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Correlational measures are probably the most spread statistical tools in psychological

research. They are used by researchers to investigate, for example, relations between

self-report measures usually collected using paper-pencil or online questionnaires. Like

many other statistical analysis, also correlational measures can be seriously affected

by specific sources of bias which constitute serious threats to the final observed

results. In this contribution, we will focus on the impact of the fake data threat on

the interpretation of statistical results for two well-know correlational measures (the

Pearson product-moment correlation and the Spearman rank-order correlation). By

using the Sample Generation by Replacement (SGR) approach, we analyze uncertainty

in inferences based on possible fake data and evaluate the implications of fake data

for correlational results. A population-level analysis and a Monte Carlo simulation are

performed to study different modulations of faking on bivariate discrete variables with

finite supports and varying sample sizes. We show that by using our paradigm it is

always possible, under specific faking conditions, to increase (resp. decrease) the original

correlation between two discrete variables in a predictable and systematic manner.

Keywords: Pearson correlation, Spearman correlation, sample generation by replacement (SGR), fake

ordinal/discrete data, population analysis, Monte Carlo simulations

1. INTRODUCTION

The relations between variables is at the heart of psychological research. Correlation is a statistical
index representing the degree to which two variables vary together and reflects their strength of
association. Although correlations do not imply causation, in many behavioral studies, empirical
hypotheses are tested in terms of simple associations or, eventually, lack of them.

There are many well-known sources of bias that are serious threats to themeasuring of empirical
correlations. For example, the presence of measurement errors in the data does not allow to
directly observe the true association between the variables. In Classical Test Theory (CTT, Lord,
1980), the observed measurement is understood as the sum between the true unknown value
and its measurement error. In general, the larger the measurement error, the poorer (in terms
of reliability) the correlation estimates are. Another widely accepted assumption in CTT states
that the measurement error is normally distributed with zero mean and unknown variance. Under
this assumption, an analyst can easily construct confidence intervals to quantify the uncertainty of
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estimated correlations. However, this approach may be
questionable whenever the observations are corrupted by more
complex sources of noise such as, for example, asymmetric errors
or structured errors.

An additional important threat for correlations, is the
presence of outliers in the data. Outliers can interfere in
the measurement process by either increasing or attenuating
the observed correlations (Anscombe, 1973). In this situation,
one can use specific data analysis procedures (e.g., graphical,
statistical, distance, and density based approaches) to try to
mitigate the effect of outliers or to identify and eventually remove
them from the analysis. Robust procedures can be applied to
evaluate if extreme observations significantly impact on the
overall result of correlational analyses by attenuating (resp.
boosting) their values (Wilcox, 2016).

Also the treatment of ordinal variables as if they were
continuous variables (a common practice in many psychological
studies) constitutes a potential threat to the correct estimation
of correlational measures. Similarly, the splitting of a continuous
variable in a countable number of discrete categories can
certainly bias the final estimated correlation. This phenomenon is
called “broad categories” or “few ordinal category” and has been
extensively studied in the psychometric literature (e.g., Pearson,
1913).

Moreover, in some particular contexts such as, for example,
educational and employment selection, researchers have access
to data only from a restricted population (range restriction
bias) and yet must attempt to estimate parameters for
the target unrestricted population. Some classic solutions
have been proposed in the statistical literature to mitigate
this bias on the basis of specific correction formulas (e.g.,
Spearman’s correction of attenuation, Kelley’s correction for
range restriction, Spearman, 1904; Kelley, 1947).

Last but not least, correlation analysis may be affected by
the presence of fake observations in the data. This aspect is
particularly relevant for researchers working with self-report
measures collected in sensitive scenarios such as for example,
risky sexual behaviors and drug addictions (e.g., Furnham, 1986;
Zickar and Robie, 1999; McFarland and Ryan, 2000) where
individuals tend to fake their responses in order to meet strategic
goals (e.g., avoiding being charged with a crime, Mittenberg
et al., 2002; Hall and Hall, 2007; Ziegler et al., 2012). In this
context, the core problem is that there is no basis to assume
that participants are responding honestly, nor is there an easy
way to verify the validity of answers, or a robust methodology
to detect the presence of fake responses in the observed data
(Lombardi and Pastore, 2016). Like for the outlier threat, the
presence of fake observations in the sample can also artificially
increase (resp. decrease) the strength of association between two
variables (Ellingson et al., 1999; Zickar and Robie, 1999; Pauls and
Crost, 2005; Ziegler and Buehner, 2009; Galić et al., 2012).

In this contribution, we will focus on this last kind of bias
and explore the impact of the fake data threat on the modulation
of sizes or strengths of correlational results. In particular, the
fake data problem entails a crucial question: If data includes
fake observations, to what extent will the empirical correlation
be different from what it actually is? In other words, which

percentage of fakers (within a target sample) and what type
of faking response process would jointly lead the results (e.g.,
correlation estimation, model fit evaluations) to be somehow
different from what they actually are? In order to answer these
questions we adopted a quantitative approach which uses an
effect size measure based on the Cohen’s Q statistic between
correlations (Cohen, 1988).

The psychometric literature about modeling faking data is
now growing and covers many aspects, data analysis oriented
and applicative ones. For example, the issue of fake data has
been investigated using ad hoc empirical paradigms such as
ad lib faking or coached faking to collect data and simulate
fake reports (Zickar and Robie, 1999; Zickar et al., 2004). In
particular, in the last decade some authors have proposed rational
methods for assessing fake data in social desirability contexts or
faking-motivating situations by using factor analytic approaches
(Ferrando, 2005; Ferrando and Anguiano-Carrasco, 2009, 2011)
as well as factor mixture models (Leite and Cooper, 2010).
However, less attention has been paid to some more general
aspects related to the impact of faking on the observed statistical
results. For example, how sensitive are the observed statistics
to possible fake data? Are the statistical results still invariant
under one or more scenarios of faking manipulations? In this
contribution we will adopt a statistical approach, called Sample
Generation by Replacement (SGR, Lombardi and Pastore, 2012),
to analyze uncertainty in inferences based on possible fake data as
well as to evaluate the implications of fake data for correlational
results.

