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Abstract. In this paper, an open problem in the multidimensional complex analysis is pre-
sented that arises in the harmonic analysis related to the investigation of the regularity properties
of Fourier integral operators and in the regularity theory for hyperbolic partial differential equa-
tions. The problem is discussed in a self-contained elementary way and some results towards its
resolution are presented. A conjecture concerning the structure of appearing affine fibrations is
formulated.

Keywords and phrases: complex analytic geometry, fibrations, Lagranigian manifolds,
Fourier integral operators

Mathematics Subject Classification: 35S30, 58J40, 32A30, 53D12

1. Introduction

In this paper, we present an open problem that arises in the harmonic analysis related to Fourier integral
operators and hyperbolic partial differential equations. In [10], Seeger, Sogge, and Stein formulated a
so-called smooth factorization condition that is related to the local Lp bounds for non-degenerate Fourier
integral operators. In [7] it was shown that this condition is satisfied in a number of important cases
from the point of view of the theory of hyperbolic partial differential equations. Moreover, an approach
to this condition based on the notion of so-called affine fibrations has been developed in [7]. In [9],
regularity properties of Fourier integral operators for certain parameter dependent affine fibrations have
been established.

The problem is of independent interest since it describes a fibration structure in Lagrangian manifolds.
Recently, this condition reappeared in [3] as a condition on the space variables in the estimates for Fourier
integral operators on Fourier Lebesgue spaces.

In this paper we will reformulate this condition entirely in the language of complex analytic geometry
of several complex variables. Subsequently, we will present results that have been established for this
problem by the author. This analysis together with available examples suggests that the structure of the
set of singularities of affine fibrations must have a rather rigid nature. In this paper we will formulate the
corresponding conjecture that is motivated by results and examples presented here. Combined with other
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methods developed in [7] and [9], the validity of this conjecture would provide an approach to the sharp
Sobolev Lp properties of the corresponding non-degenerate Fourier integral operators and of solutions
to the Cauchy problems for corresponding hyperbolic partial differential equations. Thus, an additional
purpose of this paper is to attract the attention of complex analysts to a problem of importance for
symplectic geometry and for Fourier integral operators.

In the following section we formulate the problem, present some results and examples that motivate a
conjecture about the set of essential singularities of the corresponding set of affine fibrations. In the last
section we will explain how this problem arises naturally in the symplectic geometry and the subsequent
theory of Fourier integral operators.

2. Formulation of the problem

In this section we will formulate the problem in question in a simple self-contained way in the language
of the complex analysis of several variables.

Let Ω be an open connected subset of C
n, and let Γ : Ω → C

n be a holomorphic mapping (in
general, the image space does not have to have the same dimension as Ω, but we consider this case for
simplicity). Let DΓ (ξ) ∈ C

n×n denote the Jacobi matrix of first order derivatives of Γ , so that its entries
are {DΓ (ξ)}jk = ∂ξkΓj(ξ), j, k = 1, . . . , n, where we denote Γ = (Γ1, . . . , Γn).

Let us make the following assumptions about the mapping Γ :

(A1) Let us denote
k := max

ξ∈Ω
rank DΓ (ξ)

and assume that 1 ≤ k ≤ n− 1. Let Ω(k) denote the set of ξ where the rank of DΓ is maximal, i.e.

Ω(k) = {ξ ∈ Ω : rank DΓ (ξ) = k}.

(A2) Assume that for every ξ ∈ Ω(k), the level set

Γ−1(Γ (ξ)) = {η ∈ Ω : Γ (η) = Γ (ξ)}

is an affine (n− k)–dimensional space through ξ.

Let us now discuss these conditions. In fact, condition (A1) is not restrictive since it excludes the
cases k = 0 and k = n only, where the subsequent problem is trivial. The case of k = 0 would mean that
the rank of DΓ is identically zero, which would mean that Γ is a constant mapping. The case of k = n
would mean that the level sets of Γ are just points. Since we will be interested in the geometry of the
level sets of Γ , we exclude these two cases from the consideration.

