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1. Introduction

Many-body quantum states appear in many contexts in Physics and other areas of

Science. They are very hard to describe, even computationally, due to the number

of parameters required to express them, which typically grows exponentially with the

number of particles. Let us consider a spin chain of N spin s systems. If we write

an arbitrary state in the basis |n1, . . . , nN 〉, where nk = 1, . . . , (2s+ 1), we will have to

specify (2s+1)N coefficients. Even if s = 1/2, and N ∼ 50, it is impossible to store such

a number of coefficients in a computer. Furthermore, even if that would be possible,

whenever we want to make any prediction, like the expectation value of an observable,

we will have to operate with those coefficients, and thus the number of operations (and

therefore the computational time) will inevitably grow exponentially with N .

In many important situations, one can circumvent this problem by using certain

approximations. For example, sometimes it is possible to describe the state in the so-

called mean field approximation, where we write |Ψ〉 = |φ1, . . . , φN〉, ie. as a product

state. Here, we just have to specify each of the |φM〉, and thus we need only (2s+ 1)N

coefficients. This method and its extensions, even though it has a restricted validity

in general, has been very successfully used to describe many of the phenomena that

appear in quantum many-body systems. This indicates that, among all possible states,

the ones that are relevant for many practical situations possess the same properties as

product states. Another very successful method is renormalization [1, 2] which, in the

context of spin chains and lattices, tries to obtain the physics of the low energy states by

grouping degrees of freedom and defining new ones that are simple to handle, so that at

the end we can cope with very large systems and using very few parameters. There exist

very successful methods to uncover the physical properties of many-body systems which

exploit numerical approaches. The first one is Quantum Monte Carlo, which samples

product states in order to get the expectation values of physical observables. Another

one is Density Matrix Renormalization Group (DMRG) [3, 4], which is specially suited

for 1D lattices, and is based on renormalization group ideas.

1.1. DMRG and Tensor Product States

Wilson’s renormalization method provided a practical way of qualitatively determining

the low energy behavior of some of those systems. However, it was by no means sufficient

to describe them quantitatively. In 1991, Steve White [3, 4] proposed a new way of

performing the renormalization procedure in 1D systems, which gave extraordinary

precise results. He developed the DMRG algorithm, in which the renormalization

procedure takes explicitly into account the whole system at each step. This is done by

keeping the states of subsystems which are relevant to describe the whole wavefunction,

and not those that minimize the energy on that subsystem. The algorithm was rapidly

extended and adapted to different situations [5, 6], becoming the method of choice for

1D systems. In 1995, Ostlund and Rommer [7] realized that the state resulting from the

DMRG algorithm could be written as a so–called Matrix Product State (MPS), ie, in



Renormalization and tensor product states in spin chains and lattices 3

terms of products of certain matrices (see also [8, 9, 10]). They proposed to use this set

of states as a variational family for infinite homogeneous systems, where one could state

the problem without the language of DMRG, although the results did not look as precise

as with the finite version of that method. Those states had appeared in the literature in

many different contexts and with different names. First, as a variational Ansatz for the

transfer matrix in the estimation of the partition function of a classical model [11]. Later

on, in the AKLT model in 1D [12, 13], where the ground state has the form of a valence

bond solid (VBS) which can be exactly written as a MPS. Translationally invariant

MPS in infinite chains were thoroughly studied and characterized mathematically in full

generality in Ref. [14], where they called such family finitely correlated states (FCS).

The name MPS was coined later on by Klümper et al [15, 16], who introduced different

models extending the AKLT where the ground state had the explicit FCS form. All

those studies were carried out for translationally invariant systems, where the matrices

associated to each spin do not depend on the position of the spin. An extension of

the work of Fannes et al [14] to general MPS (ie finite and non–homogeneous states)

appeared much later on [17].

Given the success of DMRG in 1D, several authors tried to extend it to higher

dimensions. The first attempts considered a 2D system as a chain, and used DMRG

directly on the chain [18, 19, 20], obtaining much less precise results than in 1D. Another

attempt considered homogeneous 3D classical system and used ideas taken from DMRG

to estimate the partition function of the Ising Model [21]. A different approach was

first suggested by Sierra and Martin-Delgado [22] inspired by the ideas of Ostlund and

Rommer [7]. They introduced two families of translationally invariant states, the vertex-

and face- matrix product state Ansätze, and proposed to use them variationally for 2D

systems, in the same way as Ostlund and Rommer used FCS in 1D. The first family

generalized the AKLT 2D VBS state [12] in as much the same way as FCS did it in

1D. The second one was inspired by interaction-round-the-face models in (classical)

Statistical Mechanics. The inclusion of few parameters in the VBS wavefunction of

AKLT to extend that model was first suggested in Ref. [23]. The authors also showed

that the calculation of expectation values in those VBS could be thought of as evaluating

a classical partition function, something they did using Monte Carlo methods [23], and

Hieida et al using ideas taken from DMRG [24]. Later on, Nishino and collaborators

used the representations proposed by Sierra and Martin-Delgado, as well as another one

they called interaction-round-a-face (inspired by the specific structure of the transfer

matrix of the classical Ising model) to determine the partition function of the classical

Ising Model in 3D variationally [25, 26, 27, 28, 29]. For instance, in [28] a vertical density

matrix algorithm was introduced to calculate thermodynamical properties of that model

based on the the interaction-round-a-face representation and in [27] a perturbation

approach was taken for the vertex matrix product state, which turn out to be numerically

unstable. Eventually, quantum systems at zero temperature were considered by direct

minimization of trial wavefunctions of the VBS type with few variational parameters

[30, 31]. In summary, most of the attempts in 2D quantum systems (and 3D classical
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ones) tried to generalize the method of Ostlund and Rommer [7] by using families of

states that extended FCS to higher dimensions, and dealing with infinite homogenous

systems. FCS and their extensions were based on tensors contracted in some special

ways, and thus all of them were called tensor product states (TPS). Nevertheless, no

DMRG–like algorithm for 2D or higher dimensions was put forward (except for the

direct application of DMRG by considering the 2D system as a 1D chain).

The success of DMRG for 1D systems indicated that the family of states on which

it based, namely MPS, may provide an efficient and accurate description of spin chain

systems. In higher dimensions, however, the situation was much less clear since only

infinite systems were considered and the numerical results were not entirely satisfactory.

1.2. The corner of Hilbert space

One can look at the problem of describing many–body quantum systems from a different

perspective. The fact that product states in some occasions may capture the physics of a

many-body problem may look very surprising at first sight: if we choose a random state

in the Hilbert space (say, according to the Haar measure) the overlap with a product

state will be exponentially small with N . This apparent contradiction is resolved by

the fact that the states that appear in Nature are not random states, but they have

very peculiar forms. This is so because of the following reason. If we consider states

in thermal equilibrium, each state of a system, described by the density operator ρ,

is completely characterized by the Hamiltonian describing that system, H , and the

temperature, T , ρ ∝ e−H/T . In all systems we know, the Hamiltonian contains terms

with at most k–body interactions, where k is a fixed number independent of N which

typically equals 2. We can thus parameterize all possible Hamiltonians in Nature in

terms of (N, k)× (2s+ 1)2k. The first term is the number of groups of k spins, whereas

the second one gives the number of parameters of a general Hamiltonian acting on k

spins. This number scales only polynomially with N , and thus all possible density

operators will also depend on a polynomial number of parameters. In practice, if we

just have 2–body interactions (ie, k=2), and short–range interactions, the number will

be linear in N . If we additionally have translational symmetry, the number will even be

independent of N . This shows that even though we just need an exponential number of

parameters to describe a general state, we need very few to describe the relevant states

that appear in Nature. In this sense, the relevant states are contained in ”a corner of

the Hilbert space”. This representation is, however, not satisfactory, since it does not

allow one to calculate expectation values.

These facts define a new challenge in many-body quantum physics, namely, to find

good and economic descriptions of that corner of Hilbert space. That is, a family of

states depending on few parameters (which increase only polynomially with N), such

that all relevant states in Nature can be approximated by members of such family. If we

are able to do that, as well as to characterize and study the properties of such family,

we would have a new language to describe many-body quantum systems which may
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be more appropriate than the one we use based on Hilbert space expansions. Apart

from that, if we find algorithms which, for any given problem (say, a Hamiltonian and a

temperature), allows us to determine the state in the family which approaches the exact

one, we will have a very powerful numerical method to describe quantum many-body

systems. It is clear that product states are not enough for that task, since they do

not posses correlations (nor entanglement), something that is crucial in many physical

phenomena. So, the question is how to extend product states in a way that they cover

the relevant corner of Hilbert space.

