
Modelling the energy consumption for over-the-air
software updates in LPWAN networks: SigFox, LoRa

and IEEE 802.15.4g.

Peter Ruckebusch1,∗, Spilios Giannoulis, Ingrid Moerman, Jeroen Hoebeke and
Eli De Poorter

Department of Information Technology
IDLAB - Ghent University - IMEC

Ghent, Belgium
E-mail: first.last@ugent.be

Abstract

The recent trend towards the use of low-power wide-area-networks (LPWAN)

communication technologies in the Internet of Things such as SigFox, Lora and

Weightless gives rise to promising applications in smart grids, smart city, smart

logistics, etc. where tens of thousands of sensors in a large area are connected

to a single gateway. However, to manage such a sheer number of deployed

devices, solutions to provide over-the-air firmware updates are required. This

paper analyses the feasibility of over-the-air (partial) software updates for three

LPWAN technologies (LoRa, SigFox and IEEE-802.15.4g) and discusses the best

suited update method for different scenarios: full system updates, application

updates and network stack updates.

The results indicate that full firmware upgrades consume a substantial amount

of energy, especially for the lowest bit-rate LPWAN technologies such as SigFox

which drains a single AA battery with 2% when performing a version update.

However, technologies with a similar range (i.e. LoRa SF12) require only 0.12%.

The trade-off between range and energy (or bit-rate) becomes clear when con-

sidering that the least sensitive technology (IEEE-802.15.4g-OFDM) consumes

only 0.0001%. Partial updates require significantly less energy for all technolo-

∗Corresponding author

Preprint submitted to Journal of Internet of Things September 19, 2018

gies. Adding a single application uses 6 to 38 times less energy compared to

a firmware update, depending on the update method and LPWAN technology.

Even partial network stack updates (i.e. MAC) cost 3 to 8 times less energy,

making over-the-air updates feasible.

Keywords: LPWAN; Internet-of-Things; partial over-the-air software updates;

network management; SigFox; LoRa; IEEE-802.15.4g

1. Introduction

In recent years low-power wide-area-networks (LPWAN) such as NB-IoT

LoRa, SigFox and IEEE-802.15.4g gained increasing interest from industry and

the scientific community in fields related to the Internet-of-Things (IoT). The

promise of providing large coverage for low power devices is a key enabler for5

many use cases in application domains such as smart grids, smart city, smart

logistics, etc. because a single LPWAN gateway can serve thousands of sensors

within a range of several kilometres. To this end, most LPWANs operate in

the sub-1 GHz frequency bands and therefore experience less attenuation and

multipath fading.10

Although the increased range of LPWAN technologies is appealing for many

use cases, LPWAN technologies also have disadvantages. (i) Firstly, they achieve

a longer range by using more energy per transmitted bit. The coverage of LP-

WAN devices is increased by using a lower modulation rate, effectively putting

more energy in each transmitted bit (or symbol), thereby resulting in a higher15

link budget. (ii) Secondly, low power operation is achieved by using a sim-

ple star topology, applying an ultra low radio duty cycle, and using a simple,

non-synchronised lightweight medium access control protocol such as slotted

aloha. As a result, most LPWAN devices only listen sporadically for downlink

messages, in most cases just after an uplink transmission.20

The aforementioned LPWAN constraints, i.e. the low data rate and low

complexity, limit the potential for over-the-air reconfiguration and updates of

LPWAN devices. For this reason, most current LPWAN deployments focus

2

on enabling an uplink for thousands of simple sensors, allowing them to re-

port sensor readings at relatively low reporting intervals. Network management25

functionality of pervasive IoT networks consisting of constrained devices is still

limited. However, it can be argued that over-the-air (partial) software updates

are essential for the long-term sustainability and security of deployed networks,

especially since in many cases the cost for a manual intervention is a multi-

tude of the cost of the device itself. Post deployment software updates also30

allow early roll-outs and shorter time-to-market since applications, services or

network protocols can be added afterwards.

This paper analysis the feasibility of over-the-air (OTA) software updates

in LPWAN networks. More specifically, the cost for over-the-air updates in

terms of energy consumption for different technologies (SigFox, LoRa and IEEE35

802.15.4g) and radio configurations are determined and compared.

The remainder of this paper is structured as follows. First, Section 2 gives an

overview of related work. Next, Section 3 provides a mathematical energy con-

sumption model that is applicable to multiple LPWAN technologies. Section 4

discusses the overhead of different over-the-air software update approaches. Af-40

terwards, in Section 5, the energy consumption models are applied to these

different software update approaches. Finally, Section 6 concludes the paper.

2. Background

2.1. LPWAN Technology Overview

There exist a wide variety of proprietary and standardised LPWAN tech-45

nologies adopting different modulation and coding schemes (MCS). This sec-

tion gives a high level summary (a more detailed overview can be found in e.g.

[1]). Generally speaking, the different PHYs used in LPWANs can be classified

as (ultra) narrow-band, spread spectrum or OFDM-based. Table 1 gives an

overview of multiple LPWAN technologies for each class.50

3

T
a
b

le
1
:

O
v
er

v
ie

w
o
f

L
P

W
A

N
te

ch
n

o
lo

g
ie

s.
T

h
er

e
a
re

th
re

e
cl

a
ss

es
:

a
)

(u
lt

ra
)

n
a
rr

o
w

b
a
n

d
;

b
)

sp
re

a
d

sp
ec

tr
u

m
;

c)
O

F
D

M
.

N
a
r
r
o
w
-b

a
n
d

S
p
r
e
a
d
-s
p
e
c
tr
u
m

O
F
D
M

-b
a
se

d

T
e
c
h
n
o
lo
g
y

S
ig
F
o
x

IE
E
E
-

8
0
2
.1
5
.4
g

W
e
ig
h
tl
e
ss

L
o
R
a

IE
E
E
-

8
0
2
.1
5
.4
g

IN
G
E
N
U

IE
E
E
-

8
0
2
.1
5
.4
g

IE
E
E
-

8
0
2
.1
1
a
h

N
B
-I
O
T

M
C

S
U

L
:

D
B

P
S

K

D
L

:
G

F
S

K

M
R

-F
S

K
G

M
S

K

o
ff

se
t-

Q
P

S
K

C
S

S
D

S
S

S

M
R

-O
Q

P
S

K

D
S

S
S

U
L

:
R

P
M

A

D
L

:
C

D
M

A

B
/
Q

-P
S

K

1
6
-Q

A
M

B
/
Q

-P
S

K

1
6
/
6
4
/
2
5
6
-

Q
A

M

U
L

:
π

/
2
-B

P
S

K

o
r
π

/
4
-Q

P
S

K

D
L

:
Q

P
S

K

B
a
n

d
w

it
h

1
0
0

H
z

1
2
.5

k
H

z
D

L
:

5
0
/
1
0
0

k
H

z

U
L

:
1
2
.5

/
1
0
0

k
H

z

1
2
5

k
H

z
2

M
H

z
1

M
H

z
2
0
0

-
1
2
0
0

k
H

z
1
-1

6
M

H
z

1
8
0

k
H

z

B
a
n

d
su

b
-G

H
z

IS
M

su
b

-G
H

z
&

2
.4

G
h

z
IS

M

su
b

-G
H

z
IS

M
su

b
-G

H
z

IS
M

su
b

-G
H

z
&

2
.4

G
h

z
IS

M

2
.4

G
H

z
IS

M
su

b
-G

H
z

&
2
.4

G
h

z
IS

M

su
b

-G
H

z
IS

M
li
ce

n
se

d

F
E

C
N

Y
Y

Y
Y

Y
Y

Y
Y

M
T

U
U

L
:

1
2
B

D
L

:
8
B

2
k
B

2
5
5
B

2
5
0
B

2
k
B

1
0
k
B

2
k
B

7
9
9
1
B

U
L

:
1
0
0
0
B

D
L

:
6
8
0
B

D
a
ta

ra
te

(k
b

/
s)

U
L

:
0
.1

D
L

0
.6

5
0
-2

0
0

D
L

:
3
.1

2
5
-1

0
0

U
L

:
0
.6

2
5

-
1
0
0

0
.3

-3
7
.5

6
.2

5
-5

0
U

L
:

7
8

D
L

:
1
9
.5

5
0
-8

0
0

1
5
0

-
3
4
6
6
6
6
.7

U
L

:
2
5
0

D
L

:
2
2
6
.7

4

2.1.1. Narrow-band

Narrow-band modulation techniques encode the signal in a low bandwidth

in order to obtain a higher link budget because the noise level, experienced

inside a single narrow-band, is minimal. Decoding a signal therefore does not

require processing gain through frequency de-spreading resulting in a simpler55

transceiver design. Spectrum efficiency is also high because each carrier only

occupies a very narrow-band. The IEEE-802.15.4g standard [2] is a typical

example of narrow-band modulation, using a 12.5 kHz bandwidth.

