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Samenvatting

Tot in het begin van de jaren 2000 focusten processorarchitecten zich voor-
namelijk op het versnellen van processors. Ze slaagden hierin door processors
te voorzien van steeds complexere structuren zodat de software sneller uit-
gevoerd kon worden. Dit was mogelijk door de transistors – de bouwstenen
van een processor – steeds verder te miniaturiseren. Hierdoor slaagden ze erin
steeds meer transistors op het chipoppervlak te plaatsen en toch nog altijd con-
stante vermogensdensiteit te garanderen. Echter, deze schalingstrend bekend
als Dennard-schaling, bleek onmogelijk vol te houden.

Ondertussen explodeerde, door het ontstaan van het digitale tijdperk, het
aantal mobiele toestellen met één of meerdere processors. Tegenwoordig wordt
de meerderheid van processors, bedoeld voor de normale gebruikers, ingebouwd
in mobiele toestellen zoals GSM’s of tablets. Deze toestellen werken door mid-
del van batterijen waardoor de processor best zo weinig mogelijk vermogen
verbruikt en zo weinig mogelijk warmte genereert. Ondertussen moeten ze nog
steeds voldoende prestatie bieden zodat de eindgebruiker niet de indruk heeft
dat zijn/haar toestel ‘traag’ is. Niet enkel processors van mobiele toestellen
ondervonden het nadeel van de stijgende vermogensdensiteit, zelfs processors
in servers genereren tegenwoordig dusdanig veel warmte dat deze nog moeilijk
efficiënt kan afgevoerd worden. Hierdoor moesten processorarchitecten hun
focus op de prestatie van een processor (deels) verleggen naar een focus op
energie- en vermogensefficiëntie.

De hoofdvraag voor processorarchitecten werd dus hoe de energie- en
vermogensefficiëntie van een processor te verbeteren. Helaas is het fysiek
produceren van een nieuw type processor om deze te evalueren tijdens het
ontwerpsproces onmogelijk aangezien dit extreem duur en bijzonder tijdrovend
is. Hedendaagse processors zijn bovendien heel complex en bestaan uit
miljarden transistors waardoor het moeilijk is om ze te optimalizeren. Daarom
vertrouwen processorarchitecten doorgaans op softwaresimulatie om nieuwe
processors te evalueren tijdens de ontwerpsfase. Helaas zijn deze simulaties
meerdere grootteordes trager dan het uitvoeren op een echte processor. Boven-
dien houdt de complexiteit van een processor in dat processorarchitecten door-
gaans een ontwerpsruimte van processors moeten evalueren aangezien het effect
van een optimalisatie niet altijd onmiddellijk duidelijk is. Dit leidt tot het
probleem waarbij het ontwerpen van een processor, en dus de tijd tot deze

ix
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gëıntroduceerd wordt op de markt, vaak meerdere jaren in beslag neemt.
Gezien de sterke concurrentie in deze markt, is dit onwenselijk.

Een alternatieve oplossing voor het evalueren van de prestatie van een
processor en zijn vermogensverbruik is het inzetten van een mechanistisch
analytisch model. Een mechanistisch model modelleert de eerste-orde inter-
acties tussen een applicatie en de processor waarop deze uitvoert. Deze metho-
dologie heeft als voordeel dat ze meerdere grootteordes sneller is dan simulatie,
maar ook nog steeds vrij nauwkeurige resultaten produceert. Het gebruik van
een mechanistisch analytisch model behelst doorgaans twee stappen: een pro-
fileringsstap (dit is de traagste stap) waarin applicatiekarakteristieken worden
verzameld en een analysestap (die doorgaans slechts enkele seconden duurt)
om de prestatie en het vermogensverbruik te voorspellen.

Het nadeel van de eerder voorgestelde mechanistische modellen is dat
ze afhankelijk zijn van verschillende functionele simulaties om alle inputs te
verzamelen. Hieronder vallen, onder meer, simulaties om het aantal incorrect
voorspelde sprongen (sprongmissers) te bepalen, maar ook het aantal cache-
missers en het aantal parallelle toegangen naar het hoofdgeheugen (Memory-
Level Parallelism of MLP). Ook al zijn deze functionele simulaties veel sneller
dan volledige tijdsgetrouwe simulaties, dewelke processorarchitecten normaler-
wijze gebruiken, toch introduceren ze nog steeds een niet-verwaarloosbare ver-
traging bij het evalueren van een grote processorontwerpsruimte.

Deze thesis pakt daarom twee problemen aan. Allereerst willen we heden-
daagse, superscalaire, out-of-order x86-processors modelleren. Ten tweede
willen we het gebruik van meerdere functionele simulaties om de inputs te
verzamelen elimineren en zo het evalueren van een ontwerpsruimte versnellen.
Daarom stellen we een nieuw, micro-architecturaal onafhankelijk, mechanis-
tisch model voor dat zowel de prestatie als het vermogensverbruik van een
processor kan voorspellen. Het grote voordeel van deze methodologie is dat de
traagste stap, het verzamelen van het applicatieprofiel, slechts één keer moet
uitgevoerd worden. Dit applicatieprofiel kan vervolgens gebruikt worden om
er de inputs voor het analytisch model uit af te leiden en de prestatie en het
vermogensverbruik van een waaier aan processors te voorspellen.

Om een mechanistisch model te ontwikkelen dat in staat is hedendaagse x86-
processors te modelleren, vertrekken we van het eerder voorgestelde interval-
model [32]. Eerst stellen we een aantal aanpassingen voor aan de basis-
component die de maximaal haalbare prestatie voorspelt wanneer er geen
sprong- of cachemissers zijn. Het eerder voorgestelde intervalmodel maakte
gebruik van instructies als kleinste werkeenheid, maar om x86-processors te
modelleren, moeten we dit vervangen door het aantal micro-operaties afgeleid
van de dynamische instructiestroom. Bovendien delen we het aantal micro-
operaties door de effectieve dispatch-snelheid, in plaats van deze te delen door
de fysieke dispatch-breedte. Dispatch refereert hier naar de pijplijnstap waarbij
instructies van de front-end van de pijplijn naar de back-end gestuurd worden.
De effectieve dispatch-snelheid modelleert contentie in de processor ten gevolge
van een (deels) ongebalanceerde processorpijplijn. Ze modelleert contentie door
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afhankelijkheden in de instructiestroom en contentie in de issue-stap in de
processor ten gevolge van de functionele eenheden en issue-poorten. Voorts
tonen we aan dat het modelleren van contentie in de processorkern vereist dat
ons mechanistisch model wordt geëvalueerd op een zeer kleine tijdsschaal met
behulp van wat wij micro-traces noemen. Dit is intüıtief logisch aangezien
contentie doorgaans in bursts optreedt en op een grote tijdsschaal enkel uit-
gemiddeld gedrag gemodelleerd kan worden.

Voorts introduceren we extra modelleringsstappen die begrenzingen met
betrekking tot geheugentoegangen modelleren. We stellen voor om de impact
van miss status handling registers (MSHR) te modelleren en voegen een compo-
nent toe die de extra vertragingen gëıntroduceerd door het parallel uitvoeren
van geheugentoegangen modelleert. Bovendien introduceren we een nieuwe
vertragingscomponent die van elkaar afhankelijke toegangen naar het laatste
cacheniveau modelleert. Deze term is vereist omdat een out-of-order processor
normaal de tijd die gewacht moet worden op data kan verbergen door andere
instructies uit te voeren. Echter, het laatste niveau van de cachehiërarchie
is dusdanig traag dat deze veronderstelling niet altijd opgaat, zeker wanneer
meerdere toegangen naar dit laatste cacheniveau afhankelijk zijn van elkaar.

Naast het aanpassen van het eerder voorgestelde intervalmodel om
nauwkeurig prestatie en vermogensverbruik van een x86-processor te voor-
spellen, was het ook de bedoeling om de inputs verkregen met behulp van
functionele simulatie te vervangen door inputs berekend uit micro-architectuur
onafhankelijke statistieken. Daarom moeten we het aantal sprongmissers,
cachemissers en MLP kunnen voorspellen. Het aantal sprongmissers voor-
spellen we aan de hand van een metriek die lineaire sprongentropie genoemd
wordt. Deze metriek modelleert de (on)voorspelbaarheid van spronginstructies
en laat toe de nauwkeurigheid van een sprongvoorspeller te schatten [22]. Het
voorspellen van cachemissers gebeurt door het profileren van een distributie
van hergebruiksafstanden. Deze hergebruiksafstanden kunnen, door gebruik te
maken van StatStack [28], omgevormd worden tot een distributie van stack dis-
tances. Het voordeel van stack distances is dat deze gebruikt kunnen worden om
cachemissers te voorspellen voor least-recently used (LRU) cachehiërarchieën.
Het modelleren van MLP bleek één van de moeilijkste aanpassingen te zijn
omdat dit afhankelijk is van verschillende factoren. We stellen twee metho-
den voor, het cold-miss MLP model en het stride-MLP model, die steunen op
verschillende veronderstellingen gerelateerd aan het burstgedrag van geheugen-
toegangen.

Gebruik makend van de voorgestelde aanpassingen en inputs afgeleid uit
micro-architectuur onafhankelijke statistieken voorspellen we de prestatie en
het vermogensverbruik van een referentie processorarchitectuur. De gemiddelde
voorspellingsfouten zijn slechts 7.6% en 3.4% voor, respectievelijk, de prestatie
en het vermogensverbruik in vergelijking tot cyclus-getrouwe simulaties. Ook
tonen we hoe het model gebruikt kan worden om CPI-stapels te bouwen. Deze
stapels zijn zeer nuttig om te analyseren waaraan de uitvoeringstijd van een
applicatie gespendeerd wordt op een bepaalde processor.
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Het hoofddoel van een micro-architectuur onafhankelijk mechanistich model
is het versnellen van de evaluatie van een ontwerpsruimte. Gebruik makend
van dit model kunnen we een ontwerpsruimte, bestaand uit 243 processors
en 29 applicaties, evalueren in 11,5 uur. Dezelfde ontwerpsruimte evalueren
met behulp van simulaties, die uitvoeren aan een snelheid van 0,5 miljoen
instructies per seconde, (MIPS) zou 150 dagen in beslag nemen. Het eerder
voorgestelde intevalmodel kan de ontwerpsruimte evalueren in 200 uur ervan-
uit gaande dat de functionele simulaties een snelheid van 1,5 MIPS halen.
Dit betekent dat we een versnelling van 315× behalen ten opzichte van gede-
taileerde simulatie en 18× vergeleken ten opzichte van het eerder voorgestelde
intervalmodel. Indien we onze voorspellingen met betrekking tot de prestatie
en het vermogensverbruik voor de volledige ontwerpsruimte evalueren, behalen
we een nauwkeurigheid van respectievelijk 9.3% en 4.3% voor prestatie- en
vermogensvoorspellingen.

Ten slotte tonen we de bruikbaarheid van het model aan door Pareto-
fronts te construeren die de afweging visualiseren tussen prestatie en
vermogensverbruik en daardoor gebruikt kunnen worden om interessante
processorarchitecturen uit een ontwerpsruimte te selecteren. Deze toepas-
sing illustreert de belangrijkste eigenschap van ons model, namelijk de re-
latieve nauwkeurigheid. Deze eigenschap maakt het immers mogelijk om
verschillende processors met elkaar te vergelijken, ongeacht de eventuele
absolute fout op de prestatie- en/of vermogensvoorspellingen. We vatten de
nauwkeurigheid van het filteren van de ontwerpsruimte samen met behulp
van vier metrieken: sensitiviteit, specificiteit, nauwkeurigheid en HVR. Deze
metrieken geven weer hoe goed we erin slagen Pareto-optimale ontwerpen te
selecteren over de volledige ontwerpsruimte. De gemiddelde waardes voor
sensitiviteit, specificiteit, nauwekeurigheid en HVR zijn respectievelijk 46.2%,
87.9%, 76.8% en 97.0%. De nauwkeurige specificiteitswaarde toont aan dat we
erin slagen om de meeste niet-Pareto optimale architecturen weg te filteren ter-
wijl de HVR-metriek aantoont dat we architecturen over de volledige ontwerps-
ruimte vinden. De gemiddelde waarde voor sensitiviteit is relatief laag, wat erop
wijst dat we niet alle Pareto-optimale architecturen vinden. Dit is echter geen
groot probleem omdat Pareto-optimale ontwerpen vaak voorkomen in clusters
en één van die ontwerpen vinden reeds voldoende is. Globaal genomen toont
dit aan dat we er in slagen om een ontwerpsruimte te exploreren en de Pareto-
optimale ontwerpspunten te identificeren.

Deze thesis vat het werk samen ter ontwikkeling van een micro-architectuur
onafhankelijk model voor hedendaagse x86-processors dat in staat is om, in
vergelijking met cyclus-getrouwe simulatie, de prestatie en het vermogens-
verbruik van een processor nauwkeurig te voorspellen. We tonen verder aan
dat dit model een significante versnelling behaalt ten opzichte van zowel gede-
tailleerde simulatie als eerder voorgestelde mechanistische modellen. Dit maakt
het mogelijk om grote ontwerpsruimtes van processors te evalueren en interes-
sante processors te identificeren.



Summary

Up until the early 2000’s, processor architects focused mainly on develop-
ing faster processors. They achieved this through implementing increasingly
complex structures into processors to optimize application execution. This was
feasible because they could miniaturize transistors – the processor’s building
blocks – and include more of them on the same processor chip area while still
maintaining constant power density. However, this scaling trend, known as
Dennard scaling, started to break down shortly afterwards.

Meanwhile, the advent of the digital age introduced an incredible increase
in mobile devices containing one or more processors. Nowadays, a majority
of processors meant for the consumer market are built into mobile devices
such as cell phones or tablets. These devices run on a battery necessitating the
processor to consume as little power and generate as little heat as possible while
still achieving sufficient performance for the end-user not to experience his/her
device as being ‘slow’. However, the problem is not limited to processors em-
bedded in mobile devices, due to the increasing power density, even processors
in high-end systems generate too much heat to dissipate easily. This required
processor architects to not only focus on processor performance, but also on
energy and power efficiency.

The main question became how to improve the energy efficiency of a
processor. Unfortunately, physically producing new processor prototypes to
evaluate during the design cycle is infeasible because this would be extremely
expensive and time-consuming. Contemporary processors are also incredibly
complex consisting of billions of transistors making it difficult to design and
optimize. Therefore, processor architects generally rely on software simulation
to design new processors. However, processor simulations are multiple orders
of magnitude slower compared to a real execution on a processor. Furthermore,
since contemporary processors are so complex, a processor architect will often
need to evaluate a design space consisting of multiple different processors, as
the effect of an optimization might not be obvious from the start. This intro-
duces the problem where the processor design cycle, and thus time-to-market
for a new processor often encompasses several years. Because of the fierce
competition in the market of processors, this is undesirable.

An alternative to evaluating processor performance and power consump-
tion using simulation is mechanistic analytical modeling. A mechanistic model

xiii
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models the first-order interactions between the application and the processor it
is executing on. The approach of modeling rather than simulating a processor
has the advantage that it is orders of magnitude faster while still achieving rel-
atively good accuracy. Employing a model to predict performance and power
usually consists of two steps, a profiling phase (which is the slowest step) to
collect application characteristics and an analysis phase (which takes only a
couple of seconds) to predict performance and power.

The downside of previously proposed mechanistic models is that they rely
on several functional simulations to collect the required inputs such as the
number of branch mispredictions, cache miss rates, and memory-level paral-
lelism (MLP). While these functional simulations are significantly faster than
the full-blown timing-based simulations generally employed by processor archi-
tects, they still incur a significant slowdown for evaluating a large processor
design space.

This thesis consists of two main objectives. Firstly, we want to model con-
temporary superscalar out-of-order x86-based processors. Secondly, we want
to eliminate the use of several functional simulations to obtain inputs for the
mechanistic model in order to speed up design space exploration. Therefore,
we propose a new micro-architecture independent mechanistic model to pre-
dict both performance and power consumption. The key advantage of this
approach is that the slowest step, collecting the application profile, only has
to be performed once. This application profile can then be used to predict the
inputs to the analytical model for predicting processor performance and power
consumption.

To develop a mechanistic model capable of modeling contemporary x86-
based processors, we modify the previously proposed interval model [32]. To
achieve this, we modify the base component which predicts the maximum
achievable performance in the absence of miss events. The previously pro-
posed interval model used instructions as smallest unit of work, but to model
x86-processors, we have to replace this with the number of micro-operations
derived from the dynamic instruction stream. Furthermore, instead of dividing
the number of micro-operations by the physical dispatch width, we introduce a
new divisor called the effective dispatch rate. The effective dispatch rate mod-
els contention within the processor due to imbalances in the processor pipeline.
It models contention due to dependences within the instruction stream and
contention due to the functional units and issue ports in the issue stage. We
also show that modeling contention in the processor core requires evaluating
our mechanistic model on very small time scales using what we call micro-
traces. Intuitively, this makes sense as contention will mostly occur due to
bursty behavior and large time scales are only suitable to capture averaged-out
behavior.

We also introduce extra modeling steps to capture limitations related to the
memory requests performed by the processor. We propose to model the impact
of miss status handling registers (MSHR) and add a component modeling the
extra queuing delay introduced by executing parallel accesses to main memory.
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Furthermore, we introduce a new type of penalty called last-level cache (LLC)
chaining. While out-of-order processors can usually hide the latency of load
instructions fetching data from the cache hierarchy, the last level of the cache
hierarchy cannot always provide data fast enough for the processor to hide its
latency, especially when multiple loads depend on each other.

Next to modifying the previously proposed interval model to accurately
predict performance and power for x86-processors, we also replace the inputs
extracted from the functional simulations by inputs calculated using micro-
architecture independent inputs. To achieve this, we have to predict the number
of branch mispredictions, cache miss rates and MLP. Predicting the number of
branch mispredictions is achieved through a metric called linear branch entropy
which captures the (un)predictability of branch instructions [22]. For predicting
cache miss rates we collect a reuse distance distribution which is transformed
into a stack distance distribution using StatStack [28]. We can use the latter
distribution to predict cache miss rates for least-recently used (LRU) cache
hierarchies. Modeling MLP accurately proved to be the most difficult hurdle to
overcome as it depends on various factors. We propose two different techniques
called the cold-miss MLP and stride-MLP which leverage different assumptions
related to the burstiness of memory accesses.

Using the proposed modifications and inputs derived from micro-
architecture independent metrics we predict the performance and power con-
sumption for a reference processor design. The average prediction errors are
as low as 7.6% and 3.4% for performance and power predictions, respectively,
compared to cycle-level simulation. We show the convenience of the model
by generating so-called CPI stacks. These stacks are extremely useful to ana-
lyze where the cycles go when executing an application on a specific processor
design.

The main goal of developing a micro-architectural independent mechanistic
model is to speed up design space evaluation. Using the new model we can
evaluate a design space of 243 processor architectures and 29 applications in
11.5 hours. Evaluating the same design space using detailed simulation run-
ning at 0.5 million instructions per second (MIPS) would take 150 days, while
the previously proposed interval model would take 200 hours assuming the
functional simulations can progress at a speed of 1.5 MIPS. This means we
achieve a speedup of 315× compared to detailed simulation and 18× compared
to the previously proposed interval model. Comparing our predictions to cycle-
level accurate simulation, we achieve an average prediction accuracy of 9.3%
and 4.3% for performance and power, respectively, across the large processor
design space considered in this thesis.

We demonstrate the usefulness of the developed micro-architectural inde-
pendent model by constructing Pareto frontiers visualizing performance-power
trade-offs and pruning the design space for interesting designs. This application
shows the most important characteristic of our model, namely its relative accu-
racy. After all, even if the absolute prediction error is significant, as long as all
errors across different processor designs exhibit the same bias, it is possible to
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accurately compare multiple different designs. We summarize the accuracy of
pruning the design space exploration using the sensitivity, specificity, accuracy
and HVR metrics. These metrics describe how well we can predict the actual
Pareto-optimal processor architectures and whether we are able to find designs
of interest over the complete range of the design space. The average values for
sensitivity, specificity, accuracy and HVR are 46.2%, 87.9%, 76.8% and 97.0%,
respectively. The good specificity value shows that we are able to exclude most
non-Pareto optimal designs while the HVR metric shows that we find designs
over the complete design space. The average sensitivity value is rather low,
indicating we do not find all designs that are Pareto-optimal, but this is less of
a problem as many Pareto-optimal processor designs are clustered and finding
only one of those is acceptable. Overall, the Pareto-plots and these metrics
indicate we are able to prune the design space accurately.

To summarize, this work describes a micro-architecture independent model
for contemporary x86-based processors with good relative performance and
power prediction accuracy compared to cycle-level simulations. Furthermore,
we show that this model offers a significant speedup over simulation and pre-
viously proposed mechanistic models when evaluating a processor design space
and identifying interesting processor designs.
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Chapter 1

Introduction

Everything should be made as simple as
possible, but not simpler.

– Albert Einstein

1.1 Motivation

The demise of Dennard scaling, which promised constant power density with
every successive process technology [25], ended an era where processor perfor-
mance improvements originated largely from scaling chip technology. Before its
demise, every new processor generation introduced performance gains because
transistors were miniaturized, could switch faster and consumed less energy.
Hence, processor designers could integrate more transistors on a chip realizing
performance improvements while maintaining power density at a status quo.

Unfortunately, the physical scaling of a transistor was not followed by the
scaling of its electrical properties. A transistor conducts when the supply volt-
age is higher than a certain threshold voltage. However, the continued minia-
turization of the transistor led to a substantial increase in leakage current. As
a result, scaling the threshold voltage down proportional to the transistor size
became impossible. This meant that the active and passive power consumption
of a transistor did not decrease with scaling technology anymore. Therefore,
putting an increasing number of smaller transistors on a chip kept the area
constant, but not its power consumption, increasing power density.

The increase in power density generated an excess of heat which has to
be dissipated. The necessity to dissipate this excess heat grew to be a major
concern for processor architects. Multiple solutions were devised, with the
birth of multi-core processors where two or more cores are placed on one chip
being crucial. However, these multi-core processors still suffer from excess
heat generation, albeit less severe, if the processor’s clock frequency is kept

1
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reasonably low. One promising direction to mitigate excess heat generation is
to improve the energy efficiency of the processors through specialization for (a)
specific application(s). This type of specialized processors is called Application
Specific Instruction Processors (ASIP).

Application-specific cores are tailored to (a) specific application(s) by re-
moving or reducing all components that are not used, or under-utilized, by
the application(s) (e.g., smaller caches or a narrower pipeline), and/or enlarg-
ing and adding components that benefit the application (e.g., accelerators).
Embedded processors are a typical use case for application-specific processors,
because they execute a limited set of applications and can be tightly opti-
mized. Moreover, processors operating in mobile devices are continuously
power and/or energy constrained while still aiming to achieve the best per-
formance. Thus, both types of processors are prime candidates for application-
specific optimizations.

Unfortunately, contemporary superscalar out-of-order processors are incred-
ibly complex to analyze and optimize. Much of this optimization work is per-
formed using detailed simulation, which is very slow and can thus inhibit the
full design space exploration needed for finding the specific optimizations. The
main motivation for this thesis is to help processor architects with alternative
tools that enable the development of application-specific processors to improve
performance, power and energy efficiency.

1.2 Key Contributions

If designing application-specific processors requires fast design space explo-
ration tools to optimize for a targeted application(s), an alternative to simu-
lation is required. Analytical models are an excellent fit for such design space
exploration as they provide fast performance predictions and insight into the
interaction between an application’s characteristics and the micro-architecture
of a processor. The key contributions of this thesis all relate to improving a
pre-existing analytical model helping to prune large design spaces.

1.2.1 Micro-architectural Independent Analytical Model

Current analytical models require some micro-architecture dependent in-
puts, such as cache miss rates, branch misprediction rates and memory-level
parallelism. This requires profiling the applications for each cache, branch pre-
dictor and reorder buffer (ROB) configuration of interest, which is significantly
time-consuming compared to evaluating the actual analytical models. In this
work we present a micro-architecture independent profiler and associated ana-
lytical models that allow us to produce performance and power estimates, based
on a single profiling run, across a large design space almost instantaneously.

We show that using a micro-architecture independent profile leads to a
speedup of 300× compared to detailed simulation for our evaluated design
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space. Over a large design space, the proposed model has an average er-
ror of 13% for performance and 7% error for power predictions, compared to
cycle-level simulation. The model is able to accurately determine the optimal
processor configuration for different applications under power or performance
constraints, and provides insight into performance through cycle stacks.

This work was published at: S. Van den Steen, S. De Pestel, M. Mechri,
S. Eyerman, T. Carlson, D. Black-Schaffer, E. Hagersten, and L. Eeckhout.
Micro-architecure independent analytical processor performance and power
modeling. In Proceedings of the International Symposium on Performance
Analysis of Systems Software (ISPASS), pages 32–41, 2015

This paper was nominated as one of the candidates for the best paper award
at the 2015 ISPASS conference.

1.2.2 Sampled Model Evaluation

The previously proposed model sampled the workload during profiling to
limit profiling time, after which the profiles for the different samples were com-
bined to create an average profile. This profile served as an input to the analyt-
ical model. The key insight in this work is that we can improve the prediction
accuracy by evaluating the model for all samples separately and combining
the performance predictions across the samples. For contention modeling this
makes sense as it is important to look at individual samples to predict bursty
behavior rather than averaged out samples. Furthermore, some statistics such
as cache misses and Memory-Level Parallelism (MLP) can influence each other
but by averaging out both, the model misses certain behaviors that cancel out
or reinforce each other.

Over a large design space, the improved model has a 9.3% average error for
performance and a 4.3% average error for power, compared to detailed cycle-
level simulation. Besides offering insight in the performance losses of an applica-
tion running on a specific processor through cycles stacks, we employ the model
to build Pareto plots. These Pareto plots offer insight into the performance-
power trade-offs when picking either low-power or high-performance processors.

This work was published at: S. Van den Steen, S. Eyerman, S. De Pes-
tel, M. Mechri, T. E. Carlson, D. Black-Schaffer, E. Hagersten, and L. Eeck-
hout. Analytical processor performance and power modeling using micro-
architecture independent characteristics. IEEE Transactions on Computers
(TC), 65(12):3537–3551, 2016

This paper was chosen as the featured paper of December 2016 and a video1

explaining the work was uploaded to the IEEE Transactions on Computers
YouTube channel.

1https://youtu.be/g3cDPM54YFA

https://youtu.be/g3cDPM54YFA
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1.2.3 Modeling Memory-Level Parallelism

The previously proposed analytical models relied heavily on cold cache
misses to predict MLP. This technique works well for evaluating relatively
short traces without the need for a significant warmup. However, it falls short
when evaluating complete benchmarks. Hence, we develop a new technique to
model MLP that relies on the stride behavior of static load instructions. We
profile the workload once and measure a set of distributions to characterize
the workload’s inherent memory behavior. We subsequently generate a vir-
tual instruction stream, over which we then process an abstract MLP model
to predict MLP for a particular micro-architecture with a given reorder buffer
and last-level cache (LLC) size. We also take the impact of the miss status
handling registers (MSHR) and a stride-based prefetcher into account. Exper-
imental evaluation reports an improvement in modeling error from 16.9% for
the cold-miss MLP model to 3.6% on average for the stride-based MLP model
for predicting the average time the processor has to wait on DRAM in the
presence of a stride-prefetcher.