One possible strategy to follow is to determine a property that all the states on that

corner have, at least for a set of important problems. If we then find a family of states

which includes all states with that particular property, we will have succeeded in our

challenge. But, what property could that be? Here, the answer may come from ideas

developed in the context, among others, of quantum information theory. One of such

ideas appears for the subclass of problems with Hamiltonians that contain finite-range

interactions (ie, two spins interact if they are at a distance smaller than some constant),

have a gap (ie, for all N , E ≥ E0 +∆, where E is the energy of any excited state, E0

that of the ground state, and ∆ > 0), and are at zero temperature. In that case, the

so–called area law naturally emerges [32, 33, 34, 35, 36, 37]. It states that for the ground

state of such a Hamiltonian, |Ψ0〉, if we consider a block, A, of neighboring spins, the

von Neumann entropy of the reduced density operator of such a region, ρA, scales with

the number of particles at the border of that region. This is quite remarkable, since the

von Neumann entropy being an extensive quantity, for a random state it will scale with

the number of particles in A, and not in the border. The area law has been proven in

1D spin chains [38], and it is fulfilled for all Hamiltonians we know in higher dimensions.

Even for critical systems, where the gap condition is not fulfilled, only a slight violation

occurs (namely that it is proportional to the number of spins at the border, L, times

logL) [36, 39, 40]. What happens at finite temperature? In that case one can also find

a global property of all states in the corner of Hilbert space which extends the area

law. In contrast to the zero temperature case, now this can be rigorously proven for

any Hamiltonian possessing finite-range interactions in arbitrary dimensions [41]. The

property is the following: given a region A as before, the mutual information between

the spins in that region and the rest of the spins (in region B) is bounded by a constant

times the number of spins at the border divided by the temperature. Here, the mutual

information is defined as I(A : B) = S(ρA) + S(ρB) − S(ρAB), where S is the von

Neumann entropy, and ρX is the density operator corresponding to region X .

There is a way of constructing families of states explicitly fulfilling the area law.

Let us first consider a 1D chain with two spins per site in which we entangle each of

them with the nearest neighbor spins (to the right and to the left, respectively). If we

now consider a block of neighboring sites, only the outermost spins with contribute to

the entropy of that block, and thus the area law will be fulfilled. Furthermore, if we

project in each site the state of the two spins onto a subspace of lower dimension, the

resulting state will also fulfill the area law. This construction can be straightforwardly
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extended to higher dimensions, just by replacing each spin in the lattice by z auxiliary

spins which are pair–wise entangled with their neighbors (here z is the coordination

number of the lattice). By projecting the state of the auxiliary spins onto the Hilbert

space of the original spin at each site, we obtain a state automatically fulfilling the area

law. This construction, which is inspired by the VBS [12], was introduced in the context

of quantum information in order to study localizable entanglement of spin chains [42]

and to give an alternative explanation of the measurement based model of quantum

computation [43]. Later on, it was extended to describe general spin lattice systems in

[44], where the resulting states where called Projected Entangled-Pair States (PEPS),

given the way they were defined. In that work, a method to approximate the ground

state wavefunction in terms of PEPS for finite systems was introduced, which allowed

to find the optimal projectors at each site in very much the same way as DMRG does it

in 1D. Thus, the method can be considered as a truly extension of the DMRG algorithm

to higher dimensions, although computationally it is much more demanding. The key

ingredient in that method was a new algorithm that allows one to optimally approximate

arbitrary states by PEPS in a variational fashion.

By explicitly expressing the projectors appearing in the PEPS in an orthonormal

basis, one can immediately see that they have a tensor product form. In fact, in 1D

the family of PEPS coincides with the MPS [42]. In higher dimensions, if one takes an

infinite system and chooses all the projectors to be identical, the so-called iPEPS [45]

coincide with the vertex matrix product ansatz introduced by Sierra and Martin-Delgado

[22]. The PEPS construction, however, apart from giving rise to (finite) DMRG–like

algorithms in higher dimensions, gives a clear picture of the entanglement properties of

those states (as, eg, related to the area law) as well as how correlations are carried over

by the entangled auxiliary particles. More importantly, it can be used to extend the

PEPS to fermionic systems still keeping all the properties that made them special [46].

The fact that PEPS fulfill the area law puts them in a privileged position to

efficiently describe the corner of Hilbert space. In fact, in 1D systems at zero tempeature

it is possible to show: (i) that all gapped Hamiltonians with finite-range interactions

fulfill the area law [38]; (ii) all states fulfilling the area law (even with logarithmic

corrections) can be efficiently approximated by MPS with a number of parameters that

only scales polynomially with N [49] (see also [50]). This means that for those systems

at zero temperature we have found we were looking for and explains why the celebrated

DMRG method introduced by White [3, 4] gives extraordinary approximations to the

ground state of (finite) 1D spin chains.

A complementary approach to determine the interesting corner of Hilbert space

has been pursued by Hastings [51] (see also [52]). Very remarkably, he has been able to

prove that, for any finite temperature in any dimensions and Hamiltonian with finite-

range interactions, PEPS efficiently describe the thermal state in the sense that they

approximate it arbitrarily close with a polynomial number of parameters (Note that

mixed state can be described in terms of PEPS using the techniques of purification

[47, 48]). This shows that, for those problems, the corner of Hilbert space has been
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identified. Note that the restriction of finite temperature does not matter in many

practical situations, since in any system we will always have that. It is, nevertheless,

interesting to investigate what happens at exactly zero temperature. In that case, if

one imposes a natural condition on the Hamiltonian (related with how the density of

states above the ground sate grow), Hastings has also proven that PEPS provide an

efficient description (note that for 1D systems the area law already implies that [49]).

In summary, MPS in 1D and PEPS in higher dimensions provide us with accurate

descriptions of the states that appear in Nature under the conditions specified above

(most notably, short-range interactions).

1.3. Tensor product states and renormalization group methods

All the states above fall into a general class of states which can be called TPS‡ This class
also contains states like Tree Tensor States (TTS) [53] or Multi-scale Renormalization

Ansatz (MERA) [54, 55]. It is characterized by the fact that the states are specified

in terms of a few tensors, of the order of N , each of them having a small rank and

low dimensions. Thus, they provide economic descriptions of certain quantum states.

During the last years a number of algorithms have been proposed to determine those

TPS for specific problems, giving rise to new numerical methods suitable to describe

certain many-body quantum systems. The purpose of the present paper is to provide

a pedagogical review of some of the most important TPS, and to connect them to

the successful real–space renormalization procedures that have been used in Condensed

Matter Physics for many years now. As we shall explain, most of the TPS lie at the basis

of such procedures. Making the connection between those two problems (renormalization

and tensor product states) offers a new perspective for both of them, and explains the

success of some schemes from a different point of view. In particular, it relates the

structure of the states that appear in Nature under some conditions with the ones that

naturally appear in every renormalization procedure. We will mostly concentrate on

MPS and PEPS, but we will also cover in part TTS and MERA, and briefly describe

the rest. Note that, in the case of PEPS, we have not been able to connect them to

any known renormalization scheme. Nevertheless, it may be interesting to find such a

renormalization procedure since it may give another insight in the field of Condensed

Matter Physics. Furthermore, very recently, several renormalization methods have been

introduced in order to determine expectation values of this and other kinds of TPS

[56, 57, 58], which is another evidence of the strong bonds existing between these two

fields.

This paper is organized as follows. Section II deals with MPS. We first introduce

them in terms of a renormalization procedure, and then explain two different methods

to carry out that procedure: real-space renormalization [1] and density matrix

renormalization group (DMRG)[3]. We also present them from a quantum information

‡ Several authors have recently started calling this family of states tensor network states (TNS). Here,

for historical reasons, we will call them TPS.
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perspective, as the states that can be obtained by projecting pairs of entangled states

into lower dimensional subspaces. This provides a physical picture of the states,

which can be easily extended to higher dimensions and fermionic systems. We also

review how expectation values can be efficiently determined, and introduce a graphical

representation of the state which strongly simplifies the notation and which will be

used later on instead of complex formulas. We show how MPS can be generated by

a sequential application of quantum gates [59] which, apart from providing us with

a specific recipe of how to engineer those states in practice, will allow us to connect

MPS and TTS in a simple way. Then we illustrate how to approximate arbitrary

states by MPS. This provides the basis of several algorithms that have been recently

introduced to determine the ground state in different situations [10, 61, 60], time

evolution [62, 63, 64, 65, 66, 47, 67, 68, 69], and thermal states [47, 48, 70] of 1D

spin chains. Finally, we introduce matrix product operators [47, 48], and show how

they can be used to determine expectation values in a different way or to describe

thermal states via the purification procedure. Section III contains a summary of a

different renormalization method from which TTS naturally emerge. As in the case

of MPS, we show how one can determine expectation values, and other quantities. In

fact, it will become apparent that the algorithms described in the previous section can

be extended to TTS without much effort. We also relate MPS and TTS showing that

one can be expressed in terms of the other one with a logarithmic effort. Then, in

Section IV we review yet another renormalization procedure [84, 85] which allows us

to introduce the MERA [54, 55] from a different perspective. As opposed to the TTS,

MERA can be extended to higher dimensions still fulfilling the area law, which makes

them suitable to study spin systems beyond chains. One way of generalizing MPS to

higher dimensions is through the PEPS, which are the subject of Section V. As opposed

to the previous sections, PEPS are not introduced in terms of a renormalization group

procedure, but following the intuition provided by the area law and the entanglement

present in the state. We finish the paper by reviewing some other extensions of MPS to

higher dimensions (for homogeneous and infinite systems).