Some LPWAN technologies further reduce the experienced noise and increase

the number of supported end-devices per unit by squeezing each carrier signal60

in an ultra narrow-band (UNB) of width as short as 100Hz. However, the data

rate decreases as well, thereby increasing the radio-on time. This combined

with spectrum regulations on sharing underlying bands severely limits the max-

imum size and number of data packets. SigFox [3] is an example of a LPWAN

technology that use UNB modulation.65

2.1.2. Spread spectrum

Spread spectrum modulation techniques increase the link budget by spread-

ing a narrow-band signal over a wider frequency band with the same power

density. The resulting transmission is more resilient to interference, eaves-

dropping and jamming. However, decoding requires more processing gain and70

spreading results in lower spectrum efficiency. Different variants of spread spec-

trum techniques are used. LoRa [4] uses Chirp Spread Spectrum (CSS) while

IEEE-802.15.4g [2], Weightless-P [5] and Ingenu [6] use Direct Sequence Spread

Spectrum (DSSS).

2.1.3. OFDM based75

The OFDM based modulation techniques used in IEEE-802.15.4g [2] and

IEEE-802.11ah [7] sacrifice link budget for obtaining higher data rates. The

transmission range is smaller, especially when considering the highest data rate.

NB-IoT[8], standardised by 3GPP in LTE release 13, is another LPWAN tech-

5

Figure 1: Frequency bands and their corresponding duty cycle and transmission power regu-

lations in the EU 863-870 MHz range.

nology that uses OFDM. Because it operates in the licensed spectrum, it can80

achieve relatively high data-rates while still having a large coverage.

2.2. Sub-1 GHz ISM spectrum access.

To cope with the limited amount of available bandwidth in the sub-GHz un-

licensed spectrum, duty cycle regulations are often enforced. For example, there

are 6 sub-GHz frequency bands made available by EU law for non-specific short85

range devices in the 868MHz range and 2 in the 433MHz range. Each band has

a specified maximum allowed transmission power and duty cycle ratio per device

(see Figure 1). The maximum allowed power limits the maximum achievable

transmission range. The duty cycle constraints impose a limit on the maximum

amount of messages that the device can send each hour, thereby impacting the90

design of the routing and MAC protocol. Generally speaking, devices have to

be conform to one or both of the following transmission constraints[9]:

• Duty cycle: devices in a frequency band are only permitted a maximum

cumulative on air time per interval. EU law defines this interval as one

hour. The duty cycles depend on the selected frequency band, but vary95

between 0.1% and 10% (see Figure 1).

• Polite spectrum access: devices implementing polite spectrum access are

not bound by the hard duty cycle limit, but instead a maximum cumu-

lative on air time of 100 s per hour for each possible 200 kHz interval is

6

imposed. Polite spectrum access is defined as the combination of Listen100

Before Talk (LBT) and Adaptive Frequency Agility (AFA). Devices must

first check if the medium is free before transmission (LBT): if the medium

is busy, then the device must wait or check another frequency (AFA).

These constraints combined with the low data rates strongly impact the feasi-

bility for performing OTA updates.105

2.3. Software update methods

Research into the application of software updates in LPWANs is very limited

although it has been identified as one of the key research challenges for long term

sustainability [10, 11, 12]. An overview of existing software update methods

for constrained devices can be found in [13]. More details regarding different110

software update methods for LPWANs will be given in Section 4.

3. Energy consumption models for LPWANs

LPWAN devices need to operate multiple years on a single battery charge.

As such, energy consumption is one of the prime criteria for evaluating the

feasibility of LPWAN software updates. Surprisingly, experimental measure-115

ments that compare energy/power consumption of LPWAN devices could only

be found in [14] which compares the performance (bit-rate vs. energy) for dif-

ferent LoRa modes with a proprietary narrow-band and ultra-narrow band solu-

tion. Therefore, in this section, different LPWAN technologies will be compared

based on input gathered from radio transceiver data-sheets. The current selec-120

tion is limited to radio modules that clearly specify the power consumption and

receiver sensitivity information for a particular MCS configuration. The gath-

ered data is summarised in Table 2. Each row lists the bit-rate (R), receiver

sensitivity (RXsens), transmitter output power (TXop) and Rx/Tx power con-

sumption for a specific MCS configuration of a technology (Ir/It). The last125

three columns contain the maximum transmission unit (MTU), PHY header

size (PHS) and ack size (Lack) as defined in the standard or technical specifi-

cation.

7

T
a
b

le
2
:

B
it

-r
a
te

,
re

ce
iv

er
se

n
si

ti
v
it

y,
tr

a
n

sm
it

o
u

tp
u

t
p

o
w

er
a
n

d
R

x
/
T

x
p

o
w

er
re

q
u

ir
em

en
ts

fo
r

d
iff

er
en

t
te

ch
n

o
lo

g
ie

s
a
n

d
M

C
S

co
n

fi
g
u

ra
ti

o
n

s.

T
ra

n
sc

ei
v
er

T
ra

n
sc

ei
v
er

C
o
n

fi
g
u

ra
ti

o
n

R (k
b

it
/
s)

T
X

o
p

(d
B

m
)

R
X

s
e
n
s

(d
B

m
)

I r (A
)

I t (A
)

M
T
U

(b
y
te

s)

P
H
S

(b
y
te

s)

L
a
c
k

(b
y
te

s)

S
em

T
ec

h
S

X
1
2
5
7

IE
E

E
-8

0
2
.1

5
.4

g
M

R
-O

F
D

M
O

p
ti

o
n

3
1
6
-Q

A
M

C
R

3
/
4

6
0
0

5
-9

7
0
.0

2
0
.0

5
8

2
0
4
7

1
2

7

A
tm

el
A

T
8
6
R

F
2
1
5

IE
E

E
-8

0
2
.1

5
.4

g
M

R
-2

F
S

K
5
0

k
sy

m
b

o
ls

/
s

C
S

2
0
0
k
H

z
5
0

1
4

-1
1
4

0
.0

1
5

0
.0

5
6

2
0
4
7

8
7

IE
E

E
-8

0
2
.1

5
.4

g
M

R
-O

Q
P

S
K

C
h

ip
ra

te
1
0
0
k
b

it
/
s,

R
a
te

m
o
d

e
0

6
.2

5
1
4

-1
2
3

0
.0

1
7

0
.0

5
6

2
0
4
7

1
0

7

S
em

T
ec

h
S

X
1
2
7
6

L
o
R

a
C

S
S

S
F

7
C

R
4
/
5

B
W

2
5
0

k
H

z
1
0
.9

3
8

1
4

-1
2
0

0
.0

1
1
6

0
.0

4
4

2
5
0

-
5

L
o
R

a
C

S
S

S
F

7
C

R
4
/
5

B
W

1
2
5

k
H

z
5
.4

6
8
8

1
4

-1
2
3

0
.0

1
0
8

0
.0

4
4

2
5
0

-
5

L
o
R

a
C

S
S

S
F

8
C

R
4
/
5

B
W

1
2
5

k
H

z
3
.1

2
5

1
4

-1
2
6

0
.0

1
0
8

0
.0

4
4

2
5
0

-
5

L
o
R

a
C

S
S

S
F

9
C

R
4
/
5

B
W

1
2
5

k
H

z
1
.7

5
7
8

1
4

-1
2
9

0
.0

1
0
8

0
.0

4
4

1
2
3

-
5

L
o
R

a
C

S
S

S
F

1
0

C
R

4
/
5

B
W

1
2
5

k
H

z
0
.9

7
6
6

1
4

-1
3
2

0
.0

1
0
8

0
.0

4
4

5
9

-
5

L
o
R

a
C

S
S

S
F

1
1

C
R

4
/
5

B
W

1
2
5

k
H

z
0
.5

3
7
1

1
4

-1
3
4
.5

0
.0

1
0
8

0
.0

4
4

5
9

-
5

L
o
R

a
C

S
S

S
F

1
2

C
R

4
/
5

B
W

1
2
5

k
H

z
0
.2

9
3

1
4

-1
3
7

0
.0

1
0
8

0
.0

4
4

5
9

-
5

O
n

se
m

i
A

X
S

F
S

ig
F

o
x

U
N

B
U

L
:

D
B

P
S

K
D

L
:

G
F

S
K

D
L

:
0
.6

U
L

:
0
.1

1
4

-1
2
6

0
.0

1
0
.0

4
9

D
L

:
8

U
L

:

1
2

D
L

:

2
0

U
L

:

1
4

0

8

3.1. Down-link range vs. energy consumption

Based on the input from Table 2 it is clear that increased down-link range130

(i.e. RXsens) comes at the cost of a higher energy consumption and lower data

rate. Figure 2 plots the charge (in micro Coulomb) required to receive one bit

vs. the receiver sensitivity (in dBm).

• For IEEE-802.15.4g, the OFDM option has the lowest sensitivity, followed

by the narrow-band option that increases the line-of-sight (LOS) range135

nearly by a factor 8 (e.g. +17dB) at the cost of a 9 time higher charge.