This work was published at: S. Van den Steen and L. Eeckhout. Modeling
superscalar processor memory-level parallelism. IEEE Computer Architecture
Letters (CAL), 17(1):9–12, 2018

1.2.4 Open Sourced Framework

The framework developed during this thesis is publicly available on GitHub.
It consists of the Architecture Independent Profiler (AIP) available at https://
github.com/samvandensteen/AIP, and the Processor Modeling Tool, available
at https://github.com/samvandensteen/PMT. The tools are licensed under
a GNU GPLv3 license.

To execute the tools, a number of other libraries are needed. The minimum
requirements to execute the tools on an x86-based system are the following:

• Pin 2.x

• Google Protobuf 3.x

• Python 2.x

Some features of the framework to speed up the profiling or automatically
produce performance plots rely on having other packages installed such as:

• google-sparsehash

• python-matplotlib

https://github.com/samvandensteen/AIP
https://github.com/samvandensteen/AIP
https://github.com/samvandensteen/PMT
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1.3 Other Research Activities

During the course of my PhD, from January to July 2017, I had the oppor-
tunity to intern at ARM in Cambridge, UK. The goal of this internship was
to modify the developed models to work within the ARM simulation infras-
tructure. This required some modifications to the work flow presented in my
thesis. First, I implemented the Pin-based profiling tool [48] into the ARM Fast
Models framework [1]. Second, I modified the analysis tool to model an ARM
core more faithfully. This primarily meant enforcing stricter constraints on
the obtainable performance. I compared the predicted processor performance
results both to an internal cycle-accurate simulator and real hardware for the
SPEC CPU 2000 [9], SPEC CPU 2006 [10] and numerous EEMBC benchmark
suites [3].

The final results of this internship approached the average accuracy of the
proposed x86-based analytical model. Unfortunately, there were some outliers
which I was unable to fix due to the brevity of the internship. The reason
for these outliers are likely caused by ARM-processors being more resource-
constrained, both in the processor front-end and back-end, which proved to be
more challenging to capture in the analytical model than anticipated. However,
I strongly believe that there are no fundamental limitations as to why the
analytical model cannot be extended and fine-tuned to more accurately model
ARM processors.

1.4 Thesis Overview

The remainder of the thesis discusses the research and framework we de-
veloped building on the previously proposed mechanistic interval model [32] to
enable fast design space exploration. The thesis is organized in the following
chapters.

Chapter 2 introduces the necessary background to understand the thesis.
We discuss how a superscalar out-of-order processor core is built. We explain
the different pipeline stages and how an instruction is processed. Next, we clar-
ify the difference between simulation, sampled simulation and both empirical
and mechanistic modeling to obtain performance and power predictions. In
the next section, we discuss how processor power consumption can be modeled
using different tools. Afterwards, we introduce the interval model and describe
how it predicts processor performance. Lastly, we explain the advantage of
using a micro-architectural independent interval model.

In Chapter 3, we discuss the complications an x86-based processor intro-
duces for predicting performance using the interval model. We explain the
different modifications introduced to improve its accuracy. Furthermore, we
show how branch misprediction rates can be calculated without simulating the
branch predictor [22] and how we predict power consumption using activity
factors.
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Chapter 4 introduces the statistics required to predict the influence of mem-
ory accesses on our performance predictions. We explain how we can predict
cache miss rates using a statistical model called StatStack [28] and discuss two
different techniques to estimate MLP. Accurate predictions of the latter are cru-
cial to arrive at accurate performance predictions. Furthermore, we discuss a
number of constraints imposed to the parallel execution of memory requests by
the MSHRs and memory bus. We also, briefly, show the importance of includ-
ing a prefetcher model and how power consumption for the memory hierarchy
can be predicted.

Chapter 5 discusses the sampling approaches we implemented to speed up
the collection of statistics necessary to estimate performance and power for
the micro-architectural independent interval model. It also discusses the errors
introduced by these sampling techniques.

Chapters 6 and 7 show the results obtained with the mechanistic model
in this thesis. First, we describe our experimental setup. Afterwards, we dis-
cuss the accuracy of our performance and power predictions for our reference
architecture and a design space of processor configurations. We show that
we can generate CPI stacks offering insight into the performance losses of an
application executing on a specific processor architecture. Furthermore, we
demonstrate that our model can track the phases of an application relatively
accurately and that modeling a prefetcher (when present) is necessary. When
applying this model, we introduce Pareto plots to enable design space explo-
ration and choosing an optimal core for a given application. We include a brief
discussion using machine learning techniques for exploring a design space. We
show that they produce accurate performance and power predictions on aver-
age, but fail to accurately predict performance and power trends. Lastly, we
show that our model can even be used to find the optimal design point when
Dynamic Voltage and Frequency Scaling (DVFS) is used.

Finally, in Chapter 8 we conclude the thesis and discuss some possible future
work to extend the model to new types of processor cores and applications.



Chapter 2

Background

2.1 Out-of-order Processor

This thesis focuses on modeling the performance of pipelined superscalar
out-of-order processors1. To understand how to model processor performance
and power, one needs to understand the architecture of a processor. First
and foremost, it is important to understand the different terms defining this
type of processor. Pipelined execution means that processing an instruction
takes multiple time steps (cycles) and different instructions reside in different
stages of the processor pipeline in a given cycle. This is referred to parallelism
in time. Superscalar execution means there are multiple, parallel pipelines
through the complete processor. Hence, multiple instructions can enter the
processor’s parallel pipelines at the same time step which is called parallelism
in space. Out-of-order execution means that the processor supports execution
of instructions out of program order to improve performance, but the software
is given the illusion of execution instructions in the order as specified by the
programmer. The combination of both concepts leads to pipelined superscalar
out-of-order processors, which offer high-performance, but unfortunately also
consume a lot of power.

When an instruction is executed by the processor, it is flowing through a
pipeline consisting of multiple stages. These stages are often again divided
in multiple steps to exploit as much parallelism as possible. The stages of a
processor are Instruction Fetch (IF), Instruction Decode (ID), Operand Fetch
(OF), Execution (EX), Memory Access (MEM) and Write-Back (WB). The IF,
ID and OF stages form the processor front-end, while the EX, MEM and WB
stage comprise the back-end. Note that not every instruction needs all stages.
Some instructions do not access any memory and others, e.g., unconditional
branches, do not need any operands. Figure 2.1 shows a schematic overview of
an out-of-order processor.

1From now on, when we use the term processor, it denotes a pipelined superscalar out-of-
order processor, unless mentioned otherwise.

7
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Figure 2.1: Schematic overview of the pipeline of an out-of-order processor.

The Instruction Fetch stage of the processor is responsible for fetching the
next instruction(s). When an instruction is fetched that changes the flow of
the program (e.g., it jumps to another part of the program), it is unclear what
the next instruction is. Therefore the IF stage of a processor also features a
branch predictor, which predicts the next instruction. This allows for the IF
stage to keep fetching correct-path instructions with a minimal delay provided
the branch predictor performs well.

The Instruction Decode stage translates the bytes of an encoded instruction
to a format that the processor understands. It determines the type of the
instructions and figures out their operands and registers. Furthermore, if an
instruction performs a complex operation, the ID stage can split it up into
smaller parts, called micro-operations. All of this information is sent to the
next stages in the processor pipeline.

1 R1 ← R2 + R3

2 . . . . .

3 R5 ← R1 + R4

4 . . . . .

5 R1 ← R6 × R7

Example 2.1: Illustration of the different types of register dependences.

In the ID stage, the processor will also rename the operand registers to
eliminate false dependences. We distinguish between three types of depen-
dences, namely real dependences or Read-after-Write (RAW) dependences,
anti-dependences or Write-after-Read (WAR) dependences, and output depen-
dences or Write-after-Write (WAW) dependences. The latter two are false
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dependences that can be eliminated through register renaming. Example 2.1
illustrates why the renaming step is necessary in out-of-order execution. In-
struction 1 calculates the addition of R2 with R3 and stores the result in R1

which is consumed by instruction 3, thus there exists a RAW dependence be-
tween instructions 1 and 3 through register R1. This type of dependence cannot
be eliminated by register renaming. Instructions 1 and 5 exhibit a WAW de-
pendence because they both write to register R1. Instructions 3 and 5 are an
example of a WAR dependence since instruction 3 reads R1 and instruction 5
overwrites R1. For a superscalar out-of-order processor to work efficiently and
correctly, both false dependences have to be eliminated. After all, instruction
5 does not depend on any previous instruction and, to maximize performance,
an out-of-order processor can execute it before instruction 3. However, R1

now contains a newer value which is not the correct input for instruction 3.
The processor still needs to supply the older, correct result to instruction 3.
Example 2.2 illustrates the solution to this problem by renaming registers. In-
struction 1 writes to a different physical register F1, which is consumed by
instruction 3, and instruction 5 writes to register F2. The processor can now
execute these instructions in any order and still arrive at the correct result.
Note that in this example only the registers through which there are depen-
dences are renamed, but in reality all registers will be renamed.

1 F1 ← R2 + R3

2 . . . . .

3 R5 ← F1 + R4

4 . . . . .

5 F2 ← R6 × R7

Example 2.2: Code example with renamed registers.

In the Operand Fetch stage, the register operands that are needed to execute
an instruction are gathered. Here, the processor will read the physical register
file. Note that, at that point in the pipeline, not every instruction has all of its
operands available immediately. Example 2.2 already shows that instruction
3 depends on the result of instruction 1. Even with the missing operand(s),
instruction 3 will still progress to the next pipeline stage.

After the OF stage, the instruction will be dispatched. This is where we
enter the EX stage. In this stage the instruction is inserted into both the
instruction queue and reorder buffer. Afterwards, if all operands are available,
the instruction is issued to a so-called functional unit for execution. Depending
on the type of instruction, it will be sent to a different functional unit (e.g.,
an addition or multiplier unit). If the instruction depends on the result of a
previous instruction and has not received all of its operands in the OF-stage,
it will wait in the instruction queue until that operand can be forwarded from
one of the functional units. The EX-stage is the stage from which out-of-order
execution derives its name. The processor will traverse the instruction queue
and if an instruction has all its operands available, it will issue and execute the
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instruction. Because the processor can traverse the entire instruction queue and
pick any instruction, instructions are not per se executed in program order.

If an instruction has to access memory, it will enter the Memory stage. In
the previous stage, the functional unit will have calculated the address where
to read or write the data in memory. It will first query the cache hierarchy
which serves as intermediary fast storage, and if the data is not found there,
request it from the memory subsystem. Depending on which level of cache or
main memory the data has to be fetched from, this can take a long time.

The last stage is the WB stage. Here the results are committed to the
physical register file and/or the memory hierarchy. The instructions are re-
moved from the ROB. This operation is executed in-order, meaning that the
instructions are taken out of the ROB in the same order they were put in. This
guarantees that, despite internal reordering of instructions, the architectural
state of the processor is always correct and consistent, which is particularly
important in the context of precise exceptions.

2.2 Architectural Simulation

Physically producing a processor is so expensive and time consuming that it
is impossible to evaluate improvements to the design of a processor by actually
prototyping it. Instead, processor architects often rely on simulation to predict
the performance of a (set of) program(s) executing on a processor. Generally
these different simulation techniques can be classified according to the level
of abstraction the processor designer employs. One could use very detailed
simulation of every part of the processor, but it is also possible to omit or
abstract parts of the processor. Truthfully simulating every part of a processor
produces very accurate performance predictions, but is also extremely slow.
Therefore, if fast results are required, the trade-off can be made to omit or
abstract away as much of the processor as possible.

2.2.1 Timing Simulation versus Functional Simulation

Many types of simulations exist, each with their own trade-offs with respect
to speed and prediction accuracy. We briefly discuss the most important cate-
gories and highlight the difference between timing simulation versus functional
simulation.

Two types of timing-focused simulation are cycle-accurate simulation (or
RTL-simulation) and cycle-level simulation. A processor architect will employ
a timing-based simulation to figure out how a processor executes a program,
but also when it performs specific actions.

Cycle-accurate simulation will model every structure of the processor in
software. Cycle-accurate simulators are able to simulate what happens in-
side the processor on a cycle-by-cycle basis. Hence, the produced performance
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predictions are usually accurate within a couple of percent compared to real
hardware.

However, cycle-accurate simulators are typically very slow. They reach
simulation speeds of up to 1 kHz, meaning that they are able to simulate 1000
processor cycles per second in real time. This is six orders of magnitude slower
than a real system. Thus, if executing a program on a real system would take
1 s, simulating it using cycle-accurate simulation would take roughly 10 days. It
is obvious why it is infeasible to generate performance predictions for multiple
applications and processor designs.

Furthermore, most cycle-accurate simulators are not available to the aca-
demic world. The reason is that if a processor company would release its sim-
ulator, they would risk a third-party being able to find out how that processor
works exactly. Since developing a processor is extremely expensive, it is under-
standable that companies do not release their simulators.

Luckily, there are a number of simulators available to academics to perform
cycle-level simulation. These simulators still employ a timing model, but they
tend to simplify the simulation of certain parts of the processor. Examples
include SimpleScalar [16], Gem5 [14], PTLSim [74], Graphite [50], Sniper [17],
etc. They are usually one or two orders of magnitude faster than true cycle-
accurate simulators. Furthermore, the performance predictions are still rela-
tively accurate and the simulators are usually validated against real hardware.

Functional simulation abstracts away the timing-related details and is thus
not used to predict processor performance. These simulators focus on what
happens in the processor, rather than when it happens. As a result, they are
one or two orders of magnitude faster than cycle-level simulation. Many of the
previously cited simulators (e.g., SimpleScalar [16] and Gem5 [14]) also offer a
functional simulation model.

Functional simulation can also focus on only simulating specific parts of the
processor, e.g., the cache hierarchy or branch predictor. Some simulators, e.g.,
Sniper [17], offer a cache-only simulation mode. This can be useful if the focus
is to optimize one specific structure in the processor. Furthermore, the results
of a cache or branch predictor simulator can be used as input to analytical
models such as the interval model, see Section 2.5.

A tool that is widely used to build (functional) simulators is Pin [48], a bi-
nary instrumentation framework developed by Intel for x86-applications. This
tool allows to instrument an application as it is executed, collecting statistics
from the dynamic instruction stream. The collected statistics can be used to
build a full timing-based simulator such as Graphite [50] and Sniper [17] as well
as, for example, a functional cache simulator for multi-core processors such as
CMP$im [39].
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2.2.2 Sampled Simulation

Speeding up simulation can often be achieved through sampling. Sampled
simulation has been researched extensively since it introduces two major chal-
lenges, namely the selection of a representative (set of) sample(s) and starting
from a ‘correct’ (micro-)architectural state at each sample.

The selection of a representative (set of) sample(s) to simulate instead of
simulating a complete application can be solved in one of two ways. Either a
statistical approach is taken where samples are taken in a random fashion or
periodically, or a targeted approach is used where the program is first analyzed
to find representative samples.

Random sampling to simulate processor performance was first employed
by Conte et al. [21]. The idea behind this random sampling approach is that
it allowed to collect an unbiased, representative set of samples. Wunderlich
et al. [73] proposed SMARTS which employs systematic or periodic sampling
instead. Periodic sampling can produce unrepresentative samples if a program
exhibits periodic behavior. However, few applications exhibit the same level
of periodic behavior throughout their complete execution, which results in this
being an unlikely problem. The main advantage of both statistical sampling
methods is that, through the central limit theorem [47], one can prove that,
for any performance metric, the sampled mean will approach the true mean
within a some confidence interval depending on the number of samples.

Using the targeted sampling approach requires to preprocess a program after
which a (set of) representative sample(s) is chosen and associated with a weight.
The most straightforward way is to select a sample based on, for example,
functional cache and branch simulations, which was demonstrated by Skadron
et al. [61]. However, the disadvantage is that the sample is not necessarily
representative for other micro-architectures. Therefore, it is necessary to select
micro-architecture independent metrics and analyze those to find representative
samples. The most well-known approach is SimPoint [59]. This work divides
a program in intervals, builds Basic Block Vectors [58] for them by counting
how many times basic blocks are executed, and clusters those to find similar
intervals. SimPoint assumes that intervals with similar basic block behavior
will exhibit similar micro-architecture behavior and thus only one interval from
a cluster needs to be simulated. The SimPoint approach is employed by Patil
et al. [54] to enable deterministic sample replay using Pin [48].

At the beginning of execution-driven simulations of (a) representative sam-
ple(s), it is absolutely necessary for the processor’s architectural state to be cor-
rect. This entails that the processor’s registers and the memory content exactly
match the content as if the application was simulated completely. Otherwise,
the behavior of that sample may be different from the real behavior prompt-
ing incorrect conclusions. Starting from the correct architectural state can be
achieved either through fast-forwarding or checkpointing. The former can be
achieved using functional simulation, which can be slow for long-running pro-
grams, or using execution on real hardware as established by Szwed et al. [62].
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The latter will dump the complete architectural state to a checkpoint file. These
files can be very large as shown by Van Biesbrouck et al. [66], but this can be
optimized by, e.g., only saving the memory that is used in the sample [66, 72].

Next to the architectural state being correct, it is also advisable for the
micro-architectural state to be as accurate as possible. This involves an accu-
rate cache, translation look-aside buffers (TLB), branch predictor and processor
core state. This is necessary for the sample to be truly representative. Other-
wise, a sample might exhibit, e.g., different memory behavior because it gen-
erates more cache misses. A lot of work focuses on achieving an accurate
cache state either through prepending a warm up phase to the sample [26, 36],
leveraging reuse distances to estimate a cache state [52], or checkpointing the
micro-architectural state [71]. The downside of the last solution is that it is
dependent on one specific micro-architecture, while the former is not. Simi-
larly, warming up the branch predictor can also be achieved by prepending a
warmup phase [21]. An accurate processor state is of lesser importance because
sample units often are millions of instructions long while there are only a cou-
ple of hundreds of instructions in-flight at a time in the processor. Thus, after
simulating the first couple of hundreds instructions, which have little influence
on the total sample execution, the processor state is warmed up automatically.
However, if short samples are used, it may be necessary to prepend a warmup
phase to estimate the processor core state as demonstrated in SMARTS [73].

2.3 Performance Modeling

An orthogonal approach to (sampled) simulation is to use mathematical
models that model the interactions in a processor. The models themselves
do not simulate any part of the processor, although they often require inputs
obtained through simulation. If one ignores the required input generation,
evaluation of these models is very fast. Of course, simulation and modeling can
also be combined where first a model is used to search for interesting designs
and then rely on simulation to obtain more accurate predictions in a region of
interest.

2.3.1 Empirical Modeling

Empirical models are one subset of models which try to predict a (set of)
metric(s) based on a training set of results for similar experiments. These
models are based on the premise that current processor micro-architectures are
too complex to model, but that through machine learning one can calibrate
a generic model to faithfully reproduce their behavior. They are often called
black-box models because they take a set of inputs and produce a result without
the user knowing why it produces that result. Generating a prediction for a
program running on a processor requires two steps. First, a prediction model
is built by training the mathematical model using the results of a training set.
For this, a number of inputs and outputs from a set of simulation experiments
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have to be provided. The inputs will, for example, quantify the size of certain
structures in the processor and include characteristics of an application running
on that processor. The supplied outputs need to be the metrics which the model
needs to predict, e.g., performance or power. The second step is the evaluation
of the model for a different processor architecture. By providing the same set
of processor and/or program inputs it can predict the (set of) metric(s) for
which it was trained. The evaluation of such a model is usually fast.

However, there are a couple of important downsides to this technique. First
of all, because it relies on a (large) set of simulations, building the model is
inherently slow. The reason for this is that a set of simulation results needs
to be collected as input for the training of the model. Second, this kind of
model offers relatively little insight as it only produces the metric(s) for which
it was trained without divulging the reason for this prediction (a black-box
approach). Third, because of the training step, overfitting the model is an
important risk. An overfitted model produces good predictions if the inputs
are similar to the ones on which it was trained. But, due to the overfitted
nature, it may produce worse results when predicting a metric for an input
outside of the training scope.

Building an empirical model is relatively easy and is thus often a useful tech-
nique. Lee et al. [43] and Ipek et al. [38] built accurate performance prediction
models using linear regression and artificial neural networks, respectively. A
significant body of work extended on these empirical models. Lee et al. [44, 45]
further improve their previously proposed models and show design space explo-
ration applications. Azizi et al. [11] include power and energy metrics to find
power-performance trade-offs. Singh et al. [60] explore the possibility of using
performance counters on real hardware to perform real-time power modeling
and scheduling.

2.3.2 Mechanistic Modeling

Another approach for predicting performance is through mechanistic ana-
lytical modeling. For this technique a set of equations are built that try to
capture the inner workings of a processor. A mechanistic analytical model
builds on simplifying assumptions and first-order effects, observed by study-
ing the flow of instructions through the processor pipeline. It tries to capture
the interactions between the hardware (the processor and memory), and the
software executing on it (one or more programs).

Over the years, a significant amount of research was performed on how to
study and model processor performance. Emma et al. [29] show how CPI stacks
can help understand performance bottlenecks. Michaud et al. [49] quantify
the influence of the instruction fetch bandwidth on performance with respect
to branch mispredictions and instruction level parallelism (ILP). Hartstein et
al. [35] introduce a model that details how the optimal pipeline length can
change as function of the ILP and pipeline stalls. A first-order model focusing
on pipeline stalls due to miss events was developed by Karkhanis et al. [42].
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This work models processor performance at the issue stage. Eyerman et al. [32]
further elaborated on the latter work and introduced the interval model which
models performance at the dispatch stage. Jongerius et al. [40, 41] proposed an
ISA-independent mechanistic model using the LLVM [7] intermediary format
to predict processor performance.

Mechanistic models are generally less accurate than empirical models, and
do not model the whole processor in detail. However, while mechanistic models
have limited detail, they do reveal how the program interacts with the micro-
architecture through the mathematical equations upon which they are built.
This also offers the benefit of easy modifiability and extensibility since every
step to the end result can be traced back to a part of the equations.

Mechanistic modeling also consists of two phases: application profiling and
performance estimation. Profiling is usually the most time-consuming step, as
the instructions of the application need to be analyzed to obtain the application
characteristics required by the mathematical model. However, using proper
sampling techniques, it can be sped up by several orders of magnitude compared
to simulation. The performance estimation step is significantly faster since it
solely consists of evaluating a set of equations. This step can be completed in
a couple minutes, depending on the ‘size’ of the prediction problem.

2.4 Power Modeling

Processor power consumption can be split into two components, static and
dynamic power consumption. Static power consumption is related to the tran-
sistor technology and is a function of the leakage current, Il, and the supply
voltage, Vdd. Note that the leakage current, Il, also depends on temperature,
indirectly causing static power consumption to also depend on temperature.

Ps = Il × Vdd (2.1)

The dynamic power consumption, shown in Equation 2.2, is the power con-
sumed due to transistor switching and depends on a number of factors including
the capacitive load, C, the supply voltage, Vdd, the processor frequency, f , and
the activity factor or transistor switching activity, a.

Pd =
1

2
× C × V 2

dd × a× f (2.2)

The relative contribution of both types of power consumption is difficult
to generalize. Traditionally, dynamic power consumption was more important
than static power consumption, but with new technologies, static power con-
sumption becomes increasingly more important. As an example, in our exper-
iments, for a traditional 45nm CMOS processor, the static power consumption
is around 40% of the total power consumption.

The introduction already indicated that power management is one of the
most important considerations when developing processor chips. Hence, differ-
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ent techniques to model power consumption have been developed. Similar to
RTL-based performance simulations, power simulations can be very detailed,
simulating power usage at the transistor level. However, these simulators are
also very slow and not available to academia because they reveal too much of
the processor architecture.

Therefore, tools like CACTI [63], Wattch [15] and McPAT [46] were de-
veloped that model power consumption at higher abstraction levels. CACTI
was developed to model power consumption in the memory hierarchy, but is
also commonly used to obtain power estimations of other SRAM2 structures.
CACTI uses data provided by the International Technology Roadmap for Semi-
conductors (ITRS) [6] to estimate transistor-level power numbers. Besides
power consumption, it also models the area and timing constraints of these
structures. Wattch [15] abstracts this further, but uses the capacitance models
from CACTI. It employs parameterized power models for different hardware
structures and does not simulate area or timing constraints. To estimate power
it relies on activity factors for the hardware structures. For example, the num-
ber of additions in a program is counted through architectural cycle-level timing
simulation, which can then be used to calculate the power usage of a parame-
terized addition functional unit. McPAT [46] integrates both area, timing and
power in one tool. For both area and timing constraints, it builds on the models
proposed in CACTI. Similar to Wattch, power is predicted using activity fac-
tors. McPAT uses an XML interface to describe the hardware structures and to
summarize all accesses to these processor structures. These tools can produce
power predictions accurately within 20% of the actual power consumption.

An extra complication the above tools omit is that both static and dynamic
power consumption is also influenced by the temperature of the processor and
vice versa. HotSpot [37] can be used to develop a compact thermal model
for a processor showing both static and transient temperature information.
This thermal model can then be used as feedback to study how temperature
influences power usage.

2.5 Interval Model

In this thesis we focus on modeling a processor using the mechanistic ap-
proach. Because contemporary processors are complex, predicting the perfor-
mance of a processor is also a complex task. We focus on extending the interval
model [32]. This model has as upsides that it is relatively simple to understand,
is still relatively accurate and offers a lot of insight into processor/program per-
formance.

Contrary to the initial interval-based models [42, 49], which focused on the
fetch or issue stage, the interval model [32] predicts processor performance
from the viewpoint of the dispatch stage. There are two main reasons for this
approach. The first reason is that at this point in the processor both front-end

2SRAM: Static Random Access Memory
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Figure 2.2: Program execution split up into separate intervals following the
interval model.

and back-end issues can be analyzed. At other stages in the processor, the
miss events causing the issue can be hidden under other events which limits
insight into the processor’s performance. Secondly, at the dispatch stage, a
clear on-off behavior can be observed: either instructions are being dispatched
or a structural problem arose that inhibits dispatching instructions.

The interval model is built upon the observation that miss events can stall
the processor pipeline which leads to a degradation in average processor per-
formance. Figure 2.2 shows the categories of miss events that can deteriorate
performance. The interval model distinguishes between front-end misses, clas-
sifying them as either branch mispredictions or I-cache misses, and back-end
misses or long-latency load D-cache misses. Important to notice is that, in an
out-of-order processor, different D-cache misses can overlap and this needs to
be modeled as accurately as possible.

Under normal operation, the interval model operates under the assumption
that the processor can achieve a performance or instructions per cycle (IPC)
equal to the processor’s dispatch width D as indicated in Figure 2.2. However,
when the processor encounters one of the previously defined miss events, (IPC)
drops to 0. Depending on the miss event, the time to resolve it can range
from a couple of cycles to a couple of hundreds of cycles. The respective miss
events are collected using functional simulation of the cache hierarchy, branch
predictor and ROB. Note that this type of simulation is faster than full-blown
timing simulation of the complete processor, but it is still time-consuming.
The goal of the interval model is to predict the time it takes to resolve all miss
events and thus arrive at an accurate performance prediction.