In particular, in this contribution we adapted the SGR
representation to allow the study of the effect of faking on a target
correlation statistic both at the population and sample levels. The
latter approach will also be useful to understand the impact of
faking on the correlations under varying sample size conditions
and how they departure from the corresponding population
ones. Overall the fake data threat problem will be tested using
two widespread correlation indices (Pearson correlation and
Spearman correlation) computed on two ordinal variables with
varying levels of categories and different typologies of faking
models.

To anticipate our results, we show that by using the SGR
paradigm it is always possible, under certain faking conditions,
to either increase or decrease the original correlation between
two ordinal variables in a predictable and systematic manner.
From an applied perspective, this general result is at the same
time interesting and alarming as it may show how a statistically
significant correlation could easily be the effect of a false positive
association due to spurious (or inflated) correlations that may
be elicited from structured faking manipulations. By contrast,
nonsignificant correlations may reflect true associations which
have been masked because the observations have been perturbed
by some destructuring faking process.

The remainder of the article is organized as follows: the
first section starts with a brief recapitulation about the two
correlation indices used in the context of discrete variables. Next,
the article continues by illustrating the main components of
the SGR approach (as originally introduced by Lombardi and
Pastore, 2012) followed by the novel population adaptation. The
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next section evaluates the effect of faking on the population
correlation.We continue by presenting aMonte Carlo simulation
study about the evaluation of how the coefficient of correlation
can change under different fake data perturbations and different
sample sizes. Finally, the discussion section presents conclusions
regarding the main theoretical findings of our study together
with some relevant comments about limitations, potential new
applications and extensions of the SGR approach.

2. MEASURES OF CORRELATION

Two correlation measures were examined in this study: the
product moment correlation (Pearson’s correlation) and the
Spearman rank-order correlation. Although other types of
correlation indices may be adopted in the evaluation of the
strength of association between two ordinal variables (e.g.,
Kendall’s Tau-b, Somers’s, Gamma statistic, Agresti, 2013) we
wanted to understand the impact of fake manipulations for
the two most widely used measures of associations known
today. In our context, the discrete version of the parametric
product moment correlation will be used as a reference
(suboptimal) model against which we will compare a more
suitable nonparametric measure of association for ordinal
variables (the Spearman’s correlation). In what follows, we will
introduce the main terms and notation to describe the two
correlation models in the context of discrete random variables
with finite support.

Let X and Y be two purely discrete random variables with
a common finite support1 {1, 2, . . . , v} with v ∈ N. Moreover,
let pij be the joint discrete probability distribution P(X =

i,Y = j) (with i, j = 1, . . . , v), and let pi. and p.j be the
corresponding marginal probabilities. The discrete cumulative
marginal distribution functions are computed as Fi =

∑i
k= 1 pi.

and Gj =
∑j

k= 1
p.j for X and Y , respectively. Finally, let (x, y) =

((x1, y1), . . . , (xn, yn)) be the bivariate sample of n observations
drawn from the discrete population distribution. Now we are
in the position to describe the discrete versions of the two
correlation models.

2.1. Pearson’s Product Moment Correlation
The parametric Pearson’s correlation measures the linear
dependence between two continuous variables (Pearson, 1895).
However, in applied research it is common practice to use it
also with discrete numeric variables (e.g., Likert-type items) by
treating the ordinal values as interval-based values. In an ideal
context, the relation between the two variables is linear and
deviations from the straight line model generally attenuates the
magnitude of the correlation. In addition, the two variables
are assumed to be normally distributed and homoscedastic.
Unfortunately, in the discrete variable setting the application of
the product moment correlation does not meet several of these
basic requirements. In the present contribution, we studied the
behavior of the parametric correlation in the discrete setting

1For the sake of simplicity in our representation we assume that both variables

share the same support. However, a natural extension to the case with unequal

supports is straightforward and will not be discussed here.

and its departure from the optimal continuous context using
different finite discrete supports (e.g., v = 2, 5, 7) for the observed
variables.

2.1.1. Sample Correlation

The discrete version of the Pearson’s correlation, denoted by r,
can be computed according to the following formula:

r =
σ̂xy

σ̂xσ̂y
=

∑n
s= 1(xs − x)(ys − x)

√

∑n
s= 1(xs − x)2

√

∑n
s= 1(ys − y)2

(1)

where σ̂xy is the sample covariance, and σ̂x and σ̂y are the sample
standard deviations. Finally, x and y indicate the two sample
means for the discrete samples x and y, respectively.

2.1.2. Population Correlation

At the population level, the Pearson’s coefficient is usually
denoted by the Greek letter ρ and defined as follows:

ρ =
σxy

σxσy

=

[

∑v
i= 1

∑v
j= 1 ijpij

]

−
[
∑v

i= 1 ipi.
]

[

∑v
j= 1 jp.j

]

√

∑v
i= 1 i

2pi. −
[
∑v

i= 1 ipi.
]2

·

√

∑v
j= 1 j

2p.j −
[

∑v
j= 1 jp.j

]2

(2)

where σxy, and σx, σy, are the population covariance and the two
standard deviations, respectively.

2.2. Spearman’s Rank Correlation
The Spearman correlation coefficient is a nonparametric measure
of association between two variables which is based on ranks and
is one of the earliest measures of correlation to be developed in
the statistical literature (Spearman, 1904). It requires that both
variables be measured in at least an ordinal scale in such a way
that the observations in x and y can be ranked in two ordered
sets. The main assumption of the Spearman correlation is that
the two variables must be monotonically related to each other.

