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Abstract—Producing damage surveys as part of condition re-
ports prior to and during restoration treatments is often a tedious
and time-consuming work for the art restorer. We explore the po-
tential of deep learning for automatic paint loss detection in paint-
ings to facilitate condition reporting and to support restoration
treatments. To the best of our knowledge, this is the first reported
attempt of employing deep learning in this application. We de-
velop a multiscale deep learning method, based on the recent U-
Net architecture which we extend with dilated convolutions, such
as to improve the detection stability. Our model is applicable to
multimodal acquisitions such as visible, infrared, x-ray, and ul-
traviolet fluorescence. As a case study we use multimodal data of
the Ghent Altarpiece. Our results indicate huge potential of the
proposed approach in terms of accuracy and also its exceptional
speed which allows interactivity and continuous learning.

1 Introduction

One of the documentation tasks during the conserva-
tion/restoration of paintings consists of mapping lacunas as
well as larger paint losses. Lacunas are mostly a result of dry-
ing and flaking of paint, although rough handling can also in-
troduce losses. Currently, the mapping involves a lot of manual
work since available software can only give a coarse estima-
tion of the paint loss. This makes the process rather slow and
tedious. In order to improve the automated mapping, smarter
image processing techniques are sought.

Paintings are nowadays typically scanned in different modal-
ities prior to restoration treatments and during their various
stages. Hence, our approach will be designed to make use of
the multimodal data. As the size of losses can range from a
few to hundreds of pixels, the algorithm should not only take
into account spectral information, but also have a large enough
spatial support.

Technical literature on paint loss detection is limited. Huang
et al [1] reported promising results with sparse representation
classification (SRC), surpassing common machine learning ap-
proaches like linear regression classification and support vec-
tor machines in this task. We propose an alternative method
based on deep learning, motivated by the huge success of con-
volutional neural networks in many other image classification
and segmentation problems. We will validate our method on
the panels of the Ghent Altarpiece [2], a monumental triptych
made by the brothers van Eyck in the 15th century. To the
best of our knowledge we are the first to report a deep learning
method for paint loss detection.
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Figure 1: Proposed network architecture: a multiscale, multipath network with
dilated convolutions.

(a) Details from panel Prophet Zachary.

(b) Details from panel John the Evangelist.

Figure 2: Annotations made by the art restorer. Craquelure, formed by ageing,
is not considered paint loss and is treated differently from it.

2 Methods
The proposed neural network architecture is visualised in fig-
ure 1. Similar to the U-Net [3] it consists of an encoder (left),
a decoder (right) and skip-connect layers between the encoder
and decoder (top) [4]. The difference between the U-Net and
the proposed architecture is the removal of the decimation in
the pooling layers. This way we maintain the same resolu-
tion in all layers and enforce true translation invariance. While
this makes the bottom layers more dense than in the original
U-Net, the outputs become more averaged out and this im-
proves the stability of the output values. We observe that this
leads to an increase in accuracy and learning capability of the
model. The encoder consists of 3× 3 convolutional layers and
for the activation function the Rectified Linear Unit (ReLU,
σ(z) = max(0, z)) is used. Between these layers, pooling is
introduced by taking the maximum in a 2×2 window with over-
lap to maintain the resolution. To maintain the same receptive
field, the subsequent layers are replaced with dilated convolu-
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(a) Original image during treatment. (b) Detected paint loss. (c) Original image during treatment. (d) Detected paint loss.

Figure 3: Paint loss detection on parts of the grisaille panel: John the Evangelist. The following modalities are provided to the model: visible before restoration,
visible after varnish and over-paint removal, and infrared.

tions [5] and the amount of kernel weights remains identical
with respect to the original U-Net. The decoder mirrors the en-
coder and pooling layers are replaced with upsampling 2 × 2
convolutional layers with linear activation. The skip-connect
copies the layer of the encoder and concatenates it with the
output of the upsampling layer to combine information of lay-
ers working at different resolutions. This gives the network the
possibility to learn features on multiple scales simultaneously
along the different paths. The last layer is a per-pixel, fully
connected layer producing 2 feature maps: the probabilities of
a pixel being paint loss or not. These probabilities are a result
of the non-linear activation function Softmax:

σ(z)j =
ezj�2
k=1 e

zk
. (1)

It converts each pixel values z to a normalised probability
vector ŷ = [p0, p1], p0 + p1 = 1).

To train the filters of the CNN, annotated data is requested.
In our case, these were provided by art restorers of the Ghent
Altarpiece. For each pixel, the annotation is converted to a vec-
tor yi = [1; 0] for not paint loss and yi = [0; 1] for paint loss.
The CNN is trained to minimise the cross entropy:

C = −y0 · log ŷ0 − y1 · log ŷ1 (2)

using Adaptive Moment Estimation [6]. The final prediction
map is obtained by thresholding the probability p1 of the out-
put. We obtained the highest Intersection over Union score by
thresholding at 0.5.

For the input of the network, the different modalities are first
registered, concatenated and then cropped to a fixed size. Since
each convolution and pooling operation reduces the output area,
the input patch of the network is larger than the output patch to
account for the receptive field. Because the input shape is a
fixed amount bigger than the output shape and all layers oper-
ate at the same resolution, there is freedom in selecting the size
of the patch to be segmented. Instead of classifying each pixel
individually by setting the output shape to 1 × 1, it is more
efficient to classify a big patch of pixels at once. When clas-
sifying nearby pixels, the overlap of the receptive field allows
the convolutional layers to share computations. This speeds up
the inference significantly and this means for the end user a big
difference for practical usage.

3 Results and discussion

Figure 3 visualises the detection results on a larger part of the
panel John the Evangelist. The 6 regions of the Ghent Al-
tarpiece annotated by the art restorer, illustrated in figure 2,
are from the panels Prophet Zachary and John the Evangelist.
In total there are 807, 740 annotated pixels available of which
8.3% is paint loss. This amount is increased by a factor 8 after
data augmentation by rotations of 90◦ and flips. These anno-
tated regions are divided into smaller patches after which the
network is trained on 80% of these patches. The remainder is
used for picking the optimal hyperparameters and testing the
accuracy. The following modalities were given to the model:
optical images before and during treatment, infrared, infrared
reflectography, X-ray, and ultraviolet fluorescence.

By segmenting patches of 10 × 10 or 100 × 100 instead of
per pixel, we observe a speed increase of a factor 40 and 300 re-
spectively for the inference. The results in figure 3 illustrate the
binary prediction of a relatively large image (size 5954×7545),
processed in less than a minute on a GeForce GTX 1070. Our
experiments indicate a stable performance even with relatively
few annotations. While our technique achieves similar results
as the SRC-based method of [1], it is orders of magnitude faster.
The art restorers appreciate the achieved results and the speed
shows a huge potential for practical use of the proposed ap-
proach.
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