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ABSTRACT

We present in this work numerical simulations of the performance of an on-chip photonic reservoir computer
using nonlinear microring resonator as neurons. We present dynamical properties of the nonlinear node and the
reservoir computer, and we analyse the performance of the reservoir on a typical nonlinear Boolean task : the
delayed XOR task. We study the performance for various designs (number of nodes, and length of the synapses
in the reservoir), and with respect to the properties of the optical injection of the data (optical detuning and
power). From this work, we find that such a reservoir has state-of-the art level of performance on this particular
task - that is a bit error rate of 2.5 107* - at 20 Gb/s, with very good power efficiency (total injected power
lower than 1.0 mW).
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1. INTRODUCTION

In recent years, the field of data processing has faced new challenges related to the ability of systems to process
large amounts of data at high-speed rates with good energy efficiency.! These issues can be addressed through the
implementation, at the physical layer, of machine learning techniques. One of them is called reservoir computing
: this is a supervised technique of machine learning that appeared a decade ago®>* as a promising paradigm to
implement artificial neural network at a hardware level. Among existing hardware implementations,® ® reservoir
computing has been already tested experimentally using photonic components,’ 22 hence leading the field of
photonic reservoir computing as a good candidate for high-speed, energy-efficient data processing.

We analyse here the performances of a novel architecture for reservoir computing : a small network of nonlinear
microring resonators integrated on a silicon photonic chip. We use the so-called swirl topology, previously used
in a reservoir architecture made of passive elements,?° specifically waveguides, splitters, and combiners. It
has been demonstrated that this topology represents a good compromise between wave mixing in a planar
structure and losses inherent to integrated interconnections. Here, we simply replace in our reservoir the passive
nodes by nonlinear microring resonators, thus introducing nonlinearities and dynamical behaviour directly in the
recurrence of the reservoir.

Recently, the dynamical properties of Silicon-On-Insulator (SOI) microring resonators have attracted a lot
of attention lately.2372° This integrated element is mostly used as an optical filter,3° but can also be integrated
in more complex structures to attain all-optical information processing, like classical boolean tasks,?' optical
thresholding,?? pulse restoration,®® or ASK-to-PSK generation.?*
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We analyse through numerical simulations the performances of such a system on a Boolean nonlinear task: the
delayed XOR task. We perform a parametric study on the reservoir in terms of the waveguide length between
consecutive nodes, the input power, and the optical detuning, which is the frequency difference between the
injected light and the resonance frequency of a micro-ring resonator. The level of performance is quantified using
the bit error rate (BER), which is the number of errors made by the reservoir divided by the total number of
injected bits. We report on state-of-the-art performances on this particular task,?’ with a typical BER lower
than 1073 for a large set of injection parameters (i.e. injected power and optical detuning). Besides, this analysis
points out also the energy efficiency of the proposed reservoir architecture, indeed the total optical input power
needed to perform this task is less than 2.5 mW.

This paper is organised as follows. First we introduce the models of the reservoir computer, and the nonlinear
microring resonator. Then we analyse the dynamical properties of a single node, and the 4 x 4 reservoir. Finally,
we study through numerical simulations the performance of the reservoir depending on its design and injection
parameters.

2. MODEL
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Figure 1. (a) Scheme of the reservoir computer : a 4x4 swirl network with nonlinear micoring resonators as nodes. (b)
Scheme of a nonlinear microring resonator, with a typical 4.0 um-radius. (c¢) Transmission curve of a nonlinear microring
resonator. Such a componant can be used as a filter.

2.1 On-chip reservoir computer

We present in Fig. 1(a) a schematic view of the integrated photonic reservoir under consideration in this work.
The reservoir has a 4 x 4 swirl topology, each node - or neuron - is a nonlinear microring resonator (see Subsec-
tion 2.2), and the connections between consecutive nodes - or synapses - are ensured by waveguides with typical
losses of 3.0 dB/cm. The swirl topology, introduced in Ref 20,2Y satisfies the planarity of the integrated photonic
reservoir while it allows a reasonable mixing of the input signals.