The spread spectrum option (MR-QPSK DSSS) further increases the LOS

range by a factor 3 (e.g. +9dB), again requiring 9 times more charge.

• For LoRa, increasing the spreading factor (SF) by one, always results

in an increased LOS range of +-50% while requiring +- 1.8 time more140

electrical charge. A similar conclusion can be drawn when considering

the bandwidth. Lowering the bandwidth by half, increases the LOS range

by +-50% while using +- 1.8 time more electrical charge. The highest

sensitivity is achieved by LoRa using SF12.

Figure 2 shows that the ultra narrow-band SigFox solution is somewhat an145

outlier compared to the other technologies. It achieves a high sensitivity of -126

but requires 4.8 time more charge compared to LoRa SF8 which has the same

sensitivity. Moreover, SigFox UNB has a +- 50% longer range compared to the

DSSS option of IEEE-802.15.4g but requiring 6 times more charge.

3.2. Link-layer energy model for down-link transactions150

To estimate the energy costs of a software update (e.g. a down-link trans-

action), an appropriate energy model is required. Most existing energy models

are tailored for a specific PHY/MAC combination[15, 16] making it hard to

compare different technologies. For this reason, in this section a more generic

analytic model considering only PHY layer bit-rate [17] will be created using155

the input data from Table 2.

9

0

5

10

15

20

25

30

35

40

-140 -135 -130 -125 -120 -115 -110 -105 -100 -95 -90 -85 -80

R
X

 C
h

ar
ge

/b
it

 [
u

C
]

RX sensitivity [dBm]

RX sensitivity and charge/bit for different technologies

IEEE-802.15.4g OFDM

IEEE-802.15.4g 2FSK

IEEE-802.15.4g DSSS

LoRa SF7 250 kHz

LoRa SF7 125 kHz

LoRa SF8 125 kHz

LoRa SF9 125 kHz

LoRa SF10 125 kHz

LoRa SF11 125 kHz

LoRa SF12 125 kHz

SigFox UNB

Figure 2: Energy consumption versus range trade-offs. X-axis: receiver sensitivity (in

dBm) for different technologies and MCS configurations. Y-axis: electrical charge (in mi-

cro Coulomb) required to send one bit.

Equation 1 expresses an upper-bound for the energy required to receive/-

transmit a single packet over a wireless link (
−→
ij) including acknowledgement

taking into account a certain success probability for the down- and up-link.

The expression includes down- and up-link bit-rate (resp. Rd and Ru), message

size in bits (resp. Ld and Lu) and success probability (resp. pd and pu). The

power required to run the transmitter (receiver) circuitry is expressed by Pt

(Pr). The formulae in Equation 1 have two parts: (1) send/receive a packet; (2)

receive/send acknowledgement. The first part contains both the success proba-

bility for down- and uplink (resp. pd and pu) because a data packet retransmis-

sion can be triggered when loosing either a data packet or an acknowledgement.

The second part (i.e. sending the ack) only occurs after a successful packet

transmission/reception.E [et (i, j)] ≤ Pt
Ld

pdpuRd
+ Pr

Lu

puRu

E [er (i, j)] ≤ Pr
Ld

pdpuRd
+ Pt

Lu

puRu

(1)

Note that Equation 1 overestimates the energy because it assumes that all failed

packets are fully received while in many cases the receiver can go to idle mode

earlier.

10

3.3. Applying the model to different LPWAN technologies160

In order to apply the aforementioned model on LPWANs, several assump-

tions are made.

• First, a single hop topology with a single mains-powered gateway is as-

sumed. Therefore, only the energy consumption of the battery-powered

end-devices is calculated (i.e. E[er(i, j)]).165

• Second, it is also important to take into account the maximum payload

size MTU , PHY header size PHS and ACK size (Lack) because this has a

non-negligible impact on the number of packets that need to be sent and

the per packet PHY overhead (e.g. preamble, header, CRC, ..). These

parameters are included in Code fragments 1 & 2.170

• Third, sometimes bit-rate cannot be used directly to calculate the time-on-

air (ToA). For instance, in LoRa the ToA is determined by the bandwidth

(BW), spreading factor (SF) and coding rate (CR). For this reason, the

generic calculation in Code fragment 1 is replaced by Code fragment 2

specific for LoRa.175

• Finally, MAC overhead (i.e. headers and scheduling) is ignored. The mo-

tivation behind this is that MAC protocols are often highly configurable,

allowing to fine-tune the behaviour for specific application requirements.

Moreover, as LPWAN specifications are still work in progress, it can be

expected that novel MAC protocols will be introduced, taking into ac-180

count special application requirements such as OTA SW updates. In any

case, energy models for specific MAC protocols can use the proposed PHY

model as a basis.

Code fragments 1 and 2 demonstrate how the energy for a downlink trans-

action is calculated. First, CalculateEnergyTotal splits the total transaction in185

packets according to the MTU. Second, the ToA of both the packet and ack are

calculated (resp. Tpacket and Tack), taking into account the bit-rate, PHS and

ack length. This information is then passed to CalculateEnergyPacket that uses

11

Eq. 1 to calculate the energy cost. In code fragment 2, the ToA calculations

are modified specifically for LoRa according to the formula defined in [18], using190

BW, SF and CR as input parameters. The function CalculateEnergyTotal has

a time complexity of O(n) with n the number of update messages that need to

be sent. The functions CalculateEnergyPacket and CalculateEnergyLora have

O(1) time complexity.
195

def CalculateEnergyPacket (Tpacket , Tack , Pr , Pt , pd , pu) :

return (Pr ∗ Tpacket) / (pd ∗ pu)) + ((Pt ∗ Tack) / pu)

def CalculateEnergyTotal (Ltotal ,Rd , Ru , pd , pu , Pr , Pt , PHSd , PHSu ,

MTUd , MTUu , Lack) :200

Etotal = 0

while Ltotal >= MTUd :

Ltotal −= MTUd

Tpacket = (PHSd + MTUd) / Rd

Tack = (PHSu + Lack) / Ru205

Etotal += CalculateEnergyPacket (Tpacket , Tack , Pr , Pt , pd , pu)

i f Ltotal > 0 :

Tpacket = (PHSd + Ltotal) / Rd

Tack = (Lack + PHSu) / Ru

Etotal += CalculateEnergyPacket (Tpacket , Tack , Pr , Pt , pd , pu)210

return Etotal

Code fragment 1: Code fragment that calculates the energy consumption of an end-device for

a down-link transaction

def CalculateEnergyLora (Ltotal , pd , pu , Pr , Pt , MTUd , MTUu , Lack , SF

, CR , BW) :215

Tsym = 2SF /BW

Tpreamble = (5 + 4.25) ∗ Tsym
Etotal = 0

while Ltotal >= MTUd :

Ltotal −= MTUd220

Nsym payload = 8 + Ce i l ((((MTUd) − (4 ∗ SF) + 28 + 16) / (4 ∗ SF

)) , 1) ∗ (CR + 4)

Tpacket = Nsym payload ∗ Tsym + Tpreamble

Nsym ack = 8 + Ce i l (((Lack − 4 ∗ SF + 28 + 16) / (4 ∗ SF)) , 1) ∗

(CR + 4)225

12

802.15.4g OFDM 802.15.4g 2FSK 802.15.4g DSSS LoRa SF7 250 kHz LoRa SF7 125 kHz LoRa SF8 125 kHz LoRa SF9 125 kHz LoRa SF10 125 kHz LoRa SF11 125 kHz LoRa SF12 125 kHz SigFox UNB

Total 0.0001 0.0008 0.0070 0.0036 0.0071 0.0143 0.0253 0.0505 0.0979 0.1698 0.3765

TX 0.000066816 0.00064512 0.005677056 0.0030 0.0060 0.0121 0.0209 0.0418 0.0837 0.1414 0.3669

RX 0.00001824 0.0001296 0.001331712 0.0006 0.0011 0.0022 0.0043 0.0087 0.0142 0.0283 0.0096

1.526E-05

6.104E-05

0.0002441

0.0009766

0.0039063

0.015625

0.0625

0.25

1

En
er

gy
 [

Jo
u

le
]

Energy cost for an uplink message with ack

Figure 3: Energy (in Joule) required to send an up-link message containing 12 payload bytes

and to receive an acknowledgement. A logarithmic scale base 2 is used.

