(z))w(z) + lim
δ→0

∫

∂Ω\{|ξ−1z|<δ}

w(ξ)〈∇a,bε(ξ, z), dν(ξ)〉−

∫

∂Ω

ε(ξ, z)〈∇b,aw(ξ), dν(ξ)〉 = 0,

for any z ∈ ∂Ω.
Since f ≡ 0 in this case instead of (2.9) we have the following representation

formula

(2.14) ca,bw(z) =

∫

∂Ω

w(ξ)〈∇a,bε(ξ, z), dν(ξ)〉 −

∫

∂Ω

ε(ξ, z)〈∇b,aw(ξ), dν(ξ)〉
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for any z ∈ Ω. As above, by using the properties of the double and single layer
potentials as z → ∂Ω, we obtain

(2.15) ca,bw(z) = (ca,b −H.R(z))w(z)+

lim
δ→0

∫

∂Ω\{|ξ−1z|<δ}

w(ξ)〈∇a,bε(ξ, z), dν(ξ)〉 −

∫

∂Ω

ε(ξ, z)〈∇b,aw, dν(ξ)〉

for any z ∈ ∂Ω. Comparing this with (2.13) we arrive at

(2.16) w(z) = 0, z ∈ ∂Ω.

The homogeneous equation (2.12) with the Dirichlet boundary condition (2.16)
has only trivial solution w ≡ 0 in Ω, see e.g. [16, Theorem 4.3]. This shows that
the boundary value problem (2.4) with the boundary condition (2.5) has a unique
solution in C2(Ω) ∩ C1(Ω). This completes the proof of Theorem 2.1. �

3. Powers of the Kohn Laplacian

As before, let Ω ⊂ Hn−1 be an open bounded domain with a smooth boundary
∂Ω ∈ C∞. For m ∈ N, we denote �

m
a,b := �a,b�

m−1
a,b . Then for m = 1, 2, . . ., we

consider the equation

(3.1) �
m
a,bu(z) = ca,bf(z), z ∈ Ω.

Let ε(ξ, z) = ε(ξ−1z) be the rescaled fundamental solution of the Kohn Laplacian
as in (2.3). Let us now define

(3.2) u(z) =

∫

Ω

f(ξ)εm(ξ, z)dν(ξ)

in Ω ⊂ Hn−1, where εm(ξ, z) is a rescaled fundamental solution of (3.1) such that

�
m−1
a,b εm = ε.

We take, with a proper distributional interpretation, for m = 2, 3, . . .,

(3.3) εm(ξ, z) =

∫

Ω

εm−1(ξ, ζ)ε(ζ, z)dν(ζ), ξ, z ∈ Ω,

with

ε1(ξ, z) = ε(ξ, z).

A simple calculation shows that the generalised Newton potential (3.2) is a solution
of (3.1) in Ω. The aim of this section is to find a boundary condition on ∂Ω such that
with this boundary condition the equation (3.1) has a unique solution in C2m(Ω),
which coincides with (3.2).
Although fundamental solutions for higher order hypoelliptic operators on the

Heisenberg group may not have unique fundamental solutions, see Geller [6], in the
case of the iterated sub-Laplacian �

m
a,b we still have the uniqueness for our problem

in the sense of the following theorem, and the uniqueness argument in its proof.
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Theorem 3.1. For any f ∈ Γα(Ω), the generalised Newton potential (3.2) is a unique
solution of the equation (3.1) in C2m(Ω) ∩ C2m−1(Ω) with m boundary conditions

(3.4) (ca,b −H.R(z))�i
a,bu(z)+

m−i−1
∑

j=0

lim
δ→0

∫

∂Ω\{|ξ−1z|<δ}

�
j+i
a,b u(ξ)〈∇

a,b
�

m−1−j
a,b εm(ξ, z), dν(ξ)〉−

m−i−1
∑

j=0

∫

∂Ω

�
m−1−j
a,b εm(ξ, z)〈∇

b,a
�

j+i
a,b u(ξ)dν(ξ)〉 = 0, z ∈ ∂Ω,

for all i = 0, 1, . . . , m− 1, where

∇a,bg =
n−1
∑

j=1

(aXjgXj + bXjgXj)

and H.R(z) is the half residue given by the formula (2.6).