2.5.1 I-Cache Misses

In order to make forward progress, a processor continuously fetches new
instructions. These instructions are stored either in the cache or in main mem-
ory. Depending on the level of the memory hierarchy the processor needs to
access, this operation takes one to hundreds of cycles. If the processor finds
the instruction in the first level of the instruction cache, it is always able to
progress. If it has to fetch the instruction from a lower level, the processor will
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Figure 2.3: Interval breakdown of an instruction cache miss.

have to wait multiple cycles before it can supply a new instruction to execute.
Figure 2.3 breaks down the different steps of an instruction cache miss.

The processor front-end exists of multiple stages that still contain useful
instructions when the I-cache miss occurs. These instructions can still progress
through the pipeline, but no new instructions are fetched, and thus the front-
end pipeline drains. The dispatch of instructions does not halt immediately,
but only when the front-end pipeline is empty. The stall is resolved once the
requested instruction enters the pipeline. The time this takes is dependent
on the level of the memory hierarchy that supplies the instruction. At that
moment the front-end starts to refill and when the front-end is full, dispatch
(and instruction execution) resumes. The penalty of an instruction cache miss
is thus equal to the latency of fetching the instruction because the front-end
drain and front-end refill time cancel each other out.

2.5.2 Branch Mispredictions

Branches are a type of instructions that control the direction the program
is taking. Depending on the direction of the branch, the program behavior will
be different because the next instructions to be fetched and executed will be
different.

1 v a r i a b l e a = . . . load from memory . . .

2 i f a f u l f i l l s cond i t i on :

3 . . . perform i f c a l c u l a t i o n . . .

4 e l s e :

5 . . . perform e l s e c a l c u l a t i o n . . .

Example 2.3: Code containing a branch instruction.

A pseudo-code example containing a branch instruction can be found in Ex-
ample 2.3. Depending on the value of variable a, the next instructions are part
of the calculations in the if-statement or else-statement. The value of variable
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Figure 2.4: Interval breakdown of a branch misprediction.

a is not necessarily known when the branch instruction is fetched. Hence, in
order to smoothly fetch the next instructions and not wait until variable a is
known, the processor predicts the direction of the branch. The structure in
the processor that performs this action is known as the branch predictor. Most
branches are easy to predict because they are executed many times and their
subsequent executions are correlated. However, for other branches the branch
predictor might predict the direction incorrectly. This event is called a branch
misprediction and can entail a significant penalty.

Figure 2.4 shows what happens when the branch predictor incorrectly pre-
dicts the branch direction. Unlike an I-cache miss, new instructions enter the
pipeline. However, the new instructions are part of the wrong execution path
and they will not contribute to the progress of the program. This is indicated
by the dotted line. Hence, similar to the case of an instruction cache miss,
the effect of a branch misprediction is a front-end drain step where previously
fetched, correct-path instructions progress through the pipeline. When the
front-end is drained of useful instructions, the branch is dispatched and useful
program progress halts. Note that, while we visualize this as an IPC drop-
ping to zero, the processor is actually still executing instructions. However,
because the instructions that are dispatched are part of the wrong execution
path, this is visualized as an effective IPC of zero. If the branch depends on
the result of other instructions, it takes a number of cycles before the branch
is executed. We call the time it takes from dispatch to execution of the branch
the branch resolution time. After the branch is executed, the branch predictor
knows whether its prediction was correct or incorrect. Because the processor
now knows the correct execution path, it can start fetching correct-path in-
structions again, the front-end refills and when dispatch resumes, the program
can progress. Thus, the penalty of a branch misprediction is the sum of the
branch resolution time and the front-end refill time.
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Figure 2.5: Interval breakdown of a long-latency load data cache miss.

2.5.3 D-Cache Misses

Executing instructions requires data on which to operate. This data, known
as the data set of a program, will be loaded into main memory when required.
Because main memory is a lot slower than the processor (about two orders of
magnitude), processor architects add caches between main memory and the
processor. These caches are organized in a hierarchy, where the top level is
fast enough to deliver a continuous stream of data to the processor and the
bottom level is about one order of magnitude slower. In the interval model it
is assumed that the latency of accessing any of these intermediary cache levels
can be hidden under the execution of other useful work. This is one of the key
features of an out-of-order superscalar processor and is modeled as such. Hence,
there is no observable performance penalty. However, the different cache levels
have limited capacity ranging from a couple kilobytes to a couple megabytes.
This capacity is often not enough to store the program’s complete data set.
When the data is not present in the cache, the processor has to access main
memory, which takes up to hundreds of cycles. This long access latency causes
the back-end structures of the processor to fill up and thus dispatch to stall.
We call this event a long-latency D-cache miss.

Figure 2.5 shows the breakdown of the executing of a load instruction ac-
cessing main memory by the processor. When the data cache miss occurs, the
missing instruction will advance to the head of the processor’s ROB. Due to
the long access time to main memory, the instruction will hit the head of the
ROB before its data is returned. Since instructions need to leave the ROB in
program order and the ROB is now full, this causes dispatch to stall. Before
the instruction that generates the D-cache miss hits the head of the ROB, there
are still instructions executed and committed. Hence, the penalty for a load
data cache miss starts when it hits the ROB head and the ROB is full.

Contrary to instruction cache misses and branch mispredictions, multiple
data cache misses can overlap. This is indicated in the figure with the data
cache misses labeled using a one and two, which happen shortly after each other.
The processor has already stalled due to the first data cache miss reaching the
head of the ROB. However, during this stall, the second data cache miss has also
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requested its data from main memory. Hence, the latency of the second data
cache miss is (partially) hidden under the latency of the first. This property
of an out-of-order processor is called Memory-Level Parallelism (MLP). When
the data for the first data cache miss returns, program execution can resume.
Depending on when the second data cache miss happened, its data could be
returned before it hits the head of the ROB. If this is the case, there will be no
penalty for the second data cache miss as shown in Figure 2.5. It is however also
possible that the latency cannot be hidden completely under the access latency
of the first data cache miss. In the interval model, the simplifying assumption
is made that the latency for any subsequent data cache miss that fits in the
same ROB can be hidden completely. Note that the parallel processing of data
cache misses does depend on the presence of non-blocking caches and MSHRs
to keep track of outstanding load misses in the processor.

2.5.4 Interval Model Equation

Taking the above defined miss events into account to predict performance
leads to Equation 2.3. The result of this equation, written as C in the equa-
tion’s left-hand side, is the number of cycles it takes to execute a program.

C =
N

D
+ mbpred × (cres + cfe) +

∑
i

mILi × cLi+1 +
mLLC × cmem

MLP
(2.3)

The first term in the equation is the number of instructions N divided by the
dispatch rate, equal to the dispatch width D. This is the program’s base per-
formance and equals the maximum achievable performance. Thus, it takes at
least N

D cycles to execute the complete program on a processor with a pipeline
width equal to D. The next three terms are penalties related to the respective
miss events listed above. The second term consists of the number of branch mis-
predictions mbpred multiplied by its penalty. As discussed in Section 2.5.2, this
penalty is the sum of the branch resolution time cres and the front-end refill time
cfe . Note that cfe is a fixed constant only dependent on the micro-architecture.
The next part of the equation is the sum of all instruction cache misses mILi

per level multiplied by the access latency to the next level cLi+1 . The last
term is equal to the number of last level cache misses (LLC misses), mLLC ,
multiplied by the main memory access time cmem and divided by the amount
of memory-level parallelism MLP . Here, MLP is defined as the average num-
ber of outstanding long-latency load misses if at least one is outstanding [20].
This division models that, as discussed in Section 2.5.3, load accesses to main
memory can be processed concurrently. Note that in the original model there
is also a term for the dispatch inefficiency. However, due the extensions made
to the model in this work with respect to the dispatch rate, including this term
makes less sense and we do not discuss it here.

Some of the inputs in this equation are exclusively dependent on the pro-
gram, some are dependent on the micro-architecture of the processor and oth-
ers are dependent on a combination of both. The number of instructions, the
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Instruction mix and 

dependences

Memory behavior

Application profiles

Figure 2.6: Schematic overview of the micro-architecture independent interval
model to predict processor performance and power.

dependences between them and instruction mix are exclusively application de-
pendent. On the other hand the dispatch width, the front-end refill time, access
times to the different levels in the cache hierarchy or main memory, and the
size of the ROB are features ingrained in the processor’s micro-architecture.
The other inputs, which are the number of branch and cache misses as well as
the MLP are dependent on both the application and micro-architecture.

2.6 Micro-Architecture Independent Modeling

All of the previously discussed mechanistic models have one important
downside: they use simulation-based inputs. As an example, the interval model
requires inputs from a branch predictor simulator, a cache simulator and an
MLP simulator. The consequence is that, even though the necessary simula-
tions are not full-blown timing-based simulations, they are still costly. Espe-
cially the MLP simulation is time-consuming since it requires stepping over
the complete instruction stream, instruction by instruction, to mark the de-
pendences and correlate the load instructions with cache misses obtained from
a cache simulator. The cost of the MLP simulation can be amortized by using
an algorithm such as the one described in Eyerman et al. [30] which obtains
MLP statistics for different sizes of the ROB in a single simulation run.

However, the problem of slow simulations is augmented by the fact that
searching for energy-efficient processors designs requires exploring a large de-
sign space. To compare different processor designs from such a design space
multiple simulations are needed. For example, it might be needed to explore
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Instruction type Frequency

Load 30%
Store 20%
ALU 15%

Multipy 10%
Branch 15%
Move 10%

Table 2.1: Example of an instruction mix of an application.

different cache hierarchies which requires different cache simulations which in
turn impacts the MLP simulations. Obtaining the inputs to a mechanistic
model using a significant amount of simulations is undesirable because of time
constraints.

One way to mitigate this is to eliminate the simulation-based inputs by rely-
ing on application characteristics that are independent of the micro-architecture
of the processor. This does not necessarily require modifying how a mechanistic
model calculates the final performance, but requires including an intermediary
step that transforms the micro-architecture independent application character-
istics to miss events based on statistical models. One way of achieving this is
described in more detail in Chapters 3 and 4.

Figure 2.6 shows a schematic overview of how a micro-architecture indepen-
dent model predicts performance and power. Similar to any generic mechanistic
model, a profiling phase is needed to collect profiles for (a set of) application(s).
These profiles are usually a set of distributions that include information about
e.g., the instruction mix and its dependences, memory behavior and branch
behavior. Note that this profiling phase is a one-time cost. A given applica-
tion needs to be profiled only once after which performance and power can be
predicted for a complete design space.

Table 2.1 shows an example of one of the collected profiles, the instruction
mix profile, where 50% of the instructions are accessing memory (loads and
stores), 25% are compute instructions (ALU and multiply), 15% are meant
to control the flow of the program (Branch) and the other 10% are generic
instructions that move data around. This profile is necessary to predict the
average instruction latency and possible contention in the processor’s issue
stage (see Sections 3.3 and 3.4).

The profiling phase is a one-time cost as the profiles contain only micro-
architecture independent characteristics. At an indicative speed of six million
of instructions per second (MIPS), it is also relatively fast compared to the pre-
viously required simulations. The statistics serve as input to a set of statistical
models that combine them with a set of parameters describing the processor
structures to transform them into, among others, miss events. The reason why
this step is fast is because part of the cost of these statistical models can be
amortized over multiple experiments. The mechanistic model can then calcu-
late the performance and/or power based on the miss events and their associ-
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ated latencies. Note that the original interval model does not calculate power
consumption and that this is an extension. The complete work flow of col-
lecting micro-architecture independent characteristics, predicting miss events
and performance is significantly faster than both timing-based simulation and
a mechanistic model using simulation inputs as detailed in Section 6.2.



Chapter 3

Modeling the Core

3.1 Improvements to the Interval Model

The interval model was originally developed for the Alpha ISA, which has
been deprecated. In this work, the model is modified to work for modern x86-
processors. The original interval model assumed a balanced processor meaning
that every processor stage can sustain the same throughput of instructions as
the previous stage. Contemporary processors are incredibly complex and are
optimized to support many different types of workloads. If a specific workload
stresses one part of the processor (e.g., the floating point functional units), this
sustained throughput is not always achievable. Thus we introduce new penalty
terms and modeling techniques to model constraints imposed by the imbalance
between different processor stages. The following list summarizes the changes
introduced over the interval model from Equation 2.3:

• The number of instructions N is replaced by a smaller unit of work called
micro-operations.

• The base performance is now limited by the effective dispatch rate Deff

rather than the physical dispatch width D.

• The branch resolution time cres is calculated using the average branch
path.

• The latency to main memory also takes queuing delay over the memory
bus into account.

• A new term called the LLC chain penalty, PhLLC , is added.

• All miss events and the MLP (Memory-Level Parallelism) are calculated
using statistical techniques, rather than a simulator.

25
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All of the improvements discussed in this work lead to a new, micro-
architecture independent performance and power model. Equation 3.1 sum-
marizes how performance is calculated using the improved interval model. The
following two chapters discuss the techniques to compute the required inputs
without any type of micro-architecture specific simulation and the additional
penalties to better model contention to improve the accuracy of the interval
model.

C =
N

Deff
+ mbpred(cres + cfe) +

∑
i

mILicLi+1 +
mLLC (cmem + cbus)

MLP
+ PhLLC (3.1)

3.2 CISC versus RISC

One important characteristic to classify a processor is whether it uses a
load/store architecture or a register-memory architecture. In a load/store ar-
chitecture, there is a strict distinction between memory operations and Arith-
metic Logic Unit (ALU) operations. Hence, arithmetic operations can only
use registers and if new data is needed, a load has to fetch it from memory
to a register. In a register-memory machine, ALU operations operate on both
values from registers and memory.

Load/store architectures are used in Reduced Instruction Set Computer
(RISC) processor designs, while register memory architectures use a Complex
Instruction Set Computer (CISC). A CISC instruction-set architecture (ISA)
can thus execute multiple, functionally different low-level operations as part of
one instruction. Modern processors will often split instructions into different
micro-operations in the decode stage such that it can more easily process them.

The original interval model was developed for the Alpha ISA, an older RISC
architecture which used instructions as the smallest unit of work. This thesis
focuses on the Intel x86 ISA, a CISC architecture. Equation 2.3 shows that
to calculate the base performance, the number of instructions in a program is
an input. Because the interval model calculates performance at the dispatch
stage and x86 splits instructions into micro-operations before that stage, we
need to take this into account. Therefore, we first compute the sequence of
micro-operations from the x86 code. As a result, the N in Equation 3.1 is
equal to the number of micro-operations, and not the number of instructions.

Figure 3.1 shows the ratio of the number of micro-operations to instructions
for all benchmarks from the SPEC CPU 2006 suite. This breakdown into micro-
operations was performed using the Intel X86 Encoder Decoder (XED) [5].
Note that this ratio varies a lot across benchmarks. For the lbm benchmark
the ratio is close to 1.07, while for the GemsFDTD benchmark it is close to
1.38. This large difference indicates the necessity to take micro-operations into
account in the model. After all, if we dispatch 1 billion instructions for both
benchmarks, dispatching all micro-operations on a processor with a dispatch
width of four will take approximately 267 million cycles for lbm, but it will take
345 million cycles to dispatch the same number of instructions for GemsFDTD.
In the first case, the prediction error compared to using instructions would be
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Figure 3.1: Number of micro-operations per instruction for all SPEC CPU
2006 benchmarks.

relatively small at 6.8%, but in the second case, the error would be as high as
38%.

3.3 Instruction Dependences

To execute an instruction on a functional unit, its operands need to be
ready. When an instruction needs the result of a previous instruction as an
operand, we say the current instruction depends on the previous. This type
of dependence is very common in a program’s instruction stream as illustrated
by Example 3.1 which calculates the sum of a three-element vector. Figure 3.2
shows the corresponding data dependence graph. The numeric subscript in-
dicates the number of times an instruction has been executed. If there were
no dependences between the instructions, this code fragment, containing six-
teen instructions, could be executed in four cycles on a four-wide superscalar
processor. However, due to the dependences and assuming unit-latency instruc-
tions, it takes at least six cycles to execute. This illustrates the importance
of taking into account instruction dependences when attempting to predict
performance.

Instructions a through c initialize R0, R1 and R2 and are executed once.
The purpose of these registers is to point at the memory location where the
final result will be saved, to save the intermediary result of the sum and to
point at address of the first element of the vector, respectively. Instruction d
loads an element from the vector followed by instruction e which calculates the
sum of that element and the previous value of R1. Instruction f increments the
address in R2 and serves as a loop counter. Instruction g checks whether we
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1 MOV 0xFC → R0 ( a )

2 MOV 0x00 → R1 (b)

3 MOV 0xF0 → R2 ( c )

4 L1 : LD [ R2 ] → R3 (d)

5 ADD R1 , R3 → R1 ( e )

6 ADD R2 , 0x04 → R2 ( f )

7 BNE R2 , 0xFC → L1 ( g )

8 ST R1 → [ R0 ] (h)

Example 3.1: Code illustrating impact of instruction dependences.

Figure 3.2: Corresponding data dependence graph for Example 3.1.

have executed the loop for all vector elements. The first two times we execute
instruction g, R2 is not equal to 0xFC and thus we jump back to instruction
d. After executing instructions d through g three times, we leave the loop and
execute instruction h, which saves the final result at the address stored in R0.

To calculate performance within an interval we characterize a program’s
instruction dependences in different ways. We are interested in three different
statistics called the average path (AP), the average branch path (ABP) and the
critical path (CP). The average path measures the average number of produc-
ing instructions for all instructions, while the average branch path only takes
producing instructions leading to a branch instruction into account. The crit-
ical path accounts for the longest dependence chain of producing instructions
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1 b u f f e r s = 0 , b ranch bu f f e r s = 0

2 APsum = 0 , ABPsum = 0 , CPsum = 0

3 f o r i n s t r u c t i o n i in i n s t r u c t i o n stream :

4 append i n s t r u c t i o n i to b u f f e r B

5 f o r a l l i n s t r u c t i o n s in b u f f e r B :

6 c a l c u l a t e # producing i n s t r u c t i o n s

7 APsum+ =

∑
∀i(# producing instructions)

buffer size

8 i f #branches > 0 :

9 ABPsum+ =

∑
∀branch(# producing instructions)

# branches

10 increment branch buffers counter

11 CPsum+ = ∀i max(# producing instructions)

12 remove f i r s t i n s t r u c t i o n from b u f f e r B

13 increment buffers counter

14 AP =
APsum

buffers

15 ABP =
ABPsum

branch buffers

16 CP =
CPsum

buffers

Algorithm 3.1: Algorithm for calculating instruction dependence chains.

in an ROB only, rather than all chains. Producing instructions are defined
as instructions that write to a register which is subsequently read by another
instruction. For example, b1 is a producing instruction for e1 since it writes a
value in R1. e1 is a producing instruction for e2, also using register R1, while
b1 and e1 form a chain of producing instructions leading up to e2.

AP, ABP and CP are used to calculate PhLLC , cres and Deff , respectively, as
we will explain later. All three of these statistics are related to the processor’s
ROB size. After all, instructions that are not part of the same ROB-size interval
of instructions in the dynamic instruction stream are definitely not executing
at the same time and will thus never have to wait on each other.

When an application is executing and the instructions flow through the
ROB, the data dependence graph changes and so do the AP, ABP and CP
metrics. Algorithm 3.1 shows how to calculate the dependence chains. While
processing the instruction stream, a buffer B of instructions is maintained. For
each instruction in that buffer we calculate how many producing instructions,
i.e., instructions upon which it depends directly or indirectly, precede it. In line
7, we calculate AP by averaging the number of producing instructions for each
instruction. Line 9 calculates ABP by averaging the producing instructions for
branch instructions only, provided there are branch instructions in the buffer.
For CP, calculated in line 11, we check which instruction has the highest number
of producing instructions in its dependence chain. Subsequently, we remove the
first instruction from the buffer, add a new one and recalculate the dependence
statistics. In lines 14, 15 and 16, we average the calculated chains lengths
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across all buffers that are constructed from the instruction stream. For ABP
we divide by the number of buffers containing at least one branch. Thus, the
algorithm for calculating the dependence chains has a complexity of O(N ·B),
where N is the number of instructions and B the ROB size. Note that, to
calculate the dependence chains for an ROB, B is preferably is at least as large
as the ROB to prevent extrapolation.

Figure 3.3 provides a visualization of how this algorithm works for an ROB
size of 8 instructions based on Example 3.1. The first row shows the instructions
the same way they are displayed in the data dependence graph in Figure 3.2.
The instructions are dispatched into the ROB from left to right. The second row
shows the depth of the dependence chain. If the number below an instruction
is 0, the instruction has executed and was committed. Note that, e.g., for the
addition-instruction e1, there are two different chains leading up to it, but we
only keep track of the longest chain.

For the ROB containing the first eight instructions, the average path equals:

AP =
1 + 1 + 1 + 2 + 3 + 2 + 3 + 3

8
=

16

8
= 2 (3.2)

There is only one branch in that ROB, g1, so the average branch path equals 3.
The longest instruction dependence chain, also called the critical chain, counts
3 instructions. Removing the first instruction from the ROB and inserting the
second leads to an average path of 19

8 = 2.375. The average branch path does
not change, but the critical path is now 4 because of instruction e2 entering
the ROB. After instructions a1, b1 and c1 have been committed, which is the
fourth row in Figure 3.3, d1 resides at the head of the ROB. c1 was a producing
instruction for a whole sub-tree of instructions. Hence, the dependence counter
for all of the depending instructions is decremented. The average path and
critical path are again equal to 2 and 3, respectively. Furthermore, there are
two branches in the ROB, g1 and g2, with a respective dependence chain length
of 2 and 3, leading to an ABP of 2.5. Continuing these calculations for all shown
ROBs and averaging them out gives us following results:

AP =
2 + 2.375 + 2.625 + 2 + 2.125 + 2.5 + 1.75 + 2 + 2.25

9
= 2.18 (3.3)

ABP =
3 + 3 + 3 + 2.5 + 2.5 + 2.5 + 1.5 + 2.5 + 2.5

9
= 2.56 (3.4)

CP =
3 + 4 + 4 + 3 + 3 + 4 + 3 + 3 + 4

9
= 3.44 (3.5)

Figure 3.4 shows the measured AP, ABP and CP for one billion instructions
of the SPEC CPU 2006 benchmarks with an ROB of size 128. All three metrics
are significantly different in magnitude and vary across benchmarks, showing
we cannot just replace one with another. For example, the average path is on
average 2.9 times shorter than the critical path while the average branch path
ranges from 50% shorter than the average path to 40% longer.

In the original interval model, the dispatch rate is set to the physical dis-
patch width D of the processor, assuming the reorder buffer (ROB) is large
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Figure 3.3: Number of producing instructions for Algorithm 3.1 for an ROB
of 8 instructions.
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Figure 3.4: Comparison of the average path, average branch path and critical
path for an ROB size of 128 for the SPEC CPU 2006 benchmarks.

enough to sustain an overall IPC of D (balanced design). However, we find
that since the x86 architecture offers fewer architectural registers compared to
the Alpha architecture and instruction latencies are higher, the dependence
paths through register and memory dependences tend to take longer to re-
solve. This causes the achievable effective issue rate (and also commit rate) to
be lower than the physical dispatch width. As the ROB and instruction queue
fill up, the rate at which instructions can actually be dispatched decreases to
what we call the effective dispatch rate.

The first step in modeling this effect is to calculate the average number of
instructions that can be dispatched, issued and committed in a cycle. We call
this the average number of independent instructions, I(ROB)1. We calculate
I(ROB) as shown in Equation 3.6:

I(ROB) =
ROB

lat × CP(ROB)
(3.6)

Here, CP (ROB) is the critical path length for a fixed ROB size, while lat is the
average instruction execution latency, including short (L1 and L2) load data
cache misses. The reason for using the critical path rather than the average
path to calculate I(ROB) is that the ROB acts like a queue, meaning that
the instructions leave the ROB in the order they entered it. Using the average
path as the divider is correct to calculate the average number of independent
instructions in the complete ROB but leads to an overestimation of the number
of instructions that can actually leave the ROB every cycle.

1Independent instructions are instructions that do not have producing instructions in the
current ROB.
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After calculating I(ROB), we replace the dispatch rate D in Equation 2.3
with the effective dispatch rate Deff . This effective dispatch rate is calculated
using Little’s law, as follows:

Deff = min

(
D,

ROB

lat · CP (ROB)

)
(3.7)

To further illustrate this intuitive equation, we apply it to the example from
Example 3.1. Assuming a four-wide, superscalar processor with an ROB of 16
entries, the critical path is the path to instruction h1, which is 6 instructions
long. Assuming unit-latency instructions, the effective dispatch rate is 2.67
according to Equation 3.8.

Deff = min

(
4,

16

1 · 6

)
= 2.67 (3.8)

Hence, executing those 16 instructions takes 6 cycles according to the interval
model, which we already showed to be correct using the data dependence graph
in Figure 3.2.

C =
N

Deff
=

16

2.67
= 6 (3.9)

3.4 Issue Stage Modeling

Current processors typically have multiple functional units for executing
different instructions in parallel, of which several may be connected to a single
port. For example, in the Intel Nehalem processor2, there are only 6 ports
serving 15 functional units as shown in Figure 3.5. If multiple instructions are
to go to the same port in the same cycle, they need to be issued sequentially
instead. Furthermore, if a non-pipelined functional unit is occupied, no new
instructions of that type can be issued to that functional unit, even if the port
is available. This has an important impact on performance, which we include
in the model for improved accuracy.

We model the penalty introduced by a limited number of functional ports
using a histogram of the instruction types in an application. We implement an
algorithm that builds an issue schedule based on the frequencies of instructions
in a histogram. We first check which instructions have to pass through one
specific port. In the case of the Nehalem-processor displayed in Figure 3.5,
this would be the load, store, divide, branch and some floating point instruc-
tions. The reasoning behind this is invariable of when they are issued, these
instructions generate activity on that specific port. Afterwards, we loop over
the other instruction categories that can be processed by multiple ports. For
each of these categories, we take the already scheduled activity into account,
and if it leads to better performance, split the execution of a certain instruction
category over multiple functional ports. For example, an addition instruction
is processed by the Int ALU units and could be scheduled on ports 0, 1 or 5.

2URL: http://www.hardwaresecrets.com/inside-intel-nehalem-microarchitecture/4

http://www.hardwaresecrets.com/inside-intel-nehalem-microarchitecture/4


34 CHAPTER 3. MODELING THE CORE

Figure 3.5: Nehalem issue stage with multiple functional units connected to
one functional port.

Hence, we split its activity over these three ports as balanced as possible. Note
that this algorithm uses a greedy approach and proposes an optimal issuing
schedule, but does not necessarily build the schedule that a real processor will
use. It does however provide a good approximation for the penalties introduced
by waiting for an occupied port. Thus, assuming there is a mix of N instruc-
tions that have to be executed by the functional units connected to, e.g., port
0, it will take N cycles to forward them to their respective functional units,
despite possibly having multiple available functional units. Hence, the effective
dispatch rate for this case is N

Np
.

When modeling functional unit contention, we make a distinction between
pipelined and non-pipelined functional units. For pipelined units, if there are
Ni instructions of type i, and Ui functional units of that type, issuing them
takes at least Ni

Ui
cycles. For non-pipelined units with latency latj , the minimal

time to issue them equals
Nj ·latj

Uj
.