The reservoir model is given by Eqs. (1)-(2) (respectively the state update of the reservoir and the output of
the reservoir), where bold variables are either vectors or matrices :

x|k + 1] = f (x[k], Wyes x[k] + Wy, u[k + 1)), (1)
Yout [k} = Wout Xdetector [k}a (2)
where x is the state of the reservoir, Xgetector the state of the reservoir after the detector, y the output signal of

the reservoir, u the input signal in the reservoir, f a nonlinear vector field that describes the nonlinear behaviour
of the reservoir. Wj,, W,..s, W,; are respectively the input matrix that accounts for the input weights to the



reservoir, the interconnection matrix that represents the connections between each node in the reservoir, and the
readout matrix. W, accounts for the output weights of the reservoir and is determined through the training
procedure.

In our simulations, as we inject the same input stream on all active nodes, the input matrix W, is the
identity matrix. The interconnection matrix W,..; takes into account the splitting ratios, the losses, and random
phase shifts uniformly distributed on [—7, 7]. Finally, we use in our simulations a realistic photodetector model
taking into account the detector bandwidth as a low-pass filter with 3 dB cutoff at 25 GHz, and various noise
contributions (including shot and thermal noise).3?

2.2 Single node : nonlinear microring resonator

In this section, we give the model of the nonlinear microring resonator used as a building block in our reservoir
computer. Figure 1(b) depicts a scheme of a SOI microring resonator. This integrated component has been
widely described in?%2* using its coupled-mode theory (CMT) model. A microring resonator is described in the
CMT framework by its input/output relation (given in Eq. (3)), where s;, (resp. Sou¢) is the input signal (resp.
output signal)*, and three states variables : a the complex mode amplitude in the cavity - see Eq. (4) - with |a|?
the energy in the cavity, N the concentration of free carriers (see Eq (5)), and AT the temperatures variations
which variations are depicted in Eq. (6). The full model reads :

Sout = ej(bc Sin + Ra, (3)
da . Yioss
- _ — — . 4
5 [j (Wr + dwp — w) 5 } a + KSin, (4)
dAT AT Tynyasslal?
e 20 Lb'l’ (5)
dt Teh  PSiCp,SiVin
dN N FFCAﬁS'02|a|4
g =——+ +2a (6)
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where w = 27e is the optical pulsation of the injected light, w, = 2mc¢/\, is the resonance pulsation of the
nonlinear microring resonator, dw,; is a nonlinear optical detuning that depends on the variations of the tem-
perature AT and the amount of free carriers N, vjyss (\a|27 N ) is the total loss in the cavity due to imperfect
coupling, radiations, and absorption. k is the coupling coefficient between the ring resonator and the waveguide.

The other parameters are imposed by the design of the microring, and in particular the material properties.
Tth, and Ty. are the relaxation times respectively associated to the temperature variations and the free carriers.
Cp,si is the thermal capacity of the silicon, Bg; the constant describing the two-photons absorption in the silicon,
ng; is the refractive index of the bulk silicon, and pg; the density of the silicon. We also define the effective
volumes and confinements for the nonlinear effects (two-photons absorption (T"PA) and free carrier absorption
(FCA)) : T'rpa, Vrpa, Trca, and Vrpca. See Ref. 24%* for a more detailed description of the model, and note
that we use the same numerical values of the parameters.

Figure 1(c) shows the transmission curve of a nonlinear microring resonator using the model presented above,
with a resonance wavelength A\, = 1552.77 nm. This transmission curve presents an asymmetry in the resonance
of the microring resonator, due to nonlinear effect TPA and FCA.?* This figure also shows how such an integrated
element can be used as a notch optical filter, since a very specific band of frequency is cut off.

3. DYNAMICAL PROPERTIES

We present in this section dynamical results for (i) a nonlinear microring resonator as a single element, and (ii)
a 4 x 4 swirl network of integrated ring resonators.

*\sm\Q and |sm“5|2 are respectively the input and output power in the microring resonator.



3.1 Nonlinear microring resonator

Silicon-on-Insulator microring resonators are nonlinear integrated components used mainly as optical notch
filters (see Fig. 1(c)), but they also have rich nonlinear behaviours. They can show in particular oscillations
(see Fig. 2(f)) or excitability,?* 24 depending on the input parameters. As for any optical injection problem, the
parameters of interest are the input power P, = |s;,|?, and the optical detuning §)\ that is in our model the
wavelength difference between the injected light and the resonance of the microring A = A — A,..
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Figure 2. (a)-(d) Bifurcation diagrams of a nonlinear microring resonator for various values of the optical detuning :
X = —50 pm, A = —20 pm, 6A = 0 pm, and A = 100 pm respectively. (e)-(f) Time series of a nonlinear microring
resonator for (€) : 6A =0 pm, P;, = 0.5 mW (steady-state), and (f) : 6A = 0 pm, P;, = 1.0 mW (self-pulsation).