Although we briefly mention how to build algorithms using TPS, this is not the

main purpose of this paper. For the reader interested in the algorithms, rather than in

the way they appear and some of their properties, we recommend to have a look at Ref.

[71]. For the reader interested in the mathematical properties of MPS and PEPS, as well

as the development of a whole theory of many-body states based on that representation,

we refer to the paper [72].

In the following, we denote the single spin Hilbert space by H1, of dimension

d = 2s+ 1. Spins interact with each other according to some Hamiltonian H =
∑

λ hλ,

where λ denotes some sets of spins. As mentioned above, we will introduce different

renormalization procedures whose aim is to reduce the number of degrees of freedom

by putting together some spins and applying certain operators to neighboring blocks of

spins.
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2. Matrix Product States

The standard Wilson Renormalization Group (RG) procedure as applied to quantum

impurity models can be viewed as follows [1, 73]. We take the first two spins, and

consider a subspace of the corresponding Hilbert space, H2 ⊂ H1 ⊗ H1 of dimension

d2 ≤ d21. Now we add the next spin, and consider a subspace of the Hilbert space of the

three spins, H3 ⊂ H2 ⊗H1, of dimension d3 ≤ d2d1. We proceed in the same way until

we obtain HN ⊂ HN−1⊗H1, and dN ≤ dN−1d1. Now, we approximate the Hamiltonian

H by PNHPN , where PN is the projector onto HN . If we can carry out this procedure,

and we choose dN sufficiently small, we will be able to diagonalize this Hamiltonian and

find the eigenvalues and eigenvectors.

In order to be able to carry out this procedure in practice for a large number of

spins, we have to impose that all dimensions dn ≤ D, where D is fixed (say, of the

order of few hundreds). We will call D the bond dimension. Otherwise we will run

out of computer resources. Note that, if we always take dn = dn−1d1, we will end up

with the original Hilbert space of all the spins, H⊗N
1 . Although we will have made

no approximation, dn will grow exponentially with N , and thus the problem will be

untractable as soon as we have few tens of spins.

Before giving explicit recipes about how to properly choose the subspaces at each

step, and how to determine the final Hamiltonian, let us show what will be the structure

of the eigenvectors of the approximate Hamiltonian HN . Let us start with H2, and write

an arbitrary orthonormal basis, {|β〉2}d2β=1, in this subspace as

|β〉2 =
d1
∑

n1,n2=1

Bn1,n2

β |n1〉1 ⊗ |n2〉1. (1)

Here, Bn1,n2

α are the coefficients of the basis vectors in terms of the original basis vectors

|n〉 ∈ H1. We can always express

Bn1,n2

β =

d1
∑

α=1

A[1]n1

α A[2]n2

α,β (2)

where A[1]n1

α = δn1,α and A[2]n2

α,β = Bα,n2

β . The orthonormality of the vectors (1),

together with their definitions, implies that

d1
∑

n1=1

A[1]n1

α Ā[1]n1

α′ = δα′,α,

d1
∑

α,n2=1

A[2]n2

α,βĀ[2]
n2

α,β′ = δβ′,β, (3)

where the bar denotes complex conjugate. We can now write any orthonormal basis in

H3 in terms of linear combinations of vectors |β〉2 ⊗ |n3〉, and proceed in the same way

iteratively. After M steps, we have the relation

|β〉M =

dM−1
∑

α=1

d1
∑

nM=1

A[M ]nM

α,β |α〉M−1 ⊗ |nM〉1. (4)
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The orthonormality condition implies
∑

α,nM

A[M ]nM

α,β Ā[M ]nM

α,β′ = δβ′,β, (5)

Substituting recursively the definitions of |α〉k in (4), we can write

|β〉N =
d1
∑

n1,...,nN=1

(An1

1 An2

2 . . . AnN

N )β |n1, n2, . . . , nN 〉. (6)

Here, we have defined a set of matrices An
M ∈ MdM−1,dm with components (An

M)α,β :=

A[M ]nα,β which, according to (5), fulfill

dM
∑

n=1

An†
MAn

M = 1 (7)

i.e. the A’s are isometries. More specifically, when considering the matrix V , of indices

V(n,α)β = An
α,β, (8)

where (nα) is taken as a single index, V †V = 1. Note that, since An1

1 are (row) vectors

and the rest of the A’s are matrices, the product An1

1 An2

2 . . . AnN

N is a vector, from which

we take the β–th component in (6). The elements of the orthonormal basis in HN , and

therefore all the vectors therein, can be expressed in the form (6): their coefficients in

the original basis |n1, . . . , nN〉 can be written as product of matrices. Vectors of that

form are termed matrix product states [15] due to their structure. In particular, any

state in the coarse–grained subspace is a MPS which we will write as

|Ψ〉N =

d1
∑

n1,...,nN=1

An1

1 An2

2 . . . AnN

N |n1, n2, . . . , nN〉. (9)

Here, AnN

N is a (column) vector fulfilling (7), i.e.

d1
∑

n=1

dN−1
∑

α=1

|(An
N)α|2 = 1. (10)

Every MPS is invariant under the exchange of An
M → XM−1A

n
MX−1

M , where the X

are non–singular matrices, as it can be checked by direct inspection of (9). This gives

us the possibility of choosing a gauge, and thus impose conditions to the matrices A

which simplify the further calculations, or which give a physical meaning. In our case,

we can consider (7) as a gauge condition which implements such a choice and makes a

direct connection between MPS and the renormalization group method.

2.1. Expectation values

The whole renormalization procedure is completely determined by the matrices An
M ∈

MdM−1,dM . Before giving different prescriptions on how to determine them, we will show
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how to calculate expectation values of different observables [14]. Let us consider first

X = σ1 ⊗ σ2 ⊗ ...σN , where the sigma’s are operators acting on H1. Using (9), we have

〈Ψ|X|Ψ〉 =
d1
∑

nk,mk=1

∏

k

〈mk|σk|nk〉Cn1,...,nM ,m1,...,mN
(11)

Here,

Cn1,...,nM ,m1,...,mN
= An1

1 . . . AnN Ām1

1 . . . ĀmN

N = (An1

1 ⊗Ām1

1 ) . . . (AnN

N ⊗ĀmN

N ).(12)

Defining

EM [σM ] :=

d1
∑

n,m=1

〈m|σM |n〉An
M ⊗ Ām

M , (13)

we have

〈Ψ|X|Ψ〉 = E1[σ1]E2[σ2] . . . EN [σN ]. (14)

Thus, the expectation value has a very simple expression: it is itself a product of matrices

S. Typically, one is interested in few–body correlation functions, in which case most

of the σ’s are the identity operator. For those cases we will denote E[1] =: E. In

particular, the normalization of |Ψ〉 can be written as 〈Ψ|Ψ〉 = E1E2 . . . EN = 1. This

can be readily checked by using (3,13) and writing the vector E1 as (Φ1|, where

|ΦM) :=

dM
∑

α=1

|α, α), (15)

and the |α) are orthonormal vectors ‖. Besides that, the orthonormality condition (5)

immediately implies (ΦM−1|EM = (ΦM | and thus E1E2 . . . EN = 1 [cf. (10)].

2.2. Real–space renormalization group

One of the simplest prescriptions to carry out the renormalization procedure is to choose

the orthonormal basis |β〉M as we proceed [1, 5]. Since we are interested in the low energy

sector of our Hilbert space at each step, HM , the natural choice is to take the dM lowest

energy states.

This construction becomes simpler if we have a Hamiltonian with nearest-neighbor

interactions only, i.e.