Thus, since both the number of functional units and the number of func-
tional ports can further limit the effective dispatch rate, we rewrite Equation 3.7
as follows:

Deff = min

(
D,

ROB

lat · CP (ROB)
,
N

Np
,
N · Ui

Ni
,
N · Uj

Nj · latj

)
(3.10)

in which N is the total number of micro-operations to execute, p ranges over
all ports, i ranges over all types of pipelined functional units, and j over all
non-pipelined functional units.

To explain the intuition behind this equation, we show two examples using
the instruction mixes from Table 3.1 that can limit the effective dispatch rate.
We assume a Nehalem-style processor similar to Figure 3.5. The ALU and
branch instructions can be executed in 1 cycle, all loads and stores hit in
the upper cache levels resulting in an average latency of only 2 cycles. The
floating-point multiplications can be executed in 5 cycles. The functional unit
that executes division instructions is the only non-pipelined unit and takes 5
cycles per division. This results in an average latency of 2 cycles for both
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instruction mixes. Furthermore, the processor has a physical dispatch width of
4, an ROB of 64 entries and the critical path is 8 instructions long.

Type Amount Latency
Load 40 2
Store 20 2
Int ALU 20 1
FP Multiply 10 5
Branch 10 1

Type Amount Latency
Load 40 2
Store 20 2
Int ALU 20 1
Divide 10 5
Branch 10 1

Table 3.1: Two examples of instruction mixes resulting in limitations on the
effective dispatch rate due to a limited number of ports and functional units.

For the first instruction mix, the scheduling algorithm sends all load instruc-
tions to port 2 and all stores to ports 3 and 4 which results in port activity
factors of 40 and two times 20, respectively. The branch and floating-point
multiplication instructions are scheduled on ports 0 and 5. The ALU instruc-
tions are then divided over port 0 and 1. Hence, we arrive at the following
vector for the scheduled activity on all ports: [15, 15, 40, 20, 20, 10]. Inserting
this data in Equation 3.10 results in an effective dispatch rate of 2.5:

Deff = min

(
4,

64

2 · 8
,

100

40
,

100 · 1
40

)
= min (4, 4, 2.5, 2.5) = 2.5 (3.11)

Note that only the maximum activity factor for the ports and functional units
is included for simplicity as this will result in the minimum effective dispatch
rate. We also omitted the last factor from Equation 3.10 since there are no
instructions sent to non-pipelined functional units.

The second instruction mix results in the exact same vector for scheduled
port activity. However, because the division function unit is not pipelined, the
processor experiences extra contention resulting in a lower effective dispatch
rate of 2:

Deff = min

(
4,

64

2 · 8
,

100

40
,

100 · 1
40

,
100 · 1
10 · 5

)
= min (4, 4, 2.5, 2.5, 2) = 2 (3.12)

Thus, since executing N micro-operations takes N
Deff

cycles, this equals 40

and 50 cycles for the first and second instruction mix, respectively. Intuitively,
this makes sense. In the first instruction mix, the number of loads is the
limiting factor, and with the load unit being pipelined, the port that provides
the connection forms the limitation. In the second instruction mix, because the
division unit is not pipelined, the number of divisions slows down the program
even more than the load port does.

Figure 3.6 visualizes the factors that limit Deff for an experiment containing
one billion representative instructions from the SPEC CPU 2006 benchmarks.
The most limiting factor for the base performance of each benchmark is repre-
sented by the lowest bar, following Equation 3.10. Here, Dispatch refers to the
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Figure 3.6: The four factors limiting the effective dispatch rate: the dispatch
width, the critical path via inter-instruction dependences and the number of
functional ports and functional units of a particular type.

physical dispatch width or first term in the equation while Dependences visu-
alizes the critical path or second term. Functional port shows the third term
and Functional unit combines the limitations of pipelined and non-pipelined
functional units from the fourth and fifth term.

For most benchmarks, including astar, cactusADM and gromacs, the third
or fourth bar are the lowest, which means that the effective dispatch rate is
limited by either the functional ports or number of available functional units.
Most often, we find this to be the result of a high fraction of loads or a significant
number of divide instructions. For other benchmarks however, e.g., bwaves
and mcf, the second bar is the lowest, which implies that inter-instruction
dependences limit the effective dispatch rate. This typically occurs when the
critical path is so long that it fills up the ROB. If neither of these factors
limit the effective dispatch rate, the dispatch rate will be equal to the dispatch
width, in which case the leftmost bar is the lowest. This is the case for gobmk,
namd, libquantum, sjeng and xalancbmk. Note that the latter leads to the most
optimal execution time.

To evaluate the accuracy of the proposed equation, we simulate a ‘perfect’
processor using Sniper [17]. This implies that no miss events occur in the
processor. Hence, the branch predictor always predicts the direction of the
branch correctly and all load and store instructions hit in the first level of the
TLBs and cache hierarchy. The performance obtained from these simulations
is the processor’s maximum obtainable performance and should be comparable
to the base component from our model.
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Figure 3.7: Decrease in prediction error due to the different components for
the effective dispatch rate modeling when comparing against Sniper
simulations without miss events for all SPEC CPU 2006 benchmarks.

Figure 3.7 shows the decrease in prediction error due to the addition of extra
constraints to the effective dispatch rate as a box-and-whiskers plot. The box
is the range between the first and third quartile, the horizontal line in the box
is the mean, the dot is the median, the whiskers cover all points up to the 99th

percentile, and the points represent the outliers. Each box-plot is built using
the prediction errors for the performance of all SPEC CPU 2006 benchmarks.

The Instructions box-plot shows the error when calculating the base compo-
nent by dividing the number of instructions with the physical dispatch width.
The average prediction error for the performance is 41.6%. Splitting the in-
struction stream into micro-operations improves the average error by 8.9% to
32.7% as visualized by the Micro-operations box. Taking the dependence chains
into account when calculating the effective dispatch rates again improves the
error significantly. The average error, shown in the Critical box is now 23.3%.
The last box, denoted by Functional, combines the performance constraints due
to the functional units and issue ports. Taking this into account improves the
average error by 11.6% to 11.7%. Note that, besides the average error reduc-
ing, the range of the prediction error also decreases due to modeling the extra
constraints to the effective dispatch rate. This experiment clearly shows that
modeling the base component as a division of the number of micro-operations
by the effective dispatch rate, in which we take dependences and contention
at the issue stage into account, is required to arrive at accurate performance
predictions for the base CPI component.
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1 input = ABP (ROB) , I(ROB) , Ni , D

2 whi l e Ni > D :

3 i f ROBi + D 6 ROB :

4 Ni = Ni −D

5 ROBi = ROBi + D

6 e l s e :

7 Ni = Ni − (ROB − ROBi)

8 ROBi = ROB

9

10 leave = min(I(ROBi), D)

11 ROBi = ROBi − leave

12

13 cres = lat · ABP (ROBi)

Algorithm 3.2: Algorithm for calculating the branch misprediction penalty.

3.5 Branch Predictor Modeling

The second term in the interval model equation calculates the penalty due
to mispredicted branches. As described in Section 2.5.2, the penalty attributed
to a branch misprediction can be split into two parts: the branch resolution
time, cres, and the front-end refill time, cfe. The latter part of the penalty is
a fixed penalty and depends solely on the number of stages in the processor’s
front-end. The former is dependent on the instruction dependences in the
program.

In the original interval model, experiments pointed out that the branch
instruction was more often than not the last instruction to execute, indicat-
ing it is on the critical path [30]. However, this assumption does not hold
for x86-programs, likely due to the longer dependence chains as described in
Section 3.3. The average branch path, as Figure 3.4 showed, is equal to the
number of producing instructions leading to a branch instruction and is consis-
tently shorter than the critical path. On average, across all SPEC CPU 2006
benchmarks, the average branch path is 2.8 times shorter. While it is possible
that the average branch path is actually a subset in the critical path, attribut-
ing the full length of the critical path to the branch misprediction penalty does
not lead to an accurate prediction.

Algorithm 3.2, called the ‘leaky-bucket’ algorithm devised by Michaud et
al. [49], is used to calculate the branch misprediction penalty. The inputs are
the average branch path, ABP (ROB), and independent instructions, I(ROB),
which are functions of the ROB size (see Section 3.3), the number of instructions
between two branch mispredictions, Ni, and the physical dispatch width, D.
ROBi is the current number of instructions in the ROB while ROB denotes its
physical size. In each iteration, we calculate how many instructions can enter
the ROB, which is either equal to the dispatch width (lines 4 and 5) or the
number of free slots in the ROB (lines 7 and 8). We then calculate the number
of instructions that can finish, based on the average number of independent
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instructions. When the iteration is finished, this is, when all useful instructions
in an interval have been dispatched, we calculate the branch resolution time.
This penalty is equal to the average instruction latency, lat, times the average
branch path length for the number of instructions that reside in the ROB.

The most significant modification to this penalty term however is the way
we obtain the branch misprediction rates. As stated in the previous chapter,
the original interval model uses, among others, a branch predictor simulator
to obtain branch misprediction rates. Because the goal of this work is to get
faster and more accurate processor performance predictions, we need to obtain
branch misprediction rates without simulation.

To achieve this, we rely on a metric called linear branch entropy [22]3. The
reason why branches can be predicted is that, in general, they are executed
many times and branch outcomes are often correlated. Depending on the pre-
vious outcome of a branch, it can have a higher probability to be taken or not.
Algorithm 3.3 shows an example of a predictable and unpredictable branch.

1 f o r i : 0 → 100

2 i f i mod 2 = 0 : // branch 1

3 i f random < 0 . 5 : // branch 2

4 . . . perform i f c a l c u l a t i o n . . .

5 e l s e :

6 . . . perform e l s e c a l c u l a t i o n . . .

7 e l s e :

8 . . . perform e l s e c a l c u l a t i o n . . .

Algorithm 3.3: Code with a predictable and unpredictable branch.

In the case of branch 1 on line 2, we will execute the code inside the ‘if’
statement when variable i modulo two equals 0, this is when i is divisible by
two. Hence, in that case, the branch is taken, otherwise it is not. This branch is
perfectly predictable by a branch predictor with one bit of local branch history.
After all, if the branch predictor knows that the previous branch was taken,
it will know that the current one should not be taken. Branch 2 on line 3,
however, is completely unpredictable because it relies on a random number
between 0 and 1. The current random number is in no way correlated to the
previous one, hence no matter how large the branch history is, the branch
predictor will never be able to recognize a pattern and can thus never predict
the branch direction accurately.

This predictable or non-predictable nature of branches is related to a physi-
cal metric called linear branch entropy. Entropy captures the disorder in a sys-
tem and can be used to summarize whether there is a pattern in the measured
data. Since the way a branch predictor works is by acting on taken/not-taken
patterns from previous branches, using entropy to describe such a pattern is a
good fit.

3This work was performed by a fellow PhD-student with whom I collaborated.
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Figure 3.8: Visualization of the training step and application profiling to
obtain branch misprediction rates.

For each static branch b and history pattern H, a record is kept for the
number of taken, T (b,H), and not-taken branch outcomes, NT (b,H). The
probability for a branch to be taken, given a specific history pattern, is shown
in Equation 3.13. This probability is used to define the linear branch entropy
in Equation 3.14.

p(b,H) =
T (b,H)

T (b,H) + NT (b,H)
(3.13)

E(p) = 2 ·min (p, 1− p) (3.14)

Equations 3.13 and 3.14 calculate the entropy for one specific branch and
one history pattern. However, for calculating performance in the interval model
we are interested in the overall number of branch misses. Therefore, we average
all the different branch entropy numbers across all branches and all history
patterns in Equation 3.15 for a fixed history length. Here, n(b,H) is the number
of times a branch b is executed with history pattern H and Nb is the total
number of dynamically executed branches.

E =
1

Nb

∑
b

∑
H

n(b,H) · E(p(b,H)) (3.15)

The average branch entropy needs to be transformed into a number of
branch mispredictions. In order to achieve this, De Pestel et al. [22] propose
a framework to build a model that connects branch entropy to branch mispre-
diction rates for specific branch predictors. This framework is schematically
shown in Figure 3.8. From a set of training applications, entropy numbers
and branch misprediction rates are gathered using profiling runs and simula-
tions, respectively. These are used to build a linear model for a specific branch
predictor.

An example of such a linear model can be found in Figure 3.9, where a linear
fit for branch entropy and branch predictor miss rates for a 4KB GAg branch
predictor is shown. The branch entropy of an application of interest is then
used as input to this model to predict the number of branch mispredictions
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Figure 3.9: Linear fit for branch entropy and missprediction rates for more
than 400 experiments.
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Figure 3.10: Box-and-whiskers plot for five different branch predictors
showing the prediction accuracy.

for a specific branch predictor. Compared to the previous interval model, the
advantage is that the initial simulations are a one-time cost that never need
to be repeated because the branch predictor model is suitable across different
applications.

In Figure 3.10, based on the work of De Pestel et al. [22], we show the
prediction accuracy for this approach for five different branch predictors: a
GAg predictor, a GAp predictor, a PAp predictor, a gshare predictor, and a
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tournament predictor consisting of a GAp and PAp predictor. All predictors
have a size of approximately 4KB. The average MPKI for all predictors is
9.3, 8.5, 7.6, 6.9, and 7.1, respectively. The absolute errors for the MPKI
are 0.64, 0.63, 1.14, 1.06, and 0.99, respectively. The accuracy is shown as a
box-and-whiskers plot where we plot the difference in MPKI (Misses Per Kilo
Instructions) between simulation and the linear branch entropy model. Just
like the previous box-plot, the box is formed by the first and third quartile, but
the whiskers are now set at 1.5× the interquartile distance. All other points
are outliers. Note that we show some outliers as a triangle point up or down
with an annotated error indicated that they are outside of the y-axis range.
Both for PAp and gshare there are a number of bigger outliers, which can be
attributed to the execution of gcc using different input sets. The reason for the
erratic behavior is that the benchmark executes many unique branches causing
aliasing making it hard to predict. Part of the tournament predictor is a PAp,
also leading to some outliers.

3.6 Core Power Modeling

Designing application-specific processors to improve energy efficiency re-
quires a power model. To estimate power, we use the McPAT tool [46], which
provides an XML-interface to supply all necessary inputs. To model the core
power, it requires the configuration of the processor and the activity factors
(i.e., the number of accesses) for each component4.

The required parameters to describe the processor architecture include the
physical dispatch, issue and commit width, the number of ALUs and the num-
ber of entries in the instruction queue and ROB. Furthermore, we supply Mc-
PAT with a description of all table sizes in the branch predictor. McPAT then
combines this with the supplied processor frequency and supply voltage or uses
an ITRS [6] default.

For our model, we deduce the activity factors from the analytical perfor-
mance model, instead of measuring them in simulation. Many of the inputs are
directly measured by the profiling tool for the performance model. The number
of micro-instructions is used to estimate the amount of reads from and writes
to both the physical register file, ROB structure, instruction queue and load-
store queues. The instruction mix can also be combined with the predicted
number of cycles to execute an application to deduce the activity factors for
the functional units:

Activity Factori =
#Instructioni

Application Cycle Count
(3.16)

where i stands for the pair of one specific functional unit and its associated
instruction type.

4In Chapter 4, we will discuss the power modeling related to the memory requests performed
by the processor.
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The result of combining the architecture parameters with the activity fac-
tors is an estimation of the power consumption. Afterwards, energy consump-
tion can be predicted by multiplying the predicted power consumption with
the predicted execution time.





Chapter 4

Modeling the Memory
Subsystem

4.1 Cache Hierarchy and the Interval Model

The cache hierarchy in a processor is used to store the most frequently used
data close to the computation logic. This speeds up the processor’s execution
significantly. However, because caches have limited size, requests cannot al-
ways be satisfied since the data may have been removed from the cache in the
meanwhile. Requests that do not find their data in the cache are called ‘cache
misses’. We distinguish three types of cache misses: cold, conflict and capacity
misses.

Cold misses occur because it is the first time that a data block is requested
by the processor. Cold misses are exclusively application-dependent and thus
independent of the micro-architecture. Conflict misses ensue when two or more
addresses are mapped to the same set in a cache. This results in one request
removing the data from a previous one. Capacity misses occur because the
physical size of the cache is not big enough to fit the application’s data set.
The latter two categories of misses are both dependent on the application and
the processor’s micro-architecture.

In Equation 3.1, terms three and four, quantify the impact of instruction
and data cache misses. Similar to the interval model [32], the penalty for
instruction cache misses is calculated as the number of misses at each level i
multiplied by the access time to the next cache level i+1. The penalty for long-
latency load misses (i.e., LLC load misses) equals the number of load misses in
the LLC times the memory access time, cmem + cbus , divided by the amount
of Memory-Level Parallelism (MLP). cbus is the number of cycles spent on the
memory bus, including waiting time for the memory bus if it is occupied (see
Section 4.7). MLP equals the average number of overlapping misses if at least
one is outstanding (see Section 4.3).

45
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4.2 Cache Miss Rate Modeling

To estimate cache miss rates using a micro-architecture independent profile,
we use the StatStack statistical cache model [28], which provides the miss ratio
for fully-associative Least Recently Used (LRU) caches of arbitrary sizes1.

Other cache replacement strategies could be modeled using ranking func-
tions as described by Beckmann et al. [12]. Note however that their approach
likely only works well for last-level caches as it requires the memory access
pattern to be random. This assumption does not hold for the cache levels clos-
est to the core as there is both temporal and spatial locality in a program’s
memory access pattern. Hence, to model different cache replacement policies
for the complete cache hierarchy, it might be required to employ a hybrid strat-
egy consisting of both stack distances and ranking functions for different cache
levels.

StatStack uses the concept of reuse distances to estimate cache behavior.
Reuse distances count the total number of memory accesses to other cache
lines between two accesses to the same cache line. The reuse distances for an
application are used to build a histogram of an application’s reuse behavior,
which is then transformed into a stack distance distribution. The stack distance
distribution describes the number of unique cache lines accessed between two
accesses to the same cache line. Hence, this distribution can be used to estimate
the miss ratio for a fully-associative LRU cache by counting the number of
accesses exhibiting a stack distance greater than the cache size. Because reuse
distances only require keeping a counter, they are far cheaper to collect than
stack distances, for which a complete stack is needed.

Figure 4.1 shows an example of a stream of unique memory addresses A
through C. For each unique address, the reuses are connected. Below the
address stream, we indicate what the reuse distance (RD) and stack distance
(SD) is for each memory address. For example, the reuse distance between the
first and second use of A is four, but the stack distance only amounts to 2. On
the other hand, between the second and third use of A, the only intervening
access is one to C, resulting in both the reuse and stack distance being equal
to 1.

Profiling an application’s reuse distance distribution can be done indepen-
dently of the cache configuration. However, measuring reuse distances for all
memory operations would introduce high overhead and thus low profiling speed.
Therefore, StatStack reduces profiling overhead by collecting only a sample of
the reuse distances in an application. Berg et al. [13] show that it is possible to
profile an application to get its reuse distance distribution with very low over-
head using hardware performance counters. This approach has been further
optimized by Sembrant et al. [56].

Transforming reuse distances into stack distances follows a three-step al-
gorithm. First, reuse distances are binned together into a reuse distance his-

1We collaborated closely with Moncef Mechri from Uppsala University to modify StatStack
to our needs.
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Figure 4.1: Memory address stream with indicated reuses and respective
stack distances.

togram. Next for each bin in the histogram, the fraction of reuse distances
greater than the current reuse distance is calculated. Based on these fractions,
for each distinct reuse distance, the expected stack distance can be calculated
as a running sum of reuse distances smaller than the current reuse distance.
Graphically, in Figure 4.1, this means that for each arrow connecting a reuse,
the number of intersecting arrows are counted as this approximates the stack
distance. For example, for the first reuse of A, there are two intersecting arrows.
Thus, the expected stack distance is 2.

For the interval model, StatStack was extended to differentiate between
load versus store misses by building stack distance histograms for each memory
access type separately. Note that the reuse distance histograms have to be built
for both memory access types combined. The interval model does not model
the performance impact store misses may have, i.e., it is assumed that the
processor does not often stall on a store miss. However, store misses contribute
to memory bandwidth contention and power consumption of the cache and
core, which we do account for in the model.

Originally, StatStack modeled cache miss rates exclusively for the last-level
cache. However, predicting processor performance requires the miss rates across
the entire cache hierarchy. To achieve this, we estimate the miss ratios for
each level in the cache hierarchy independently as if it was the only cache
level. Essentially, we count the number of accesses which are bigger than the
respective cache sizes in the stack distance distribution for each cache level
separately. Note that this implicitly assumes that the smaller cache levels
contain a subset of the data from the larger cache levels, and thus limits us to
modeling inclusive cache hierarchies.

Figure 4.2 shows the predicted and simulated MPKI (Misses Per Kilo In-
structions) for a three-level set-associative cache hierarchy where the cache
level sizes are 32, 256 and 8192 KB, respectively2. Every odd bar shows the
predicted MPKI, indicated with the StatStack label, and every even bar shows
the simulated MPKI using the Sniper simulator. Most benchmarks have a neg-
ligible amount of cache misses. Naturally, the interval model will not suffer
from large prediction errors if the number of misses is low, but estimated inac-

2Unless mentioned otherwise, all figures and numbers in the following sections are generated
using these sizes for the cache hierarchy.
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curately. For the benchmarks with a significant number of misses (e.g., above
10 MPKI), the StatStack model performs well and has an average prediction
error of 4.1%, 6.7% and 3.5%, respectively, for the three cache levels. Note that
GemsFDTD is the one exception having a prediction error close to 30% while
still having a non-negligible MPKI of 12. This experiment shows that modeling
the cache levels separately provides good accuracy across a standard three-level
cache hierarchy. Furthermore, it also shows that because the goal of a good
hashing function is to spread the cache accesses uniformly over the sets, the
approximation of assuming a fully-associative cache to model a set-associative
cache is sensible.

The instruction cache behavior is modeled similarly as the behavior for the
data caches. The reuse distance distribution is computed over the instruction
address stream and afterwards transformed to stack distances.

4.3 Memory-Level Parallelism

Memory-level parallelism (MLP) is defined as the average number of main
memory accesses (LLC misses) that can be processed in parallel, if at least
one is outstanding [20]. This assumes that the processor cache hierarchy is
non-blocking. Accesses to main memory can be sent over multiple DRAM-
channels. Main memory typically consists of multiple DRAM banks, that can
each process one access at a time. The interval model assumes that the penalty
of multiple parallel accesses equals the penalty of a single access, explaining
the division of the last term in Equation 3.1 by the MLP.

MLP has a non-negligible impact on performance, as illustrated in Fig-
ure 4.3. The leftmost bar shows normalized CPI stacks for detailed simulation
using Sniper, with two components: execution time due to DRAM accesses
(i.e., the memory component), and all other components, aggregated in ‘CPI
other’. The rightmost bar is normalized to Sniper’s simulated execution time
and represents the absence of MLP (MLP = 1), i.e., all memory accesses are
serialized. The takeaway is that MLP has a significant impact on overall per-
formance, hence modeling its impact is important. Not modeling MLP (i.e.,
assuming there is no MLP) leads to an average error of 24.6%, with a 96%
maximum error.

MLP tends to exhibit a bursty behavior, which makes it difficult to predict.
In this work, we discuss two different techniques to model MLP that leverage
different insights with respect to memory behavior. Both of the techniques have
their merits and drawbacks with respect to speed, accuracy and applicability.

To speed up simulation of an application, processor architects often opt to
analyze a smaller representative part of an application, as described in Sec-
tion 2.2. However, this introduces a difficult to solve problem, namely the
presence of cold misses which would not exist if the application was simulated
in its entirety. A lot of work focuses on eliminating these cold misses through
prepending a warm up phase to the sample [26, 36] or leveraging reuse distances
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Figure 4.3: Normalized execution time with breakdown in memory cycles and
other cycles for Sniper simulations (left bar) and when no MLP is modeled
(right bar).

to estimate a cache state [52]. Note that we cannot use checkpointing, because
checkpoints are inherently dependent on the processor’s micro-architecture and
our focus is on developing micro-architectural independent models.

Elimination of these cold misses can require a long and slow warm-up phase.
Figure 4.4 shows the relative number of cold misses versus capacity misses for
both loads and stores in two experiments. The left bar shows the breakdown
of cold and capacity load and store misses for a cache simulation of a trace of 1
billion instructions. The right bar shows the same breakdown of misses but we
prepend a cache warm-up of 1 billion instructions (for which we do not count
the number of cache misses). We normalize the total number of misses to the
number of misses in the first experiment. This shows that the total number
of misses shrinks for about one third of the benchmarks, but stays similar for
the others. The ratio of cold versus capacity misses does diminish for almost
all benchmarks. For example, in the case of bwaves, almost all cold misses
are eliminated. However, the warm-up does not eliminate the number of cold
misses consistently for all benchmarks. Comparing the green and blue bar for,
e.g., cactusADM, mcf and milc, shows us that a significant part of the load
misses are still cold load misses. This leaves two options to model the memory
hierarchy and more importantly, the MLP, accurately: either cold load misses
are included as part of the modeling, or a larger warm-up phase is employed.

The first technique to model MLP leverages the presence of cold misses to
model the bursty nature of the MLP. Since cold misses are included in the MLP
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Figure 4.4: Breakdown of cold and capacity load and store misses for a trace
of 1 billion instructions (left bar) and a trace of 2 billion instructions using 1
billion instructions as warm-up (right bar).

model, it is possible to employ this technique in combination with application
traces without the need for a long cache warm-up phase. Because of its strong
reliance on cold misses, we call this technique the cold-miss MLP model. Note
that, in the absence of cold misses, this technique will not necessarily predict
the MLP accurately as it cannot capture the burstiness of the MLP properly.

The second MLP prediction technique is a generalized technique that can be
used without relying on the presence of cold misses. It leverages the fact that
memory accesses often follow a strided access pattern. A strided access pattern
is a pattern where subsequent accesses request data from memory locations
that have a constant offset with respect to each other. These offsets can be
profiled and summarized in distributions to figure out which accesses will miss
possibly leading to multiple, simultaneous memory accesses. Because these
distributions can be profiled using sampling, the profiling is 40% faster than
profiling all memory accesses to collect cold miss distributions. We call this
technique the stride MLP model.

It is important to realize that, if a significant portion of the load misses are
cold load misses, the stride MLP model will not necessarily predict the MLP
accurately. The reason for this is that StatStack samples memory accesses,
making it impossible to confirm whether a specific access has been executed
before. Hence, it cannot pinpoint the exact location of those cold misses. Since
MLP is defined as the number of main memory accesses occurring in parallel,
the locations of the accesses in the dynamic instruction stream are key. After
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all, if the locations of the accesses are unknown, it is impossible to gauge if
they occur in parallel.

4.4 Cold-Miss MLP Model

Following interval analysis, the number of parallel memory accesses equals
the number of independent LLC misses that occur within the ROB. The amount
of MLP is thus dependent on micro-architectural features (the size of the ROB,
size of the caches, number of MSHRs), as well as application characteristics
(which instructions cause misses and how they depend on each other). However,
in our micro-architecture independent profile, we only have limited information
about these characteristics: we have the LLC miss rate from StatStack, but
not the ‘location’ of the individual misses in the instruction stream, making
it hard to estimate MLP; moreover, although we profile dependences between
instructions, we do not know the dependences between LLC misses. Modeling
memory behavior and MLP accurately is not straightforward and turns out to
be one of the largest contributors to the total error of the model, see Section 6.2.