Tack = Nsym ack ∗ Tsym + Tpreamble

Etotal += CalculateEnergyPacket (Tpacket , Tack , Pr , Pt , pd , pu)

i f Ltotal > 0 :

Nsym payload = 8 + Ce i l ((((Ltotal) − (4 ∗ SF) + 28 + 16) / (4 ∗ SF

)) , 1) ∗ (CR + 4)230

Tpacket = Nsym payload ∗ Tsym + Tpreamble

Nsym ack = 8 + Ce i l (((Lack − 4 ∗ SF + 28 + 16) / (4 ∗ SF)) , 1) ∗

(CR + 4)

Tack = Nsym ack ∗ Tsym + Tpreamble

Etotal += CalculateEnergyPacket (Tpacket , Tack , Pr , Pt , pd , pu)235

return Etotal

Code fragment 2: Code fragment that calculates the energy consumption of an end-device for

a down-link LoRa transaction

Using these formula’s it is possible to calculate the energy cost for a particular

down- or uplink transaction. For instance, Figure 3 depicts for each technology

the energy cost in Joule to transmit 12 payload bytes and receive an acknowl-240

edgement (note that a logarithmic scale is used). The graph clearly shows that

SigFox requires much more energy compared to the other technologies (i.e. 26.4

time more then the equal sensitive LoRa SF8 125 kHz).

13

4. Over-the-air update methods for LPWANs

Table 3 gives an overview of 3 different OTA software updates methods that245

can be applied in constrained LPWANs [13]:

• Firmware-based, with or without binary differential patching.

• Dynamic linking of binary code on the constrained devices, further divided

based on the bindings between code blocks (either strict of loose).

• Pre-linking (i.e. offline on a more powerful computer) of binary code,250

again divided based on the binding type.

Table 3 also includes a qualitative analysis of performance indicators. The

second column describes the scope to which code updates can be applied, vary-

ing from full firmware to application level only. The third and fourth column

indicate respectively the bandwidth and latency requirements based on the num-255

ber of bytes that need to be transferred. The fifth column sets forth the network

disruption caused by the update before the normal network operation can re-

sume. The last column estimates the end-to-end complexity of the particular

update method.

The following subsections detail each of the aforementioned update methods.260

4.1. Firmware-based

The least complex and most used approach for post-deployment code up-

dates replaces the entire image. All source code is compiled into a single image

and installed on each device. If an update is required, a new image must be com-

piled and distributed to all nodes. Because the entire image is re-programmable,265

the full scope of the firmware (OS, network and application) can be updated.

Among all approaches, the bandwidth and latency overhead is the highest since

the entire image must be distributed. Moreover, firmware updates require a

system reboot and state recovery which is highly disruptive.

To make the update process more efficient in terms of bandwidth and latency,270

binary differential patching techniques can be used in order to reduce the size of

14

T
a
b

le
3
:

O
v
er

v
ie

w
o
f

so
ft

w
a
re

u
p

d
a
te

m
et

h
o
d

s
fo

r
co

n
st

ra
in

ed
L

P
W

A
N

s.
T

h
e

o
v
er

v
ie

w
g
iv

es
a

q
u

a
li
ta

ti
v
e

a
n

a
ly

si
s

o
f

p
er

fo
rm

a
n

ce
in

d
ic

a
to

rs
.

U
p
d
a
te

m
e
th

o
d

S
c
o
p
e

B
a
n
d
w
id
th

L
a
te
n
c
y

D
is
ru

p
ti
v
e
n
e
ssC

o
m
p
le
x
it
y

U
p

d
at

e
F

u
ll

H
ig

h
H

ig
h

H
ig

h
L

ow
F

ir
m

w
ar

e
P

at
ch

F
u

ll
M

ed
iu

m
-

h
ig

h

M
ed

iu
m

-

h
ig

h

H
ig

h
M

ed
iu

m

S
tr

ic
t

b
in

d
in

g
A

p
p

li
ca

ti
o
n

s
L

ow
-

m
ed

iu
m

L
ow

-

m
ed

iu
m

L
ow

L
ow

-

m
ed

iu
m

D
y
n

am
ic

li
n

k
in

g
L

o
os

e
b

in
d

in
g

N
et

w
o
rk

&
A

p
p

li
ca

ti
o
n

s
M

ed
iu

m
M

ed
iu

m
L

ow
-

m
ed

iu
m

M
ed

iu
m

-

h
ig

h

S
tr

ic
t

b
in

d
in

g
A

p
p

li
ca

ti
o
n

s
L

ow
L

ow
L

ow
M

ed
iu

m
-

h
ig

h
P

re
-l

in
k
in

g
L

o
os

e
b

in
d

in
g

N
et

w
o
rk

&
A

p
p

li
ca

ti
o
n

s
L

ow
-

m
ed

iu
m

L
ow

-

m
ed

iu
m

L
ow

-

m
ed

iu
m

H
ig

h

15

the image that needs to be transferred. In this case, only the difference between

the old and new binary (i.e. binary patch) is disseminated to each device where

the new binary is reconstructed using the old binary and the patch file [19].

This comes however at the cost of an increased complexity. Patching techniques275

can also be applied to the methods discussed in the next subsections.

Currently there are a number of companies that are developing mechanisms

to enable OTA firmware updates[20, 21, 22].

4.2. Dynamic linking

Another approach is to use a linker that is able to install software components280

at run-time in an active system. The linker relocates code (data) section to

the allocated ROM (RAM) memory regions and resolves undefined references

using a symbol look-up table. Since the individual components are smaller, the

bandwidth and latency overhead is lower compared to firmware based solutions.

The disruption is also lower because this approach does not require a system285

reboot and therefore state information can be transferred between updates. The

complexity on the other hand increases because several task are required during

installation (i.e. memory allocation, address relocation, undefined symbol look-

up, etc.).

Solutions that rely on a dynamic linker can be further categorised by the290

binding model they use. The binding model defines how code blocks are linked

post-deployment to the external functionality (functions, shared memory, ..)

provided by code blocks already present. Currently, two models are applied: i)

strict binding and ii) loosely coupled binding:

• The strict binding model, generally used in device firmwares, statically295

links code blocks to each-other, i.e. the linker replaces undefined symbols

in one code block with the correct physical address of another code block.

For this purpose, a run-time linker requires a global symbol table contain-

ing the memory addresses of all global symbols in the running firmware.

Because the symbol table is generated before deployment, additions and300

16

updates are restricted to component interactions that use pre-defined in-

teraction functions.

• The loosely coupled binding model uses an indirect function call mecha-

nism and jump tables to redirect function calls between code blocks. By

manipulating the jump tables, it is now possible to update code blocks305

in the entire firmware, thereby extending the scope. On the other hand,

the linking process is more complex as it requires to alter jump tables

which could be embedded in each software component. Moreover, more

information is required which increases the size of the update (and hence

the bandwidth and latency).310

4.3. Pre-linking with code injection

The task of the dynamic linker can also be offloaded to a more powerful

server. Software components are now pre-linked before they are disseminated

to the nodes. This strongly reduces the size of the update, requiring significantly

less bandwidth and latency. On the other hand, pre-linking requires full knowl-315

edge about the firmware and memory map of each device in order to execute

the same task as the dynamic linker. Moreover, the initial firmware must also

be adapted in order to support code injection. This makes it more complex,

especially in heterogeneous networks.

Again, there are two options based on the required scope. If only top level320

applications need to be added/updated, a strict binding model can be applied

and the code block can simply be injected, only requiring a starting point to

activate the component. Otherwise, a loosely coupled binding model should

be applied. This implies that the jump tables are modified, requiring more

information and a complex loading process.325

4.4. Script interpreters

Another possible method, not mentioned in Table 3, relies on script inter-

preters for enabling upgrade-ability. Due to the run-time interpretation, scripts

17

can be added or updated after deployment. Some well-known scripting lan-

guages like Python[23] and JavaScript[24] were already ported to embedded330

devices. Despite this, they still require a substantial amount of memory and

CPU overhead. Moreover, they work on top of existing operating system and

network stack functionality, limiting the scope to the application layer. For

these reasons scripts are not suited for the low-capability hardware platforms

targeted in this paper.335

5. Feasibility of OTA software updates in LPWANs

In order to evaluate the feasibility of OTA software updates in LPWANs,

the size of the update must be known. First, the transaction size is determined,

i.e. the minimal number of bytes that need to be transferred to a device in order

to allow a software update using a particular update method. Afterwards, the340

energy cost is estimated for the different LPWAN technologies based on the

energy models discussed in Section 3. All results presented in this paper and

an implementation of the energy models, can be accessed online [25].

Three different scenario’s are considered:

• Full operating system update. For example, updating the embedded OS345

from Contiki 3.0 to Contiki 3.1.

• Single application update. For example, upgrading a simple application to

a more robust applications with acknowledgements and retransmissions.