H =
N
∑

M=2

hM (16)

where hn acts on spins M − 1 and M , i.e.

hM =
∑

k

h̃k,l
Mσk

M−1 ⊗ σl
M . (17)

S Note that E1 and EN are a row and a column vector, respectively, and the rest matrices
‖ Note that they are in the space where the matrices A act, and not in the Hilbert spaces H
corresponding to the spins
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We start out by choosing as |β〉2 the d2 eigenstates of h2 with the lowest energy, e2β. We

can write

h2 ≃
d2
∑

β=1

e2β|β〉〈β|. (18)

In the M–th step, once we have determined the basis |β〉M−1 in the previous one

(M > 2), we write

HM =

M
∑

n=2

hn (19)

in the basis |β〉M−1⊗ |nM〉. This is very simple, since we already have up to hM−1 from

the previous step, and we thus just have to do that for hM . Inspecting (17) it is clear

that, apart from the matrix elements of σl
M in the basis |n〉, we just have to determine

the matrix elements of any operator acting on the (M − 1) spin in the basis |β〉M−1.

But this can be done right away, since

〈β ′|σ|β〉 =
d1
∑

n=1

dM−2
∑

α=1

〈m|σ|n〉(An
M−1)α,β(Ā

m
M−1)α,β′. (20)

Once we finish this procedure we will end up with an orthonormal basis in HN , which

should reproduce the low energy sector of the Hamiltonian H .

2.3. Density matrix renormalization group

Starting from the previous discussion, we know that any real–space renormalization

procedure will give rise to a MPS. Thus, the best approximation to the ground state of

our Hamiltonian will be obtained using a variational principle. That is, by minimizing

the energy e = 〈Ψ|H|Ψ〉 with respect to all MPS of the form (9). For that, we can just

use the expression (14) and write

〈Ψ|H|Ψ〉 =
N
∑

M=2

∑

k,l

h̃k,l
ME1E2 . . . EM−1[σ

k]EM [σl]EM+1 . . . EN . (21)

This formula explicitly shows the dependence of the energy on the matrices An
M , and

thus, in principle, can be used to determine those matrices which minimize it. One

possible strategy is to minimize sequentially with respect to all possible A’s. That is,

we fix all An
M for M > 2, so that (21) is a function of An

2 only¶. This functional

dependence appears only in E2 and E2[σ
k]. Actually, if we write (21) explicitly in terms

of (An
2 )α,β, we see that such a dependence is quadratic. We also have to impose the

normalization condition (7), which in turn implies the normalization of |Ψ〉, and which

gives quadratic equations on those coefficients as well. Thus, minimizing the energy

at this point consists of minimizing a quadratic polynomial with quadratic constraints.

Once we have An
2 , we minimize with respect to An

3 by fixing the rest of the A’s. We

proceed in the same vein until we reach An
N . At this point, we continue with An

N−1 and

¶ Note that An

1 is always fixed.
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so on. That is, we sweep the spins from left to right, to left, etc, determining at each

step the matrices associated to that particular spin. At each step, the energy is smaller

or equal than the one considered in the previous step. This can be easily understood

since at that step we do not vary the matrices A at the site we are minimizing, we will

obtain the previous energy. Thus, minimizing with respect to the A’s cannot increase

the energy. Consequently, this procedure must converge to a minimum of the energy +

More specifically, each step consists of minimizing 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉. Both numerator

and denominator are quadratic functions of the An
m if we fix the rest. That is, if we

write a long vector xM containing all the coefficients of A1
M , A2

M , . . . , Ad1
M , we can write

e =
x†
MHMxM

x†
MNMxM

, (22)

where HM and NM can be determined using (21). It follows from the hermiticity of H

that HM is hermitian. Furthermore, NM is positive semidefinite (as the norm of a vector

must be non–negative). Thus, e is real and its minimum can be determined through the

generalized eigenvalue equation

HMxM = λNMxM , (23)

where one has to choose the minimum λ fulfilling that. From this equation, we also

determine xM and thus An
M . The only drawback is that the matrix NM may be ill–

conditioned, something which may pose some problems when solving Eq. (23).

There is a way to circumvent this misfortune and, at the same time, simplify the

algorithm further. As mentioned above, we have that (ΦM−1|EM = (ΦM |, a fact that

can be used to simplify Eq. (21). Actually, we could have started our renormalization

procedure from the N–th spin in decreasing order. In that case, instead of (5,7) we

would have had EN = |Φ1),

dM
∑

n=1

An
MAn†

M = 1, (24)

and thus EM |ΦM+1) = |ΦM). This suggests a mixed strategy, where we renormalize in

increasing order up to the spin M − 1, and in decreasing one up to M +1, whenever we

are minimizing the energy in site M . In this case we have

〈Ψ|Ψ〉 = E1 . . . EM−1EMEM+1 . . . EN = (Φ|EM |Φ)

=

dM−1,dM
∑

α,β=1

d1
∑

n=1

|(An
M)α,β|2. (25)

That is, the matrix NM is simply the identity matrix, and therefore Eq. (23) becomes

a standard eigenvalue equation. Once we have determined An
M by solving it, and if

we are going to minimize next the matrices at site M + 1, we write An
M = Un

MX ,

where Un
M is an isometry [i.e. fulfills (7), cf. (8)]. For instance, we define V according

to (8), and use the singular value decomposition to write V = UDW , where U and

+ This can be a local or a global minimum.
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Figure 1. Construction of a MPS in terms of entangled auxiliary particles. (a)

Original spin system; (b) We replace each spin by two auxiliary particles (except at

the ends of the chain), which are in a maximally entangled state with their neighbors;

(c) The final state is obtained after mapping the state of each pair of auxiliary particles

locally onto the original spins.

W are isometries and D ≥ 0 is diagonal, i.e. X = DW . We can now discard the

X and keep Un
M for site M , since we can always take An

M+1 → XAn
M+1, so that the

state |Ψ〉 remains the same. Given that we are going to optimize now anyway with

respect to An
M+1, we can ignore the multiplication by X . In this way, we make sure

that (ΦM−1|EM = (ΦM |, which is consistent with our procedure. In case we are going to

minimize next the matrices at site M−1, we just have to decompose An
M = XUn

M , where

now Un
M fulfills (24). Apart from that, it is numerically convenient to store the values

of Ek[σ]Ek+1[σ
′]Ek+2 . . . EM−1 and EM−1[σ], for the σ’s that appear in the Hamiltonian,

and update them when we have determined An
M . Besides, one should also store those

of the form EM+1 . . . Ek−1Ek[σ]Ek+1[σ
′] as well as EM+1[σ], since they will be needed in

future optimizations.

The algorithm carried out in this way is (up to minor modifications) the celebrated

density matrix renormalization group algorithm introduced by S. White in 1991 [3, 4].

The only minor differences are: (i) he optimized two sites at the same time, say M

and M + 1 and from there he determined An
M by using a singular value decomposition;

(ii) he proposed a method to determine the initial configuration of the A’s by growing

the number of spins until the desired value N is reached. Furthermore, he derived his

algorithm from a very intuitive method in which he described the effect of the rest of

the spins on any given one in the normalization in an efficient way. In any case, the

present discussion highlights the variational character of (the finite version of) DMRG

[10].

2.4. Matrix Product States and Projected Entangled-Pair States

The MPS can also be introduced from a different perspective, which highlights their

entanglement content and is amenable to several generalizations. The idea is to extend

the AKLT construction [12], where one substitutes the original spins by couples of

auxiliary systems in a prescribed state, and then projects their state back to the spin

Hilbert space [44, 43].

For the definition and construction of the state, we imagine that each site of the spin

chain, M , we have two ancillas lM , rM , with corresponding Hilbert spaces of dimensions

dM−1 and dM , respectively (see Fig. 1(a)). For M = 1 (M = N) we have only one
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ancilla r1 (lN). The state of the ancillas is fixed: they are maximally entangled to their

nearest neighbor (see Fig. 1(b)). That is, rM−1 and lM are in a state |ΦM−1)
∗ Now, in

order to recover the MPS, we map the state of the ancillas onto the one of the spins at

each site (Fig. 1(c)). That is, we write

|Ψ〉 = P1 ⊗ . . . PN |Φ1)⊗ . . . |ΦN−1) (26)

where PM : HM−1 ⊗ HM → H1. We write each of those maps in the bases we have

chosen for each Hilbert spaces

PM =
d1
∑

n=1

dM−1
∑

α=1

dM
∑

β=1

(An
M)α,β|n〉(α, β|. (27)

It is a simple exercise to show that, indeed, the state defined in (26) coincides with that

of (9). Thus, MPS can be obtained by projecting entangled-pairs of ancillary particles

onto the spaces of the spins, thus the name 1–dimensinal PEPS.

This construction allows us to derive a variety of the properties of MPS right away.