LLC misses frequently occur in bursts: when a load misses in the LLC, there
is a large probability that loads nearby in the instruction stream will also miss
in the LLC. As a result, assuming that LLC misses are uniformly distributed
across the application leads to inaccurate MLP estimates. We find that, in the
absence of a long cache warm-up phase and relatively short instruction samples
of 1 billion instructions, LLC miss bursts are largely caused by cold misses,
i.e., the first time a cache block is accessed. Capacity and conflict misses, i.e.,
the cache block was in the cache but has been evicted, are more uniformly
distributed. The intuition is that throughout its execution, an application will
load new data structures on which it will compute. This typically leads to
bursts of cold misses. Conflict misses on the other hand, are caused by too
many unique accesses to the same set in the cache. This occurs more spread
across the application’s execution, so there is less burstiness due to conflict
misses.

Cold misses can be located using a micro-architecture independent profile
by keeping track of the first access to a certain address. Because we have
to check for every address if it has been accessed before, keeping track of all
addresses leads to a large structure and high lookup times. To reduce this
overhead, we assume a limited set of allowed cache block sizes (e.g., 32, 64 and
128 bytes), and we record only cold misses for these cache block sizes. The final
profile consists of the distribution of the number of cold misses in an ROB, for
different ROB and cache line sizes.

We leverage the following assumptions to estimate MLP:

• mcf
LLC , mcold

LLC and mcold
LLC (ROB) represent the number of capacity/conflict

misses, the number of cold misses, and the average number of cold misses
per ROB containing at least one cold miss, respectively.
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Figure 4.5: Example of a load dependence distribution.

• The load distribution f(`) characterizes the dependences between loads.
In this distribution, ` is the number of loads on the dependence path
leading to a load in the ROB including that last load (` = 1 means that
the load is independent of other loads), and f(`) is the frequency of loads
with ` loads on their dependence path. Figure 4.5 shows an example for
a 16-entry ROB. The oldest instruction is located on the right and the
arrows indicate dependences between loads. The ROB contains 7 loads;
two of those loads appear at the head of a load dependence chain (L1 and
L5 have ` = 1); there are three loads that appear as the second load on
a load dependence chain (L2, L3 and L6 have ` = 2); and there are two
loads that appear as the third load on a load dependence chain (L4 and
L7 have ` = 3). Hence, the corresponding load distribution f(`) equals
[ 2
7 ; 3

7 ; 2
7 ].

• MLLC and Mcf
LLC , which denote the overall LLC miss rate and the capac-

ity/conflict LLC miss rate, respectively. In the model, we use the miss
rate as an approximation for the probability for a load to cause a cache
miss.

• L̄(ROB) is the average number of loads per ROB, i.e., the fraction of
loads in the instruction mix times the ROB size.

Our MLP model is split up into two parts: MLP due to cold misses and MLP
due to capacity/conflict misses. The cold-miss MLP is the average number of
independent cold misses in the ROB. A load miss that is the `-th load in a
dependence path will be an independent miss if all ` − 1 previous loads on
its path are not misses, which has a probability of (1 −MLLC )`−1. From the
mcold

LLC (ROB) cold misses in the ROB, mcold
LLC (ROB) · f(`) are the `-th load on

a dependence path, so the number of independent cold misses in the ROB, i.e.,
the cold-miss MLP, can be estimated as:

MLPcold =
∑
∀`

(1−MLLC )`−1 ·mcold
LLC (ROB) · f(`) (4.1)

Conflict misses lead to MLP in a similar way. However, we do not know how
many loads in the ROB will cause a conflict miss. Therefore, we assume that
conflict misses are uniformly distributed, and we estimate the number of conflict
misses per ROB as follows: Mcf

LLC · L̄(ROB). Following the same reasoning as
for the cold-miss MLP, we estimate the conflict-miss MLP as follows:

MLPcf =
∑
∀`

(1−MLLC )`−1 ·Mcf
LLC · L̄(ROB) · f(`) (4.2)
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Figure 4.6: Illustrative virtual memory access stream.

Averaging Equations 4.1 and 4.2 based on the relative number of cold and
conflict misses gives us an estimation for the overall MLP:

MLP =
mcf

LLC

mLLC
·MLPcf +

mcold
LLC

mLLC
·MLPcold (4.3)

4.5 Stride-MLP Model

Since there are few cold misses present when analyzing a complete appli-
cation, estimating burstiness is harder and the cold-miss MLP model is less
accurate. The stride MLP model attempts to solve this and relies on a number
of statistics that we capture on a per micro-trace basis. A micro-trace is defined
as a small trace of instructions, e.g., 1000 instructions, extracted from the dy-
namic instruction stream. This approach is similar to the sampled simulation
technique used in SMARTS [73]. The reason for considering micro-traces is to
reduce profiling time, and more importantly, to be able to capture MLP bursti-
ness. An average profile across a number of micro-traces would average out the
statistics which would compromise model accuracy. See Chapters 5 and 6 for
more details about sampling micro-traces and their accuracy.

Within each micro-trace, we measure a load-spacing distribution, inter-load
dependence distribution, reuse distance distribution and stride distribution.
Figure 4.6 serves as an illustrative example: it shows a trace of 32 instruc-
tions consisting of 16 loads with the oldest instruction appearing on the right.
Loads are indicated as Lx with x indicating recurrences of the same static load
instruction. Dependences between loads are shown through arrows; the ad-
dresses accessed are shown below the loads. We collect these distributions for
each static load in each micro-trace.3

The load spacing distribution records a load’s first position in the micro-
trace along with the number of instructions in-between recurrences of the same
static load. For load LC in Figure 4.6, the load spacing distribution equals
‘5; (8, 3)’ meaning that the first occurrence appears at position 5 and there
are 8 instructions between the next three recurrences. The rationale behind
the load spacing distribution is to capture the burstiness of loads, i.e., load
instructions that miss in the on-chip caches and that occur within the same
ROB is a necessary condition to expose MLP.

The inter-load dependence distribution quantifies inter-load data depen-
dences in a statistical way. This is essentially the same distribution as measured

3Collecting and storing distributions requires, on average, 25× less disk space compared to
storing all the instructions of a micro-trace.
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for the cold-miss MLP. Inter-load dependences have an important impact on
MLP, i.e., loads that depend upon each other (either directly or indirectly) can-
not be issued simultaneously, hence they cannot expose MLP. The inter-load
dependence distribution quantifies the probability that a load depends on any
of the n previous loads in the instruction stream. For example, in Figure 4.6,
load LC (always) depends on load LB . Because of this dependence, even if
both loads LB and LC generate LLC misses, they will serialize their execution,
and hence no MLP can be exploited.

The reuse distance distribution quantifies temporal locality by quantifying
the number of (not necessarily unique) memory accesses between two accesses
to the same memory location. This reuse distribution is then transformed using
StatStack [28] into a stack distance distribution, which quantifies the number of
unique accesses between two accesses to the same memory location. Note that
the measured reuse distance distribution is different from the one StatStack
normally uses. Rather than sampling throughout the complete application, all
accesses that are sampled originate from the same micro-trace.

Once the stack distance distribution is known, it is trivial to derive the miss
rate assuming a fully associative LRU cache of arbitrary size, i.e., if there are
more unique accesses between two accesses to the same memory address than
there are sets in the cache, the last access to the same memory address will be
a miss. Note also that the reuse distance distribution is measured per static
load, hence it enables estimating the miss rate per static load for any cache
size. Moreover, we can use the reuse distance distribution for predicting hits
and misses at all levels of cache, from the L1 cache to the LLC.

The last distribution we consider is the stride distribution. A stride is
defined as the relative memory address difference between two subsequent re-
currences of the same static load. The stride distribution collects this stride
information. Whereas the reuse distance distribution quantifies temporal local-
ity in a statistical way, the stride distribution is a measure for spatial locality.
The stride distribution is also critical to model stride-based prefetching, as we
will describe in Section 4.9.

Memory accesses do not always follow a neat stride pattern, i.e., some
patterns can be a mixture of several strides, other memory accesses may appear
to be random. We classify loads into three categories based on their access
patterns. The first category includes loads that follow some stride pattern.
The second category includes loads that occur only once in our micro-trace.
The third category includes loads that do not fit in either of the above two
categories; we refer to this category as random-strided loads.

For the strided-load category, we search for up to four distinct strides per
load, and we use a cutoff percentage to filter out accesses that are not part
of a real stride pattern. To categorize a load as an instruction with a single
stride, one element in the stride distribution needs to occur at least 60%. For
a two-strided load, their cumulative percentage needs to exceed 70%, for a
three-strided load 80%, and for a four-strided load 90%. We always choose
the simplest stride pattern; this means that if the cumulative percentage of
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Figure 4.7: Ratio of all stride categories for the SPEC CPU 2006 benchmarks.

occurrence exceeds a threshold, we stop searching for additional strides, such
that we can easily filter out random strides.

For example, in Figure 4.6, LA recurs six times and exhibits a single-strided
pattern with stride 8. Load LB recurs five times with memory addresses:
48, 52, 56, 64, 72. There are two strides of 4 and two strides of 8. Each stride
thus has an occurrence equal to 50%, hence this load is classified as a two-
strided load.

Figure 4.7 shows the relative occurrence of the specific stride categories for
all SPEC CPU 2006 benchmarks. The category with label ‘STRIDE’ is used
for loads where the profiled stride distribution features exactly one stride. The
‘FILTER-1’ through ‘FILTER-4’ categories are loads for which the filter algo-
rithm was applied to categorize them using the specified cutoff percentages.
The unique and random bars are also constructed following the above defi-
nitions. Note that ‘STRIDE’ and ‘FILTER-1’ categories both contain loads
exhibiting one stride and are treated as such in the model, but that we split
them in Figure 4.7 to highlight the fact that a significant number of the one-
strided loads exhibit exactly one stride which does not require filtering.

We can observe that, while for a majority of the benchmarks, most loads
fall in the category with exactly one offset, we do need the filtering algorithm
to categorize a meaningful amount of loads as either strided or random-strided
loads. There are three exceptional benchmarks, cactusADM, omnetpp and
xalancbmk, for which more than 50% of the loads are unique loads. One possible
explanation for this is that these benchmarks have large loops (or unrolled
loops) causing the micro-traces to overlap with only one iteration and thus not
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finding a real stride pattern. However, this is not a problem since we can still
rely on StatStack to predict whether that unique load will miss or not.

The distributions as just described need to be collected only once per appli-
cation, from which we can predict MLP for a range of architecture configura-
tions. We first generate a virtual instruction stream from these distributions;
this virtual instruction stream is built up as a data structure by the MLP
modeling software. We then hover over this virtual instruction stream with an
abstract MLP model to estimate the amount of MLP for a particular architec-
ture. This is done for each micro-trace.

The load spacing distribution is first used to build up a skeleton virtual
instruction stream. We position loads in the instruction stream using the load
spacing distributions which determine the first position of each static load in
the stream as well as the subsequent recurrences of the load; this is done for all
static loads in the micro-trace. We then use the stride distribution to assign
(relative) memory addresses for each load occurrence of the same static load.
The stride distribution points out hits and misses in the cache, at least for
those loads that exhibit a strided access pattern. We predict hits and misses
at all levels in the cache hierarchy. More in particular, we mark the first access
of a stride pattern as a miss and we mark the following accesses that fit the
same cache line as hits. We use the reuse distance distribution and StatStack
to predict whether an address has been used before and the respective load will
turn into a hit or a miss. We leverage the inter-load dependence distribution
to impose dependences between loads.

The abstract MLP model then hovers over this virtual instruction stream
to estimate MLP for a particular architecture with a specific ROB size. MLP
is defined as the number of outstanding memory requests (LLC misses) if at
least one is outstanding. The abstract model breaks up the virtual instruction
stream into ROB-sized instruction sequences over which it estimates the avail-
able MLP. We considered two possibilities: an ROB that slides versus steps
over the instruction stream; both gave similar results according to our prelim-
inary results, hence we opt for the stepping approach which is slightly simpler
to implement and less compute intensive. For a given ROB-size sequence of
instructions, MLP is computed as the number of independent main memory
accesses in the ROB. MLP for the micro-trace is computed as the average MLP
across all ROB-sized instruction sequences.

4.6 Modeling MSHRs

The MLP models discussed so far make a number of simplifying assump-
tions. It assumes that all independent memory references access main memory
and return their data simultaneously. In addition, it does not consider hard-
ware prefetching. The next sections discuss extensions to the MLP model to
overcome these assumptions.
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Modern processors typically feature Miss Status Handling Registers
(MSHR) to coalesce multiple requests to the same cache line. An MSHR entry
is allocated upon an access to a cache line that is not yet outstanding. Subse-
quent requests to an already outstanding cache line are then coalesced, avoiding
yet another request being sent to the next level in the memory hierarchy. The
size of the Miss Status Handling Register (MSHR) is (obviously) limited, and
hence it may limit MLP, i.e., a memory access to a not yet outstanding cache
line may be stalled if the MSHR runs out of available entries.

In this work we consider an MSHR table at the L1 data cache level, however,
the approach can be trivially generalized to MSHRs at other levels of cache.
We predict whether the number of outstanding L1 data cache misses in the
instruction stream exceeds the number of MSHR entries. If it does, we compute
a scaling factor that accounts for the extra latency added to the loads waiting
for an available MSHR entry. Note that his model can work for both MLP
models. This model differs from the one proposed by Chen et al. [19] in which
the MLP is simply capped to an upper bound; our model puts a ’soft’ cap on
the MLP and models partially overlapping memory accesses.

We estimate the impact of a limited number of MSHR entries as follows.
If we use the cold-miss MLP model, we calculate the number of L1 misses
per ROB using a uniform spread of the number of L1 misses in a complete
ROB. If we use the stride MLP model, we split the micro-trace into ROB-
size sequences of instructions of which the first instruction is a (predicted)
access to main memory and the last instruction the one that still fits within
the ROB. The first few memory accesses that miss in L1 all fit in the MSHR
table and are hence considered to execute in parallel. All subsequent main
memory accesses that would overflow the MSHR table have to wait until one
of the outstanding accesses is resolved. Hence, they only partially overlap with
the previous accesses. We model this phenomenon by considering the time it
has to wait for a free MSHR slot. Intuitively, this means that the first part of
the latency is serialized and the remaining part is hidden underneath another
access. This results in the following equation which puts a ‘soft’ cap on the
exploitable MLP:

MLP = DRAM MSHR + DRAM wait ·
TDRAM − TMSHRfree

TDRAM
(4.4)

with DRAM MSHR the number of main memory accesses in the MSHR table,
i.e., this is the number of parallel main memory accesses; DRAM wait is the
number of main memory accesses that have to wait; TDRAM equals the main
memory access latency and TMSHRfree is the average time before an MSHR slot
becomes available, which is computed as the weighted average access latency
across all allocated MSHR entries.
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Figure 4.8: Visualization of the queuing delay due to multiple concurrent
memory accesses.

4.7 Main Memory Bus

We find that for some applications, due to their bursty memory behavior,
the available memory bandwidth is often not sufficient, resulting in memory
controller congestion and queuing delays. To model this, we assume that the
number of concurrent misses equals the MLP on average. Therefore, the first
miss has a bus latency equal to the bus transfer time, i.e., the size of a cache
block divided by the width of the memory bus. The second concurrent miss has
to wait until the first miss releases the bus, so its bus latency equals twice the
bus transfer time. And the third miss has a bus latency of three times the bus
transfer time, etc. This is visualized in Figure 4.8. Note that this is only valid
if the processor features only one memory channel. However, generalizing this
to multiple DRAM channels could be done by assuming a uniform distribution
of the accesses over the different channels.

The average bus latency for MLP ′ concurrent accesses (we define MLP ′

next) therefore equals:

cbus(MLP ′) = 1
MLP ′

∑MLP ′

i=1 i · ctransfer = MLP ′+1
2 ctransfer (4.5)

We use linear interpolation to deal with non-integer MLP numbers.

The MLP factor only takes into account loads that miss in the LLC, because
store misses usually do not incur a penalty for the core performance (except
when they prevent other loads to issue because of a structural constraint, e.g.,
a full write buffer or an exhaustion of MSHRs). However, they do need to
access memory, so they have an impact on memory bandwidth contention. In
fact, we find that for benchmarks that have a lot of LLC store misses, memory
bandwidth contention is underestimated. We compensate for this by rescaling
the MLP to include the store misses:

MLP ′ = MLP · m
load
LLC + mstore

LLC

mload
LLC

(4.6)

where mload
LLC and mstore

LLC are the number of LLC load and store misses, respec-
tively. Note that all previous LLC miss counts only include load misses. This
MLP ′ is used in Equation 4.5 to calculate the average bus transfer time.
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4.8 Chained LLC Hits

The last term in Equation 3.1 is the penalty of LLC hits, i.e., loads that
miss in the L1 and L2 caches, but hit in the LLC.

One of the most important features of a superscalar out-of-order processor is
its ability to hide instructions with short latency, e.g., floating-point operations
or loads that hit in one of the higher (L1 and L2) cache levels. Interval analysis
assumes that the latency of an operation can be hidden if that latency is smaller
than the time to fill up the ROB, i.e., the ROB size divided by the dispatch
width. In our configuration, the only latency that is larger than the ROB fill
time is the main memory access time due to a LLC miss. However, the hit
latency of the LLC is for most configurations close to this threshold (e.g., 30
cycles LLC hit latency, and an ROB of 128 and dispatch width of 4, which
results in 32 cycles fill time). We find that when two or more LLC hits depend
on each other, we do notice some penalty. We call this the chained LLC hit
penalty.

An example of this problem is shown in Figure 4.9, which is a visualization
of one billion instructions of the gcc benchmark executed on our reference ar-
chitecture as simulated by Sniper and calculated by our model with and without
modeling chained LLC hits. The first 400 million instructions are executed at a
CPI of around 0.8, followed by a few peaks due to many DRAM accesses. The
interesting region however starts around 650M instructions with the average
CPI rising to around 3. The reason for this is in part an increase in the number
of branch misses, but also, and more importantly, a substantial increase in the
number of LLC hits, which leads to a high probability of multiple dependent
LLC hits. The LLC-chaining component contributes around 20% to the total
CPI (see the delta between the ‘model’ and ‘model, no LLC chaining’ curves in
Figure 4.9). Not including the LLC hit chaining term, the estimation error on
the total execution time for gcc equals -12.3%, while with this component, the
error is reduced to -3.6%. Note that the underestimation in performance mainly
originates from the overestimation of the MLP at around 500M instructions,
rather than from the error on the LLC chain penalty.

Our goal is to estimate the penalty of chained LLC hits without involving
additional profiling. To estimate the penalty due to chained LLC hits, we first
calculate the average number of LLC load hits in one ROB, hLLC (ROB), as
the LLC hit rate (as estimated by StatStack) times the average number of
loads in the ROB. Contrary to MLP calculation, where we want to calculate
the number of independent LLC misses, we now need to compute the number
of LLC hits that are on the same dependence path. All loads on a dependence
path will be executed sequentially because of the dependences between them,
so all LLC hits on a path will be serialized. To find this number, we reuse
the load dependence distribution that is profiled for MLP calculation. All
loads that are first on a path (i.e., loads that are independent of all other
loads) initiate a new possible path with dependent LLC hits. So the number
of independent loads equals the number of dependence paths with loads on it,
denoted pload(ROB). Assuming that LLC hits are uniformly distributed across
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Figure 4.9: CPI variation over time for gcc with and without the LLC hit
chaining component compared to Sniper.

the dependence paths, the average number of LLC hits on a path (LLC hit
chain or LHC ) can be estimated as follows:

LHC avg =
hLLC (ROB)

pload(ROB)
(4.7)

However, the LLC hit chain penalty is not determined by the average chain
of LLC hits, but by the longest chain. The longest chain is at least as long
as the average chain, and is bounded by the number of LLC hits in the ROB,
hLLC (ROB), as well as by the largest number of loads on a dependence path.
We cannot deduce the latter from the load dependence distribution, so we
approximate it by the average number of loads on a path, lop(ROB). The
maximum number of LLC hits on a path thus equals:

LHC max = min(hLLC (ROB), lop(ROB)) (4.8)

To calculate the expected value of the largest number of LLC hits on a
dependence path, we assume that we have at least LHC avg , and that the re-
maining LLC hits that can possibly belong to this path, i.e., LHC max−LHC avg ,
are distributed uniformly across all pload(ROB) paths. The expected longest
chain of LLC hits therefore equals:

LHC exp = LHC avg +
LHC max − LHC avg

pload(ROB)
(4.9)
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The resulting penalty then equals the chain length times the LLC hit latency
cLLC :

P ′hLLC (ROB) = cLLC LHC exp (4.10)

As explained before, latencies that are smaller than the ROB fill time are
hidden by out-of-order execution. Hence, we have to subtract the cycles it takes
to fill the ROB from the penalty calculated in Equation 4.10, which yields the
average penalty for a window of ROB instructions:

PhLLC (ROB) = max

(
0,P ′hLLC (ROB)− ROB

Deff

)
(4.11)

The total penalty for the full application thus equals this penalty times the
number of windows of ROB instructions across the entire instruction stream:

PhLLC = PhLLC (ROB) · N

ROB
(4.12)

4.9 Hardware Prefetching

In most contemporary processors there are one or more prefetchers present.
The goal of a prefetcher is to predict which data will be requested by load
instructions in the future. If it can successfully predict this, it can request that
data before the load instruction is executed. In doing so, the data for that
load will already be in one of the cache levels, therefore significantly shortening
the latency of said load instruction. There exist a numerous amount of work
on prefetching going from stride prefetching [33] to prefetching using a global
history buffer [51] and even prefetchers that are trained using machine learning
techniques [55].

A key feature of the stride MLP model is that it enables estimating the
performance impact of stride-based prefetching. In this work, we consider a
stride prefetcher that tracks the stride patterns of a number of static loads
(per-PC stride prefetching) [33].

Figure 4.10 shows a stream of memory accesses and the associated table
indicating the access pattern for static loads A through D. A, B and D are
loads exhibiting a fixed stride of 16, 128 and 8k, respectively, while C exhibits
a random access pattern. Depending on the exhibited stride pattern and the
location of the loads in the dynamic instruction stream they can be prefetchable
or not as detailed below.

A stride prefetcher needs to keep track of previously executed loads and
their addresses to compute a load’s stride pattern. There is obviously a limit
to the number of static loads the prefetcher is able to track. If the number of
static loads occurring between two recurrences of the same static load is bigger
than the maximum tractable loads in the prefetch table, the recurring load
cannot be used to prefetch the future occurrences.



4.9. HARDWARE PREFETCHING 63

Figure 4.10: Example of the different effects to take into account when
modeling a stride prefetcher (k is shorthand for a multiplier of 1024).

To illustrate this, consider the example instruction stream in Figure 4.10,
but with a prefetcher table counting only two entries. In that case, the oc-
currences of static load A, A3 and A4, are predictable. After all, when A2

is executed, A1 is still present in the prefetcher table, so we can calculate its
stride, 16, and predict that the next addresses will be 64 and 80. However, the
occurrences D3 and D4 of static load D are not prefetchable because by the
time D2 is encountered, D1 has been removed from the prefetcher table which
now contains B3 and C2.

For our prefetcher model, we can emulate the limited size of the prefetcher
table by walking over the virtual instruction stream generated for the stride
MLP model and keeping a limited-size list tracking only the last x static loads.
For each load we observe in the virtual instruction stream, we can then check
this list. If a load is executed for which the past occurrence is still part of the
list, we can mark the future occurrences of that load as prefetchable. If the
executed load is not part of the list anymore, we mark it as non-prefetchable.

Second, prefetchers often only prefetch within a DRAM page, meaning that
if two subsequent accesses are not part of the same virtual memory page, the
second one will not be prefetched. For example, load D in Figure 4.10 exhibits
a stride of 8k or 8 × 1024 while a DRAM page is often only 4096 bytes big.
Thus, even though it would be possible to prefetch D3 based on the occurrences
of D1 and D2, it is not prefetched. We include this behavior in the prefetcher
model by considering the stride between two subsequent accesses by the same
load. If the stride extracted from the stride distribution exceeds the size of
a DRAM page, we mark each subsequent occurrence of that static load as
non-prefetchable.

The third effect that requires modeling relates to timeliness. If the
prefetcher starts fetching new data just before the data is requested, the
prefetch will not be timely, and the latency of the load can only be hidden
partially. For example, load A exhibits a stride of 16 and load A3 and load
A4 occur in different ROBs far enough from each other. Thus, the prefetcher
can fetch the data timely as the ROB will block on the first two A-accesses
that miss. However, consider loads B2 and B3, which occur close to each other
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as an example. Even though load B exhibits a perfectly regular stride pat-
tern, prefetching the data needed by B3 cannot happen in time because it is
needed almost immediately after B2 is executed and main memory is very slow
compared to the processor’s execution speed.

In our prefetcher model we model timeliness by assuming that a prefetch for
a load that is ROB-size instructions away in the dynamic instruction stream,
is timely. If the load appears in the same ROB-size instruction window as
the prefetch, we only subtract a fraction of the latency equal to the time it
would take for the latter load to hit and stall the ROB head. This is shown in
Equation 4.13.

cprefetch =

{
0 , IL2 − IL1 ≥ ROB

cDRAM − (IL2−IL1)
Deff

, IL2 − IL1 < ROB
(4.13)

Here, IL1 and IL2 indicate the positions of the two loads in the dynamic in-
struction stream.

Note that one downside of the sampling methodology we employ throughout
this work is that we cannot accurately predict whether a prefetch delivers useful
data and thus also cannot predict whether the prefetcher pollutes the cache.

4.10 Memory Power Modeling

Generating power predictions using McPAT also requires supplying the
micro-architecture parameters related to the memory hierarchy. For each cache
level, its size, associativity, block size, and latency are supplied. This allows
McPAT to build the core floorplan and estimate the static power consumption
of the cache hierarchy.

Next to describing the cache hierarchy, we also supply the respective activity
factors to estimate the dynamic power consumption. Most of these are readily
available from the predictions by StatStack, such as the number of misses at
each cache level. Note that, compared to the performance model, the power
model requires extra inputs, such as the number of store misses and writebacks,
because these do impact power consumption. These are not needed for the
performance model, because there, it is assumed that they have no impact.
Store misses are predicted by StatStack in a similar fashion as load misses
which we explained in Section 4.2. The number of writebacks is more difficult
to estimate, but we noticed that they have a very small impact on total power
consumption, so we omit them from the power model.
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Sampling Methodology

Profiling an application to collect all the data to model the core takes a
significant amount of time. To speed up the profiling step, we employ aggres-
sive sampling methods. This is similar to adopting sampling in simulation as
described in Section 2.2. While these sampling methods have the potential
to speed up the profiling step significantly, they also introduce errors. In the
following sections, we explain the sampling methods and quantify their error.