• Low level network protocol update. For example, updating the MAC

protocol from ContikiMAC 3.0 to ContikiMAC 3.1.350

In the first scenario only a full firmware update is possible, since the entire code

is susceptible to changes in a version update. In the second scenario all update

methods described in Section 4 are possible, while in the third scenario, only

firmware-based and code compiled with a loosely coupled binding model can be

18

used1.355

Table 4 lists the update sizes of the new executable (i.e. down-link transac-

tion size) and the installation energy cost for each of the investigated scenario’s

and methods. The size is determined by analysing the size of the executable

object files (i.e. ELF Executable and Linkable Format[26]) generated when

building Contiki operating system in the different update scenarios. At a first360

glance, it also seams surprising that an application update requires more bytes

than a version update. This is because the application update scenario was

created in Contiki 3.1 and logic (i.e. ROM/RAM) was added, hence the larger

file size. The overall impact on the energy consumption will be investigated in

the following subsections.365

Table 4 also estimates the minimal installation energy cost, calculated using

Equation 2. It is defined as the cost to write nelf bytes to store the ELF file,

read the same nelf bytes for processing (linking and relocating) and copying

the processed ROM and RAM bytes (resp. nrom and nram) to the correct

memory location. The energy cost to write/read a single byte to ROM/RAM is

denoted as Ewrite
rom , Eread

rom , Ewrite
ram and Eread

ram and listed in Table 5 for the 32-MhZ

CC2538 micro-controller2. Note that the CPU processing for the ELF file is not

accounted, only the copy and read operations are calculated.

Einstall (nelf , nrom, nram) > nelf × Ewrite
rom + nelf × Eread

rom

+ nrom × Ewrite
rom + nram × Ewrite

ram (2)

The terms in Equation 2 estimates the cost to: (1) write the elf file to ROM;

(2) read the ELF file for processing; (3) write the relocated ROM; and (4) write

the relocated RAM.

1Code blocks that use a strict binding model only allow partial updates of top-level appli-

cations.
2http://www.ti.com/lit/ds/symlink/cc2538.pdf [last accessed on 17/07/2018]

19

T
a
b

le
4
:

U
p

d
a
te

si
ze

s
in

th
re

e
d

iff
er

en
t

sc
en

a
ri

o
s

(f
u

ll
sy

st
em

u
p

d
a
te

,
a
p

p
li
ca

ti
o
n

u
p

d
a
te

a
n

d
M

A
C

u
p

d
a
te

)
fo

r
d

iff
er

en
t

so
ft

w
a
re

u
p

d
a
te

m
et

h
o
d

s.

T
h

e
en

er
g
y

co
st

d
u

ri
n

g
in

st
a
ll
a
ti

o
n

is
a
ls

o
g
iv

en
.

S
ce

n
ar

io
M

et
h

o
d

U
p

d
a
te

si
ze

(b
y
te

s)

In
st

a
ll

E
n
er

g
y

C
o
st

(J
o
u

le
)

F
u

ll
S

y
st

em
U

p
d

at
e

F
ir

m
w

ar
e-

b
a
se

d
2
3
8
7
6

0
.0

1
7
8
9
7
5
9
4

A
p

p
u

p
d

at
e

F
ir

m
w

ar
e-

b
a
se

d
2
4
6
3
2

0
.0

1
8
4
7
0
3
8
1

D
y
n

.
li

n
k
in

g
st

ri
ct

b
in

d
in

g
2
0
0
0

0
.0

0
0
8
8
0
5
4
7

D
y
n

.
li

n
k
in

g
lo

o
se

b
in

d
in

g
3
8
2
4

0
.0

0
1
7
8
5
2
3
1

P
re

-l
in

k
in

g
st

ri
ct

b
in

d
in

g
7
1
6

0
.0

0
0
3
8
7
6
8
4

P
re

-l
in

k
in

g
lo

o
se

b
in

d
in

g
1
3
0
4

0
.0

0
0
8
1
7
9
2
9

M
A

C
u

p
d

at
e

F
ir

m
w

ar
e-

b
a
se

d
2
4
0
1
2

0
.0

1
8
0
0
1
5
8
4

D
y
n

.
li

n
k
in

g
lo

o
se

b
in

d
in

g
7
0
1
6

0
.0

0
3
6
1
8

P
re

-l
in

k
in

g
st

ri
ct

b
in

d
in

g
2
9
0
8

0
.0

0
2
0
4
1
1
4
4

20

Ewrite
rom 0.000000378

Eread
rom 5.85E-09

Ewrite
ram 5.85E-09

Eread
ram 5.85E-09

Table 5: Input parameters for calculating the installation energy cost on a 32-MHz CC2538

micro-controller.

5.1. Scenario 1: full system update

A full firmware upgrade is the only viable option for performing version370

updates of operating systems (e.g. from Contiki 3.0 to Contiki 3.1) because

such an update affects a large part of the code base. Dividing a version update

in multiple smaller updates, i.e. only the changed ELF object files, will have a

higher overall ELF overhead (i.e. an ELF file contains several headers, allowing

to relocate, link and load the binary code). In any case, a version update will375

have the highest transactions size and, consequently, energy cost compared to

the other scenario’s.

Figure 4 depicts the energy cost in Joule for the different technologies. All

calculations assume a battery powered system using a single Lithium-Thionyl-

Chloride (LTC) AA battery with an average output voltage of 3.6V and an380

energy capacity of 2.4Ah (31104 Joule). The chart shows the overall energy

consumed during the update. Note that a logarithmic scale base 2 is used. The

datatable below includes the actual numbers for transmit (TX), receive (RX)

and installation (Install), as well as the number of 12-byte up-link messages

(#UL) including acknowledgements that could have been sent with the same385

energy budget.

The data shows that all three IEEE-802.15.4g options have relatively low TX

overheads. Due to the large IEEE-802.15.4g MTU sizes (i.e. 2047 bytes), the

total number of received packets is small, resulting in less uplink acknowledge-

ments and hence limited TX overhead. In contrast, due to the MTU restrictions390

of SigFox (i.e. max 8 bytes), much more acks are sent and consequently more

21

802.15.4g OFDM 802.15.4g 2FSK 802.15.4g DSSS LoRa SF7 250 kHz LoRa SF7 125 kHz LoRa SF8 125 kHz LoRa SF9 125 kHz LoRa SF10 125 kHz LoRa SF11 125 kHz LoRa SF12 125 kHz SigFox UNB

TOTAL 0.041591546 0.230821754 1.950290042 1.000248729 1.876310629 3.392330833 6.234860789 11.69059713 20.6081108 38.7649461 629.8748576

#UL 488.9901471 297.9421648 278.2643172 277.5661941 263.2710045 237.9942671 246.7918977 231.3720184 210.567251 228.3155143 1672.921069

Install 0.017897594 0.017897594 0.017897594 0.017897594 0.017897594 0.017897594 0.017897594 0.017897594 0.017897594 0.017897594 0.017897594

TX 0.000634752 0.00580608 0.052641792 0.211754189 0.423508378 0.847016755 1.69403351 3.388067021 5.543401882 11.08680376 589.74048

RX 0.0230592 0.20711808 1.879750656 0.770596946 1.434904658 2.527416484 4.522929684 8.284632515 15.04681132 27.66024475 40.11648

0.0002441

0.0004883

0.0009766

0.0019531

0.0039063

0.0078125

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1024
Full system update

Figure 4: Energy cost (in Joule) for performing a full system update for different LPWAN

technologies. Note that a logarithmic scale base 2 is used.

energy is spent in TX. This and the ultra low data-rate are the main reason

why SigFox requires more energy overall, even compared to LoRa SF12 (e.g. a

factor 16 more) which has a higher sensitivity. Another interesting observation

is the constant rate in which the energy cost increases for the different LoRa395

options. For a three dBm increase in RX sensitivity, 1.8 times more energy is

required.

Figure 5 illustrates the distribution of the energy cost in percentage between

RX, TX and Install. In most cases, RX contributes the most to the overall

energy usage except for SigFox as explained earlier. In contrast, TX energy400

consumption is relatively low for the IEEE-802.15.4g technologies due to the

higher MTU. Also notably is the low contribution of the installation in the

overall energy cost, except for IEEE-802.15.4g-OFDM. Generally, the higher

the data rate, the higher the installation overhead.

Note that all aforementioned observation holds for all subsequent scenario’s,405

i.e. the trend in the differences between technologies is similar. The subsequent

scenario’s will hence focus on the differences between update methods for a

number of technologies.

When considering the overall energy capacity of the LTC battery, all tech-

nologies consume less than 0.125% except SigFox which requires 2%. It is hence410

22

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

802.15.4g OFDM 802.15.4g 2FSK 802.15.4g DSSS LoRa SF7 250 kHz LoRa SF7 125 kHz LoRa SF8 125 kHz LoRa SF9 125 kHz LoRa SF10 125 kHz LoRa SF11 125 kHz LoRa SF12 125 kHz SigFox UNB

Full system updates: distribution of energy consumption

Install RX TX

Figure 5: Distribution of the energy cost in percentage between RX, TX and Install for the

different LPWAN technologies.

arguable that software updates are feasible but this also depends on the overall

requirements in terms of battery lifetime and application data rate. To put

this in perspective, for SigFox a version update equals 1672 up-link messages in

terms of energy cost. This is actually quite a high number (e.g. equals 69 days

of energy for an hourly report interval). A version update for LoRa SF12 only415

costs the same energy as 228 up-link messages, reducing the battery lifetime 9.5

days, which is much more reasonable.