2.2.1. Sample Correlation

At the sample level, the Spearman’s correlation is generally
described by the following formula:

r =
σ̂rank(x,y)

σ̂rank(x)σ̂rank(y)
=

∑n
s= 1(Rs − R)(Ss − S)

√

∑n
s= 1(Rs − R)2 ·

∑n
s= 1(Ss − S)2

(3)

where Rs and Ss are the ranks of observations xs and ys, whereas
R and S are the two sample rank averages.

2.2.2. Population Correlation

The population version of the Spearman’s correlation for
variables with discrete and finite supports has been characterized
in the statistical literature only recently (Nešlehová, 2007):

ρ =
3
∑v

i= 1

∑v
j= 1 pij

[

(Fi + Fi−1)(Gj + Gj−1)− 1
]

√

(1−
∑v

i= 1 p
3
i.)(1−

∑v
j= 1 p

3
.j)

(4)
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The sample version of formula (4) can be easily obtained by
replacing the population terms pij, pi., pj., Fi, and Gj with the
corresponding sample estimates based on the v × v contingency
table derived from {x, y}. It can be proved (see Nešlehová, 2007)
that the sample version of formula (4) reduces to the well known
sample formula (3) when X and Y are discrete random variables
with finite supports.

3. SAMPLE GENERATION BY
REPLACEMENT, SGR

3.1. Standard SGR
The SGR methodology is characterized by a two-stage sampling
procedure which uses two distinct models to simulate the process
of faking. The first model serves to generate synthetic data
before any kind of fake data corruption. This data generation
process reflects how ideal data should behave if they were
fake-observation free. The second model is a data replacement
process which mimics the perturbation carried out by the faking
observations. The main idea is that the mechanism of faking can
be understood as a process which transforms the original stream
of information into a new stream reflecting the final corrupted
message. In the standard SGR approach, the first procedure
is realized by means of basic Monte Carlo (MC) techniques,
whereas the second procedure is modeled by adopting ad-hoc
probabilistic models (e.g., Lombardi and Pastore, 2012, 2014;
Pastore and Lombardi, 2014). In the present work we will use the
SGR framework to study the population behavior of correlation
statistics under several scenarios of faking. In particular, Cohen’s
effect size measure in the context of bivariate correlations for
ordinal variables will be explored in detail. Moreover, to better
highlight the population-level analysis of the faking problem we
will slightly modify the standard SGR notation by introducing a
novel matrix representation.

Let (Xd,Yd,Xf ,Y f ) be a tuple of discrete variables with the
same common support {1, 2, . . . , v}. In the SGR representation,
the four variables can be partitioned into two groups defining
the honest/uncorrupted condition, {Xd,Yd}, and the faking
condition, {Xf ,Y f }, respectively. The joint probability
distribution for the honest condition is represented as follows:

pdij = P(Xd = i,Yd = j|θd) (5)

with (i, j) ∈ {1, 2, . . . , v}2 and where θd is the parameter array
associated with the uncorrupted model. By contrast, the faking
condition is represented by means of a conditional distribution

zhk|ij = P(Xf = h,Y f = k|Xd = i,Yd = j, θf ) (6)

with (i, j, h, k) ∈ {1, 2, . . . , v}4 and where θf is the parameter
array associated with the faking model. Formula (6) identifies
the so called replacement distribution in a SGR model. This
distribution represents the conditional probability of replacing
the original observed values (i, j) in the uncorrupted model with
the new fake values (h, k) and constitutes the main kernel of
any SGR representation (Lombardi and Pastore, 2012). The joint

probability distribution for the faking condition is, therefore, the
marginal probability

zhk =

v
∑

i= 1

v
∑

j= 1

pdijzhk|ij (7)

A further simplifying assumption in the SGR framework
requires the replacement distribution to meet the conditional
independence property:

zhk|ij = z1h|iz
2
k|j (8)

with z1
h|i

and z2
k|j

being the two separate conditional distributions

P(Xf = h|Xd = i, θfX ) and P(Xf = k|Xd = j, θfY ), respectively.
Therefore, Equation (7) reduces to

zhk =

v
∑

i= 1

v
∑

j= 1

pdijz
1
h|iz

2
k|j (9)

Note that the two conditional distributions are characterized
by different parametrizations, θfX and θfY . This reflects the idea
that the replaced values are only governed by the corresponding
original (uncorrupted) values and the specific faking process.
Moreover, the faking process can be different for the two variables
X and Y depending on the values of the parameters θfX and θfY .
For example, we can decide to adopt two different directions
and intensities of faking when a respondent uses different faking
strategies for the two items/variables X and Y .

The marginal distribution of the faking component (9) can be
described in a compact form using the following matrix notation:

Z = (PTZ1)
TZ2 (10)

with P = [pdij] being the v × v matrix representing the joint

distribution for the honest condition, and ZT
1 = [z1

h|i
] and ZT

2 =

[z2
k|j
] being the two v × v transpose matrices associated with the

replacement distributions, respectively. Formula (10) can be used
to sample bivariate observations which are in line with the faking
model parameterized according to (θd, θfX , θfY ).

3.2. Mixture SGR
In some empirical circumstances the model assumption that all
participants are equally faking their responses may be simply
unrealistic. In general, it seems more useful to belief that while
some individuals tend to manipulate their responses, others may
simply provide clean honest responses. To this purpose, the SGR
representation can be easily extended to allow each respondent
to be part of one of two separate groups: (a) an honest group
(b) a faking group. If a participant belongs to the first group,
the corresponding responses will be sampled according to model
P. By contrast, if a participant belongs to the faking group, the
responses will be sampled on the basis of the faking model Z.
In more formal terms, the mixture SGR representation takes the
following form

sxy = (1− α)pxy + αzxy, (x, y) ∈ {1, 2, . . . , v}2 (11)
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where sxy is the mixture probability of the observed variables
X = x and Y = y. In Equation (11), parameter α ∈ [0, 1] denotes
the probability weight in the mixture model and represents
the proportion of fakers in the population. In matrix notation,
Equation (11) takes the following form:

vec(S) = (1− α)vec(P)+ αZT
2 ⊗ ZT

1 vec(P) (12)

with vec(·) and ⊗ being the vectorization operator and the
Kronecker product, respectively. Note that special instances of
the mixture model are obtained when α = 0 (resp. α = 1). In
this particular case, the joint probability distribution S reduces to
the honest model P (resp. faking model Z).