Proof. By applying Green’s second formula for each z ∈ Ω, as in (2.9), we obtain

(3.5) ca,bu(z) = ca,b

∫

Ω

f(ξ)εm(ξ, z)dν(ξ) =

∫

Ω

�
m
a,bu(ξ)εm(ξ, z)dν(ξ) =

∫

Ω

�
m−1
a,b u(ξ)�a,bεm(ξ, z)dν(ξ)−

∫

∂Ω

�
m−1
a,b u(ξ)〈∇a,bεm(ξ, z), dν(ξ)〉+

∫

∂Ω

εm(ξ, z)〈∇
b,a
�

m−1
a,b u(ξ), dν(ξ)〉 =

∫

Ω

�
m−2
a,b u(ξ)�2

a,bεm(ξ, z)dν(ξ)−

∫

∂Ω

�
m−2
a,b u(ξ)〈∇a,b

�a,bεm(ξ, z), dν(ξ)〉+

∫

∂Ω

�a,bεm(ξ, z)〈∇
b,a
�

m−2
a,b u(ξ), dν(ξ)〉−

∫

∂Ω

�
m−1
a,b u(ξ)〈∇a,bεm(ξ, z), dν(ξ)〉+

∫

∂Ω

εm(ξ, z)〈∇
b,a
�

m−1
a,b u(ξ), dν(ξ)〉 = ... =

ca,bu(z)−

m−1
∑

j=0

∫

∂Ω

�
j
a,bu(ξ)〈∇

a,b
�

m−1−j
a,b εm(ξ, z), dν(ξ)〉+

m−1
∑

j=0

∫

∂Ω

�
m−1−j
a,b εm(ξ, z)〈∇

b,a
�

j
a,bu(ξ), dν(ξ)〉, z ∈ Ω.
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This implies the identity

(3.6)

m−1
∑

j=0

∫

∂Ω

�
j
a,bu(ξ)〈∇

a,b
�

m−1−j
a,b εm(ξ, z), dν(ξ)〉−

m−1
∑

j=0

∫

∂Ω

�
m−1−j
a,b εm(ξ, z)〈∇

b,a
�

j
a,bu(ξ), dν(ξ)〉 = 0, z ∈ Ω.

By using the properties of the double and single layer potentials as z approaches
the boundary ∂Ω from the interior, from (3.6) we obtain

(ca,b −H.R(z))u(z) +

m−1
∑

j=0

lim
δ→0

∫

∂Ω\{|ξ−1z|<δ}

�
j
a,bu(ξ)〈∇

a,b
�

m−1−j
a,b εm(ξ, z), dν(ξ)〉−

m−1
∑

j=0

∫

∂Ω

�
m−1−j
a,b εm(ξ, z)〈∇

b,a
�

j
a,bu(ξ), dν(ξ)〉 = 0, z ∈ ∂Ω.

Thus, this relation is one of the boundary conditions of (3.2). Let us derive the
remaining boundary conditions. To this end, we write

(3.7) �
m−i
a,b �

i
a,bu = ca,bf, i = 0, 1, . . . , m− 1, m = 1, 2, . . . ,

and carry out similar considerations just as above. This yields

ca,b�
i
a,bu(z) = ca,b

∫

Ω

f(ξ)�i
a,bεm(ξ, z)dν(ξ) =

∫

Ω

�
m−i
a,b �

i
a,bu(ξ)�

i
a,bεm(ξ, z)dν(ξ) =

∫

Ω

�
m−i−1
a,b �

i
a,bu(ξ)�a,b�

i
a,bεm(ξ, z)dν(ξ)−

∫

∂Ω

�
m−i−1
a,b �

i
a,bu(ξ)〈∇

a,b
�

i
a,bεm(ξ, z), dν(ξ)〉+

∫

∂Ω

�
i
a,bεm(ξ, z)〈∇

b,a
�

m−i−1
a,b �

i
a,bu(ξ), dν(ξ)〉 =

∫

Ω

�
m−i−2
a,b �

i
a,bu(ξ)�

2
a,b�

i
a,bεm(ξ, z)dν(ξ)−

∫

∂Ω

�
m−i−2
a,b �

i
a,bu(ξ)〈∇

a,b
�a,b�

i
a,bεm(ξ, z), dν(ξ)〉+

∫

∂Ω

�a,b�
i
a,bεm(ξ, z)〈∇

b,a
�

m−i−2
a,b �

i
a,bu(ξ), dν(ξ)〉−

∫

∂Ω

�
m−i−1
a,b �

i
a,bu(ξ)〈∇

a,b
�

i
a,bεm(ξ, z), dν(ξ)〉+

∫

∂Ω

�
i
a,bεm(ξ, z)〈∇

b,a
�

m−i−1
a,b �

i
a,bu(ξ), dν(ξ)〉 =

... =

∫

Ω

�
i
a,bu(ξ)�

m−i
a,b �

i
a,bεm(ξ, z)dν(ξ)−
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m−i−1
∑

j=0

∫

∂Ω

�
j
a,b�

i
a,bu(ξ)〈∇

a,b
�

m−i−1−j
a,b �

i
a,bεm(ξ, z), dν(ξ)〉+

m−i−1
∑

j=0

∫

∂Ω

�
m−i−1−j
a,b �

i
a,bεm(ξ, z)〈∇

b,a
�

j
a,b�

i
a,bu(ξ), dν(ξ)〉 =

ca,b�
i
a,bu(z)−

m−i−1
∑

j=0

∫

∂Ω

�
j+i
a,b u(ξ)〈∇

a,b
�

m−1−j
a,b εm(ξ, z), dν(ξ)〉+

m−i−1
∑

j=0

∫

∂Ω

�
m−1−j
a,b εm(ξ, z)〈∇

b,a
�

j+i
a,b u(ξ), dν(ξ)〉, z ∈ Ω,

where, as usual, εm(ξ, z) = εm(ξ
−1z), and �

i
a,bεm is a rescaled fundamental solution

of the equation (3.7), i.e.,

�
m−i
a,b �

i
a,bεm = ca,bδ, i = 0, 1, . . . , m− 1.