5.2. Scenario 2: application updates

For application updates all methods discussed in Section 4 can be used. In

this case, a simple application that reports sensor data upstream was extended420

with acknowledgements and re-transmissions. As all methods can be applied,

it is a good case study to compare the update methods. Figure 6 depicts the

energy cost for three different LPWAN technologies (IEEE-802.15.4g-OFDM,

LoRa BW 125 kHz SF7 and SigFox UNB) using a firmware upgrade , a dynamic

linker with strict or loose binding model and a pre-linker again with strict or425

loose binding model.

When comparing the different update methods, firmware updates will have a

higher energy cost compared to the alternatives because the size of the update

23

Firmware
upgrade

dyn. Linking
strict binding

dyn. Linking
loose binding

prelinking
strict binding

prelinking
loose binding

Firmware
upgrade

dyn. linking
strict binding

dyn. linking
loose binding

prelinking
strict binding

prelinking
loose binding

Firmware
upgrade

dyn. linking
strict binding

dyn. linking
loose binding

prelinking
strict binding

prelinking
loose binding

802.15.4g OFDM LoRa SF7 125 kHz SigFox UNB

TOTAL 0.042954509 0.002864963 0.005585103 0.00113946 0.002134185 1.935600027 0.156396492 0.302052833 0.056103565 0.105496206 649.7121024 52.75288055 100.8636092 18.98918768 34.39512193

#UL 505.0144487 33.68326044 65.66383324 13.39658578 25.09152793 271.5900851 21.9444803 42.38197636 7.872066423 14.80250217 1725.607955 140.1094269 267.8894942 50.43448199 91.3519939

TX 0.000687648 0.000052896 0.000105792 0.000052896 0.000052896 0.436768358 0.035359949 0.06990889 0.012448973 0.025708954 608.311872 49.392 94.437504 17.78112 32.203584

RX 0.02379648 0.00193152 0.00369408 0.00069888 0.00126336 1.480361288 0.120155996 0.230358712 0.043266908 0.078969324 41.38176 3.36 6.42432 1.20768 2.19072

Install 0.018470381 0.000880547 0.001785231 0.000387684 0.000817929 0.018470381 0.000880547 0.001785231 0.000387684 0.000817929 0.018470381 0.000880547 0.001785231 0.000387684 0.000817929

0.0002441

0.0004883

0.0009766

0.0019531

0.0039063

0.0078125

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1024
Application update

Figure 6: Depicts the estimated energy cost in Joule for performing an application update

for three different LPWAN technologies (IEEE-802.15.4g-OFDM, LoRa BW 125 kHz SF7 and

SigFox UNB) using the different update methods. The datatable lists the energy usage in each

stage (RX, TX, Install) and the number of 12 byte UL messages (including acknowledgement)

that could be sent with the same energy budget. The graphs use a logarithmic scale base 2.

is much bigger. Compared to the other methods, firmware upgrades require

respectively 12.3 (dyn. linking strict binding), 6.4 (dyn. linking loose binding),430

34.2 (pre-linking strict binding) and 18.5 times (pre-linking loose binding) times

more energy on average.

• Using a pre-linker reduces the energy cost with a factor 2.8 compared to

a dynamic linker. This reduction is caused entirely by the smaller file

size. A linked ELF file only contains the actual code, ELF file header and435

program headers. All relocation entries, the symbol table and string table

can be omitted from the file. On the other hand, this method requires that

the pre-linker is perfectly aware of the existing firmware memory map and

the free memory locations of each device.

• Using a loose binding model (i.e. code that can be re-linked at run-time)440

increases the energy cost with a factor 1.9 compared to a strict binding

model. The larger file size is a consequence of the increase in ROM/RAM

required to make the code re-linkable at run-time by replacing direct func-

tion calls with indirect calls using function pointers in a jump table.

24

• To update or add an application with a pre-linked ELF file that uses strict445

binding only requires less then 10 uplink messages for most technologies

except SigFox that requires 50 uplink messages. The dynamic variant

requires less then 0.007% more battery for most technologies (0.10% for

SigFox). Using a loose binding model with a dynamic linker requires

between 34 and 267 uplink messages. Combining a loose binding model450

with a pre-linker reduces this further to 12 and 91 uplink messages.

Overall, it can be concluded that adding or updating an application is fea-

sible using all methods. By applying more sophisticated methods, instead of

firmware updates, the overall energy cost can be greatly reduced. Among these

alternatives there is a clear trade-off between energy cost and update scope, i.e.455

allowing more modules to be updated requires more energy. Moreover, there is

also a trade-off between energy cost and update complexity, i.e. a more com-

plex update system using a pre-linker consumes less energy on the end-device.

For the specific application update considered in this example, over-the-air up-

dates require between 84% and 97% less energy than a full firmware update,460

depending on the update method.

5.3. Scenario 3: MAC updates

The third scenario considers the upgrade of a MAC protocol because MAC

protocols have a large impact on the energy consumption as they directly control

the radio, which dominates the overall energy usage. Moreover, given the com-465

plexity of the algorithms inside MAC protocols they are also very susceptible

to software bugs. This makes them a primary targets for software updates.

Due to their strong interaction with hardware components and other network

protocols, networking protocols can only be updated using firmware updates or

by using a loose binding model that allows re-linking code blocks at run-time.470

For the latter, again two linker options are available: a) a dynamic linker, i.e.

on the device; b) a pre-linker, on the gateway/update server.

Figure 7 depicts the energy cost in Joule using each of these methods for

three different LPWAN technologies (IEEE-802.15.4g-OFDM, LoRa BW 125

25

Firmware upgrade
dyn. Linking loose

binding
prelinking loose binding Firmware upgrade

dyn. Linking loose
binding

prelinking loose binding Firmware upgrade
dyn. Linking loose

binding
prelinking loose binding

802.15.4g OFDM LoRa SF7 125 kHz SigFox UNB

TOTAL 0.041826096 0.010611024 0.004961656 1.889284947 0.553413963 0.229328348 633.4620976 185.057634 76.80703314

Install 0.018001584 0.003618 0.002041144 0.018001584 0.003618 0.002041144 0.018001584 0.003618 0.002041144

RX 0.02318976 0.00678144 0.00281472 1.443354993 0.422427156 0.175058289 40.34496 11.78688 4.89024

TX 0.000634752 0.000211584 0.000105792 0.427928371 0.127368806 0.052228915 593.099136 173.267136 71.914752

#UL 491.7477374 124.753386 58.33399407 265.0914716 77.65124156 32.17777676 1682.448627 491.5052747 203.9962422

0.0002441

0.0004883

0.0009766

0.0019531

0.0039063

0.0078125

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1024
MAC Update

Figure 7: Depicts the estimated energy cost in Joule for performing a MAC update for three

different LPWAN technologies (IEEE-802.15.4g-OFDM, LoRa BW 125 kHz SF7 and SigFox

UNB) using update methods that allow MAC updates (firmware updates or dynamic/pre-

linking with loose binding). The datatable lists the energy usage in each stage (RX, TX,

Install) and the number of 12 byte UL messages (including acknowledgement) that could be

sent with the same energy budget. The graphs use a logarithmic scale base 2.

kHz SF7 and SigFox UNB).475

• The overall energy cost of a firmware-based MAC update is similar to the

previous two scenarios.

• Updating a MAC protocol using a dynamic linker reduces the number of

uplink messages that can be sent between 62 (LoRa SF11, 125 kHz) and

491 (SigFox), while decreasing the energy cost by a factor 3.5 compared480

to a full firmware update.

• Using a pre-linker decreases the average energy cost with a factor 8.2

compared to a full firmware update and 2.3 compared to a dynamic linker.

From these results it can be concluded that MAC updates are feasible in

LPWANs, especially when using software update methods with a loose binding485

model.

26

Full Firmware Full Firmware Stat. Linkable code Dyn. Linkable code Stat. injectable code Dyn. Injectable code Full Firmware Dyn. Linkable code Dyn. Injectable code

Version update Application Update Mac Update

Normal ELF 629.8749 649.7121 52.7529 100.8636 18.9892 34.3951 633.4621 185.0576 76.8070

Patched ELF 342.2765 118.6068 39.0375 79.5525 11.3935 25.1107 179.7996 96.2242 56.1305

#UL Normal 1672.921069 1725.607955 140.1094269 267.8894942 50.43448199 91.3519939 1682.448627 491.5052747 203.9962422

#UL Patch 909.0720691 315.0147455 103.6818411 211.2880739 30.26078277 66.6928564 477.5400903 255.5674985 149.0803038

0

50

100

150

200

250

300

350

400

450

500

550

600

650

En
er

gy
 [

Jo
u

le
]

Normal vs. patched ELF: SigFox Energy Cost

Figure 8: Impact of binary differential patching techniques for the different update scenario’s

for SigFox. Note that a linear scale is used.