First of all, if we consider the reduced density operator, ρ1,2,...,M , of the first M spins,

its rank (number of non-zero eigenvalues) is bounded by dM . The reason is that the

original state of the ancillas obviously fulfills that condition, and that the rank cannot

increase by applying any operator, in particular P1 . . . . . . PM . This implies that the

von–Neumann entropy S(ρ1,2,...,M) ≤ log2 dM ♯, i.e. the entropy of a block of contiguous

spins is bounded by the maximum value of dM . The fact that the entropy of a block of

spins is bounded (for infinite chains) is sometimes referred as the area law, as mentioned

in the introduction.

Apart from that, we can also prove that any spin state can be written as a MPS.

For that, consider that lM (rM) is, in turn, composed of N −M + 1 (N −M) spins, as

sketched in Fig. 1. Now, for M > 1 the map

PM = (Φ2|⊗N−M ⊗
d1
∑

n=1

|n〉(n| (28)

teleports [74] the state of the first N − M spins of lM to rM+1, while leaving the last

one as the physical spin. By choosing

P1 =
∑

|n〉(Ψn| ⊗ (n| (29)

where |Ψn〉 =1 〈n|Ψ〉, we have the desired result.

2.5. Translationally invariant systems

We mention now the possibility of dealing with systems with periodic boundary

conditions corresponding, for instance, to translationally invariant Hamiltonians. A

∗ We have used |...) to denote states on the Hilbert space of the ancillas. As it will be clear, this is a

natural choice in view of our definition (15).
♯ We take S(ρ) = −tr[ρ log2 ρ]
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MPS which automatically fulfills this condition is the one in which the matrices A at

different sites are the same. In that case, we can write

|Ψ〉N =

d1
∑

n1,...,nN=1

tr[An1An2 . . . AnN ] |n1, n2, . . . , nN 〉. (30)

This class of states, in the limit N → ∞, appeared even before the name MPS

was coined, and were called finitely correlated states[14]. They were introduced when

extending the 1D version of the AKLT model [12], whose ground state is the most

prominent example of a state in that clase. They were also viewed as a systematic way

of building translationally invariant states[14]. States with different matrices were not

considered at that time since the emphasis was given to infinite translationally invariant

spin chains. Note also, that any translationally invariant state may be written in this

form [17].

The matrices EM =: E now coincide and E is called transfer matrix, given the

analogy of the formulas with those of classical statistical mechanics. Its eigenvalues

reflect the correlation length and other properties of the system. This can be understood

since if we consider the two–spin (connected) correlation functions at distance L,

the matrix EL will appear in the calculation. In the limit L ≫ 1 only the largest

eigenvalues of E will give a contribution to the correlation function, which will thus

decay exponentially. Thus, the name finitely correlated states used for states of the

form (30) in the limit N → ∞ [14].

Let us show that, without loss of generality, we can impose the Gauge condition

(7). For that, we denote by X the operator corresponding to the largest eigenvalue λ

(in absolute value) of the following eigenvalue equation
∑

n

A†nXAn = λX. (31)

One can can always choose λ = 1 by re-scaling and X = X† > 0. Then, the matrices

Ãn := X1/2AnX−1/2 are well defined, correspond to the same state as that of An, and

fulfill the Gauge condition.

We consider now the renormalization procedure in this particular case. Instead of

performing that step by step, as explained above, we can aim at minimizing the energy

directly within the MPS of the form (30). For that, we just have to specialize (30), and

consider a single term in the Hamiltonian (17) given the translational symmetry, i.e.

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 = N

∑

k,l

h̃k,l
M

tr(E[σk]E[σl]EN−2)

tr(EN )
(32)

Note that, as opposed to the previous case (where we had open boundary conditions),

the Gauge condition does not guarantee that the state |Ψ〉 is normalized. The energy

so defined is a function of the A’s, so that we can aim at minimizing this expression

directly. The latter simplifies in the limit N → ∞ if the maximum eigenvalue of E is

not degenerate,

lim
N→∞

〈Ψ|H|Ψ〉
N〈Ψ|Ψ〉 =

1

λ

∑

k,l

h̃k,l
M 〈L|E[σk]E[σl]|R〉. (33)
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Here |L〉 and |R〉 are the right and left eigenvectors corresponding to the maximum

eigenvalue λ

E|R〉 = λ|R〉, 〈L|E = λ〈L|. (34)

Here we have not imposed the Gauge conditions, in which case we would have λ = 1.

The minimization of (33) with respect to An can be now performed directly using, eg,

using conjugate gradient methods.

The variational method exposed above was first proposed by Rommer and Ostlund

in the context of DMRG [7, 75] (see also [8]). They realized that, in the infinite version

[3], if N → ∞, the fixed point of the DMRG procedure will correspond to a MPS

with all matrices equal (ie a finitely correlated state). Then they suggested to take

those states as variational states and minimize the energy using standard methods.

Alternatively, one may perform the minimization by using evolution in imaginary time

applied to an infinite system [76]. It is not strictly necessary to take all the matrices

A identically (i.e. . . . AAAA . . .) [71], but it may be more convenient to alternate two

kinds of matrices (i.e. . . . ABAB . . .)[76]. Note that this case would be included if we

group pairs of neighboring spins and take identical matrices in each group (CCCC . . .),

since this covers the previous case if we take C = AB. In practice, however, the latter

approach may be less efficient numerically since one has to deal with larger spins.

2.6. Graphical representation

When using many-particle quantum states, we reach very soon a cumbersome level

of notation. This is not an exception when we utilize the language of MPS, since

we typically have products of many matrices, which depend on another index that

corresponds to each individual spin. As soon as we express expectation values of

observables, the notation gets very involved. There is a simple way of conveying the

same information by using a graphical representation of MPS, which we will introduce

here and that will be used in the following sections. For that, let us consider the A’s

describing the MPS as a rank three tensor (An
α,β of indices n, α, β), as shown in Fig.

2(a). These tensors are contracted along the indices α, β to form the matrix product

state (Fig. 2(b)). More precisely, the 〈n1, . . . , nN |Ψ〉 is obtained after this contraction,

where the indices n are still open. We can thus represent the MPS as the tensor of

Fig. 2(c). If the first and the last objects are also rank three tensors, we will have the

representation of Fig. 2(d), which in turn describes, eg, a translationally invariant state.

Any local observable, σ, can be represented as a tensor itself, if we write it in the spin

basis (Fig. 2(e)).

The norm of the state can be obtained by tracing the tensor with respect to

the spin indices. This is represented in Fig. 2(f.1), where the upper part represents

〈n1, . . . , nN |Ψ〉 and the lower the complex conjugate, and the indices n are contracted.

By considering each pair of tensors A and Ā on top of each other, we can build the

matrix E[1] defined in (13), and thus represent the norm as the contraction of those
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Figure 2. Graphical representation of an MPS in terms of contracted tensors (tensor

network). (a) The set of matrices An are represented in terms of a rank–3 tensor where

the index n is pointing vertically; (b) We consider the set of tensors corresponding to

each spins and (c) contract them according to the horizontal indices; (d) the same can

be done with periodic boundary conditions by adding an extra bond on the end spins;

(e) Tensor representation of an operator acting on a spin; (f.1) In order to calculate

〈Ψ|Ψ〉 we contract the tensor corresponding to Ψ with that of Ψ̄, giving rise to (f.2) a

row of tensors which are contracted to give a number. The tensors can be viewed as

matrices (one double-index to the left and another to the right). (g.1) and (g.2) the

same but with an expectation value.

matrices (Fig. 2(f.2), compare (14)). In the same way, we can represent expectation

values of product of local observables (Figs. 2(g.1) and (g.2)).

2.7. Sequential generation of Matrix Product States

We have seen so far that the family of MPS corresponds to those that appear in real

space renormalization schemes. Here we will show that they also coincide with the

states that can be sequentially generated[59]. For that, let us assume first that we have

an auxiliary system, i.e an ancilla (which, in practice, could be a D–level atom) with

Hilbert space Ha of dimension D, initially prepared in state |1〉, and also all the spins

in the chain in state |1〉. Now we consider a unitary operation between the ancilla and

the first spin, then between the ancilla and the second on, and so on, until the ancilla

interacts with last spin (see Fig. 3(a)). Let us denote by U (A,M) the unitary operation
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Figure 3. Sequential generation of MPS. (a) Using an ancilla with Hilbert space of D

dimensions, we act sequentially on the first, second, etc spins with unitary operators;

(b) This process can be understood with the graphical language introduced before.