3.2.1. Models of Honest Responses

In general, several options are available to modeling the joint
distribution P for honest responses of discrete variables with
finite supports (e.g., Samejima, 1969; Muthén, 1984; Jöreskog and
Sörbom, 1996;Moustaki and Knott, 2000). In the SGR framework
a natural choice is the adoption of a multivariate latent
variable representation named underlying variable approach
(UVA, Muthén, 1984; Jöreskog and Sörbom, 2001). The basic
idea of this approach is that the two observed discrete/ordinal
variables are treated as metric through assumed underlying
bivariate normal variables (W1,W2). In the UVA context the
parametrization θd of the joint distribution P is an array
containing a set of v− 1 thresholds that are used to discretize the
two underlying continuous variables and a correlation parameter
ρd that modulates their linear relationship. More precisely, the
UVA parametrization is given by

pdij =

∫ ξi

ξi−1

∫ ξj

ξj−1

φ(w1,w2|0,Rd)dw1dw2,

i = 1, . . . , v; j = 1, . . . , v (13)

where ξ1, . . . , ξv−1 are the v− 1 thresholds (with ξ0 = −∞, ξv =
+∞) and φ is a bivariate standardized distribution with mean
0 = (0, 0) and correlation matrix Rd with correlation parameter
ρd.

3.2.2. Models of Fake Responses

Nowadays there is a broad consensus that faking is an intentional
response distortion aimed at achieving a personal gain (e.g.,
MacCann et al., 2012). In this study, we will limit our scope to
two relevant scenarios of faking: (a) faking good (b) faking bad.
Faking good can be defined as a conscious attempt to present
false information to create a favorable impression with the goal of
influencing others (e.g., Furnham, 1986; Zickar and Robie, 1999;
McFarland and Ryan, 2000). In general, fake good respondents
are able to modify their scale scores by providing more extreme
response values (e.g., Furnham, 1986; Viswesvaran and Ones,
1999; McFarland and Ryan, 2000; Griffin et al., 2004). In the SGR
context a fake-good manipulation always represents a context in
which the responses are exclusively subject to positive feigning:

Xf > Xd (resp. Y f > Yd).

For example, faking good manipulations could be associated
to purchased evaluations by an online shop to grow up in the
ranking. Reversely, faking bad indicates the conscious attempt
to create a less positive impression by providing lower response
values:

Xf < Xd (resp. Y f < Yd).

For example, in a selection of compulsory military service a
candidate may try to fake a personality inventory to mimic some
mental disease with the aim to avoid the service.

In the SGR approach the faking mechanism is captured by
the replacement models Z1 and Z2 parametrized according to a
discrete version of the generalized beta distribution with shape
parameters θfX = (γX , δX) and θfY = (γY , δY ), respectively
(see Lombardi and Pastore, 2012, 2014). In general, this model
parametrization is very flexible and can easily characterize the
two typologies of faking manipulations with varying levels of
intensity. In particular, if we set the values of the shaping
parameters as 1 ≤ γ < δ ≤ 5, we can reconstruct replacement
distributions which mimic mild positive shifts in the value of
the original observed response (Figure 1, first column). This
configuration can be applied whenever we believe that the
original observations have been corrupted by a slight faking good
process (Zickar and Robie, 1999; Zickar et al., 2004).

By contrast, the condition 1 ≤ δ < γ ≤ 5 describes a faking
scenario in which the fake value corresponds to an extreme shift
in the original value (extreme model, Figure 1 second column).
The extreme model can be adopted if we believe that the original
observations have been corrupted by a sort of extreme faking
good process (Zickar and Robie, 1999; Zickar et al., 2004). Note
that a totally symmetric representation can be straightforwardly
constructed for the faking bad condition andwill not be discussed
further here (see also Figure 1, third and fourth columns). For
additional details the reader may refer to the original works about
themodel parametrization in the SGR framework (e.g., Lombardi
and Pastore, 2012, 2014).

4. POPULATION EVALUATION OF FAKE
CORRELATIONS

4.1. The Cohen’s Q Statistic
In order to evaluate the impact of faking on the population
correlations we adopted an effect size measure based on the
Cohen’s Q statistic (Cohen, 1988). Of course, an alternative and
legitimate perspective would instead require to study and analyze
the impact of faking on the significance levels of the correlational
results. However, in the present contribution we preferred to
limit the analysis on the Qmeasure as we were mainly interested
in representing the effect size modulations of faking on the
correlational statistic which has a clear meaning at the population
as well as sample level. Nonetheless, in the discussion session
we will briefly return on the possibility to provide an alternative
significant level analysis of the faking problem.

At the population level, the effect size Q is defined as the
difference between two Fisher transformations of the population
correlation (ρm) computed on the basis of the mixture joint
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FIGURE 1 | Four examples of replacement distributions for a 7-point discrete variable. Each column in the graphical representation corresponds to a different

conditional replacement distribution. Each row in the graphical representation corresponds to a different original 7-point discrete value. The parameter assignments for

the four models are: slight model (γ = 1.5, δ = 4) and extreme model: (γ = 4, δ = 1.5). The replacement distributions are applied for the two configurations faking

good and faking bad, respectively.

distribution S and the population correlation (ρd) of the original
uncorrupted joint distribution P:

Q =
1

2
log

1+ ρm

1− ρm
−

1

2
log

1+ ρd

1− ρd
(14)

We calculated the Q statistic for the two correlation indices
(Pearson and Spearman) separately using the corresponding
population formulas (Equations 2, 4).