Condition (A2) is the main condition that we impose on Γ . In fact, for ξ ∈ Ω(k), by the implicit
function theorem we may conclude that the level set Γ−1(Γ (ξ)) is a smooth analytic (n− k)-dimensional
submanifold of Ω. Condition (A2) assumes that all these level sets are affine (i.e. they are linear spaces
with the origin at ξ), thus imposing a rigid structure on the geometry of the problem.

We can also note that the level sets Γ−1(Γ (ξ)) can not intersect in Ω(k) (unless they coincide). Indeed,
if they would intersect, the intersection point would belong to two level sets. Thus, the mapping Γ would
take the same value on both level sets. Since both of them are linear by (A2), and if the intersection
point is in Ω(k), the joint level set can be regular only if they coincide. In this way the set Ω(k) becomes
a union of non-intersecting affine spaces which are the level sets of Γ . So, we can write

Ω(k) =
⋃

ξ∈Ω(k)

(

Γ−1(Γ (ξ)) ∩Ω(k)
)

,

where any two affine spaces Γ−1(Γ (ξ)) from the union are either disjoint in Ω(k) or coincide. Thus, we
will talk about an affine fibration in Ω(k), given by the union of disjoint planes (which are level sets of a
holomorphic mapping Γ ).
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It follows from (A1) that the set Ω(k) is open and dense in Ω. Let us now denote

κ : ξ 7→ kerDΓ (ξ), κ : Ω(k) → Gn−k(C
n),

so that by the implicit function theorem κ is a regular mapping from Ω(k) to the Grassmanian Gn−k(C
n),

which is the set of all (n− k)–dimensional linear subspaces of Cn. We note that condition (A2) implies
that for ξ ∈ Ω(k) we have

Γ−1(Γ (ξ)) = ξ + κ(ξ),

so that the dependence of the level sets on ξ ∈ Ω(k) is analytic.
The main question of this paper is when (and whether) this fibration extends analytically from Ω(k)

to the set Ω. In fact, it can be shown that the mapping κ extends to a meromorphic mapping in Ω, so
by the analytic graph theorem this extension is analytic if and only if it is continuous (see e.g. [2]). We
denote this extension by κ.

To study the extension properties of κ from Ω(k) to Ω, let us introduce the set

Ωsing = {ξ ∈ Ω : κ is not continuously extendible over ξ},

which is the set of essential singularities of κ. The condition that κ extends regularly from Ω(k) to Ω
would be equivalent to the condition that the set Ωsing is empty.

Now we will present some results, examples, and formulate a conjecture concerning the structure of
the set Ωsing for the mappings Γ satisfying conditions (A1) and (A2). The following theorems have been
established in [5], and then extended in [7]. Thus, it can be shown that the mapping

κ : Ω → Gn−k(C
n)

is meromorphic in the sense of [4] (see also [2]). There, a mapping τ : X → Y between complex manifolds
X and Y is called meromorphic if the following three conditions hold:

(1) For every x ∈ X the image set τ(x) ⊂ Y is non-empty and compact in Y .
(2) The graph of the mapping τ , that is the set all pairs (x, y) ∈ X×Y such that y ∈ τ(x), is a connected

complex analytic subset of X × Y of dimension equal to the dimension of X.
(3) There exist a dense subset X∗ of X, such that for every x ∈ X∗ the image set τ(x) consists of a

single point.

This immediately implies that the set Ωsing of essential singularities of a meromorphic mapping κ is
analytic and we have the estimate dimΩsing ≤ n− 2. With additional analysis, we have more:

Theorem 2.1. Suppose Ωsing 6= ∅. Then Ωsing is analytic and for every ξ ∈ Ω we have the estimate

max{k − 1, n− k + 1} ≤ dimξ Ω
sing ≤ n− 2.

Moreover, let ξ ∈ Ωsing be a regular point of the analytic set Ωsing. Let ξ = limj→∞ ξj be a limit of some

sequence ξj ∈ Ω(k), and let κ(ξj) → κ ∈ Gn−k(C
n). Then we have the inclusion κ ⊂ TξΩ

sing.