After each interaction, the spins get entangled in a MPS with the ancilla itself. (c)

We can replace the ancilla by the logD spin which are to the right of the spin we are

acting on.

between the ancilla and the n–th spin. If we now denote by |α) an orthonormal basis

in the ancilla Hilbert space, and write

U (A,M)|0〉1 =
D
∑

α,β=1

∑

n=1

A[M ]nα,β |n〉1|α)(β|, (35)

then we end up with the state

|Ψ〉N =

d1
∑

n1,...,nN=1

(An1

1 An2

2 . . . AnN

N )β |n1, n2, . . . , nN〉|β). (36)

In Fig. 3(b) we have used the representation introduced above to describe this process

and to arrive at the above formula.

From Eq.(36) it also immediately follows that any MPS can be created sequentially

using an ancilla, by simply choosing the U (A,M) according to (35), and the last one in

such a way that AnN

N is a vector (ie it only has one component β = 1). Besides, we can

substitute the ancillary particle at each step by L ≥ logd1 D spins which lie on the right

of the particle we are acting on, since they span a Hilbert space which has dimension at
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least D. Once we apply UA1 to the first L+ 1 spins, we can swap the state of the spins

2, . . . , L + 1 to 3, . . . , L + 2 by using a unitary operation acting on spins 2, . . . , L + 2.

Now we can use the spins 3, . . . , L+2 as ancilla, and apply UA2 to the second spin plus

those. Proceeding in this way, we see that we can also prepare any MPS by a sequence

of unitary operations from left to right, each of them acting on at most L+1 spins (see

Fig. 3(c)).

2.8. Approximating states with Matrix Product States

Given a state, |Φ〉, expressed in a given basis, how do we find its MPS representation?

This is very simple in theory, since we just have to follow the procedure of the

renormalization, but keeping all the states that are necessary. We can do that as follows.

We first consider the reduced density operator of the first spin, ρ1 = tr(|Φ〉〈Φ|) and a

basis, say |β〉1, where it is diagonal. Then we consider the first two spins, and do the

same with the reduced density operator ρ2, determining a basis |β〉2. Obviously, we can

write (1). We continue in the same way, so that at the end we can write the state |Φ〉
as in (6), and thus as a MPS.

This procedure, in general, will not work with a large number of particles since we

will have to diagonalize matrices (ρM) of dimensions that grow exponentially with the

number of spins, and thus the matrices A will also be too large to be handled (Note that

if the rank of all operators ρM is smaller than some fixed number, say D, the procedure

will express the state as a MPS with maximal bond dimension D. In other words, any

state can be written as a MPS of bond dimension equal to the maximal rank of the

reduced density operators ρM ). One way to circumvent this problem is to look for a

good approximation to the state |Φ〉 in terms of a MPS, |Ψ〉. One can do that using the

same idea as the renormalization procedures presented above:

• Real-space-like approximation: [77] Here, every time we diagonalize ρM , we only

pick D states |α〉M , those eigenvectors corresponding to the D largest eigenvalues

of ρM . In this way, as in the real-space renormalization procedure, we try at each

step to be as close as possible to the state |Φ〉.
• DMRG-like approximation: [47] Instead of trying to optimize locally, at each step,

the subspaces we select in order to represent Φ, we can do something better.

The inspiration comes from DMRG, where one does not perform an optimization

locally, but more globally. We can do the same thing here, ie to obtain the

A’s that approximate the state |Φ〉 variationally, so that they provide the best

possible approximation. In practice, this means that we maximize |〈Ψ|P |Ψ〉|, where
P = |Φ〉〈Φ|. This minimization is, in turn, similar to the minimization of the energy

of the ground state of H , cf. Eq. (21). Thus, we can follow the same procedure,

namely sequentially minimize with respect to each of the A’s fixing the rest.

The procedures exposed above will be still hard to implement in practice, due to the

fact hat we still have to deal with too many parameters (those describing |Φ〉). However,
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if that state is initially written in a MPS form (of matrices with a large but fixed bond

dimension, D) or in a superposition thereof with few terms, then we will be able to do

that in practice, since all the operations can be made efficiently. For example, the term

|〈Ψ|P |Ψ〉| will be a polynomial of second degree in the coefficients of each particular

A[M ] that can be easily determined.

The above procedure can be used to simplify and compress a MPS description. For

instance, imagine we have a MPS with matrices A of dimension D. The goal is to find

another MPS which is very close to that one, of matrices B with a smaller dimension, D′.

In practice, this technique can be used for many purposes. For example, to approximate

the evolution of a MPS under the action of a Hamiltonian of the form (16), or some

quantum gates. The idea in this case is to apply the evolution operator for a short time,

such that we can determine the evolution after this step (using, eg, perturbation theory

or neglecting terms that do not commute in the Hamiltonian), and then approximate

that state with a MPS of a fixed dimension. The real-space approximation explained

above gives rise to the celebrated time evolving block decimation (TEBD) algorithm

[63, 64, 65, 66] whereas the optimal DMRG-like one was presented in [47].

2.9. Matrix Product Operators

In the same way one defines MPS, one can define operators which can be written in

terms of products of matrices, the so-called matrix product operators (MPO) [47]. They

are of the form

X =

d1
∑

n1,...,nN=1

tr(Bn1

1 Bn2

2 . . . BnN

N ) On1
⊗ On2

. . .⊗ OnN
. (37)

Here, {On}d
2

1

n=1 forms a basis in the space of operators acting on H1. For instance, we

may take Onn′ = |n〉〈n′|.
A class of operators that can be easily written as MPO are Hamiltonians with

short-range interactions. The idea is to realize that the space of operators acting on

each spin is itself a Hilbert space (now of dimension d21), so that all the properties of

MPS directly apply to MPO, and this allows us to write the Hamiltonian as a simple

MPO. In order to do that explicitly, let us write |k〉 = σk with |1〉 = 1, so that hM

defined in (17) becomes

hM = |1〉 ⊗ ...|1〉 ⊗
[

∑

k

h̃k,l
M |k〉M−1 ⊗ |l〉M

]

...⊗ |1〉. (38)

From this expression it becomes apparent that hM can be written as a MPS with bond

dimension, D ≤ d21: when considering H , we can take it as a sum of three terms, those

corresponding to M < M0, M > M0, and M = M0. When writing the analog of the

reduced density operator, ρM0
for H we see that both the first term and the second

one will just give a contribution of one to its rank, whereas the third one gives at

most d21 − 2(d1 − 1) (Note that we can include the terms with k = 1 or l = 1 in hM0∓1,

respectively). Thus, H can be written as a MPO with bond dimension D ≤ d21−2d1+3.
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If we write the Hamiltonian (or any other operator) in this form, one can determine

expectation values with MPS in a very efficient way (compare (14)):

〈Ψ|X|Ψ〉 = Ẽ1Ẽ2 . . . ẼN , (39)

where

ẼM =
∑

n,m,k

An
M ⊗ Bk

M ⊗ Ām
M〈m|Ok|n〉. (40)

This provides an alternative way of determining expectation values of the Hamiltonian,

and thus to carry out DMRG calculations.

Another class of operators for which it is useful the MPO description is the one of

density operators, ρ, describing the full spin chain. Those are self-adjoint and positive

semidefinite, something which is not easy to express in terms of the matrices B. However,

for those we can use the idea of purification: namely, we can always extend our spin

chain with another auxiliary one, with the same number of spins, in such a way that

the state of both chains, |Ψ〉, is pure but when we trace the auxiliary one we obtain the

original density operator, ρ [47]. We write |Ψ〉 as an MPS

|Ψ〉 =
d1
∑

n1,...,nN=1

An1m1

1 An2m2

2 . . . AnNmN

N |n1, n2, . . . , nN〉|m1, m2, . . . , mN〉.(41)

Thus, we obtain ρ in the form of a MPO (37) with Onn′ = |n〉〈n′| and

Bnn′

M =

d1
∑

m=1

An,m
M ⊗ Ān′m

M . (42)

Now, we can use the methods described in previous sections to determine the time

evolution of a density operator (either directly using the MPO description, or using the

purified state). In particular, we can describe the thermal equilibrium state as

e−βH = e−βH/21e−βH/2, (43)

where 1 can be trivially expressed in terms of a purification. Thus, by performing the

time evolution (in imaginary time) starting from the purification of 1 up to a time

t = iβ/2, we obtain the desired MPO.

Other examples of MPO are transfer matrices in classical systems, as well as the

monodromy matrices as appearing in the algebraic Bethe Ansatz [78].