5.1 Instruction Mix Sampling

To collect statistics related to the instruction mix, we profile a small amount
of instructions called a micro-trace and then fast forward through the dynamic
instructions stream for a large amount of instructions. We call the combination
of the micro-trace and the fast forwarded instructions a window. The ratio
of the number of instructions in a micro-trace on the number of instructions
in a window is called the sample rate. This sampling approach is similar to
the technique employed in SMARTS [73]. Figure 5.1 visualizes this method.
For example, to generate the instruction mix histograms and dependence chain
statistics, we profile a micro-trace of 1000 instructions and then disable profiling
until the end of the window is reached at instruction 1 million. We motivate
the choice for these sampling parameters in Section 6.2.

Figure 5.2 shows a comparison of the instruction mix of SPEC CPU 2006
workloads with sampling enabled and disabled. The left bar shows the mea-
sured instruction mix when profiling micro-traces of 1000 instructions every
1 million instructions while the right bar shows the profiled instruction mix
without sampling. Note that we show the instructions broken down into their
respective micro-operations. One can visually verify that the error caused by
sampling the instruction mix is small. We also quantify the error by verifying
the sampling error for each instruction category separately using Equation 5.1.
For each instruction category we subtract the extrapolated, sampled amount

65
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Figure 5.1: Visualization of the micro-traces and windows in an instruction
stream.
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Figure 5.2: Comparison of the sampled (left bar) and non-sampled instruction
mix (right bar) using 1 / 1000 sample rate.

from the non-sampled amount and divide by the total number of instructions.
Note that this denominator is used to mitigate skewing of the average error by
instruction categories with low frequencies.

∀category c, errorc =
#micro-opsc,sampled −#micro-opsc,not sampled∑

c micro-opsc
(5.1)

This equation shows that the average error for the instruction categories
is 0.08%, with the maximum error being 1.8%. Thus we can confirm that the
prediction error caused by sampling the instruction mix should be small.
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5.2 Dependence Chain Interpolation

The algorithm described in Section 3.3 calculates the dependence chains for
one ROB size at a time. Since the profiling step for our analytical model needs
to be micro-architecturally independent, we calculate the dependence chains
for arbitrary ROB sizes. We take a fixed set of ROB sizes and interpolate
within that set to for different ROB sizes. Our default set of ROB sizes ranges
from 16 to 256 entries. Within this set we profile every ROB with a size of a
multiple of 16. We do not calculate the dependence chains for all ROB sizes
primarily because only a few of them are of actual interest when developing
a processor (e.g., a ROB size of 87 is not really interesting). Compared to
calculating dependence chains for all ROBs, this method yields a speedup of
8×.

However, the sampling method introduces two problems. According to the
last line in Algorithm 3.2, any ROB size can be required to calculate the branch
resolution time. Furthermore, when optimizing a processor, it is possible that
the ROB of interest was not profiled and it is undesirable to re-profile an
application solely for that reason. Thus, we interpolate the dependence chains
for the chosen set of profiled ROB sizes to other ROB sizes. Based upon
the observation of Eyerman et al. [32], we can approximate the lengths of
dependence chains for non-profiled ROB sizes using a logarithmic fit following
Equation 5.2.

chain length = a · log(ROB) + b (5.2)

Figure 5.3 shows an example for the astar benchmark to show that such a
logarithmic fit works well. The dotted lines visualizing the fitted dependence
chains only deviate from the full lines, which are the measured dependence
chains, for very small ROB sizes (6 16). These sizes are of no interest for an out-
of-order processor, but we do need the size of the dependence chains for these
ROB sizes to predict the branch resolution time as described in Section 3.5.

Parameters a and b are calculated using the least square method following
Equation 5.3 and 5.4 where x is the ROB size and y the length of the dependence
chains. We calculate a fit between each pair of profiled ROBs separately (i.e.,
between 16 and 32, 32 and 48, etc.) as this results in a smaller error than an
overall fit using all points.

b =
N ·

∑
log(x) · y −

∑
log(x) ·

∑
y

N
∑

log(x)2 − (
∑

log(x))2
(5.3)

a =

∑
y − b ·

∑
log(x)

N
(5.4)

The average error for each SPEC CPU 2006 benchmark is shown in Fig-
ure 5.4. The approach of fitting yields minimal errors with even the biggest
error being smaller than 1%. The average error for all SPEC CPU 2006 bench-
marks is 0.34%, 0.23% and 0.61% for the average path, average branch path
and critical path, respectively.
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Figure 5.3: Comparison between profiled and interpolated AP, ABP and CP
dependence chains for astar.
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Figure 5.5: Error on the dependence chain lengths due to micro-trace
sampling for all SPEC CPU 2006 benchmarks.

5.3 Dependence Chain Sampling

While sampling the instruction mix already leads to some speedup, an ap-
propriate sampling method for computing dependence chains is obviously more
important. Prior work by Genbrugge et al. [34] optimized the calculation of
dependence chains by calculating them once for each ROB-sized interval of in-
structions throughout the complete instruction stream. However, because we
need the dependence chains for a range of ROB sizes, this method yields little
speedup.

We chose to follow the same method of analyzing micro-traces of 1000 in-
structions every one million instructions. Algorithm 3.1, described in Sec-
tion 3.3, lends itself well for sampling. Instead of feeding the complete instruc-
tion stream to the algorithm, only the micro-trace is passed to it. Given the
O(N ·B) algorithm complexity, this leads to a significant speedup.

We quantify the sampling error in Figure 5.5. The errors on the average path
and critical path are negligibly small at 0.45% and 0.34%, respectively. How-
ever, the average error for the average branch path is 4.22%. Eight benchmarks
exhibit a sampling error larger than 5%. The explanation for these outliers is
that not every micro-trace contains a lot of branch instructions which can thus
lead to a larger sampling error. Taking larger traces, e.g., 10k instructions,
improves the average sampling error for the average branch path from 4.22%
to 2.81%, but also slows down the profiling by almost 10×.
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Figure 5.6: Relative contribution of the branch component to the total
execution time for one billion representative instructions from the SPEC CPU
2006 benchmarks.

Note that the ABP metric is only used for calculating the branch resolution
time, which is only one part of the branch penalty. The branch misprediction
component does not necessarily influence the total execution time significantly.
Figure 5.6 confirms this by visualizing the relative contribution of the branch
component to the total execution time for all SPEC CPU 2006 benchmarks
using Sniper. Since the branch component is relatively unimportant, partially
due to the low branch misprediction rates, we favor faster profiling and deem
the sampling error acceptable.

5.4 Memory Sampling

5.4.1 Cache Miss Rates

Measuring reuse distances for all memory addresses in the dynamic instruc-
tion stream would be very time-consuming. Therefore, StatStack reduces this
overhead through sampling. It splits the stream of memory operations into
different, subsequent intervals of memory accesses called bursts. By default,
these bursts consist of 600.000 memory accesses. Within these bursts, Stat-
Stack samples and tracks the reuse of one in one thousand memory addresses.
Thus, per burst, it tracks 600 memory accesses. Since this approach yields
good accuracy in the original work, we do not modify it here. Note that these
bursts can be outlined differently compared to the instruction windows we use
to collect the other statistics. Hence, we need to interpolate different bursts to
correlate them to the instruction windows.
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5.4.2 Memory-Level Parallelism

In Sections 4.4 and 4.5 we described two techniques to model memory-level
parallelism. The cold-miss MLP model relies on cold-miss distributions, while
the stride-MLP model relies on stride and reuse distance distribution. The key
take-away is that it is impossible to sample the memory address stream, and
still arrive at an accurate cold-miss distribution, while it is possible to sample
stride and reuse distance distributions. Thus, collecting the distributions for
the stride-MLP is around 40% faster than collecting cold-miss distribution.

The sampling approach to collect stride and reuse distributions is the same
as collecting instruction mix and dependence information. We profile all load
instructions in a micro-trace of one thousand instructions every one million
instructions. This is not only necessary to speed up the profiling phase, but also
to achieve good prediction accuracy for the MLP since averaging out statistics
over large traces would comprise MLP-burstiness estimations.

Note that sampling using a micro-trace approach implies we had to modify
the default StatStack sampling approach. Instead of sampling uniformly over a
burst of memory accesses, we sample every access in the beginning of the burst
and then track its reuses. We also adapted StatStack to calculate miss rates
per static load instead of for all loads simultaneously. The reason for using this
approach is that we need to correlate stride distributions with the miss rates
as predicted by StatStack, which would otherwise be impossible.





Chapter 6

Evaluation

6.1 Experimental Setup

The main goal of this work is to develop a mechanistic model that can
predict performance and power accurately and faster than simulation. Our
profiling tool uses Intel’s Pin [48], a binary instrumentation tool for collecting
application characteristics and store them in a binary file format using Google’s
Protobuf [4]. The evaluation of the model is performed using a Python frame-
work [8].

We use two different evaluation baselines. For evaluating performance
and power prediction accuracy of the complete model as described in Sec-
tions 6.2 through 6.5, we use the 29 SPEC CPU 2006 benchmarks with ref-
erence inputs. Because we have to simulate all of the designs to determine
the accuracy of the model, we created a 1 billion instruction SimPoint [59] for
each benchmark. As explained in Chapter 2, SimPoints are a way of creating
a representative sample of instructions for a complete application. We use the
Pinball technology [54] to create checkpoints at the beginning of the SimPoint.
All results in Sections 6.2 through 6.5 are generated using the cold-miss MLP
technique.

For evaluating the stride-MLP technique in Section 6.6, we use the train
inputs of the SPEC CPU 2006 benchmark suite and we run the benchmarks
to completion. Using the reference inputs would be infeasible as it would take
multiple months of simulation time. We use a periodic sampling strategy to
limit simulation time while still covering the entire benchmark execution. To
compute the ground truth to evaluate the model against, we fast-forward 800M
instructions, warm up the memory hierarchy for 100M instructions, and then
simulate 100M instructions in detailed mode; this is repeated till the end of the
execution. We consider a similar sampling strategy for collecting our profile:
we fast-forward 800M instructions, enable StatStack for the next 100M and
collect our complete profile during the next 100M instructions; this procedure
guarantees that the profile corresponds to the detailed simulation region. Note
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Parameter Value
Dispatch width 4 wide
Instruction queue 43 entries
ROB entries 128 entries
Branch predictor pentium-M predictor [65]
L1-I cache 32 KB, 4-way associative, latency 1 cycle
L1-D cache 32 KB, 8-way associative, latency 4 cycles
L1-MSHR 10 entries
L2 cache 256 KB, 8-way associative, latency 8 cycles
L3 cache 8 MB, 16-way associative, latency 30 cycles
Memory bandwidth 8 GB/s
Memory latency 120 cycles

Table 6.1: Core configuration for our reference architecture, based on the
Intel Nehalem processor.

that StatStack’s accuracy could be further improved by allowing for a cooldown
phase.

The reason for using the second baseline is twofold. First and foremost,
we want to cover the complete benchmark to make sure we model all different
phases in the benchmarks rather than just one specific phase. Secondly, we
need to eliminate cold misses as much as possible such that the estimation of
MLP-burstiness is not influenced too much by cold misses. We verified that,
by employing this technique, for our data-intensive benchmarks, the average
number of cold misses is only 1% of the total amount of cache load misses.
Note that we could also use the previously described SimPoints prepended by
a cache warmup of billions of instructions, but we did not have the simulation
infrastructure to achieve this.

Obtaining a ground truth with detailed simulations is achieved using the
most accurate core model within Sniper, which has been validated against
real hardware [17]. Power measurements are done using the McPAT-tool [46]
included with Sniper for a 45nm chip technology.

6.2 Performance Prediction

6.2.1 Absolute Accuracy

We first evaluate the accuracy of our model against a Nehalem-based ref-
erence architecture as described in Table 6.1. Figure 6.1 shows the CPI of the
benchmarks for the reference configuration obtained using our model (left bar)
and through simulation with Sniper (right bar). The errors of the model ver-
sus Sniper are indicated on top of the bars. The average absolute error across
all benchmarks equals 7.6%. There are positive and negative errors, which
shows that our model is not biased. A maximum error of 22% is observed
for gromacs, which is due to severe functional unit contention at very small
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Figure 6.1: CPI stacks generated by the model (left bar) and by Sniper (right
bar), and the error of the model versus Sniper simulations (top).

timescales. We do not model this very accurately because we use micro-traces
of 1000 instructions, over which this fine-grained behavior can be averaged out.

Figure 6.1 breaks up the overall CPI into a number of components. The
model, visualized in the left bar according to Equation 2.3, consists of an
addition of five components reflecting different penalties. We can represent
each component separately in a stack, such that the top of the stack equals
total cycle count. By dividing the components by the number of instructions,
we get the respective CPI stack components. More detail about CPI stacks
is provided in Section 6.4. For the right bar, we use the built-in CPI stack
generator of Sniper.

The CPI stacks generated by Sniper and by our model match well, which
suggests that the overall model accuracy is not much embellished by compen-
sating under- and overestimations. Note that some of the differences stem from
the fact that there is no unambiguous way of defining CPI stacks in an out-of-
order processor, because events can occur concurrently. Hence, whether cycles
are accounted to one or another event may lead to small differences in how CPI
stacks are constructed. The most noticeable example is an L3 cache hit that is
part of the dependence path leading to a mispredicted branch: it is accounted
to the L3 component in Sniper, because at the time the L3 cache hit occurs,
it is impossible for Sniper to detect that it is part of a path to a mispredicted
branch. Our model, on the other hand, accounts the miss latency to the branch
miss penalty, because we model L3 hits as long-latency instructions that usu-
ally do not incur stalls. This is why the branch component for the model CPI
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Figure 6.2: Visualization of the different sampling approaches to collect
micro-traces within windows in an instruction stream.

stack tends to be larger than for the Sniper CPI stack, and vice versa for the
L3 hit component, with gcc being the most notable example.

6.2.2 Sampled Profiling

As discussed before we try to maximize the speed of our profiling phase
by sampling aggressively. This poses another interesting trade-off: either we
apply the model to every individual micro-trace and add the estimated number
of cycles for each micro-trace, or we first combine the profiles of the micro-traces
to a single profile, and apply the model on the combined average profile. An
intermediate solution would be to group every few micro-traces in a combined
profile, apply the model on each group, and then add the cycle estimates across
all groups.

To find the optimal sampling settings, we perform the following exhaustive
experiment. We evaluate window sizes of 1M, 10M, 100M and 1B instructions,
resulting in 1000, 100, 10 and 1 window(s), respectively, for the instruction
traces of one billion instructions. For each of these window sizes, we profile
micro-traces of 1K, 5K and 10K instructions, and multiple sample rates, such
that we profile at least 100K instructions of the 1B instructions trace. This
approach of using a fixed number of profiled instructions is visualized in Fig-
ure 6.2. In the top half, one micro-trace is profiled for each window. In the
bottom half, two micro-traces are profiled in each window, but the window size
doubles, which leads to the same amount of profiled instructions.

Figure 6.3 shows the average error of the performance model for all of the
experiments, with on the horizontal axis the total number of profiled instruc-
tions (e.g., a window size of 1M instructions, micro-traces of 1000 instructions
and a sample rate of 1, results in 1M instructions profiled out of 1B as shown
by the lowest blue dot). Intuitively, the more instructions are profiled, the
slower the profiling step. However, the slowdown is not linearly proportional



6.2. PERFORMANCE PREDICTION 77

105 106 107 108

Instructions profiled

7.5%

8.0%

8.5%

9.0%

9.5%

10.0%

10.5%

P
re

d
ic

ti
o
n

er
ro

r
Window size

1M

10M

100M

1000M

Sample size

1k

5k

10k

Figure 6.3: Average absolute prediction error versus number of instructions
profiled. Different colors represent different window sizes; the symbols reflect
the sample sizes (see legend).

to the number of instructions, because of the fast-forwarding overhead and the
overhead for storing the profiles. In terms of the size of the profile, the smaller
the window size, the larger the profile, because we need to keep a profile for
every individual window.

The lowest error (7.6% visualized by the blue point at the bottom) is ob-
tained for a 1M instruction window and 1K micro-trace at a sample rate of
one micro-trace per window. Note that this is the sampling configuration we
used to obtain all previous and next results. If we want to sacrifice some ac-
curacy for faster profiling (8.5% error, leftmost orange point), a window size
of 10M instructions with a 1K micro-trace and sample rate of one micro-trace
per window may be a good alternative.

Clearly, decreasing window size improves accuracy. Being able to track
short-term phase behavior is important to obtain better accuracy. This can be
attributed to the fact that some of our modeling techniques, such as the con-
tention modeling and the modeling of chained LLC hits, rely on characteristics
of specific sequences of instructions, which get averaged when the window size
or the sample size is too large.

Note that this also explains why extracting longer or more micro-traces from
a window does not necessarily decrease the error. For example, extracting 10
micro-traces of 1K instructions or one micro-trace of 10K instructions from a
window of 1M instructions causes a 0.5% increase in error versus extracting
1 micro-trace of 1K instructions. The explanation for this counter-intuitive
behavior is that applications may suffer from high functional unit contention
during small phases of just a few hundred instructions, and low contention for
the rest. Since we extract many micro-traces, this extreme behavior is already
present in some of the micro-traces. However, if we extract longer or more
micro-traces in one window, the behavior of these few hundred instructions is
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Component Arch-dep I-cache Branch LLC-chain D-cache MLP + queue
Avg error 6.7% 7.0% 7.0% 7.0% 7.3% 7.6%
Max error 20.7% 20.8% 21.7% 21.7% 22.0% 22.3%

Table 6.2: Average and maximum error of introducing a new
micro-architecture independent component.

averaged out with the other instructions. Because of this averaging effect, we
lose the ability to model fine-grained contention, leading to slightly worse per-
formance predictions. Predicting performance for all micro-traces individually,
i.e., having smaller windows, would likely improve accuracy, but it would also
largely slow down the model evaluation time and increase the size of the profile.

To illustrate why combined micro-traces can lead to worse results, imagine
two micro-traces of 1000 instructions. The first contains 300 loads and the
second 200 loads. Following Equation 3.10, the micro-traces can execute at
an effective dispatch rate of 3.33 and 4, respectively, assuming the physical
dispatch width is 4. This yields execution times of 300 and 250 cycles, re-
spectively. If we combine the micro-traces, the effective dispatch rate due to
the load instructions would be 2000

500 = 4. Thus in the separate case, the total
cycle count is 550 and in the combined case it is 500, a difference of 10%. This
shows that, because contention in the functional units can happen at small
time-scales, contention has to be modeled using separate micro-traces (which
are not too long).

6.2.3 Micro-Architecture Independent Modeling

One of our contributions is to make the profile independent of the micro-
architecture, such that we require only one profiling step to model a large range
of micro-architectures. We do this by proposing models that predict the number
of cache and branch misses, MLP, memory bandwidth usage, chained LLC
hits, and functional unit contention, based on a micro-architecture independent
profile. Because each of these models introduces additional inaccuracies, we
expect the error of a micro-architecture independent model to be higher than
that of a micro-architecture dependent model. In this section, we show how
much error each of the components of the micro-architecture independent model
introduces.

We start with a model similar to the original interval model [32], where we
extract cache miss rates, branch miss rates, the amount of MLP, and memory
bus queuing time from detailed Sniper simulations. The profile only contains
the instruction mix and instruction dependency information (critical depen-
dence path, average dependence path, load dependence distribution). We al-
ready incorporate the improved functional unit contention modeling and the
LLC hit chain modeling. This model (denoted Arch-dep in Table 6.2) has an
error of 6.7% on average across all benchmarks for our reference architecture.
Next, we gradually add each of the architecture-independent components, see
Table 6.2. The I-cache column shows the error when using the instruction
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Parameter Low-end Middle High-end
Dispatch width 2 4 6
ROB entries 32 - 48 - 64 96 - 128 - 160 128 - 192 - 256
Instruction queue 1/3 of the ROB size
Branch predictor pentium-M [65] - gshare - global
L1-I cache 32 KB, 4-way associative, latency 1 cycle
L1-D cache 32 KB, 8-way associative, latency 4 cycles
L1-MSHR 10 entries

L2 cache
128 KB - 256 KB - 512 KB

8-way associative, latency 8 cycles

L3 cache
1 - 2 - 4 MB 4 - 6 - 8 MB 8 - 12 - 16 MB

16-way associative, latency 30 cycles
Memory bandwidth 8 GB/s
Memory latency 120 cycles

Table 6.3: Core configuration design space. Default values for the low-end,
middle, and high-end cores are indicated in bold. The middle bold
configuration is our reference architecture.

cache miss rate from StatStack instead of simulation, which increases the aver-
age error by 0.3%. Adding the micro-architecture independent branch predictor
model does not noticeably increase the average error, which is also the case for
using the LLC hit rate from StatStack to model LLC hit chaining. Estimat-
ing the D-cache misses (mainly the LLC misses) using StatStack introduces
an error increase of 0.3%, and a similar increase is incurred by modeling the
MLP and memory queuing in a micro-architecture independent way. Over-
all, micro-architecture independent modeling increases the error by 0.9% on
average, while the maximum prediction error increases by only 1.6%.

6.2.4 Relative Accuracy across a Design Space

To show that the model is accurate across a large design space, we define
a broad set of processor configurations over which we evaluate the model, see
Table 6.3. We split this set into three categories: low-end (dispatch width of
2), middle (dispatch width of 4), and high-end (dispatch width of 6) cores. The
range of the sizes of the different components are in the table, the default value
for each category is shown in bold. The parameters that are not mentioned
in the table are equal to those of the standard Nehalem core configuration as
included in the Sniper distribution. There are 243 different configurations in
this design space.

6.2.4.1 Speedup

To illustrate the speedup obtained by using an architecture-independent
profile, we calculate how much time it takes to evaluate the full design space for
all benchmarks using a SimPoint of one billion instructions per benchmark. Our
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profiler incurs a one-time cost of 3 minutes on average per benchmark, or 1.4
compute hours to profile all applications. Adding 5 seconds per configuration
and benchmark to calculate the model, our framework only needs 11.4 hours.

Simulating one processor configuration using Sniper takes approximately
30 minutes per benchmark. This means that simulating the complete design
space consisting out of 243 processor configurations and 29 benchmarks takes
around 150 compute days. Hence, our micro-architecture independent model
can evaluate the processor design space 315× faster.

Evaluating the same design space using the previously proposed interval
model requires multiple functional simulations. It requires 3 branch predictor
simulations, 21 cache hierarchy simulations (3 different L2 sizes combined with
7 different L3 sizes) and the associated 21 MLP simulations. Note that for
the MLP-simulations, we assume that the MLP can be calculated concurrently
for multiple ROBs as proposed by Eyerman et al. [30]. Based on the speed
of the functional cache simulation of Sniper, we assume that the combination
of all these functional simulations can run at 1.5 MIPS. Hence, the total time
required to complete all functional simulations is 200 hours. Assuming the
model evaluation takes 1s per processor-application combination, evaluating
the design space takes 202 hours. This means that our model is 18× faster
compared to the previously proposed interval model.

6.2.4.2 Relative Accuracy

While we showed that the approach of evaluating micro-traces for every win-
dow separately is sound, we further confirm this for a complete design space
of processors. We compare the separate evaluation with the other extreme
approach: evaluating the model for all micro-traces combined. We extract
micro-traces of 1000 instructions from instruction windows containing 1M in-
structions and evaluate them both separately and combined. These sampling
approaches were previously visualized as the blue and red dot at x-coordinate
106 in Figure 6.3, respectively.

Figure 6.4 visualizes the prediction errors for the complete design space and
both sampling approaches using a cumulative distribution function. The aver-
age absolute error for evaluating all processor designs and benchmarks using
separate micro-traces is 9.3% (compared to 13.3%). The maximum prediction
error is 40.0% when evaluating the micro-traces separately, which is signif-
icantly lower than the 70.8% when evaluating combined micro-traces. This
clearly indicates that the evaluation of micro-traces separately is the best ap-
proach.

Secondly, we show a box-and-whisker plot to break down the performance
prediction error per benchmark in Figure 6.5. The box is the range between the
first and third quartile, the horizontal line in the box is the mean, the dot is the
median, the whiskers cover all points within 1.5 inter-quartile distances outside
the box, and the points represent the outliers. For 23 of the 29 benchmarks
the distance between the first and third quartile is 10% or less. Furthermore,
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Figure 6.4: Cumulative distribution of the performance prediction error when
evaluating micro-traces separately versus combined.
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Figure 6.5: Box-and-whiskers plot showing the performance prediction errors
for each of the SPEC CPU 2006 benchmark for the complete design space.

most boxes are close to 0% indicating good absolute accuracy. The biggest
outliers, in casu GemsFDTD, libquantum, mcf, soplex and sphinx3, feature
a big DRAM component relative to the base component, which is the most
difficult component to predict accurately.
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Figure 6.7: Power stacks generated by the model (left bar) and by Sniper
(right bar), and the error of the model versus Sniper simulation (top).

Finally, as this is not obvious looking at the box-and-whiskers plot, we show
that our model exhibits a good relative accuracy in Figure 6.6. This means
that it is able to track performance trends between different processors well.
Figure 6.6 shows the CPI for the three bold configurations in Table 6.3 as esti-
mated by the micro-architecture independent interval model and as simulated
by Sniper. For most benchmarks, the model estimations are very close to the
simulated values. For other benchmarks (e.g., gcc, lbm, mcf, and sphinx3 ), the
predictions errors are somewhat higher, but the model still tracks the perfor-
mance trend well. This is the most important feature of our model as it enables
design space explorations. We will discuss this in more detail in Section 7.4,
and show more detailed results.

6.3 Power Prediction

6.3.1 Absolute Accuracy

We first evaluate the power consumption predicted by McPAT in combi-
nation with our interval model for the reference architecture described in Ta-
ble 6.1. Similar to CPI stacks, we can also build power stacks showing the
power consumption for different parts of the processor. The power stacks and
the prediction error of the model are shown in Figure 6.7. The visualized
components are the power used by the front- and back-end, other core power
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(core-other) and each level of the cache hierarchy. The front-end component
includes, among others, the instruction-fetch logic and branch predictor, while
the back-end combines the power consumed by the functional units, ROB, etc.
Core-other is used for the remaining structures which McPAT does not list in
detail. The stacks take into account both static power and dynamic power
consumption.

As Figure 6.7 shows, the maximum prediction error is 14% for the gromacs
benchmark. This is to be expected as this is the benchmark featuring the
largest error for our performance predictions too, making it difficult to accu-
rately predict dynamic power consumption. The average absolute error for our
reference architecture across all SPEC CPU 2006 benchmarks is 3.4%.

6.3.2 Relative Accuracy across a Design Space

Similar to the performance predictions, we again show that our model can
accurately predict trends, this time for power consumption. We use the same
design space as defined in Table 6.3.

First, we show that using the performance predictions with separate micro-
traces instead of combined micro-traces also provides good prediction accuracy
for the power predictions. Note that we do not evaluate the power consumption
per micro-trace, but only use the performance predictions obtained from using
separate micro-traces. The reason for this is that the prediction of dynamic
power only relies on activity factors. The consequence is that it does not
matter whether the activity factors are calculated over separate or combined
micro-traces as is the case for the performance.

To show the rationale behind this, we rely on the same example as for
our performance predictions, namely two micro-traces containing 300 and 200
loads, respectively. Remember that this yielded execution times of 300 and
250 cycles, respectively. Calculating activity factors using Equation 3.16 gives
activity factors of 300

300 = 1 and 200
250 = 0.8, respectively. Thus, the average

activity factor, respecting the execution times, is 1 × 300
550 + 0.8 × 250

550 ≈ 0.91,
which is exactly equal to the activity factor if we add the load-instructions from
micro-traces together: 500

550 ≈ 0.91.