We note that a sequence κ(ξj) always has a convergent subsequence since the Grassmanian is compact,
so we can start with a sequence ξj ∈ Ωsing in Theorem 2.1 for which the corresponding sequence κ(ξj)
converges to some κ ∈ Gn−k(C

n). As a corollary of estimates of Theorem 2.1, we obtain that affine
fibrations always have regular extensions from Ω(k) to Ω in lower dimensions:

Corollary 2.2. We have the following statements:

(1) if n ≤ 3, then Ωsing is empty.

(2) if k ≤ 2, then Ωsing is empty.

We can also show that the estimates on the dimension in Theorem 2.1 are sharp:
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Theorem 2.3 (Sharpness). Let k and d satisfy

3 ≤ k ≤ n− 1 and max{k − 1, n− k + 1} ≤ d ≤ n− 2.

Then there exists a holomorphic mapping Γ : Cn → C
n satisfying conditions (A1), (A2) with k as above,

such that dimΩsing = d.

Corollary 2.2 shows that the smallest dimension for which a singular fibration can exist is n = 4, with
k = 3. Let us show that in C

4 there is a fibration by lines, which also satisfies additional property

Γ = ∇ψ, (2.1)

for some holomorphic function ψ : Ω → C. We may call the corresponding fibrations the fibrations

of gradient type. In fact, in the following section we will show how such fibrations naturally arise in
the symplectic geometry of Lagrangian manifolds and related Fourier integral operators, in which cases
condition (2.1) is satisfied with a function ψ obtained from function φ from the following section by
factoring out the homogeneous direction. Under (2.1) we obviously haveDΓ = D2ψ, which is a symmetric
matrix.

Now we will give some examples of mappings in Theorem 2.3. Define

ψ(ξ1, ξ2, ξ3, ξ4) = ξ1ξ
2
2 + (ξ3 − ξ2ξ4)

2.

The Hessian of the function ψ has the form

D2ψ(ξ) =







0 2ξ2 0 0
2ξ2 2ξ1 + 2ξ24 −2ξ4 4ξ2ξ4 − 2ξ3
0 −2ξ4 2 −2ξ2
0 4ξ2ξ4 − 2ξ3 −2ξ2 2ξ22






,

with the maximal rank in property (A1) being k = 3. Moreover,

rank D2ψ|ξ2=ξ3=0 = 2, rank D2ψ|ξ1=ξ2=ξ3=0 = 1.

For ξ2 6= 0 the kernel of the matrix D2ψ(ξ) is one dimensional:

kerD2ψ(ξ) = span 〈

(

ξ3
ξ2

− ξ4, 0, ξ2, 1

)

〉.

Therefore, the mapping κ of the direction of the line kerD2ψ corresponds to ξ3
ξ2

(after an analytic change

of variables), and it has the essential singularities in the set

Ωsing = {ξ2 = ξ3 = 0}. (2.2)

Let us now consider other similar families of examples. Functions

ψ(ξ1, ξ2, ξ3, ξ4) = ξ1ξ
k
2 + (ξ3 − ξ2ξ4)

m

with k,m ≥ 2 again lead to fibrations with essential singularities at ξ2 = ξ3 = 0. The fibers are given by

kerD2ψ(ξ) = span 〈

(

m

k

(ξ3 − ξ2ξ4)
m−1

ξk−1
2

, 0, ξ2, 1

)

〉,

and so the set of essential singularities is also given by (2.2).
In n-dimensional space ξ = (x1, . . . , xn−3, y, z, w) define

ψ(ξ) = y2
n−3
∑

i=1

xi + (z − yw)2.
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The level sets of the gradient ∇ψ have dimension n − 3, and hence we have k = 3. One can check that
dimΩsing = n− 2 (this also follows from dimension estimates of Theorem 2.1 with k = 3).

Finally, consider
ψ(x, y, z, v, w, s, t) = xy2 + sv2 + (z − yw − vt)2.

The maximal rank of the Hessian D2ψ equals k = 5 and its kernel is spanned by the vectors

(

z − yw − vt

y
, 0, 0, y, 1, 0, 0

)

,

(

0, 0, 0, v, 0,
z − yw − vt

v
, 1

)

.