Cohen (1988) also provided substantive interpretations for
different ranges of effect size values. A small effect size, Q =
0.10, corresponds to small differences between the uncorrupted
correlation and the mixture correlation, (e.g., ρd = 0.20, ρm =

0.29). A medium effect size, Q = 0.30, is linked with mild
differences, (e.g., ρd = 0.20, ρm = 0.46). Finally, a large
effect size, Q = 0.50, corresponds to wider differences in the
correlations, (e.g., ρd = 0.20, ρm = 0.61). Figure 2 shows the
association between Q and the differential correlation 1ρ. In
particular, if the Q statistic is positive (resp. negative), then the
differential correlation 1ρ = ρm − ρd is also positive (resp.
negative).

4.2. Results of the Population Analysis
Figure 3 shows the Cohen’s Q statistic (computed for Spearman
and Pearson correlations separately) as a function of proportion
of fakers and original correlation ρd for three models of faking
(slight, average, and extreme) under the assumption that both
variables X and Y are subjected to the same direction of faking
(either faking good or faking bad). As expected, larger effect

sizes are associated with extreme faking models and higher
proportions of fakers in the mixture population. In general, the
Cohen’s Q statistic may take either positive or negative values
depending on the specific faking model and proportion of fakers
in the mixture population. For example, under a slight faking
model and 50% of fakers in the mixture population, an original
Spearman correlation, ρd = −0.60, is affected from a bias of
Q = 0.54. Similarly, under an extreme faking model with 20%
of fakers in the mixture population, an original zero Spearman
correlation shows a faking bias of Q = 0.45. Moreover, if we
consider a very high positive original correlation, ρd = 0.90,
with also 20% of fakers in the population this results into a bias of
Q = 0.2. By contrast, for the same correlation a larger proportion
of fakers (e.g., 70%) boils down to a negative bias Q = −0.33.
Even for smaller proportions of fakers (e.g., lower than 10%), the
effect of faking can definitively have an impact on the original
correlation ρd (e.g., Figure 3, bottom-right).

Figure 4 shows the Q statistic (computed separately for the
two correlation indices) as a function of the same factors
described earlier. However, this time the two variables X and Y
are subjected to opposite directions of faking (e.g., X is corrupted
by a faking good process, whereas Y is perturbed by a faking bad
process, or vice versa). By a quick inspection of Figure 4, it is clear
that the patterns of this second graphical representation mirror
those shown in Figure 3. In general, for oppositemodels of faking
with original non-negative correlations, the Cohen’s Q statistic
takes on negative values. For example, for an original positive
Spearman correlation ρd = 0.6 and an average faking model with
20% of fakers, we observe a faking bias of Q = −0.6.
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FIGURE 2 | Differential correlation 1ρ = ρm − ρd as a function of the Cohen’s Q statistic and original correlation ρd ∈ {−0.9,−0.6,−0.3, 0, 0.3, 0.6, 0.9}. The vertical

lines identify negative (resp. positive) small, medium, and large effect sizes.

FIGURE 3 | Cohen’s Q statistic as a function of proportion of fakers in the population, type of faking model (slight, average, extreme), and original true correlation. The

population-level analysis regards the two correlation indices (Pearson and Spearman) under the same model and direction of faking applied on two discrete variables

with common finite support (v = 5) and symmetric marginal distributions with mass probabilities 0.06, 0.25, 0.38, 0.25, and 0.06, respectively. Note the average

model (γ = 3, δ = 3) represents a compromise between the slight model and the extreme model.

Finally, Figures 5–8 provide more detailed representations
which zoom in specific cross-combinations of factors’ levels to
highlight some relevant differences between the two correlation
indices.

In sum, the graphical analysis clearly shows how a faking
response process can substantially modify the original population
correlation values by increasing (resp. decreasing) the strength
of association depending on the quantity and quality of
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FIGURE 4 | Cohen’s Q statistic as a function of proportion of fakers in the population, type of faking model (slight, average, extreme), and original true correlation. The

population analysis regards the two correlation indices (Pearson and Spearman) under the same model of faking but with opposite direction of faking for two discrete

variables with common finite support (v = 5) and symmetric marginal distributions with mass probabilities 0.06, 0.25, 0.38, 0.25, and 0.06, respectively. Note the

average model (γ = 3, δ = 3) represents a compromise between the slight model and the extreme model.

FIGURE 5 | Cohen’s Q statistic as a function of proportion of fakers and type

of faking models. In this example, ρd = 0, v = 5 and same direction of faking

are represented.

the perturbation mechanism. This clearly shows how faking
manipulations can definitively have an impact, in a predictable
manner, on the final mixture correlation.

5. SIMULATION STUDY

The population analysis represents an elegant and efficient
way to study the impact of faking on bivariate associations of

FIGURE 6 | Cohen’s Q statistic as a function of proportion of fakers and

direction of faking in the two variables. In this example, ρd = 0, v = 5 and an

extreme model of faking are presented.

discrete variables with finite supports. However, one of the main
limitations of this kind of analysis is that it does not account for
sample size effects on the evaluation of the faking mechanism.
To overcome this shortcoming, in the following section we will
describe a simulation study which extends the main results of
the population analysis by considering some additional factors
like sample size and different number of response levels for the
discrete variables involved in the correlation.
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5.1. Simulation Design and Data Condition
We used the sample version q of the effect size statistic Q as the
main dependent variable of the simulation design:

q =
1

2
log

1+ rm

1− rm
−

1

2
log

1+ rd

1− rd
(15)

with rd and rm being the sample correlations computed
according to formulas (1) and (3), respectively. Moreover,

FIGURE 7 | Cohen’s Q statistic as a function of proportion of fakers and size

of the support for the discrete variables (at three levels: 2, 5, 7). In this

example, ρd = 0, and an extreme faking model with same direction are

presented. Note that in the first panel (v = 2) the two correlation indices are

completely superimposed.

six factors were systematically varied in a complete six-factor
design:

a. the sample size (N), at four levels: 20, 50, 100, 1,000;
b. the proportion of fakers in the perturbed sample (A), at ten

levels: 0, 0.10, ... , 0.90;
c. the type of faking model (M), at two levels: slight faking and

extreme faking;
d. the direction of faking (DIR), at two levels: same and opposite.