3. Tree Tensor States

Another way of carrying out the renormalization procedure in one dimension is to follow

Kadanoff’s original idea [2]. Let us assume, for simplicity, that N is a power of 2. We

split our N spins into N/2 neighboring pairs. For each pair, we consider a subspace

Hk
2 ⊂ H1 ⊗ H1 of dimension dk2. The resulting systems are paired again into N/4

neighboring couples, where we take Hk
3 ⊂ Hk

2 ⊗ Hk
2 of dimension dk3, and continue in

the same vein until we end up with a single system. The comparison of this way of
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Figure 4. Comparison of the two renormalization procedures. (a) At each step, we

add a new spin (ball) to the previous system (square) obtaining a new Hilbert space,

which we truncate to obtain the one of a smaller dimension (new square). (b) At each

step, we take two neighboring systems (squares) and truncate the Hilbert space to

obtain the new one of the new systems.

performing the renormalization and the one given in the previous section is represented

in Fig. 4.

As before, we can follow which kind of states are supported in the final subspace

Hk
n. At the second step, an orthonormal basis in Hk

2 corresponding to particles 2M − 1

and 2M (M = 1, . . . , N/2) is

|n〉M =
d1
∑

n1,n2=1

(T 2
M)nn1,n2

|n1〉2M−1 ⊗ |n2〉2M , (44)

where n = 1, . . . , dk2. In the i–th step, we can use the same formula to express the basis

in Hk
i in terms of Hk

i−1 just by replacing T (2) by T (i). The orthonormality of the basis

gives us the condition

di−1
∑

n1,n2=1

(̄T
(i)
M )n

′

n1,n2
(̄T

(i)
M )nn1,n2

= δn′,n, (45)

ie, T must be an isometry. The final state can be easily written in terms of the T (i),

but we will not do that here. Instead, we will use a graphical representation as we did

in the case of MPS.
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Figure 5. Tensor network representation of the TPS. (a) Each tensor T is represented

by a square with three indices. (b) the fact that T is an isometry can be represented

as a line when we contract T and T̄ . (c) A TTS.

Let us start out representing the tensors T as in Fig. 5(a). The orthonormality

condition (45) can be thus graphically illustrated as in Fig. 5(b). That is, contracting

the indices n,m of the tensor with its complex conjugate gives a delta function (here

represented by a line). Any state |Ψ〉 obtained with this renormalization scheme will

have the structure of Fig. 5(c). That is, it will consist of different isometries T ,

characterizing the truncation of the Hilbert space of pairs of subsystems, which are

contracted according to the diagram [53]. Note that we could have joined more than

two spins in the first step, or in successive steps, in which case we would have obtained

a similar diagram but in which the tensors would have more indices. One calls this class

of states Tree Tensor States (TTS) since the diagram resembles a tree.

By looking at the tree structure of a state (Fig. 5(c)) it is very easy to notice that

the states may violate the area law. In fact, if we look at a block of contiguous spins,

we can deform the diagram and see how many links connect that block with the rest.

Depending on where we take the block, the number may vary. In the figure, for instance,

if we take a block with spins 2M − 1 and 2M , then they will be connected by a single

bond to the rest of the spins. If we take instead the spins 2 and 3, they are connected

by two bonds to the rest. It is easy to realize, as in the case of MPS, that the entropy of

the block is bounded by the sum of the logarithms of the dimension of the bonds that
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connect the block with the rest. For some block, this entropy is bounded by a constant,

whereas for some other ones it is bounded by c logL, where L is the number of spins in

the block. Thus, a TTS violates the area law, although only mildly. In fact, given that

critical systems typically have a logarithmic correction to the area law [36], it is natural

to try to describe them with TTS, and thus with the renormalization group procedure

exposed here, as it is usually done.

3.1. Expectation values

Expectation values of observables in a TTS can be easily evaluated, as it was the case for

MPS. Let us take, for example, an observable acting on a give site, ie, 〈Ψ|σ|Ψ〉. We can

write this expectation value as a contraction of two TTS, Ψ and Ψ̄, in which the operator

σ is sandwiched in between (Fig. 6(a)). Using the fact that all T ’s are isometries (ie

Fig. 5(b)), we can heavily simplify the structure of this contraction. For example, in

the figure the tensors on the right which are in a dimmer color can be substituted by

straight lines, so that we obtain the tensor contraction of Fig. 6(b). Now, by redrawing

it we obtain that of Fig. 6(c), which can in turn be written as a product of matrices, as

it was the case with MPS. When we have a product of local observable, we can follow

the same procedure. Just by having a look at the diagram, we can eliminate some of

the tensors and replace them by lines, obtaining at the end a simple structure which

can be easily contracted.

3.2. Renormalization group

As before, we can build a specific way of performing the renormalization, which is

nothing but the standard one (but in position space instead of momentum or energy

space). As in the case of the real-space renormalization group reviewed in previous

sections, the simplest method consist of trying to minimize the energy every time we

perform a renormalization step.

Let us consider a Hamiltonian of the form (16) (we could take other Hamiltonians

with longer range interactions, but for illustration purposes we take the simplest one).

First, we take h1, acting on spins 1 and 2, and determine the subspace of dimension

dk2 with lowest energy. That is, we diagonalize h1 and take the subspace spanned by

the dk2 lowest eigenvalues. The projector on that subspace defined the isometry T
(2)
1 .

We do the same with h3, h5, etc. Then, we project the whole Hamiltonian onto the

subspace (which is build as a tensor product of the selected ones), obtaining a new

Hamiltonian with nearest neighbor interactions only. The reason is that the projection

of h2M−1 is supported on the subspace of the new particle M , whereas h2M is on that of

particle M and M + 1 only. If we continue in this vein, we will obtain a renormalized

Hamiltonian at each step. The ground state of the final Hamiltonian will thus have

the structure of a TTS. Furthermore, this procedure may converge to a particular

Hamiltonian, at least if we consider translationally invariant systems, and which is

the fixed point operator of the renormalization group flow. This is the one which one
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Figure 6. Expectation values of observables in a TTS. (a) Contraction of the TTS

with an observable and its conjugate. (b) Using the fact that the T ’s are isometries we

can get rid of several boxes (tensors); (c) reordering the indices we obtain a product

of matrices.

usually analyzes in renormalization group to determine the possible phases depending

on the different constants parametrizing H .

Of course, one may go beyond this procedure and try to minimize the energy directly

as a function of all the tensors appearing in the tree, in much the same way one does

in DMRG [79, 80, 81, 82]. In fact, one can use similar techniques to those introduced

in that context in order to perform this task in an efficient way. For instance, one may

fix all the T ’s except for one, and minimize the energy with respect to that one. Then

proceed with the next, and so on, until all the tensors (and thus the energy) converge.

One can also choose all the tensors in a row equal, in order to emulate translationally

invariance (this will occur anyway with the renormalization procedure given above for

Hamiltonians with that symmetry), at the expense that one has to minimize with respect

to all the tensors in one row at the same time. Furthermore, one may look for quasi-scale

invariant solutions, in which all the tensors are chosen to be the same. Note, however,

that unlike the case of MPS the state is not translationally invariant, since the spins are

treated on different footing. That is, two spins that lie next to each other may not be

grouped until the final step of the renormalization procedure. This indicates that this

method may give good qualitative results (in most of the times, enough to determine

the phases appearing in the problem), although not as precise as in DMRG.
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3.3. Matrix Product States vs Tree Tensor States

Given a MPS it is relatively simple to express it as a TTS. One way of seeing that is by

considering the sequential generation of MPS explained in previous sections. There, we

saw that a MPS of bond dimension D can be generated by using a sequence of unitary

operators acting on logD+1 spins (see Figs. 4, 7). If we group logD spins into a single

one, so that the new chain has N/ logD big spins, those unitary operations become

between nearest neighbors only. Now, let us consider the last of such spins. Obviously,

there exists a unitary operation acting on it and the previous one that disentangles it

from the whole chain (such unitary is the inverse of the one we apply in the sequential

operation). The same applies to any big spin, since we can consider it as the last one

of a sequentially generated state (we could start from the next one, go around the rest

of spins, and end up in that particular one). This implies that we can, for example,

act on every second big spin of the chain and its neighbor to the left with a unitary

operation and disentangle them completely from the rest (see Fig. 7). The remaining

state of the rest of the spins will still be a MPS with bond dimension D, so that we can

apply exactly the same procedure. By iterating, we can completely disentangle all the

big spins. The procedure we have carried out is nothing else but the one described at

the beginning of this section, but with the big spins. This means that the state of the

big spins can be written as a TTS, and thus the original one too. The opposite is also

true. Given a TTS we can always use the procedure described in previous sections to

write it as a MPS. As discussed above in the context of the area law, the maximal rank

of the density operators ρM will be O(logN), and thus this determines the largest bond

dimension, D, of the MPS.