For y = 0 and z−vt = 0 the first vector has an essential singularity, while the second vector is continuous
at v 6= 0. At the same time, for v = 0 and z − yw = 0, the second vector has an essential singularity
while the first one is continuous for y 6= 0. Hence {y = 0, z = vt} ∪ {v = 0, z = yw} ⊂ Ωsing, and thus
dimΩsing = n−2 (by the dimension estimates of Theorem 2.1). The intersection of spaces {y = 0, z = vt}
and {v = 0, z = yw} is 4-dimensional.

In all the examples we observe that the set Ωsing has an some affine structure: it is either affine itself,
or it is a union of affine spaces. In fact, since the condition (A2) imposes a lot of affine structure for the
whole problem, it may be the case that Ωsing inherits these properties as well. So, we may formulate the
following conjecture, as least in the case when Γ = ∇ψ for some holomorphic function ψ.

Conjecture. Let Ω be an open connected subset of Cn and let ψ : Ω → C be a holomorphic function.

Suppose that the mapping Γ = ∇ψ satisfies properties (A1), (A2). Then the set Ωsing of essential

singularities of the corresponding fibration κ is a union of affine spaces.

We also note that these examples present singular fibrations for different dimensions of the fibers. On
the other hand, the dimension of Ωsing in all examples equals n− 2. Under certain conditions it can be
proved using dimension estimates in Theorem 2.1, or otherwise, that dimξ Ω

sing = n− 2 at all (regular)
points. However, our constructions are based on the same idea for the singularity. It would be interesting
to investigate whether the condition dimΩsing = n − 2 is necessary for fibrations satisfying (2.1), or
whether all affine spaces in the conjecture above would be (n− 2)-dimensional.

3. Relation to the symplectic geometry and Fourier integral operators

The problem of the analysis of the set Ωsing under conditions (A1) and (A2) is closely related to the
symplectic geometry and to the theory of Fourier integral operators and the microlocal analysis in the
following way.

Let M be a smooth real analytic manifold. Let T ∗M denote the cotangent bundle of M , and let
π : T ∗M → M be the canonical projection. Let Λ ⊂ T ∗M be a conic analytic Lagrangian submanifold
of T ∗M\0 endowed with the standard symplectic form. Since we assume that all the spaces are analytic,
we may always extend them to the complex domain, so it does not matter much whether we formulate
the following relation in real or complex language.

Let Σ be the regular part of π(Λ), and we denote the conormal bundle of Σ by

N∗Σ = {(m, ζ) ∈ T ∗M : m ∈ Σ, ζ(δm) = 0, ∀δm ∈ TmΣ}. (3.1)

Then the canonical projection π defines the following restrictions:

N∗Σ ⊂ Λ ⊂ T ∗M
↓ ↓ ↓ π
Σ ⊂ π(Λ) ⊂ M

It turns out that the generating function for the restriction π : N∗Σ → Σ leads to a mapping satisfying
conditions (A1) and (A2). Let us explain this in more detail.
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By the Poincaré lemma of the symplectic geometry (see e.g. [1]), we can locally parameterise the
Lagrangian manifold Λ by some smooth analytic function φ. This means that at a point (m, ζ) ∈ Λ, we
can locally write Λ as

Λ = {(∇φ(ζ), ζ)}.

It turns out that the fibers of the mapping dπ|Λ correspond precisely to the level sets of kerD2φ, which
are linear spaces in ζ in the conormal bundle (3.1). Thus, if we define

Γ = ∇φ,

then conditions (A1) and (A2) are satisfied for Γ . We can reduce the dimension further by using the
fact that Λ is conic, so we can factor out the conic variable from φ, to obtain another function ψ, which
would define Γ by (2.1).

Consequently, the set Ωsing corresponds to the set of points where the fibration of N∗Σ (as a union of
affine spaces) is not continuously extendible to Λ. The details of this construction can be found in [7] or
in [8].