A same-type perturbation is obtained whenever the two
variables in the fake pattern are subjected to the same faking
good manipulations. An opposite-type perturbation requires
that in the fake pattern the first variable is subjected to a faking
good manipulation, whereas the second variable is perturbed
with a faking bad manipulation;

e. the number of response options in the discrete variables (V),
at three levels: 2, 5 and 7 response options;

f. the true population correlation Rd, at seven levels:
−.9,−.6,−.3, 0, .3, .6, .9.

Let n,α,m, dir, v, and ρd be distinct levels of the factors
N,A,M,DIR,V and Rd, respectively. The following procedural
steps were repeated 2,000 times for each of the 3, 360 = 4× 10×
2× 2× 3× 7 combinations of factor levels (n,α,m, dir, v, ρd) of
the simulation design:

1. Generate a bivariate raw-data set D with size n according
to the population correlation (ρd). The data generation
is performed using a standard MC procedure based on
multivariate normal data (Kaiser and Dickman, 1962).
More specifically, each row of D is sampled from the
bivariate normal distribution φ(0,6d) with 6d being

FIGURE 8 | Cohen’s Q statistic as a function of proportion of fakers and original correlation (at five levels: –0.9, –0.3, 0, 0.3, 0.9). In this example, v = 5, and an

extreme faking model with same direction are presented.
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FIGURE 9 | Cohen’s Q statistic as a function of proportion of fakers and sample size (at four levels: 20, 50, 100, 1,000). In this example, ρd = 0, v = 5, and an

extreme faking model with same direction are presented. A.P. and A.S. stand for Asymptotical Pearson’s correlation and Asymptotical Spearman’s correlation,

respectively. S.P. and S.S. stand for M.C. Pearson’s correlation and M.C. Spearman’s correlation, respectively.

the correlation matrix with off-diagonal elements set
to ρd.

2. DiscretizeD on the basis of v− 1 different thresholds by using
the well-known method described by Jöreskog and Sörbom
(1996) 2.

3. For each observation s = 1, . . . , n, sample a dichotomous
(0/1) value a on the basis of proportion of fakers α. If a = 1,
then replace the s − th row of D with the new row (replaced
row) obtained using the model of faking m with direction d;
otherwise keep the original s − th row of D. This procedure
results in a mixture matrix X.

4. Compute and save the sample q effect size for the
two correlation indices (Pearson correlation and Spearman
correlation).

The whole procedure generated a total of 6, 720, 000 = 2, 000 ×
4 × 10 × 2 × 2 × 3 × 7 matrices (D, S) as well as an equivalent
number of pairs of correlation coefficient estimates for each of the
two types of matrices3.

5.2. Results
As expected the MC results converged to the population ones
when large sample sizes were considered in the simulation design.

2In the simulation study all the continuous data set D were discretized into

symmetrically distributed variables with the following point mass values: 0.5, 0.5

for v = 2; 0.06, 0.25, 0.38, 0.25, 0.06, for v = 5; 0.02, 0.09, 0.23, 0.31, 0.23, 0.09,

0.02, for v = 7.
3In step 3 (resp. step 5), the sample D (resp. X) was re-sampled whenever the

computation of one of the two association indices yielded unfeasible values (e.g.,

because one column of the datamatrix had zero variance). However, the percentage

of unfeasible solutions was very low, about 0.035% of the total 6, 720, 000 samples.

However, the overall performance of the two association indices
was different under small sample size conditions. In particular,
the non-parametric correlation outperformed the product-
moment correlation (see Figure 9) as its sample estimates were
closer to the population values even with very small sample sizes
(e.g., n = 20).

Tables 1–3 report the median values of the sample q statistic
for the faking slight model and the faking extreme model with
same direction, respectively. For the sake of space the three tables
only represent the median values of the q statistic averaged across
the four distinct sample size levels (20, 50, 100, 1,000) using
the Spearman correlation only (which was the most sensitive
correlational measure to faking perturbation). Just like for the
population analysis, the empirical effect size statistic is also more
affected by the presence of extreme faking manipulations in
the sample, and the magnitude of this effect clearly depends
on the original value of the correlation. Also the factor DIR
modulates the observed pattern of the q statistic. In particular,
the same direction of faking for both variables increases (on
average) the final correlation, whereas the opposite direction of
faking decreases (on average) the final perturbed correlation. This
effect is consistent across all the combinations of levels of factors
involved in the simulation design, unless we consider polytomous
variables and very high positive original correlations (e.g., 0.9) for
which a negative effect of q can be observed (Tables 2, 3, last row).

For the factor V , we observe an interaction effect with the
proportion of fakers A. In particular, for dichotomous variables
we observe a positive monotonic relation between the amount
of fakers in the sample and the effect size q. By contrast,
a concave relationship results when polytomous variables
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TABLE 1 | Effect size q as a function of percentage of fakers, original correlation, and the type of faking model.