We perform a more in-depth analysis of the dynamics of a single nonlinear microring by plotting in Fig. 2(a)-
(d) bifurcation diagrams of a ring resonator for various values of the optical detuning. These bifurcation diagrams
are obtained as follows : the CMT-model of a single, uncoupled, nonlinear microring resonator subjected to
power steps (between P;,, o = 0, and various values of P, 1) is integrated using the Euler method, with a 1.0 ps



integration time step, a 10.0 ps sampling time (for graphical representation), and over a total duration of 2.5 us.
For each value of the bifurcation parameter, here P;, ; the high value of the power step, we extract from the
time series the consecutive extrema of the output power (after deleting the transient). Hence the system is on a
steady-state if there is only one point, and the system is oscillating if there are two or more points.

Figures 2(a)-(d) show bifurcation diagrams of an uncoupled ring resonator for respectively dA = —50 pm,
oA = —20 pm, 6\ = 0 pm, and 6\ = 100 pm. For A\ = —50 pm, the microring is stable for any injection. For
other values of the optical detuning, the system can be both on a steady state or self pulsating depending on the
high value of the power step. For 6\ = —20 pm, the microring oscillates if FP;, 1 > 3.5 mW, for A = 0 pm, the
microring oscillates if Py, 1 > 0.54 mW, and for A = 100 pm, the microring oscillates if P, 1 > 2.3 mW.

We give in Figs. 2(e)-(f) examples of time series of a single nonlinear microring resonator for 6\ = 0 pm and
respectively Pj, 1 = 0.5 mW and P;,; = 1.0 mW. The microring is on a steady state for P;,; = 0.5 mW, and
is oscillating for P;, ;1 = 1.0 mW, as expected from Fig. 2(c). Figure. 2(e) shows the richness of the transient
before the steady-state, which is interesting from a reservoir computing perspective.

3.2 4x4 network
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Figure 3. Time series at one output of the reservoir. Each of the 16 nodes is injected with the same input, that is a power
step. Injection parameters are the same than in Fig. 2(e)-(f). (a) A = 0 pm, P;, = 0.5 mW (steady-state), and (b)
oA =0 pm, P;, = 1.0 mW (self-pulsation).

We present in Fig. 3 time series at the output of the reservoir. The power step (blue curve) is injected on all
nodes, and the output of one ring after the detector is recorded and plotted in green. The injection parameters
are respectively the same than in figures 2(e)-(f). Hence we report a steady-state in Fig.3(a) for A = 0 pm,
P, = 0.5 mW, and self-pulsation in Fig. 3(b) for 6\ = 0 pm, P;;, = 1.0 mW. We also see that the output is
attenuated due to the 3.0 dB loss at each of the power splitters, hence the output power is divided by four since
there are two splitters between the output of the ring and the detector.

We present in this section the performance of the reservoir computer for various design of the reservoir. The
reservoir performance is measured using the Bit Error Rate (BER), that is the number of errors made by the
reservoir divided by the total number of tested bits. Typically, a BER of 1072 is acceptable and can be used in
telecommunication applications providing the additional use of error correction codes.

3.3 Influence of the number of nodes

In this section, we present the performance of the reservoir for various designs in terms of number of nodes in the
reservoir. Typically, we use numerical simulations to measure the performance of the reservoir when we increase
the number of nodes in the square swirl reservoir (1 x 1, 2 x 2, 3 x 3, 4 x 4, and 5 x 5 reservoirs). We inject the
same input stream - 20,000 randomly chosen bits - on all nodes, with an optical detuning dA = 50 pm, a power