Figure 6.8 shows that, as expected, power predictions across the complete
design space are better when using the performance predictions from separate
micro-traces. The average absolute error is only 4.3% using the performance
predictions from separate micro-trace evaluation, compared to 7.1% when us-
ing performance predictions from combined micro-traces. Similar to the error
distribution of the performance predictions, the outliers are largely eliminated,
reducing the maximum error of 48.6% to 21.5% and thus shifting the complete
distribution curve to the left.

A breakdown of the distribution of the power predictions errors per bench-
mark, using a box-and-whiskers plot, is shown in Figure 6.9. The box-and-
whiskers plots is built following the same rules as in Figure 6.5. With respect
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Figure 6.8: Cumulative error distribution for power predictions, comparing
evaluation of the model using combined and separate micro-traces.
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Figure 6.9: Box-and-whiskers plot showing the power prediction errors for
each of the SPEC CPU 2006 benchmark for the complete design space.

to the power predictions, all benchmarks exhibit an error spread of less than
10% between the first and third quartile. Note however that, e.g., for the so-
plex benchmark, the number of outliers is significant (close to 25% of the whole
design space). This can be attributed to the large spread of the performance
prediction errors as was shown in Figure 6.5.
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Figure 6.10: Micro-architecture independent interval model power estimation
versus simulated power using the Sniper detailed simulator, for three core
configurations (l=low-end, m=middle, h=high-end).
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Furthermore, Figure 6.10 shows the power estimations for the low-end, mid-
dle and high-end configurations shown in Table 6.3 in bold, compared to Sniper-
simulations using McPAT to predict power consumption. Although the three
configurations are fixed, power consumption varies significantly both over the
different benchmarks, due to different activity factors, and over the different
processor configurations. For example, the power of the high-end core ranges
between less than 15 W to above 35 W. The power difference between a low-end
and high-end core executing the same benchmark is often bigger than 15 W.
Note that, for most benchmarks, the absolute power predictions by the model
are accurate, and even if there is a prediction error, such as in the case of
namd, the model tracks the trend between different processor architectures
accurately.

6.4 CPI Stacks

One of the most useful features of the interval model is that it enables build-
ing detailed CPI stacks. Since the model is a summation of different penalty
terms, we can visualize each of them. We show four interesting CPI stacks in
Figures 6.11 and 6.12 to illustrate the conclusions one can draw from them.
CPI stacks for all SPEC CPU 2006 benchmarks can be found in Appendix A.

To gain more insight, we split the base component into four different sub-
components. These sub-components follow the minimizing operation from
Equation 3.10 to calculate Deff . Hence, if the physical dispatch width is the
minimum and thus the most limiting factor, only the base component is visible.
If there are stricter limits due to dependences, issue ports or functional units,
this is shown as an extra stack on top. To calculate this extra stack, we divide
the number of micro-operations by the respective dispatch rate and subtract
the preceding components as shown in the below equations:

Base =
N

Dphysical
(6.1)

Crit = max

(
0,

N

Dcritical
−Base

)
(6.2)

Port = max

(
0,

N

Dport
− Critical −Base

)
(6.3)

Unit = max

(
0,

N

Dunit
− Port− Critical −Base

)
(6.4)

The eight different components (for which the first four components are the
base sub-components) visualized in the CPI stacks are described below:

• Base component (calculated following Equation 6.1): The minimum exe-
cution time equals the number of micro-operations divided by the physical
dispatch width.
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Figure 6.11: Comparison of the base component for the gamess and gromacs
benchmarks.

• Critical component (calculated following Equation 6.2): The penalty in-
troduced due to long dependence chains which lower the processor’s issue
and execution rate.

• Port component (calculated following Equation 6.3): The penalty intro-
duced because multiple functional units are connected to the same issue
port, thus requiring multiple cycles to issue all micro-operations.

• Unit component (calculated following Equation 6.4): An extra penalty for
instructions that have to be executed by non-pipelined functional units.

• Branch component (second term in Equation 3.1): The penalty for the
number of branch mispredictions multiplied by the sum of the front-end
refill time and the branch resolution time.

• I-cache component (third term in Equation 3.1): The penalty due to the
number of I-cache misses times the latency.

• DRAM component (fourth term in Equation 3.1): The penalty for the
number of LLC misses times their respective latency and divided by the
MLP.

• LLC-chain component (fifth term in Equation 3.1): The penalty compo-
nent indicating that the ROB blocks due to multiple LLC hits on the
same dependence path.

The first two selected CPI stacks, in Figure 6.11, are from the gamess and
gromacs benchmark to highlight the insight one can get by splitting up the
base component. The execution for the gamess benchmark is close to perfect
because there are only a few small penalty components due to some contention
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Figure 6.12: Comparison of the DRAM component for the milc and mcf
benchmarks.

in the issue stage and branch mispredictions. Its performance is only 20%
worse compared to the perfect execution time. For the gromacs benchmark,
on the other hand, there is a clear problem with the issue stage. It has both a
relatively large critical and unit component. The unit component is interesting
because this indicates that there are instructions that have to be executed by
non-pipelined functional units. In the case of our reference architecture only
the functional unit that processes division and square root operations is not
pipelined. This is especially interesting because the instruction mix contains
merely 3% division and square root operations. Despite this small share, the in-
fluence on total performance is significant because of the long latency compared
to other instructions (typically around 20 cycles per instruction). Note that in
reality, the problem with issue contention is even worse as we underestimate
the execution time of this benchmark by 20%.

The latter two CPI stacks, in Figure 6.12, are for the milc and mcf bench-
mark. Both have a large DRAM component which indicates a lot of LLC cache
misses. They have an MPKI of 22 and 46, respectively. However, despite the
number of misses for mcf only being double the number of misses for milc, it
is ∼ 2.8× slower than milc instead of only ∼ 2×. This shows that next to a
lot of misses, mcf also exhibits poor MLP. The (well-known) reason for this is
that mcf is a pointer-chasing benchmark with a lot of load misses depending
on each other.

Another interesting feature of CPI stacks is that it allows one to compare
different architectures. As an example we show the gromacs benchmark again
for our reference architecture and the low-end, low-power architecture shown
in bold in Table 6.3. Figure 6.13 shows that despite doubling the dispatch
width and cache size, the performance gains are minimal at only 13%. This
is of course due to the fact that even though the processor can dispatch twice
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Figure 6.13: Comparison of the performance of the gromacs benchmark on
our reference architecture (left) and a low-power architecture (right).

the number of instructions in one cycle, the issue stage cannot process all of
the division operations fast enough to keep up with the doubled dispatch rate.
Meanwhile, the power consumption of the medium processor compared to the
low-end is about 1.5× for the gromacs benchmark. Hence it is questionable
whether the performance gain is worth the increase in power consumption.
Using our model, this decision can be made multiple times faster than using
detailed simulation.

6.5 Phase Analysis

Another advantage of evaluating the model on a per-micro-trace basis in-
stead of on combined micro-traces is that it allows us to study phase behavior.
This is a useful feature because it is possible that an application exhibits very
different behavior throughout its execution. For example, an application may
first load its data in memory leading to a memory-intensive phase first and af-
terwards perform lots of computation leading to a compute-intensive phase. By
offering insight into this phase behavior, it may be possible to exploit applica-
tion characteristics through phase-aware optimizations in hardware or software.

Figures 6.14a through 6.14c show the CPI variation for three benchmarks
per 10 million instructions, for both Sniper and the model. Phase graphs for
all benchmarks are provided in Appendix B. We show the average error across
the whole execution, and the phase accuracy coefficient (PAC) to quantify how
well we predict execution time and track phase behavior. We define PAC as
the average absolute error of the relative difference between two consecutive
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Figure 6.14: Phase graphs for the astar, bzip2 and cactusADM benchmarks
from the SPEC2006 CPU benchmark suite.
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intervals of one million instructions:

PAC =
1

N

N∑
i=1

∣∣∣∣CS(i− 1)− CS(i)

CS

− CM (i− 1)− CM (i)

CM

∣∣∣∣ (6.5)

CS(i) is the number of cycles predicted by Sniper for interval i, whereas
CM (i) is the number of cycles predicted by the model. CS and CM are the aver-
age number of cycles of one interval over the full trace, for Sniper and the model,
respectively. The PAC-values are included in Figures 6.14a through 6.14c, along
with the error on the predictions of the overall execution time. An example
of an application where there is a clear memory and compute intensive phase
is the astar benchmark, see Figure 6.14a. The first 400 million instructions
execute at a CPI of around 3, while the remainder of the application exhibits
a CPI of 0.5, indicating that the application first mainly loads data and then
performs computations on it. The model tracks an application’s time-varying
execution behavior well for most of the benchmarks, see for example bzip2 in
Figure 6.14b. For some benchmarks, e.g., cactusADM in Figure 6.14c, we ob-
serve that the PAC is lower than the overall execution time prediction error;
in spite of the relative modeling error offset, the model tracks the application’s
phase behavior fairly well.

6.6 Stride MLP and Prefetch Results

When considering a full application, there will be few cold misses which
renders the cold-miss MLP model less useful. After all, this MLP model relies
on modeling burstiness through cold misses and conflict/capacity misses are
assumed to be uniformly distributed. Since this is not necessarily true, we
proposed the stride MLP technique as discussed in Section 4.5. In this section
we evaluate the accuracy difference between the two MLP techniques. Further-
more, because all contemporary processors feature one or more prefetchers, we
also evaluate our model when there is a simple stride prefetcher present.

In all of our previous simulations the prefetcher was disabled in the Sniper
simulator. Since we did not have the time to redo all simulations, we select
a design space where we only vary the ROB size and cache size. We build
the design space like this because these are the only parameters that influence
cache misses and thus MLP and prefetchability. The design space contains 35
processor designs, 7 ROB sizes combined with 5 different sizes for the last-
level cache, as summarized in Table 6.4. Our stride prefetcher has 16 streams,
meaning that it can track the last 16 different loads, and will not prefetch over
virtual memory page boundaries. Our reference architecture is still the same
as in the previous design space and has an ROB size of 128 entries combined
with an LLC of 8 MB.

We evaluate the accuracy of both MLP models by quantifying the total time
spent waiting for DRAM. In Sniper, the DRAM cycle component is measured
as the number of cycles between a load miss blocking the head of the ROB
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Core frequency 2.66 GHz

Dispatch width 4

ROB 64, 96, 128, 160, 192, 224, 256 entries

L1I and L1D 32 KB, latency = 1 and 4 cycles, respectively

L2 256 KB, latency = 8 cycles

LLC 1, 2, 4, 8, 16 MB, latency = 30 cycles

MSHR Between L1D and L2, entries = 10

Prefetcher stride prefetcher, streams = 16

Memory bus Bandwidth = 7.6 GB/s

DRAM latency = 45 ns

Table 6.4: Reference architecture, based on Intel Nehalem.
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Figure 6.15: Absolute error for predicting total time waiting for DRAM for
the cold-miss and stride MLP models, assuming no hardware prefetching.

and the data returning from main memory [31]. In our model, we estimate the
DRAM component by multiplying the estimated number of LLC misses times
DRAM access latency divided by the predicted MLP. Figure 6.15 reports the
model’s accuracy for predicting the DRAM waiting time against simulation.
The average absolute error equals 3.3%. The highest error for the stride MLP
model is observed for gemsFDTD (26.0%).

When running complete applications, the stride MLP model is substan-
tially more accurate than the cold-miss MLP model which achieves an average
absolute error of 8.2% and a maximum error of 39.1%. Modeling the relative
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Figure 6.16: Absolute error for predicting the performance of our reference
architecture for the SPEC 2006 benchmarks using the stride and cold-miss
MLP models.

spacing of memory references, their dependences and strides clearly leads to a
more accurate model.

If we plug the stride MLP model into the complete performance prediction
model for our reference architecture, we see an average improvement of 2.8%.
Figure 6.16 visualizes the performance prediction error per benchmark. The
average performance prediction error are 10.6% and 13.4% when employing the
stride MLP and cold-miss MLP models, respectively.

Evaluating the complete design space from Table 6.4, the average error is
only 5.1% for the stride MLP model, while the average error for the cold-miss
MLP model is 8.9%. Furthermore, more than 90% of the designs have an
absolute error below 15% for the stride-MLP model, whereas for the cold-miss
MLP model less than 80% of the designs have an absolute error below 15%.
This is visualized in Figure 6.17. The largest errors are typically observed for
unbalanced processor designs (e.g., a big ROB with 256 entries along with a
relatively small 1 MB LLC).

Figure 6.18 reports the absolute prediction error assuming a stride-based
prefetcher. The stride MLP model achieves an average absolute prediction
error of 3.6% and at most 22.8% for our reference architecture. The cold-
miss MLP model, which does not model stride-based prefetching, leads to an
absolute average prediction of 16.9% and absolute errors up to 118%. This re-
emphasizes the importance of incorporating the impact of hardware prefetching
in an analytical MLP model.
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Chapter 7

Applications

In this chapter we highlight some of the applications for which our model
can be used. The most obvious use case of the interval model is to guide core
optimization, both with respect to performance and power/energy efficiency.
First, we show how our model can be used to fine-tune a processor in order to
achieve better performance. Second, we show a use case where we determine the
best processor under a certain power constraint. We then show that our model
can also offer insight into DVFS optimization. We conclude by introducing
Pareto plots, which allow pruning a complete design space and compare our
model with a regression-based model for building these Pareto plots.

All of these applications show why the absolute error of the model is less
important than the relative accuracy. The main goal of our work is to speed
up comparison of multiple processor architectures and offering insight in an
application’s performance. Hence, it is more important one can draw objective
conclusions about why one processor is better than another, and less to per-
fectly predict absolute performance or power numbers. Another key take-away
for all of these use cases is that, while these kinds of optimizations can also be
performed using simulation, using our mechanistic model is around two orders
of magnitude faster for a design space consisting out of a couple of hundred of
processor designs.

7.1 Understanding Processor Performance

For our first use case, we want to gain insight in processor performance and
optimize it if possible. We consider the case of libquantum, one of the SPEC
CPU 2006 benchmarks. We show CPI stacks for different processor architec-
tures visualizing the cause of performance loss. Note that, compared to the
CPI stacks in Section 6.4, we combined some components together as to make
it easier to interpret the final conclusion. The left CPI stack in Figure 7.1 is
measured using a Sniper simulation on a high-end configuration with 128 ROB

97
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Figure 7.1: CPI stacks measured by Sniper and estimated by our model for
libquantum. ‘Base’ is a configuration with 128 ROB entries and a 8 MB L3
cache. ‘Larger cache’ is the same configuration, but with 16 MB L3 cache,
and ‘larger ROB’ has an 8 MB cache, but a ROB of 256 entries.

entries and a 8 MB L3 cache (base). Because there is a large DRAM compo-
nent, it is intuitive to increase the cache size for better performance. However,
our model (right part of the graph) shows that there is little to gain by increas-
ing the cache to 16 MB, because the number of misses does not significantly
decrease. On the other hand, increasing the ROB size to 256 entries leads to a
higher MLP, effectively decreasing the DRAM component and improving per-
formance. Even though the absolute prediction error is significant, the same
trend is confirmed by simulating the larger cache and the larger ROB using
Sniper. However, the key take-away here is that to reach this conclusion us-
ing simulation only, would take many hours. To arrive at the best performing
processor configuration at least 3 simulations are needed, and probably more
as it would not be immediately clear that increasing the ROB size leads to the
largest performance improvement (e.g., an architect might first try different
cache sizes, or increasing the memory bandwidth). Using our model, we can
obtain the same conclusion in one profiling step and a couple of evaluations
using the analytical model, which would take less than 10 minutes. To be sure,
the predictions made by the model can be confirmed by detailed simulation,
but this only requires a few simulations compared to exploring all possibilities
using simulation.
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Figure 7.2: Average CPI (lower is better) when selecting a general-purpose
core versus selecting an application specific core per application for different
power budgets.

7.2 Optimizing Performance under Power Con-
straints

Processors meant to be embedded in mobile devices are usually power lim-
ited. This means that rather than delivering the best possible performance,
they have to deliver the optimal performance while staying under given a power
constraint. Our model can be used to efficiently explore design spaces and
determine the most optimal processor configuration within given power con-
straints. To prove this, we set up an example design use case: we try to find
the best performing configuration within various power budgets.

We first show that optimizing core configuration for individual applications
indeed leads to better overall performance compared to selecting a single design
that performs best on average over all applications within the same power bud-
get. Figure 7.2 shows the average CPI (lower is better) across all applications
for a single, general-purpose, optimal design (left bar) and for the application-
specific designs (right bar). It is clear that selecting application-specific cores
leads to higher performance (lower CPI) than selecting a single general-purpose
design, especially for the low power budgets. For example, for the 15 W power
budget, the single best design is a low-end design, to avoid a power overshoot
for one particular benchmark, while the 28 other benchmarks can benefit from
the higher performance of a middle and even high-end core, and still remain
within 15 W.

The previous results were generated using the simulated results to show the
potential of application-specific core design. Now, we use the model to find the
optimal designs without simulating the full design space. Because there is some
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Power budget Optimal < 1% < 5% < 10% > 10%
10 W 9 (9) 6 (15) 5 (20) 3 (23) 11%,13%
15 W 6 (6) 6 (12) 12 (24) 1 (25) 11%,12%,18%,36%
20 W 10 (10) 7 (17) 10 (27) 1 (28) 12%
25 W 10 (10) 7 (17) 10 (27) 2 (29) –
30 W 11 (11) 7 (18) 9 (27) 2 (29) –

Table 7.1: Number of benchmarks for which the design space exploration
technique results in a the optimal design, or a suboptimal design within 1%,
5%, 10% or more than 10%.

error for the power estimations, we use the model to select five possibly optimal
designs out of the design space, instead of a single configuration. We do this by
also selecting the best performing designs for power budgets that are 20% and
10% under the targeted power budget, as well as power budgets that are 10%
and 20% higher, next to the one with the exact power budget. This method
ensures that if the power consumption is somewhat over- or underestimated by
the model, we can still select configurations that are under, but close to the
power budget. We then simulate these five designs using cycle-level simulation,
and select the one that meets the power constraints and yields the best per-
formance. Although this technique still requires some detailed simulations, the
number of simulations is drastically lower compared to exhaustively simulating
the full design space.

Using this technique, we were able to find configurations that are all within
the imposed power budget. Table 7.1 shows for each power budget the number
of benchmarks for which we find the exact same configuration as simulating
the full design space in detail. Then we show the number of benchmarks
where the resulting configuration performs less than 1% worse than the actual
optimal configuration, followed by less than 5% and less than 10%, and in
the last column, we show how much the remaining benchmarks are off (i.e.,
the ones which perform more than 10% worse). Between brackets, we show
the cumulative number of processor configurations that meet the performance
bound. We only show results for a power budget up to 30 W, because Figure 7.2
showed that there is little to gain when using ASIPs with larger power budgets.
Note that for 4 benchmarks, there is no configuration that consumes less than
10 W, explaining the smaller number of benchmarks. This was also correctly
predicted by our model.

For the vast majority of the benchmarks, we find a configuration that is
within 5% of the optimal configuration. The explanation for the outliers at the
small power budgets is that there are a lot of configurations that are just under
and above this budget. Therefore, by only picking 5 points, we sometimes miss
the configurations that are just within the power budget and have the highest
performance. We checked that picking more points for the 10 W and 15 W
power budget leads to finding better configurations.
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Frequency 1.33 GHz 2.00 GHz 2.66 GHz 3.33 GHz 3.99 GHz

Voltage 0.85 V 1.02 V 1.20 V 1.38 V 1.55 V

Table 7.2: Nehalem-based architecture using different DVFS settings.

7.3 DVFS Exploration

Dynamic Voltage and Frequency Scaling (DVFS) is commonly used
to change the performance versus power consumption characteristics of a
processor. By reducing frequency and voltage, a processor consumes less power,
but it also yields lower performance. The impact of DVFS on performance and
power consumption is application-dependent. Compute-intensive applications
usually benefit more from scaling the frequency up in terms of performance,
but they also tend to increase the power consumption more, because they use
the core resources more intensively. Memory-bound applications see smaller
performance gains with higher frequency, but usually also consume less addi-
tional power. Finding the best DVFS setting is thus application-dependent,
and needs to be redone for every application and potentially for every phase
within an application execution.

Our analytical model can also be used to model the impact of DVFS on
performance and power consumption. In our setup, we assume that the core
and the L1/L2 caches are in the same clock domain, so changing the frequency
has no impact on the latency and access time in number of cycles. The LLC
and main memory are in different voltage/frequency domains, so their latency
remains constant in absolute time, meaning that their access time in the num-
ber of core cycles changes. The main memory access time in cycles is a direct
term in Equation 3.1, and the LLC access time is part of the LLC chaining
component, so we can model a frequency change. The estimated cycle count is
then converted to time by dividing by clock frequency. The impact of DVFS
on power consumption is modeled through McPAT, using the estimated per-
formance.

Figure 7.3 shows the real and estimated Energy-Delay-Square product
(ED2P) for 5 different frequency and voltage settings (see Table 7.2) across
all benchmarks. The numbers are normalized to the 2.66 GHz setting, which
was the base frequency for all previous results. We choose ED2P here as a
metric, because the Energy-Delay product (EDP) usually prefers the lowest
frequency setting thus yielding an uninteresting figure, while for ED2P, the
optimum varies across the benchmarks. Although there is some error on the
ED2P estimations (the points do not coincide), we find that our model pre-
dicts the optimal frequency for all benchmarks, except for lbm, sphinx3 and
zeusmp. The ED2P-trend is predicted incorrectly for the sphinx3 benchmark
due to inaccurate modeling of the extra delay caused by accessing the LLC. For
the lbm and zeusmp benchmarks, the incorrect prediction can be attributed to
errors enforcing each other because the performance is underestimated while
the power consumption is overestimated or vice versa.
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Figure 7.3: ED2P for different frequencies calculated with Sniper and our
model, normalized per benchmark against the Sniper configuration running at
2.66 GHz.

7.4 Pareto Curves

We can expand this performance and power design space exploration tech-
nique even further by building Pareto curves. These curves consist of the
Pareto-optimal set of configurations, i.e., the set of configurations that have
either higher performance or lower power consumption than any other con-
figuration. Or in other words, there exists no other configuration that beats
the Pareto-optimal configurations in both performance and power. This sec-
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Figure 7.4: Pareto frontiers for the bzip2 and calculix benchmarks.

tion quantifies how well the model is able to construct a Pareto-optimal set of
configurations.

Figures 7.4 and 7.5 show the Pareto frontier obtained using Sniper simula-
tions (green) and the Pareto frontier obtained by the model (blue). The orange
points are the predicted Pareto-optimal configurations (so the ones construct-
ing the blue curve), but plotted with simulated performance and power con-
sumption. Pareto frontiers for all SPEC CPU 2006 benchmarks are given in
Appendix C. The difference between the blue and green curves shows the error
of the model, while the difference between the orange points and the green
curve indicates how well we can predict actual Pareto-optimal configurations.

For some benchmarks (e.g., bzip2 and calculix ), the blue and green curves
are close, indicating high accuracy for the model. Note that the model some-
times misses the tail at the top left, e.g., for bzip2. However, these designs are
less interesting: they have a large power increase for a very marginal perfor-
mance increase. For other benchmarks (e.g., gromacs), we make a systematic
error across all micro-architectures. However, this still leads to good relative
accuracy when changing the processor configuration: the blue curve is a shifted
version of the green curve. Due to the relative accuracy, the designs on the
model Pareto frontier are almost exactly the same as the one on the Sniper
Pareto frontier (almost all orange points are part of the blue curve). For other
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Figure 7.5: Pareto frontiers for the gromacs and xalancbmk benchmarks.

benchmarks (e.g., xalancbmk), some of the orange points are off the green
curve, but still close to it; these points are close to Pareto-optimal.

Next to the visual matching of the Pareto frontiers, we also show five dif-
ferent metrics quantifying the goodness of the Pareto frontier. We show the
average absolute error on both the performance and power predictions for all
designs:

Absolute error performance =
∑

∀ designs

|Pperf − Sperf |
Sperf

(7.1)

Absolute error power =
∑

∀ designs

|Ppower − Spower|
Spower

(7.2)

Here, P is the predicted value by our model and S the simulated value
taken from Sniper simulations. These metrics quantify how good our absolute
predictions are for the complete design space. Figure 7.6 quantifies the absolute
average errors for all SPEC CPU 2006 benchmarks. The average error for the
performance and power predictions over all benchmarks are 9.3% and 4.3%,
respectively. Thus, we predict performance and power well across the design
space.
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Figure 7.6: Average absolute error for performance and power predictions for
the complete design space for all SPEC CPU 2006 benchmarks.

Furthermore, we also show the sensitivity, specificity and accuracy which
quantify the fraction of correctly classified Pareto-optimal (true positives), non-
Pareto-optimal (true negatives) and correctly classified designs in general, re-
spectively. Note that for most predictors, there will be a trade-off between
sensitivity and specificity.

Sensitivity =
TP

TP + FN
(7.3)

Specificity =
TN

TN + FP
(7.4)

Accuracy =
TP + TN

TP + FP + TN + FN
(7.5)

Here, TP, TN, FP and FN stand for true positives, true negatives, false
positives and false negatives, respectively. The results for these three metrics
are quantified in Figure 7.7. The average values for the sensitivity, specificity
and accuracy over all benchmarks are 46.2%, 87.9%, and 76.8%, respectively.

These average values indicate that our model performs well at filtering out
the non-Pareto optimal solutions (specificity), but performs not as good in de-
tecting all Pareto-optimal designs (sensitivity). However, a visual inspection of
the Pareto frontiers (see also Appendix C) shows that either we find only a few
designs in a large cluster of Pareto-optimal designs that are very close to each
other, which leads to lower sensitivity, but is also acceptable, or we miss some
Pareto-optimal designs that are not useful to implement, e.g., configurations
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Figure 7.7: Sensitivity, specificity and accuracy of the Pareto-filtered
predictions on the complete design space for all SPEC CPU 2006 benchmarks.
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Figure 7.8: Illustration of the HVR metric calculation.

that show a large increase in power consumption while improving performance
only marginally (e.g., the designs on the left vertical tail of bzip2 that exhibit
a large power increase with only a small performance gain).

The Hyper-Volume Ratio metric (HVR) [24] on the other hand shows how
well we can predict the range of solutions across the entire frontier. This is im-
portant since we are interested in finding both low-power and high-performance
Pareto-optimal designs at either end of the Pareto frontier. After all, sensitiv-
ity and specificity may reveal good performance, even if we only find many
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Figure 7.9: HVR of the Pareto-filtered predictions on the complete design
space for all SPEC CPU 2006 benchmarks.

designs in a small range. Hence we need a metric that quantifies the range of
the frontier.

According to Equation 7.7, we calculate HVR as the ratio of the hypervol-
ume constructed by dividing the predicted Pareto-optimal configurations with
simulated performance and power, HV (Q), with the hypervolume formed by
the Pareto front from Sniper simulations, HV (P*). Figure 7.8 shows an illus-
tration of a hypervolume for two objective functions. The left part shows the
hypervolume formed by a predicted Pareto front while the right part shows the
real hypervolume.