Rd Slight Extreme

10% 20% 40% 60% 80% 90% 10% 20% 40% 60% 80% 90%

−0.9 0.269 0.440 0.672 0.831 0.955 0.986 0.263 0.436 0.676 0.832 0.946 0.992

−0.6 0.146 0.260 0.430 0.558 0.659 0.709 0.145 0.255 0.430 0.556 0.665 0.700

−0.3 0.110 0.201 0.347 0.457 0.557 0.594 0.110 0.203 0.349 0.460 0.555 0.594

0 0.089 0.167 0.298 0.400 0.483 0.523 0.090 0.167 0.298 0.396 0.474 0.521

0.3 0.075 0.141 0.255 0.359 0.432 0.491 0.075 0.145 0.256 0.352 0.428 0.481

0.6 0.064 0.121 0.233 0.316 0.398 0.451 0.062 0.123 0.224 0.317 0.394 0.432

0.9 0.047 0.098 0.192 0.278 0.343 0.372 0.049 0.102 0.189 0.263 0.363 0.350

Binary variable case: V = 2 with same direction of faking.

TABLE 2 | Effect size q as a function of percentage of fakers, original correlation, and the type of faking model.

Rd Slight Extreme

10% 20% 40% 60% 80% 90% 10% 20% 40% 60% 80% 90%

−0.9 0.433 0.654 0.873 0.931 0.839 0.712 0.753 1.078 1.436 1.630 1.627 1.497

−0.6 0.213 0.353 0.510 0.546 0.469 0.363 0.427 0.681 0.991 1.153 1.122 0.987

−0.3 0.138 0.241 0.359 0.382 0.307 0.218 0.306 0.507 0.780 0.911 0.852 0.699

0 0.101 0.178 0.268 0.277 0.201 0.118 0.235 0.404 0.641 0.738 0.658 0.480

0.3 0.078 0.137 0.198 0.189 0.110 0.029 0.190 0.340 0.534 0.584 0.456 0.261

0.6 0.057 0.097 0.132 0.101 0.001 −0.076 0.153 0.274 0.418 0.411 0.223 −0.008

0.9 0.023 0.026 −0.008 −0.096 −0.238 −0.324 0.108 0.179 0.209 0.083 −0.230 −0.499

Ordinal variable case: V = 5 with same direction of faking.

TABLE 3 | Effect size q as a function of percentage of fakers, original correlation, and the type of faking model.

Rd Slight Extreme

10% 20% 40% 60% 80% 90% 10% 20% 40% 60% 80% 90%

−0.9 0.475 0.701 0.926 0.980 0.893 0.780 0.900 1.246 1.621 1.782 1.727 1.562

−0.6 0.214 0.358 0.507 0.544 0.468 0.373 0.499 0.777 1.105 1.249 1.159 0.989

−0.3 0.137 0.236 0.348 0.372 0.297 0.211 0.357 0.590 0.882 0.991 0.873 0.691

0 0.097 0.172 0.255 0.260 0.181 0.107 0.278 0.470 0.724 0.800 0.652 0.449

0.3 0.071 0.128 0.177 0.165 0.083 0.010 0.221 0.395 0.595 0.622 0.432 0.210

0.6 0.049 0.078 0.103 0.058 −0.043 −0.120 0.180 0.317 0.462 0.411 0.164 −0.079

0.9 0.002 −0.021 −0.094 −0.213 −0.356 −0.454 0.123 0.197 0.183 −0.005 −0.358 −0.633

Ordinal variable case: V = 7 with same direction of faking.

(V = 5 or V = 7) are considered (see also Figure 9). Finally,
for polytomous variables with negative original correlations, the
biggest effect of faking is observed when there are 60% of fakers
in the sample (q > 0.4).

Another interesting effect can be observed for the factor
Rd. Under faking manipulations, low original correlations (e.g.,
|ρd| ≤ 0.3) may be biased both in terms of observed magnitude
as well as correlation sign. For example, an original correlation
ρd = −0.3 can be transformed into a final positive correlation
when a medium to large effect size q is present (e.g., Table 2, cell
corresponding to extreme model with 20% of fakers).

Finally, some important results pertain the effect of sample
size N or the proportion of fakers A on the variability of q.

As expected, a negative relationship occurs between N and the
variance of q: the lower the sample size, the bigger the variability
of the effect size q (see Figure 10). By contrast, we observe a
positive association between A and q: the larger is the proportion
of fakers in the sample, the wider is the variance of q (see
Figure 10). In general, we may notice that increasing sample
size does not substantially modify the trend of the sample q
statistic which keeps the same pattern across the four distinct
levels of the sample size factor. Another interesting effect is the
concave relationship with polytomous items that is also stable
and consistent across all the four sample sizes. This effect is
particularly evident if we consider original true null correlations
(Figure 10).
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FIGURE 10 | Boxplots of sample q statistic as a function of proportion of fakers and sample size (at four levels: 20, 50, 100, 1,000).In this example, q was computed

for the Spearman correlation only. ρd = 0, v = 5, and an extreme faking model with same direction are presented.

In what follows, we provide a possible answer to explain why
an extreme faking model disposes the computed correlations to
be affected more by larger levels of faking perturbations in the
simulated data. A very clear and simple result was that, on the
one side, the correlation values decreased by increasing levels of
fake observations in the data, as this usually tends to weaken
the original true relationship between the two variables. On the
other side, the observed correlations followed a hump shaped
curve as a function of increasing amount of faking perturbation.
Noticeably, the largest variances were observed for proportion of
fakers close to 50–60%, whereas the lowest variances occurred
at the lowest levels of fake observations. However, when the
proportion of fakers (in the extreme faking model) is high, the
majority of replaced values will be closer to the upper bound V =

7 and the corresponding variances will tend toward a minimal
value. This effect is particularly evident in discrete variables with
a limited support.

Very similar results were observed for more complex
multivariate data analysis models (e.g., Lombardi and Pastore,
2012; Pastore and Lombardi, 2014).

6. BRIEF DISCUSSION AND
CONCLUSIONS

The main motivation of this article was to point out the impact
of fake data threats when analyzing self-report measures. We
limited our study to the evaluation of fake data on two simple
bivariate measures of association: (a) the product-moment
correlation (b) the Spearman’s rank based correlation.