modulation at 20 Gb/s between P, 0 = 0.0 mW and P;,; = 0.3 mW, and an interdelay of 31.25 ps, which
represent the length of the interconnection waveguide. These injection parameters are chosen as they give good
performance of the 16-nodes reservoir (see Fig. 5(b) in subsection 3.4). The training of the reservoir is done
using a regularized ridge regression on 16,000 bits, and the testing is done on the 4,000 remaining bits.
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Figure 4. (a) Performance of the reservoir as a function of the number of nodes for a squared reservoir. The task is
the delayed XOR. The data is injected on all nodes, with a power modulation at 20 Gb/s between P, o = 0.0 mW and
Pin,1 = 0.3 mW, with an optical detuning A = 50 pm, and a reservoir interdelay of 31.25 ps. (b)-(e) Labels (blue),
threshold (green), and down-sampled output of the trained reservoir (red), for (b) the 2x2 reservoir, (c) the 3x3 reservoir,
(d) the 4x4 reservoir, and (e) the 5x5 reservoir.

The results are depicted in Fig. 4(a). The performance of the reservoir is acceptable if the number of nodes
in the neural network is higher than 16, and we measure the best measurable performance 2.5 x10~* for both
a4 x4 and a b x 5 reservoir. In the following section, we use the 4 x 4 swirl topology in order to reduce the
simulation time.

Figures 4(b)-(e) shows the target data (in blue), the decision threshold (in dashed green), and the down-
sampled output of the trained reservoir (in red) for respectively the 4-nodes, the 9-nodes, the 16-nodes, and the
25-nodes reservoirs. We see in these figures how well the reservoir performs.

3.4 Reservoir interdelay and mapping of the performance

In this section, we study the influence of three parameters : the reservoir interdelay that is linked to the intrinsic
design of the reservoir through the length of the synapses, the optical detuning, and the high value of the power
modulation. The results are given in Fig. 5.

Figure 5(a) gives the performance of the reservoir on the delayed XOR task as a function of the reservoir
interdelay. In this simulation, all the ring resonators of the reservoir are identical. The simulations parameters
are identical to those of Fig. 4, and we train/test the reservoir with in the same conditions. The figure shows
that the reservoir can perform at best for various designs in terms of interconnection length.

We present in Fig. 5(b) a mapping of the performance of the reservoir for various optical detuning and high
values of the power modulation. For all the simulations, the design of the reservoir if fixed with an interdelay of
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Figure 5. (a) Performance of the reservoir computer as a function of the reservoir interdelay on the delayed XOR task.
The data is injected on all nodes, with a power modulation at 20 Gb/s between Piy, 0 = 0.0 mW and P;,,1 = 0.3 mW, with
an optical detuning 6\ = 50 pm. (b) Mapping - in the optical detuning/power modulation plane - of the performance of
the reservoir computer on the delayed XOR task. The interdelay is 18.75 ps. The minimum error rate in (a) and (b) is
2.5 x 107%.

18.75 ps. In order to study the robustness of the reservoir, we have introduced heterogeneities in the resonance
frequency of the ring resonators. Typically, the resonance frequencies of the 16 microring resonators follow a
Gaussian distribution centred at A, with a 10 pm standard deviation, which is a rather pessimistic value with
respect to the current technology. For all the simulations, the same input stream of 15,000 bits is fed at 20 Gb/s
on all 16-nodes of the reservoir. We realise the training on 12,000 bits and the testing on the 3,000 remaining
bits.

We see in this map that the reservoir can perform at acceptable levels of performance for various injection
parameters, and for low power consumption. Indeed the average power consumption of the reservoir is given by
Eq. (7) :

Pino+ Pt

< Ptotal >= Nnodes < Pln >= f Nnodesa (7)

where Npoq4es is the number of nodes, and P;, ; the high value of the power modulation. Hence, we can find
a set of injection parameters where the reservoir computer performs at best with very low power consumption.
For instance for a power modulation between P;, o = 0.0 mW and P, ; = 0.1 mW, at A = 50 pm, the BER is
lower than 1073 and the total averaged power is 0.8 mW.

4. CONCLUSION

Finally, we have suggested a novel integrated reservoir architecture using nonlinear microring resonators as nodes,
that can perform very well on nonlinear Boolean task for various operating parameter conditions. We have also
connected the nonlinear dynamical properties of the single node of the reservoir (optical detuning, optical power)
to the performances of the reservoir computer. Our results motivate further investigations on the performance of
this kind of structures, more specifically by studying the performances on other tasks as time series generation,
chaos prediction, or nonlinear-channel equalization, with final objective of integrated, high-speed, energy efficient,
and reconfigurable all-optical data processing.
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