5.4. Impact of binary differential patching

The results shown until now did not use binary differential patching tech-

niques for reducing the number of bytes that need to be transferred. However,

despite the additional complexity and memory usage, it is worth investigating490

how much energy can be saved using differential patching mechanisms.

Figure 8 illustrates the energy savings that can be made for SigFox when

applying patching techniques in the different update scenario’s. Note that a

linear scale is used.

Epatch
install

(
npatch, n

old
elf , n

new
elf , nrom, nram

)
>

npatch × Ewrite
rom + npatch × Eread

rom + nold
elf × Eread

rom

+ nnew
elf × Ewrite

rom + nnew
elf × Eread

rom + nrom × Ewrite
rom + nram × Ewrite

ram

(3)

The size of the patched update listed in Table 6 were obtained using JojoDiff[27],

a patch utility tailored for memory constrained devices. Compared to Table 4,

the patched version clearly lowers the number of bytes that need to be trans-

ferred but increases the energy required during installation because the new file495

must be created based on the old file and the patch. The first three terms in

27

T
a
b

le
6
:

P
a
tc

h
ed

u
p

d
a
te

si
ze

s
in

th
re

e
d

iff
er

en
t

sc
en

a
ri

o
s

(f
u

ll
sy

st
em

u
p

d
a
te

,
a
p

p
li
ca

ti
o
n

u
p

d
a
te

a
n

d
M

A
C

u
p

d
a
te

)
fo

r
d

iff
er

en
t

so
ft

w
a
re

u
p

d
a
te

m
et

h
o
d
s.

T
h

e
en

er
g
y

co
st

d
u

ri
n

g
in

st
a
ll
a
ti

o
n

is
a
ls

o
g
iv

en
.

S
ce

n
ar

io
M

et
h

o
d

P
a
tc

h
si

ze

(b
y
te

s)

In
st

a
ll

E
n
er

g
y

C
o
st

(J
o
u

le
)

F
u

ll
S

y
st

em
U

p
d

at
e

F
ir

m
w

ar
e-

b
a
se

d
1
2
9
7
3

0
.0

2
3
0
0
6
8
9
3

A
p

p
u

p
d

at
e

F
ir

m
w

ar
e-

b
a
se

d
4
4
9
6

0
.0

2
0
3
3
5
8
4
5

D
y
n

.
li

n
k
in

g
st

ri
ct

b
in

d
in

g
1
4
7
9

0
.0

0
1
4
5
7
3
4
1

D
y
n

.
li

n
k
in

g
lo

o
se

b
in

d
in

g
3
0
1
5

0
.0

0
2
9
5
9
2
7

P
re

-l
in

k
in

g
st

ri
ct

b
in

d
in

g
4
2
9

0
.0

0
0
5
5
5
8
4
2

P
re

-l
in

k
in

g
lo

o
se

b
in

d
in

g
9
5
1

0
.0

0
1
1
8
8
7
5

M
A

C
u

p
d

at
e

F
ir

m
w

ar
e-

b
a
se

d
6
8
1
6

0
.0

2
0
7
5
8
4
9
2

D
y
n

.
li

n
k
in

g
lo

o
se

b
in

d
in

g
3
6
4
7

0
.0

0
5
0
6
1
9
8
7

P
re

-l
in

k
in

g
st

ri
ct

b
in

d
in

g
2
1
2
7

0
.0

0
2
8
7
5
3
3

28

Equation 3 reflect the additional operations compared to Equation 2 when using

differential patching changes: (1) write npatch bytes to store the patch; (2) read

npatch; and (3) nold
elf bytes to create the new ELF file based on the patch and

previous ELF file. The energy cost to write/read a single byte to ROM/RAM500

is denoted as Ewrite
rom , Eread

rom , Ewrite
ram and Eread

ram and listed in Table 5.

Non surprisingly, the biggest reduction is obtained when applying patch-

ing techniques on full firmware update method lowering the energy cost with

a factor 1.8 (version update), 5.5 (application update) and 3.5 (mac update).

Nevertheless there is still a significant difference with the other methods espe-505

cially when considering the reduction in uplink messages that can be sent after

the update. The impact of patching on the other methods is less prominent

except for the dynamic linker of a MAC update using code with a loose binding

model (i.e. a factor 1.9).

5.5. Impact of packet loss and link symmetricity510

The previous results assume symmetric links and a packet delivery ratio of

100% both in the downlink and uplink (i.e. pd = pu = 1 in Equation 1). In

1 0.9 0.8 0.7 0.6 0.5

LoRa SF7 125 kHz 1.876310629 2.25994969 2.789321594 3.551286415 4.709591162 6.604532981

LoRa SF8 125 kHz 3.392330833 4.079294586 5.025756794 6.385914354 8.45019353 11.82159704

LoRa SF9 125 kHz 6.234860789 7.484020858 9.202517114 11.66841421 15.40498035 21.49768335

0

5

10

15

20

25

En
er

gy
 (

Jo
u

le
)

Impact of symmetric packet loss on energy cost for version upgrade

Figure 9: Impact of symmetric packet loss on the energy cost for performing a firmware based

full system update for 3 different LoRa spreading factors. The striped horizontal lines indicate

under which packet loss conditions it is better to switch to another spreading factor. Note

that a linear scale is used.

29

realistic scenario’s however, this will not be the case.

Figure 9 illustrates the effect of symmetric packet loss on the energy cost for

performing a firmware-based version update. Note that a linear scale is used.515

Three LoRa spreading factors are considered (SF 7, 8 & 9). On average, the

energy cost increases with a factor 1.28 if the PDR drops with 10%. When

a lot of packet loss occurs, a lower modulation rate can be used. The striped

horizontal lines indicate under which packet loss conditions it is better to switch.

For instance, when 50% of the packets are lost using LoRa SF 7, the transceiver520

should switch to LoRa SF 8 if the same link only suffers from 30% packet loss

with the new modulation setting.

Figure 10 illustrates the effect of asymmetric packet loss on the energy cost

for performing a firmware-based version update. The results show a decreasing

PDR in the uplink (from 100% to 50%) while the downlink PDR remains at525

100%. Again, three LoRa spreading factors are considered (SF 7, 8 & 9) and

a linear scale is used on the Y-axis. On average, the energy cost increases

with a factor 1.15 if the PDR drops with 10%. This is +- 15% less compared to

symmetric packet loss. It is however less interesting to downscale the modulation

rate. The transceiver should only switch when 50% of the packets are lost using530

LoRa SF 7 (SF 8) and the same link using LoRa SF 8 (SF 9) has no packet loss.

6. Conclusion

This paper investigates the feasibility of providing over-the-air software up-

dates for emerging LPWAN technologies. For this purpose, the down and uplink535

energy usage of several LPWAN technologies (i.e. IEEE-802.15.4g, LoRa and

SigFox) was compared for three different scenarios: a full system update, appli-

cation updates and network protocol updates. Table 7 summarises the results

and indicates the most efficient update method in for each scenario. Ideally,

full system updates are done using firmware updates with differential patches,540

application updates are done using pre-linked code with strict binding models

30

1 0.9 0.8 0.7 0.6 0.5

LoRa SF7 125 kHz 1.876310629 2.082800967 2.340913888 2.672773359 3.115252653 3.734723665

LoRa SF8 125 kHz 3.392330833 3.76726786 4.235939143 4.838516507 5.641952992 6.766764072

LoRa SF9 125 kHz 6.234860789 6.925634477 7.789101588 8.899273587 10.37950292 12.45182398

0

2

4

6

8

10

12

14

En
er

gy
 (

Jo
u

le
)

Impact of asymmetric packet loss on energy cost for version upgrade

Figure 10: Impact of asymmetric packet loss on the energy cost for performing a firmware

based full system update for 3 different LoRa spreading factors. The striped horizontal lines

indicate under which packet loss conditions it is better to switch to another spreading factor.

Note that a linear scale is used.

and network stack updates using pre-linked code with loose binding models.

The results indicate that software updates, and downlink transactions in

general, are feasible in LPWANs. Nevertheless, full firmware upgrades con-

sume a substantial amount of energy, especially for the lowest bit-rate LPWAN545

technologies such as SigFox which drains the batteries with 1.1% when per-

forming a version update, compared to only 0.000115% for the OFDM based

IEEE-802.15.4g technology. The results also show that 10% packet loss leads

to +-30% increase in energy usage for symmetric links and +-15% increase for

asymmetric links (i.e. no packet loss in downlink). In the former case it is better550

to switch to a lower bitrate modulation, if the packet loss is +-20% less using

the lower bitrate modulation.

In contrast, application updates and network protocol updates require be-

tween 0.000004% and 0.25% of the battery depending on the update method

and LPWAN technology.555

Overall, it can be concluded that over-the-air updates are possible even for

constrained LPWAN networks on condition that a suitable update approach is

selected. As such, over-the-air updates will become increasingly important in

31

Table 7: Overview of the most efficient update method for the three scenarios. For each

scenario, the method is displayed that uses least amount of energy.