From the previous relations, we obtain the identities

m−i−1
∑

j=0

∫

∂Ω

�
j+i
a,b u(ξ)〈∇

a,b
�

m−1−j
a,b εm(ξ, z), dν(ξ)〉−

m−i−1
∑

j=0

∫

∂Ω

�
m−1−j
a,b εm(ξ, z)〈∇

b,a
�

j+i
a,b u(ξ), dν(ξ)〉 = 0

for any z ∈ Ω and i = 0, 1, . . . , m − 1. By using the properties of the double and
single layer potentials as z approaches the boundary ∂Ω from the interior of Ω, we
find that

(ca,b−H.R(z))�i
a,bu(z)+

m−i−1
∑

j=0

lim
δ→0

∫

∂Ω\{|ξ−1z|<δ}

�
j+i
a,b u(ξ)〈∇

a,b
�

m−1−j
a,b εm(ξ, z), dν(ξ)〉−

m−i−1
∑

j=0

∫

∂Ω

�
m−1−j
a,b εm(ξ, z)〈∇

b,a
�

j+i
a,b u(ξ), dν(ξ)〉 = 0, z ∈ ∂Ω,

are all boundary conditions of (3.2) for each i = 0, 1, . . . , m− 1.

Conversely, let us show that if a function w ∈ C2m(Ω) ∩ C2m−1(Ω) satisfies the
equation �

m
a,bw = f and the boundary conditions (3.4), then it coincides with the

solution (3.2). Indeed, otherwise the function

v = u− w ∈ C2m(Ω) ∩ C2m−1(Ω),

where u is the generalised Newton potential (3.2), satisfies the homogeneous equation

(3.8) �
m
a,bv = 0
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and the boundary conditions (3.4), i.e.

Ii(v)(z) := (ca,b −H.R(z))�i
a,bv(z)

+
m−i−1
∑

j=0

lim
δ→0

∫

∂Ω\{|ξ−1z|<δ}

�
j+i
a,b v(ξ)〈∇

a,b
�

m−1−j
a,b εm(ξ, z), dν(ξ)〉

−
m−i−1
∑

j=0

∫

∂Ω

�
m−1−j
a,b εm(ξ, z)〈∇

b,a
�

j+i
a,b v(ξ), dν(ξ)〉 = 0, i = 0, 1, . . . , m− 1,

for z ∈ ∂Ω. By applying the Green formula to the function v ∈ C2m(Ω) ∩ C2m−1(Ω)
and by following the lines of the above argument, we obtain

0 =

∫

Ω

�
m
a,bv(z)�

i
a,bεm(ξ, z)dν(ξ) =

∫

Ω

�
m−i
a,b �

i
a,bv(z)�

i
a,bεm(ξ, z)dν(ξ) =

∫

Ω

�
m−1
a,b v(z)�a,b�

i
a,bεm(ξ, z)dν(ξ)−

∫

∂Ω

�
m−1
a,b v(z)〈∇a,b

�
i
a,bεm(ξ, z), dν(ξ)〉+

∫

∂Ω

�
i
a,bεm(ξ, z)〈∇

a,b
�

m−1
a,b v(z), dν(ξ)〉 = ... =

ca,b�
i
a,bv(z)−

m−i−1
∑

j=0

∫

∂Ω

�
j+i
a,b v(ξ)〈∇

a,b
�

m−1−j
a,b εm(ξ, z), dν(ξ)〉+

m−i−1
∑

j=0

∫

∂Ω

�
m−1−j
a,b εm(ξ, z)〈∇

b,a
�

j+i
a,b v(ξ), dν(ξ)〉, i = 0, 1, . . . , m− 1.

By passing to the limit as z → ∂Ω, we obtain the relations

(3.9) �
i
a,bv(z) |z∈∂Ω= Ii(v)(z) |z∈∂Ω= 0, i = 0, 1, . . . , m− 1.

Assuming for the moment the uniqueness of the solution of the boundary value
problem

(3.10) �
m
a,bv = 0,

�
i
a,bv |∂Ω= 0, i = 0, 1, . . . , m− 1,

we get that v = u− w ≡ 0, for all z ∈ Ω, i.e. w coincides with u in Ω. Thus (3.2) is
the unique solution of the boundary value problem (3.1), (3.4) in Ω.
It remains to argue that the boundary value problem (3.10) has a unique solution

in C2m(Ω) ∩ C2m−1(Ω). Denoting ṽ := �
m−1
a,b v, this follows by induction from the

uniqueness in C2(Ω) ∩ C1(Ω) of the problem

�a,bṽ = 0, ṽ |∂Ω= 0.

The proof of Theorem 3.1 is complete. �
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Remark 3.2. It follows from Theorem 3.1 that the kernel (3.3), which is a rescaled
fundamental solution of the equation (3.1), is the Green function of the boundary
value problem (3.1), (3.4) in Ω. Therefore, the boundary value problem (3.1), (3.4)
can serve as an example of an explicitly solvable boundary value problem in any
domain Ω (with smooth boundary) on the Heisenberg group.
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