It was shown in [7] that the set Ωsing ∩R
n is precisely the set where the so-called smooth factorization

condition of Seeger, Sogge, and Stein [10] breaks down.
Let us briefly review now how the problem in terms of the symplectic geometry above is related to

Fourier integral operators. Let X and Y be smooth paracompact real (analytic) manifolds of dimension
n. Let Λ′ be a conic (analytic) Lagrangian manifold in (T ∗X\0)×(T ∗Y \0), equipped with the symplectic
form σX⊕−σY . Let T ∈ Iµ(X,Y ;Λ′) be a Fourier integral operator of order µ with the canonical relation
Λ′, so that

Λ = {(x, ξ, y, η) : (x, ξ, y,−η) ∈ Λ′} ⊂ T ∗(X × Y )

is the wave front set of the integral kernel of the Fourier integral operator T . We consider non-degenerate
Fourier integral operators T , for which the canonical relation Λ′ locally is the graph of a symplecto-
morphism between T ∗X\0 and T ∗Y \0, equipped with canonical symplectic forms σX and σY . By the
equivalence-of-phase-function theorem the set Λ locally has the form

Λ = {(x,∇xΦ, y,∇yΦ) : ∇θΦ(x, y, θ) = 0},

for some phase function Φ = Φ(x, y, θ, positively homogeneous of order one in θ. With this phase, the
Fourier integral operator T can be written in the usual microlocal form

Tu(x) =

∫

Y

∫

Rn

eiΦ(x,y,θ)a(x, y, θ)u(y)dθdy, (3.2)

with some amplitude a ∈ Sµ
1,0, a symbol of order µ. Note, that the homogeneity of the canonical relation

implies that rank dπX×Y |Λ ≤ 2n−1, where πX×Y is the canonical projection from T ∗(X×Y ) to X×Y .
The result of [10] states that Fourier integral operators T ∈ Iµ(X,Y ;Λ′) are locally continuous in Lp,
provided 1 < p <∞ and µ ≤ −(n− 1)|1/p− 1/2|.

However, if the rank of dπX×Y |Λ does not attain 2n − 1, the order µ is not sharp and it depends on
properties of the projection πX×Y |Λ. For example, it turns out that the regularity properties of Fourier
integral operators in Lp spaces with p 6= 2 depend on the maximal rank of the projection πX×Y restricted
to Λ. An important ingredient is the following smooth factorization condition for πX×Y . Suppose that
there exists a number k, 0 ≤ k ≤ n − 1, such that for every λ0 = (x0, ξ0, y0, η0) ∈ Λ, there exist a conic
neighborhood Uλ0

⊂ Λ of λ0 and a smooth homogeneous of zero order map πλ0
: Λ ∩ Uλ0

→ Λ with
constant rank, rank dπλ0

= n+ k, for which holds

πX×Y = πX×Y ◦ πλ0
. (3.3)

Denoting M = X × Y , we obtain that condition (3.3) is equivalent to the condition that the fibration
of N∗(Σ) by affine fibres is smoothly extendible to Λ (modulo a correction for zero sections). Here
π = πX×Y , and Σ = π(N∗(Σ)) is the regular part of π(Λ), which is the singular support of the integral
kernel of operator T in (3.2).
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[5] M. Ruzhansky. Analytic Fourier integral operators, Monge–Ampere equation and holomorphic factorization. Arch.
Math., 72 (1999), 68–76.

[6] M. Ruzhansky. On singularities of affine fibrations of certain types. Russian Math. Surveys, 55(2000), 353–354.

[7] M. Ruzhansky. Singularities of affine fibrations in the regularity theory of Fourier integral operators. Russian Math.
Surveys, 55 (2000), 93–161.

[8] M. Ruzhansky. Regularity theory of Fourier integral operators with complex phases and singularities of affine fibrations.
CWI Tracts , vol. 131, 2001.

[9] M. Ruzhansky. On the failure of the factorization condition for non-degenerate Fourier integral operators. Proc. Amer.
Math. Soc., 130 (2002), 1371–1376.

[10] A. Seeger, C. D. Sogge, E. .M. Stein. Regularity properties of Fourier integral operators. Ann. of Math.134 (1991),
231–251.

236