Scenario Update method

Version Update Firmware update using patches

App. Update Pre-linking strict binding model

MAC Update Pre-linking loose binding model

LPWANs to cope with changing network requirements and increased security

needs.560

Acknowledgment

Part of this research was funded by the Flemish FWO SBO S004017N

IDEAL-IoT (Intelligent DEnse And Longe range IoT networks) project, the

MuSCLe-IoT (Multimodal Sub-Gigahertz Communication and Localization for

Low-power IoT applications) project, co-funded by imec, a research institute565

founded by the Flemish Government, with project support from VLAIO (con-

tract number HBC.2016.0660). ***

References

References

[1] U. Raza, P. Kulkarni, M. Sooriyabandara, Low power wide area networks:570

An overview, IEEE Communications Surveys Tutorials 19 (2) (2017) 855–

873. doi:10.1109/COMST.2017.2652320.

[2] IEEE, Ieee standard for local and metropolitan area networks–part 15.4:

Low-rate wireless personal area networks (lr-wpans) amendment 3: Phys-

ical layer (phy) specifications for low-data-rate, wireless, smart meter-575

ing utility networks, IEEE Std 802.15.4g-2012 (Amendment to IEEE Std

802.15.4-2011) (2012) 1–252doi:10.1109/IEEESTD.2012.6190698.

32

https://doi.org/10.1109/COMST.2017.2652320
https://doi.org/10.1109/IEEESTD.2012.6190698

[3] SigFox. Sigfox specification [online] (2017).

[4] L. Alliance. Lora specification [online] (2017).

[5] W. SIG. Weightless specification [online] (2017).580

[6] Ingenu. Ingenu specification [online] (2017).

[7] IEEE, Ieee standard for information technology–telecommunications and

information exchange between systems - local and metropolitan area

networks–specific requirements - part 11: Wireless lan medium access con-

trol (mac) and physical layer (phy) specifications amendment 2: Sub 1585

ghz license exempt operation, IEEE Std 802.11ah-2016 (Amendment to

IEEE Std 802.11-2016, as amended by IEEE Std 802.11ai-2016) (2017)

1–594doi:10.1109/IEEESTD.2017.7920364.

[8] D. Flore, 3gpp standards for the internet-of-things (2016).

[9] E. T. S. Institute, Short range devices (srd) operating in the frequency590

range 25 mhz to 1 000 mhz; part 1: Technical characteristics and methods

of measurement, ETSI Standard EN 300 220-1, ETSI, version 3.1.1 (02

2017).

[10] P. Thubert, A. Pelov, S. Krishnan, Low-power wide-area networks at the

ietf, IEEE Communications Standards Magazine 1 (1) (2017) 76–79. doi:595

10.1109/MCOMSTD.2017.1600002ST.

[11] E. De Poorter, J. Hoebeke, M. Strobbe, I. Moerman, S. Latré, M. Weyn,

B. Lannoo, J. Famaey, Sub-ghz lpwan network coexistence, management

and virtualization: An overview and open research challenges, Wire-

less Personal Communications 95 (1) (2017) 187–213. doi:10.1007/600

s11277-017-4419-5.

[12] B. Moran, M. Meriac, H. Tschofenig, D. Brown, A Firmware Update Ar-

chitecture for Internet of Things Devices, Internet-Draft draft-ietf-suit-

architecture-01, Internet Engineering Task Force, work in Progress (Jul.

2018).605

33

https://www.sigfox.com/
https://www.lora-alliance.org
http://www.weightless.org
https://www.ingenu.com/
https://doi.org/10.1109/IEEESTD.2017.7920364
https://doi.org/10.1109/MCOMSTD.2017.1600002ST
https://doi.org/10.1109/MCOMSTD.2017.1600002ST
https://doi.org/10.1109/MCOMSTD.2017.1600002ST
https://doi.org/10.1007/s11277-017-4419-5
https://doi.org/10.1007/s11277-017-4419-5
https://doi.org/10.1007/s11277-017-4419-5

[13] P. Ruckebusch, E. D. Poorter, C. Fortuna, I. Moerman, Gitar: Generic

extension for internet-of-things architectures enabling dynamic updates of

network and application modules, Ad Hoc Networks 36 (2016) 127 – 151.

doi:https://doi.org/10.1016/j.adhoc.2015.05.017.

[14] S. Kartakis, B. D. Choudhary, A. D. Gluhak, L. Lambrinos, J. A. Mc-610

Cann, Demystifying low-power wide-area communications for city iot ap-

plications, in: Proceedings of the Tenth ACM International Workshop

on Wireless Network Testbeds, Experimental Evaluation, and Charac-

terization, WiNTECH ’16, ACM, New York, NY, USA, 2016, pp. 2–8.

doi:10.1145/2980159.2980162.615

[15] B. Martinez, M. Montn, I. Vilajosana, J. D. Prades, The power of models:

Modeling power consumption for iot devices, IEEE Sensors Journal 15 (10)

(2015) 5777–5789. doi:10.1109/JSEN.2015.2445094.

[16] A. Bel, T. Adame, B. Bellalta, An energy consumption model for IEEE

802.11ah wlans, CoRR abs/1512.03576. arXiv:1512.03576.620

URL http://arxiv.org/abs/1512.03576

[17] J. Vazifehdan, R. V. Prasad, M. Jacobsson, I. Niemegeers, An analytical

energy consumption model for packet transfer over wireless links, IEEE

Communications Letters 16 (1) (2012) 30–33. doi:10.1109/LCOMM.2011.

111611.110729.625

[18] SemTech. Sx1272/3/6/7/8: Lora modem. designers guide an1200.13 [on-

line] (2017).

[19] M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien, Efficient reprogramming of

wireless sensor networks using incremental updates, in: 2013 IEEE Inter-

national Conference on Pervasive Computing and Communications Work-630

shops (PERCOM Workshops), 2013, pp. 584–589. doi:10.1109/PerComW.

2013.6529563.

[20] Tracknet. Fota [online] (2018).

34

https://doi.org/https://doi.org/10.1016/j.adhoc.2015.05.017
https://doi.org/10.1145/2980159.2980162
https://doi.org/10.1109/JSEN.2015.2445094
http://arxiv.org/abs/1512.03576
http://arxiv.org/abs/1512.03576
http://arxiv.org/abs/1512.03576
http://arxiv.org/abs/1512.03576
http://arxiv.org/abs/1512.03576
https://doi.org/10.1109/LCOMM.2011.111611.110729
https://doi.org/10.1109/LCOMM.2011.111611.110729
https://doi.org/10.1109/LCOMM.2011.111611.110729
https://www.semtech.com/images/datasheet/LoraDesignGuide_STD.pdf
https://doi.org/10.1109/PerComW.2013.6529563
https://doi.org/10.1109/PerComW.2013.6529563
https://doi.org/10.1109/PerComW.2013.6529563
http://tracknet.io/

[21] Everynet. Fota. [online] (2018).

[22] LinkLabs. Fota. [online] (2018).635

[23] Micropython. Python for microcontrollers [online] (2018).

[24] E. Baccelli, J. Doerr, S. Kikuchi, F. A. Padilla, K. Schleiser, I. Thomas,

Scripting Over-The-Air: Towards Containers on Low-end Devices in the

Internet of Things, in: IEEE PerCom 2018, Athens, Greece, 2018.

[25] P. Ruckebusch, E. De Poorter, J. Hoebeke, S. Giannoulis, I. Mo-640

erman, Energy consumption model for over-the-air software updates

in lpwan networks: Sigfox, lora and ieee 802.15.4g., Mendeley Data,

http://dx.doi.org/10.17632/ksmb3hxckj.1 (08 2018).

[26] Executable and linkable format (elf), tool Interface Standards Committee

and others (2001).645

[27] J. Heirbaut. Jojodiff: diff utility for binary files. [online] (2018).

35

http://http://everynet.com/iot-solutions/
https://www.link-labs.com/firmware-over-the-air/
http://micropython.org/
http://jojodiff.sourceforge.net/

	Introduction
	Background
	LPWAN Technology Overview
	Narrow-band
	Spread spectrum
	OFDM based

	Sub-1 GHz ISM spectrum access.
	Software update methods

	Energy consumption models for LPWANs
	Down-link range vs. energy consumption
	Link-layer energy model for down-link transactions
	Applying the model to different LPWAN technologies

	Over-the-air update methods for LPWANs
	Firmware-based
	Dynamic linking
	Pre-linking with code injection
	Script interpreters

	Feasibility of OTA software updates in LPWANs
	Scenario 1: full system update
	Scenario 2: application updates
	Scenario 3: MAC updates
	Impact of binary differential patching
	Impact of packet loss and link symmetricity

	Conclusion