HV (Q) = volume(∪Qi=1Vi) (7.6)

HV R =
HV (Q)

HV (P*)
(7.7)

Since our objective functions, power and performance, have different orders
of magnitude, we normalize them to mitigate scaling issues and compare them
to the reference point (1.1, 1.1). Note that, in our case, these equations are
trivialized to a summation of the area of rectangles formed by the diagonal
between the Pareto optimal points and the reference point. Figure 7.9 shows
the average HVR-value for all SPEC CPU 2006 benchmarks.

The average HVR-value is 97%, indicating that our model performs well
for predicting the actual range of the Pareto frontier. The only HVR-values
below 90% are observed for the gobmk, povray and sjeng benchmarks. As
shown in Appendix C, all of these benchmarks exhibit similar behavior as the
bzip2 benchmark, namely a vertical left tail indicating a steep increase in power
consumption while gaining very little performance. Because the model does not
predict that tail, the HVR-value is lower.
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7.5 Comparison to an Empirical Model

A lot of prior work proposes predicting performance and power using em-
pirical models [38, 43]. These models are constructed from a training set of
simulated configurations. Although this training set is much smaller than the
full design space, simulating the training set incurs a large overhead compared
to our model, which requires only one fast profiling step per application. To
quantify this overhead, we construct a polynomial regression model with poly-
nomials up to degree 3 to predict performance and power consumption for our
design space. We also evaluated higher degree polynomials, but these led to
over-fitting the model. This is similar to the work of Lee et al. [43], although
they used piece-wise polynomials.

Achieving similar accuracy compared to our mechanistic model when train-
ing one model for the whole design space requires a training set of almost 2500
simulations, which lines up with the results of Lee et al. [43]. Since our profiling
step is around 15× faster than simulation, and taking into account the time
needed to calculate the model, this means that building a regression model is
more than 250× slower than our model.

Furthermore, empirical models tend to compensate over- and under-
estimations for the different parameters, resulting in less accurate predictions
of the impact of changing one parameter. Therefore, the Pareto frontiers pre-
dicted using an empirical model are much less accurate than for our model,
even though the average error is similar or lower for the empirical model.

This is shown in Figure 7.10 where we show the Pareto fronts for the namd
and soplex benchmarks side by side as constructed with the results of our
model and the empirical technique. In the case of the namd benchmark, the
empirical model performs worse for every statistic leading to a Pareto front
that does not resemble the correct Pareto front. For the soplex benchmark,
both the error on performance and power are lower for the empirical model.
However, it performs a lot worse in actually selecting the Pareto optimal design
points since the sensitivity is more than 2× lower. This can also be confirmed
visually since the empirical model finds no designs in the extreme parts of the
Pareto front and there are clearly a lot less orange points plotted on the green
curve. Both of these cases occur for multiple other benchmarks, although there
are benchmarks for which the empirical model does predict a good Pareto front.

The average prediction error for performance and power for the empirical
model equals 10.0% and 4.7%, respectively, which is similar to the interval
model. However, the sensitivity of the Pareto fronts generated by the empirical
model is 24.3% on average, which is almost 2× lower than the average sensitivity
for the Pareto-fronts found with our model (46.2%).

A comparison of the sensitivity values for our mechanistic model and the
empirical model is shown in Figure 7.11. Although there is one benchmark,
GemsFDTD, for which the empirical model has a significantly higher sensitivity,
one can immediately see that our model outperforms the empirical model.



7.5. COMPARISON TO AN EMPIRICAL MODEL 109

0.2 0.3 0.4 0.5 0.6 0.7

Performance (CPI)

5

10

15

20

25

30

35

40

P
ow

er
(W

)
namd - mechanistic model

Sniper simulation

Model prediction

Simulated-predicted ‘pareto’

Error performance: 10.8%
Error power: 5.6%
Sensitivity: 25.0%
Specificity: 97.8%
Accuracy: 78.6%
HVR: 99.7%

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Performance (CPI)

5

10

15

20

25

30

35

40

P
ow

er
(W

)

namd - empirical model

Sniper simulation

Model prediction

Simulated-predicted ‘pareto’

Error performance: 16.0%
Error power: 4.2%
Sensitivity: 12.5%
Specificity: 95.0%
Accuracy: 73.3%
HVR: 95.3%

0 1 2 3 4 5

Performance (CPI)

2

5

8

10

12

15

18

20

22

25

28

P
ow

er
(W

)

soplex - mechanistic model

Sniper simulation

Model prediction

Simulated-predicted ‘pareto’

Error performance: 16.7%
Error power: 5.8%
Sensitivity: 62.1%
Specificity: 94.3%
Accuracy: 80.7%
HVR: 99.7%

0 1 2 3 4

Performance (CPI)

2

5

8

10

12

15

18

20

22

25

P
ow

er
(W

)

soplex - empirical model

Sniper simulation

Model prediction

Simulated-predicted ‘pareto’

Error performance: 6.2%
Error power: 5.5%
Sensitivity: 28.2%
Specificity: 92.1%
Accuracy: 65.0%
HVR: 98.6%

Figure 7.10: Pareto fronts for different benchmarks as calculated by our
mechanistic model (left) and the empirical model (right).
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Figure 7.11: Comparison between the interval model and the mechanistic
model for the sensitivity values of the Pareto-filtered predictions for the
complete design space.
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Figure 7.12: Comparison between the interval model and the mechanistic
model for the specificity values of the Pareto-filtered predictions for the
complete design space.
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Figure 7.13: Comparison between the interval model and the mechanistic
model for the HVR values of the Pareto-filtered predictions for the complete
design space.

The specificity for the empirical model equals 93.6%, which is slightly higher
than the 87.9% for our model. Looking at the breakdown per benchmark in
Figure 7.12, we can confirm that the empirical model outperforms the mech-
anistic model slightly. However, this is a logical consequence of the trade-off
most predictors exhibit with respect to sensitivity and specificity.

The accuracy-value is quite similar at 75.7%, while the HVR is slightly worse
at 95.1%. The HVR-metric is visualized per benchmark in Figure 7.13. Hence,
we can conclude that, even though the regression model performs slightly better
for some statistics, our mechanistic model is better suited for design space
exploration as it provides a more complete overview of the Pareto-optimal
designs and is much faster.





Chapter 8

Conclusion

Your scientists were so preoccupied with
whether or not they could, they didn’t
stop to think if they should.

– Dr. Ian Malcolm, Jurassic Park

8.1 Summary

Contemporary superscalar, out-of-order processors are incredibly complex
to analyze and improve. In this thesis, we propose improvements to the interval
model to more accurately model complex x86-processors and further develop it
to not depend on simulation-based inputs. We also include a power prediction
model using McPAT. Our main goal is to help the processor architect with
tools that enable easy and fast design space exploration to develop application-
specific processors to improve performance, power and energy efficiency.

Similar to other mechanistic and empirical models, our model consists of
two steps, a profiling or training phase and a prediction phase. Empirical
models require detailed timing-based simulations to train a model, while prior
mechanistic models, as part of the profiling phase, used different types of func-
tional simulations to collect cache miss rates, branch misprediction rates and
MLP numbers. Collecting these inputs is slow and they are inherently micro-
architecture dependent. We eliminate the need for those (costly) simulations
by collecting application characteristics that are independent of the processor’s
micro-architecture. The advantage of this approach is that it results in the
profiling phase becoming a one-time cost.

To speed up the profiling phase even more, we employ aggressive sampling
methods. To model memory behavior, we only collect a small subset of mem-
ory accesses. We also collect small traces of instructions, called micro-traces, to
extract all necessary statistics to model behavior, such as functional unit con-

113
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tention, within the core. We include a thorough discussion on how sampling
influences the prediction error.

The prediction phase transforms the micro-architectural independent ap-
plication characteristics into the inputs required by the interval model using
multiple statistical models. Since the analysis phase only requires evaluating
a number of statistical models and equations, it can be performed multiple or-
ders of magnitude faster than simulation. Furthermore, when pruning a design
space, our analytical model can amortize evaluation of some statistical models
over different processor designs, further speeding up design space exploration.

To eliminate the need for simulation of the branch predictor, the cache hi-
erarchy and ROB for obtaining branch mispredictions, cache miss rates and
MLP, respectively, we leverage different micro-architectural independent met-
rics. Branch mispredictions are estimated using entropy as a metric for the
(un)predictability of branches. Combined with a model for a branch predictor,
the entropy of an application can be used to accurately predict the number of
branch mispredictions. For predicting cache miss rates we rely on the concept
of reuse distances. These reuse distances can be transformed to stack distances
and mapped onto miss rates for an LRU cache hierarchy using StatStack. We
extended StatStack to model a complete cache hierarchy under the assumption
that the cache hierarchy consists of inclusive cache levels. In order to predict
MLP, we discuss two different techniques. One of the techniques relies on cold
misses to capture burstiness in the requests to the main memory. The other
leverages the stride behavior static loads exhibit and combines it with informa-
tion from StatStack. The stride behavior enables predicting which loads in a
stream of subsequent accesses will access a new cache line and StatStack allows
us to predict whether this cache line was used before and is still present in the
cache hierarchy.

Next to eliminating the need for simulation-based inputs, we improve the
accuracy of the core modeling for x86-based processors. Because an x86-
processor uses a CISC architecture, we break down instructions into smaller
micro-operations. These micro-operations are the actual unit of work that is
dispatched, issued and executed. Furthermore, x86-processors are very com-
plex, but are, depending on the application, not always perfectly balanced
throughout the complete pipeline. They might have too few functional ports
or functional units leading to pipeline stalls. We model this type of stalls as an
effective dispatch rate equal or smaller than the physical dispatch width. We
also show that, compared to the assumptions in the original interval model,
branch instructions are less likely to be the last instruction of the critical path.
Therefore, to calculate the branch resolution time, we introduce the average
branch path as a metric for measuring the number of producing instructions
leading up to a branch.

To model the memory subsystem more accurately, we introduce multiple
new factors that can limit parallel processing of memory accesses. We add an
extra model for MSHRs because this limits the maximum number of outstand-
ing accesses in the cache hierarchy, which can increase the latency to fetch data.
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Furthermore, while we still assume that the main memory is infinitely parallel,
we take into account that transferring the data to the core takes a fixed amount
of time correlated to the memory bandwidth. The memory channel between
the core and the main memory can only be used by one fetch operation at a
time, which incurs extra penalties.

The original interval model assumed a two-level cache hierarchy and coined
that all accesses to the cache hierarchy could be hidden under other useful
work which meant that only accesses to main memory could stall the processor.
However, in x86-processors, a three-level cache hierarchy is more common and
the last level of a three-level cache hierarchy typically has an access latency
that is large enough to potentially stall the processor. This happens especially
for workloads that have a large working set and that exhibit multiple last-level
cache hits that depend on each other. Thus, we introduce a new penalty, called
the LLC chain penalty, that models this performance loss.

One of the advantages of the stride-MLP model is that it opens up the
possibility of modeling the efficacy of simple stride prefetchers. We leverage
the information from the MLP model to predict which loads can be prefetched,
and whether they can be prefetched in a timely manner. In addition, we show
that one cannot ignore the effect of these prefetchers when trying to achieve
good accuracy.

Next to easy and fast design space exploration, we also want to offer insight
into application behavior because this can help in optimization of applications
and/or processors. We enable this through building CPI stacks to gain insight
into where the cycles go during an application’s execution. We use these to
show how the model can be used to pinpoint the exact cause of performance
loss and propose a better performing processor architecture. This is a definitive
advantage over empirical or black-box models which can only predict the metric
for which they are trained and can thus offer little insight in performance losses.

The introduction of micro-architecture independent application character-
istics and their transformation to the inputs required by the interval model,
introduces the potential for additional prediction errors. We include a study
detailing the contribution of each micro-architecture independent component
to the total performance prediction error. This study shows that the prediction
of the memory components contributes most to the additional prediction error.

Evaluation of the model shows that we achieve an absolute prediction er-
ror of 9.3% for performance and 4.3% for power compared to a cycle-level
accurate simulator. These accuracy numbers are obtained across a large de-
sign space where the sizes of the most important micro-architectural structures
are modified. Evaluation of this design space can be performed 300× faster
compared to using cycle-level accurate simulation. Furthermore, we show that
despite the prediction error on our model, we achieve good relative accuracy.
This is the most important feature of our model as it enables design space
exploration where multiple processor designs can be compared to each other
accurately. We also show that this important property does not necessarily
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hold for regression-based machine learning techniques which rely on averaging
out predictions across the design space.

8.2 Future Work

This thesis showed the possibility of predicting performance and power for
an application running on a processor using only micro-architectural indepen-
dent characteristics. However, the current work is subject to a number of
constraints. These constraints could be further relaxed in future work.

8.2.1 Multi-core Processors

The first constraint of this work is that it focuses on single-core processors
executing only one application. Contemporary processors usually feature mul-
tiple different cores in one chip [53] and can execute multiple applications con-
currently. Depending on the micro-architecture, those multi-core processors
share multiple levels of the cache hierarchy and the bus for accessing main
memory. The sharing of these resources introduces extra penalties. For exam-
ple, one application can evict data from a shared cache that another application
still needs or one application has to wait until another releases the bus to main
memory.

To accurately model performance the sharing of the cache hierarchy and
bus and the attributed performance loss has to be included in the interval
model. A first-order assumption could be that both are divided equally over
the different applications. Hence, if two applications are co-executing, both
would have access to half of the total cache size and half of the DRAM band-
width [18]. More complex techniques such as described in StatCC [27] could
improve the accuracy of these first-order approximations. Furthermore, as the
resource sharing by the co-running applications influences the respective exe-
cution times, an iterative approach to predict the final performance might be
required [67]. Depending on how sensitive the co-running applications are to
the sharing of the cache, bus and DRAM resources, it might be required to
adopt more complex modeling techniques.

8.2.2 SMT Processors

Simultaneous MultiThreaded (SMT) processors [64] are processors in which
a core can execute multiple threads at the same time. The granularity on
which these threads execute concurrently can differ, but essentially this type
of processors share most core structures over different threads. The aim of this
type of processor is to improve the utilization of processor resources. The ex-
tensive sharing of all core resources influences the performance of the processor
significantly from the viewpoint of the co-running applications. Extending the
current interval model to include SMT processors would entail little work on
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the profiler side of our framework, but would necessitate rethinking most mod-
eling steps. For example, can the sharing of the functional units be modeled
as simply averaging the instruction mixes of different threads? What is the
influence of the (possibly dynamic) ROB sharing on the MLP? Do we need to
include models for contention in the load-store queue? Hence, this extension
does require a significant research effort. Note that contemporary processors
often combine multiple cores with SMT.

8.2.3 Multithreaded Workloads

The set of applications used in this work perform all of their work using a
single thread. However, partially due to the advent of multi-core processors, a
new set of applications started to gain traction, namely multithreaded work-
loads. This type of workloads are an important subset of all current applications
and uses multiple threads to calculate a solution to a problem. Usually the work
that these applications have to perform is divided among the threads, but it is
possible that the threads have to operate on the same data. If there is a possi-
bility of the threads modifying a data element simultaneously, the programmer
has to supply a mechanism that guarantees the threads modify that element se-
quentially. Otherwise, race conditions could lead to undefined behavior and/or
incorrect program execution. Often used synchronization mechanisms are crit-
ical sections, locks, barriers, etc. All of these mechanisms add extra overhead
to the program’s execution time depending on, among others, the degree of
sharing and the amount of threads. Thus this extra overhead also needs to be
modeled. Modeling these types of workloads requires updates to both the pro-
filing and modeling tools and is definitely not trivial. We are currently looking
into the modeling of multithreaded workloads [23].

8.2.4 Different ISAs

The current implementation of our profiling tool relies on Intel’s Pin [48]
for obtaining application characteristics. Inherently, this constraints the usage
of our profiling and modeling to x86-based processors. While these processors
are by far the most prevalent in contemporary desktops and servers, mobile
devices often feature an ARM processor. These ARM processors use the ARM
ISA which cannot be instrumented using Pin. Therefore, in order to model
performance of an ARM processor, a different instrumentation framework is
needed. One such possible framework is DynamoRIO [2].

Another approach could be to collect application statistics independently
of the ISA using an intermediary representation of the application similar to
the work by Shao et al. [57]. One possible framework to collect those statistics
would be LLVM [7].

Both of these extensions require a significant amount of engineering work
and research. During my internship at ARM, I did extend the models described
in this thesis for the ARM architecture. Unfortunately, there were some outliers
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which I was unable to fix in the short time span of the internship. The reason
for these outliers are likely caused by ARM-processors being more resource-
constrained, which proved to be more challenging to capture in the analytical
model than anticipated. However, I strongly believe that there are no fun-
damental limitations as to why the analytical model cannot be extended and
fine-tuned to more accurately model ARM processors. Furthermore, because
the developed models include confidential IP, they are not open source.



Appendix A

CPI stacks

Appendix A shows CPI stacks for all SPEC CPU 2006 benchmarks for our
reference architecture. This is possible because the model is a summation of
different penalty terms, see Equation A.1. Building CPI stacks is one of the
most useful features of the interval model.

C =
N

Deff
+ mbpred(cres + cfe) +

∑
i

mILicLi+1 +
mLLC (cmem + cbus)

MLP
+ PhLLC (A.1)

Deff = min

(
D,

ROB

lat · CP (ROB)
,
N

Np
,
N · Ui

Ni
,
N · Uj

Nj · latj

)
(A.2)

To gain more insight, we split the base component into four different sub-
components. These sub-components follow the minimizing operation calcu-
lating the effective dispatch rate, Deff , based on the physical dispatch width,
inter-instruction dependences and contention in the functional ports and units
as shown in Equation A.2. Hence, if the physical dispatch width is the min-
imum and thus the most limiting factor, only the base component is visible.
If there are stricter limits due to dependences, issue ports or functional units,
this is shown as an extra stack on top. To calculate this extra stack, we divide
the number of micro-operations by the respective dispatch rate and subtract
the preceding components as shown in the below equations:

Base =
N

Dphysical
(A.3)

Crit = max

(
0,

N

Dcritical
−Base

)
(A.4)

Port = max

(
0,

N

Dport
− Critical −Base

)
(A.5)

Unit = max

(
0,

N

Dunit
− Port− Critical −Base

)
(A.6)
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The eight different components (for which the first four components are the
base sub-components) visualized in the CPI stacks are described below:

• Base component (calculated following Equation A.3): The minimum exe-
cution time equals the number of micro-operations divided by the physical
dispatch width.

• Critical component (calculated following Equation A.4): The penalty
introduced due to long dependence chains which lower the processor’s
issue and execution rate.

• Port component (calculated following Equation A.5): The penalty intro-
duced because multiple functional units are connected to the same issue
port, thus requiring multiple cycles to issue all micro-operations.

• Unit component (calculated following Equation A.6): An extra penalty
for instructions that have to be executed by non-pipelined functional
units.

• Branch component (second term in Equation A.1): The penalty for the
number of branch mispredictions multiplied by the sum of the front-end
refill time and the branch resolution time.

• I-cache component (third term in Equation A.1): The penalty due to the
number of I-cache misses times the latency.

• DRAM component (fourth term in Equation A.1): The penalty for the
number of LLC misses times their respective latency and divided by the
MLP.

• LLC-chain component (fifth term in Equation A.1): The penalty com-
ponent indicating that the ROB blocks due to multiple LLC hits on the
same dependence path.

astar
0.00

0.25

0.50

0.75

1.00

1.25

1.50

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

bwaves
0.0

0.2

0.4

0.6

0.8

1.0

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base



121

bzip2
0.0

0.1

0.2

0.3

0.4

0.5

0.6
C

P
I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

cactusADM
0.0

0.2

0.4

0.6

0.8

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

calculix
0.0

0.1

0.2

0.3

0.4

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

dealII
0.0

0.2

0.4

0.6

0.8

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

gamess
0.0

0.1

0.2

0.3

0.4

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

gcc
0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base



122 APPENDIX A. CPI STACKS

GemsFDTD
0.0

0.2

0.4

0.6

0.8

1.0
C

P
I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

gobmk
0.0

0.2

0.4

0.6

0.8

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

gromacs
0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

h264ref
0.0

0.1

0.2

0.3

0.4

0.5

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

hmmer
0.0

0.1

0.2

0.3

0.4

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

lbm
0.0

0.2

0.4

0.6

0.8

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base



123

leslie3d
0.0

0.2

0.4

0.6

0.8

1.0
C

P
I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

libquantum
0.0

0.5

1.0

1.5

2.0

2.5

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

mcf
0

1

2

3

4

5

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

milc
0.0

0.5

1.0

1.5

2.0

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

namd
0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

omnetpp
0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base



124 APPENDIX A. CPI STACKS

perlbench
0.0

0.1

0.2

0.3

0.4
C

P
I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

povray
0.0

0.1

0.2

0.3

0.4

0.5

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

sjeng
0.0

0.1

0.2

0.3

0.4

0.5

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

soplex
0.0

0.5

1.0

1.5

2.0

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

sphinx3
0.0

0.1

0.2

0.3

0.4

0.5

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

tonto
0.0

0.1

0.2

0.3

0.4

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base



125

wrf
0.0

0.2

0.4

0.6

0.8
C

P
I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

xalancbmk
0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base

zeusmp
0.0

0.2

0.4

0.6

0.8

C
P

I

DRAM

LLC-chain

I-cache

Branch

Unit

Port

Critical

Base





Appendix B

Phase plots

Appendix B shows graphs detailing the CPI over time as estimated by
the model versus Sniper. Under each figure, we put the benchmark name,
its average error measured over the whole execution, and the phase accuracy
coefficient (PAC). Together these metrics give a good idea of the accuracy. The
PAC is a measure for the average error on the phase behavior and is calculated
as follows:

PAC =
1

N

N∑
i=1

∣∣∣∣CS(i− 1)− CS(i)

CS

− CM (i− 1)− CM (i)

CM

∣∣∣∣ (B.1)

We include the reason for inaccurately estimating some applications’ phase
behavior:

• gromacs: This benchmark performs a lot of divisions and square root
operations. Both of these instructions are sent to the non-pipelined divi-
sion unit. This leads to severe unit contention at very small time scales,
which we cannot track accurately because we average over at least 1K in-
structions. PAC is lower compared to the overall Average error, because
even though the model does not accurately predict the severity of the
contention, it does predict the relatively constant CPI most of the time,
and it also accurately predicts the timing of the performance dips.

• lbm: The first half of the execution contains mostly cold misses, and the
second half mostly conflict misses. We use probabilities over all loads,
leading to an underestimation of the number of misses that depend on
one another. Hence, we overestimate MLP and underestimate CPI for the
first half. For the second half, we cannot estimate where exactly conflict
misses occur in a window and have to divide them uniformly leading to
an underestimation of the MLP and an overestimation of the CPI.

• libquantum: In the second half we are unable to estimate some CPI peaks
because we do not accurately predict the number of cache misses, leading
to an underestimation of the DRAM component.
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• milc: In the second half of the execution, we are unable to estimate some
of the lower CPI phases, because we cannot estimate the bursty behavior
of the conflict misses. This leads to an underestimation of the MLP and
an overestimation of the CPI.

• soplex : In-between the CPI peaks, we underestimate the MLP (and thus
overestimate CPI) because here, the conflict misses occur in bursts, while
we assume that they occur uniformly. At the CPI peaks, there is limited
MLP due to the fact that most LLC misses are on the same dependence
path; the model again assumes that all misses are uniformly distributed
across all dependence paths, leading to a higher MLP and a lower es-
timated CPI. PAC is worse compared to the overall Average error: the
overall Average error is somewhat reduced by compensating over- and
underestimations, which is not the case for the PAC metric.
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Appendix C

Pareto plots

Appendix C contains all Pareto frontiers for the SPEC CPU 2006 bench-
marks as calculated by the model (blue curve) and simulated by Sniper (green
curve). The orange points are the configurations for which our model pre-
dicted they are Pareto-optimal, but shown with their simulated performance
and power consumption. The difference between the blue and green curves
shows the error of the model, while the difference between the orange points
and the green curve indicates how well we can predict actual Pareto-optimal
configurations.

Next to the visual matching, we show various metrics underneath each
figure: the average absolute error for performance and power, as well as sen-
sitivity, specificity and the Hypervolume Ratio (HVR) [24]. Sensitivity and
specificity quantify the fraction of predicted actual Pareto-optimal and non-
Pareto-optimal designs, respectively. HVR quantifies how well we can predict
the range of solutions across the entire frontier. Put together, these metrics
denote how good each predicted Pareto frontier is.

The average values over the whole design space are 9.3%, 4.3%, 46.2%,
87.9%, 76.8% and 97.0% for the error on performance and power, specificity,
sensitivity, accuracy and HVR respectively. Hence, our model is very good at
predicting the actual range of the Pareto frontier (HVR) and also at filtering
out the non-Pareto optimal solutions (sensitivity), but performs less good on
detecting all Pareto-optimal designs (specificity). However, a visual inspection
of the Pareto frontiers shows us that either we find only a few designs in a
large cluster of Pareto-optimal designs that are very close to each other, which
leads to lower sensitivity — but which we deem acceptable — or we miss some
Pareto-optimal designs that are not useful to implement (e.g., the designs on the
left vertical tail of bzip2: large power increase with only a small performance
gain).
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We include additional explanation for some of the Pareto frontiers:

• bzip2, h264ref, gobmk and soplex: The model misses the top-left tail
of the Pareto frontier, which appears to be almost vertical. However,
these designs are less interesting to find because they represent a marginal
increase in performance while power increases substantially. Furthermore,
this tail is always comprised of less than 5% of the total designs.

• gromacs: As shown in the phase graph (see Appendix A), we make a
systematic error across all configurations. However, this still leads to
good relative accuracy when changing the processor configuration. This
systematic error is shown in the Pareto frontier: the blue curve is a
shifted version of the green curve where the error for all CPI values is
indeed around 22% to the left. Due to the good relative accuracy, the
designs on the model Pareto frontier are almost exactly the same as the
ones on the Sniper Pareto frontier (almost all orange points are part of
the green curve).

• hmmer: There is a tail on the right that we do not predict accurately.
This is similar to bzip2 etc. for which we not accurately predict the tail
on the left. We still see most of the Pareto-optimal designs on that right
tail, but not all Pareto-optimal designs in the knees of the curve, leading
to lower sensitivity.

• perlbench: We do not predict the left vertical tail, and we predict two
dense clusters of Pareto-optimal designs. However, this is not an issue
since Sniper also does not select Pareto optimal designs in between those
clusters. The predicted frontier correctly connects the Pareto-optimal
clusters.

• sjeng: The model does not find any of the designs on the left vertical
tail because it cannot properly estimate the decrease in branch mispre-
diction rate of using the gshare16 branch predictor. The model classifies
all branch predictors as performing approximately the same, while in
fact, the gshare16 branch predictor outperforms the others for the larger
dispatch widths.

• sphinx3: We do not see the left vertical tail, which in this case is actually
built up out around 20 designs. However, those designs are all clustered
on 4 places on the vertical tail, and are less interesting because they
double power consumption for a gain in performance of less than 5%.

• xalancbmk: Here we observe designs which are not actually Pareto-
optimal. However, these points are still close to being Pareto-optimal.
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