The results of our population-level analysis and MC
simulation highlighted the way the impact of faking (on the
association between two variables) is affected mostly by the
specific model of faking adopted to manipulate the original data.
In other words, it depends mainly on how much the faking
process changes the marginal means of the two variables. As
expected, the extreme faking model has a greater impact on
the location parameter as compared to the slight faking model
and this also entails a bigger effect on the variances of the two
variables and consequently on the final observed correlation.

The main result of our SGR analysis is that it is possible,
under certain faking conditions, to either increase or decrease
an original correlation in a predictable and systematic way.
From an applied perspective, this general result may have
many relevant implications. For example, in some sensitive
contexts statistically significant correlations could easily be due
to false positive associations (spurious correlations) resulting
from structured faking manipulations. On the contrary,
nonsignificant correlations may, instead, reflect true associations
which have been corrupted by some kind of destructuring
faking process due protection mechanisms adopted by the
respondents.

The most dangerous effects of faking manipulation are
observed for small or medium correlations as even small effects
of faking could potentially change the observed p-values of a
correlation analysis. Furthermore, like true extreme correlations
are sensitive to fake data as they are transformed in milder
correlations, true small correlations are also affected by faking
manipulations in both directions (reflecting either positive or
negative associations) in the final correlation. The latter implies
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that faking manipulations could easily reverse the sign of an
original correlation (sign effect of faking).

In our study, we did not perform a direct evaluation of the
significance level of the corrupted correlation result, instead we
limited the analysis to the impact of faking on the size of the
correlational values only. However, a systematic analysis of the
modulation of the significance level on the correlational analysis
could be easily obtained by slightly changing the structure of the
simulation design. For example, for each cell and each repetition
in the simulation design we could compute the corresponding
p-values for the honest correlation and fake correlation and
construct a two by two frequency table reporting (a) the number
of jointly significant results for the two conditions (b) the number
of jointly nonsignificant results for the two conditions (c) the
number of diverging results (significant for the honest condition
and non significant for the faking condition) (d) the number of
diverging results (nonsignificant for the honest condition and
significant for the faking condition). The relative proportions of
this classification table would inform us about the effect of faking
on the significance results.

In this contribution, we also showed how the SGR paradigm
can be used to predict the behavior of the correlation
indices under different faking perturbations. In particular, we
presented an extension of the SGR representation which is
based on a mixture model which is more consistent with
the way individuals may actually fake their responses to self
report measures. We also provided a population representation
of the faking problem by directly modeling the population
probability distributions which define the tokens of the SGR
paradigm.

As with other Monte Carlo studies, our investigation involves
simplifying assumptions that may result in lower external validity
such as, for example, the assumption that the threshold values
in the honest generative model are considered invariant across
the variables and symmetric around the mean of the bivariate
standardized distribution. Unfortunately, this restriction clearly
limits the range of empirical faking processes that can be
mimicked by using our approach. However, it is not difficult
to modify the sampling process to guarantee that asymmetric
distributions apply for the data generation process according
to the true original model. In this regard, we make available
to the readers the full R code to run the population analyses
that take into account diverse distributional properties for the
joint distribution D (e.g., for skewed distributions, TO ADD
URL).

Moreover, a straightforward extension of the SGR modeling
would pertain individual differences in the faking response
profile which goes beyond the simple binary categorical
representation (honest individuals vs fakers) provided here.
More specifically, we could mimic unequal values for the faking
parameters as a function of some respondent’s characteristics or
features in the mixture model. In this generalization we could use
c different categories of faking response patterns as follows:

sxy = (1− α∗)pxy +

c
∑

l= 1

αlz
(l)
xy , (x, y) ∈ {1, 2, . . . , v}2 (16)

where sxy is the mixture probability of the observed variables
X = x and Y = y. In Equation (16), parameter αl ∈ [0, 1] denotes
the proportion of type-l fakers in the population such that

0 ≤ (α∗ =

c
∑

l= 1

αl) ≤ 1. (17)

For example, we could model three different types (c = 3)
of faking behavior (e.g., slight, average, and extreme) in the
population with the corresponding proportions. This would
allow us to make use of additional information related to the
individual’s characteristics (e.g., desirability measures) in order to
derive the faking parameters of the replacement model as a direct
function of these observed characteristics.

Finally, for empirical applications specific hypotheses
about the data modeling (both true model and replacement
distribution) could be derived from previous studies, by
adopting a Bayesian-type perspective about, for example, the
setting of prior distributions on the basis of former empirical
observations. Similarly, specific assumptions about the nature
of the association could also be extracted from published
norms of specific psychometric measurements (e.g., when
psychological batteries are administered), or using explicit
knowledge in line with personality theories or motivation
theories. Overall, our main practical “guideline” would be that of
encouraging data analysts and researchers to routinely include
a plot showing the potential impact of the percentage of fakers
on the correlation coefficients. This would be important for all
those situations were an investigator is collecting data about
sensitive topics where the specific amount of fakers cannot be
known in advance. In this respect it is important to understand
that the SGR methodology is fundamentally characterized by
an interpretation-type perspective which tries to incorporate
in a single global model representation both empirical and
hypothetical information regarding the faking mechanism.
In particular, we further stress that our proposal is not a way
to detect faking at the individual or group level but, instead,
a rational procedure which allows to critically evaluate the
observed statistical results as if they were potentially corrupted
or manipulated by faking mechanisms. In sum, we understand
our proposal to be very similar to a sensitivity (or uncertainty)
type analysis: if a researcher is interested in a correlation,
then he/she should be “aware” that the observed correlation
may be biased due to the presence of fakers and the faking
mechanism.

However, it is important to highlight that faking is only one
of the many examples of data manipulations that can affect
the statistical results in self-report measures (e.g., cheating or
guessing, random, extreme or reverse answering). Therefore
future studies should also consider the interaction between these
different sources of data manipulations on the final correlation
results.
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