3.4. Other remarks

It is very clear that one can apply the same techniques described in the previous

section for MPS to TTS. For example, one can minimize the energy, determine the best

approximations, time evolution, etc, by getting the tensors T of the TTS variationally,

going one by one (while fixing the rest), as in DMRG. The only point where one has

to be careful is that, in this case, the fact that each T must be an isometry plays an

important role. In principle, the minimization of the energy, etc, for each tensor should

take this constraint into account. However, as it was in the case of MPS, one can

’pull’ this constraint so that in practice it is irrelevant. The idea here is to perform

the minimization in some particular order. Let us take a position in the first row, fix

the rest, and find the optimal tensor at that position (without imposing the isometry

condition). Then, we determine a singular value decomposition of the tensor between

the upper index and the other two, keeping at the end only the isometry. That is, we

pull the non–isometric part upwards, and include it in the next tensor. Thus, at the

next step, we minimize with respect of the tensor above the one before and continue in

the same way until we reach the uppermost position. Then, we go again to the first row

and repeat the whole procedure until we converge. Apart from that, we can also define
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Figure 7. A MPS can be expressed as a TTS. (a) We group logD spins to build

bigger spins, (b), which are entangled and form an MPS of bond dimension D. (c)

Unitary operators acting on pairs of spins disentangle half of them, and leave the rest

in a MPS of bond dimension D. We can continue this procedure until we have a single

spin.

tree operators in analogy with matrix product operators, and thus carry out calculations

at finite temperature or with mixed states.

It is interesting to view what happens if we apply the renormalization group

procedure reviewed in this section to a finitely correlated state. In that case, one can

solve the problem exactly and classify the fixed points of that procedure, obtaining the

states that survive it [114].

4. Multiscale Entanglement Renormalization Ansatz

A more sophisticated way of implementing a real-space renormalization group was

introduced by Ma and Dasgupta [83], and later successfully used by Fisher [84, 85]

in the context of random quantum spin systems. Their blocking scheme is peculiar in

the sense that one does not block several spins into one superspin as described before,

but maps n spins into n′ < n spins, in such a way that locality in the interactions is

preserved. This constraint is of crucial importance as it turns out that this is precisely

the extra ingredient needed to extend those block-transformation to higher dimensions

such that an area law for the entanglement entropy can be obtained. The idea of
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mapping n spins into n′ < n spins is also the basis of the multi-scale entanglement

renormalization procedure introduced independently by Vidal [54, 55].

To sketch this approach, let us consider a quantum spin chain with only nearest

neighbour interactions. A typical blocking scheme of Ma-Dasgupta-Fisher in the case of

Heisenberg interactions would map 4 nearest neighbor spin 1/2’s (k, k + 1, k + 2, k+ 3)

into 2 new spin 1/2’s (k′, k′ + 1). This is done in such a way that the renormalized

Hamiltonian still only exhibits nearest neighbour interactions. In other words, the

isometry Uk′,k′+1;k,k+1,k+2,k+3 used in the RG step has the following effect on the

Hamiltonian H =
∑

k hk,k+1:

U (hk−1,k + hk,k+1 + hk+1,k+2 + hk+2,k+3 + hk+3,k+4)U
†

= h̄k−1,k′ + h̃k′,k′+1 + h̄k′+1,k+4.

Such RG steps can again be implemented recursively, and this has been done

with very big success for random antiferromagnetic spin chains: the isometries U are

found using standard second order perturbation theory, and the blocking becomes more

accurate as a function of the blocking step. In a similar vein, this method has been used

to simulate Ising spin systems with random ferromagnetic interactions and random

transverse fields [84, 85], in which case 4 spins are mapped to 3 spins in such a way that

the renormalized Hamiltonian only exhibits nearest neighbour interactions.

In analogy with the TTS, the quantum states that are generated during such a

blocking scheme can easily be represented using isometries (see Fig. 8). One of the

most interesting features of the class of states generated during such a RG procedure is

the fact that they can be critical and scale-invariant. Indeed, the Dasgupta-Ma-Fisher

real-space RG method has been used to extract critical exponents. By looking at the

structure of isometries, one indeed observes that the Schmidt rank when cutting the

chain in two halves can grow as the logarithm of the size of the chain, as in the TTN:

if one considers a periodic arrangement of the isometries as in Fig. 8, a logarithmic

number of layers of blocking steps can contribute to generating entanglement. This

has to be contrasted to the case of MPS, where the Schmidt number with respect

to any cut is always bounded by a constant. Another very important property of

the states obtained like that is that one can efficiently calculate expectation values of

local operators: using the RG-scheme, one can represent local operators in the effective

basis generated after consecutive RG-steps, and due to the exponential shrinking of the

number of spins at every step, local operators will always remain local, up to the last

level of the tree where any expectation value can trivially be calculated. More precisely,

local operators will never act on more than a constant number of renormalized spins

during the renormalization flow. This can be proven as follows: given an operator acting

on xk nearest neighbor spins after k iterations, then there exist constants 0 < c1 < 1

and c2 > 1 that depend on the RG blocking such that the range of the operator at the

next level is bounded by xk+1 ≤ c1 (xk + c2). One can easily check that xn is always

bounded above by max(c1.c2/(1−c1), x0) wich is a constant independent of the number

of spins. In the case of the 4 → 2 isometry, c1 = 1/2, c2 = 6 and hence the bound is
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Figure 8. (a) Translational invariant blocking scheme a la Ma-Dasgupta-Fisher

mapping 4 spins to 2 by isometries. (b) Every building block in the scheme consists of

isometries. (c) Alternative blocking scheme as e.g. used for the Ising model mapping

4 spins to 3.

max(6, x0); for a general n → m scheme, c1 = m/n, c2 = 2.(n− 1).

Obviously, this class of states encompasses the class of TTS, as the latter is obtained

in the special case of n → 1 blocking schemes. However, this new class of states also

shares the lack of translational symmetry with the TTS, as opposed to the case of MPS.

Now, a crucial step can be made in order to obtain a much more powerful method.

One can choose the isometries at will, something which can lead to very different

isometries than those obtained by second order perturbation theory. The resulting

renormalization scheme is precisely the one introduced by G. Vidal and the underlying

states were called multiscale entanglement renormalization ansatz (MERA)[54, 55]. This

class of states was introduced by G. Vidal, and his construction was inspired by ideas

originating in the field of quantum information theory of how to parameterize states

using quantum circuits. He also proposed to obtain the isometries variationally. In a

typical realization of a MERA, the states are parameterized by specifying a periodic

pattern of isometries (the free parameters are exactly the isometries) as shown in Fig 9

and, furthermore, the isometries are themselves decomposed into a sequence of so-called

disentangling unitaries and isometries (see Fig 9(b)). Apart from historical reasons,

the incentive for splitting the isometries into smaller building blocks is that this allows
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Figure 9. Multiscale Entanglement Renormalization Ansatz: (a),(b) Decomposing the

isometries in the Ma-Dasgupta-Fisher scheme into a sequence of disentangling unitaries

and isometries; (c) Typical representation of a MERA as a sequence of unitaries and

isometries.

for a more efficient calculation of local expectation values; however, the disentangling

unitaries are already implicitly present in the Ma-Dasgupta-Fisher blocking scheme.

There is however also a very nice intuitive interpretation of the effect of those unitaries

as so–called disentanglers: before doing a blocking, those disentanglers take care of

removing entanglement within the block with the outside.

Due to the fact that MPS can be represented as TTS and TTS are a special case

of MERA, it is clear that the class of MERA encompasses the class of MPS. As already

explained in the context of the Ma-Dasgupta-Fisher RG-scheme, expectation values of

local observables can easily be calculated by doing consecutive coarse-graining steps on

the obervable of the form Ô → U † ˆO ⊗ 1U . Due to the exponential shrinking of the

number of spins, it is guaranteed that the renormalized observables Ô remain local at

all steps.

In analogy to MPS and TTS, a variatonal calculation can now be done as an

alternating optimization over the degrees of freedom in the state [86]. In the case of

MERA, those degrees of freedom are the isometries, but unlike the case of MPS and

TTN, those optimizations can not be mapped to alternating least squares problems;

instead, a direct optimization over isometries has to be done, which is a nonlinear

optimization problem that is more difficult and subtle to control due to the occurrence
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of local minima. Nevertheless, Vidal and collaborators have obtained impressive results,

and e.g. calculated critical exponents of quantum spin chains to a very good precision by

imposing a scale-invariant structure of the MERA [87, 88]. Such scale-invariant MERA

have also been studied from the point of view of real-space RG transformations [91] and

of quantum channels and quantum information theory [89, 90]. A further development

is the formulation of a real- and imaginary-time evolution with MERA [92].

5. Higher dimensions

In principle, one can use all the previous constructions in higher dimensions. For

instance, a MPS may approximate a 2D system, if we view it as a spin chain (ie we

place the spins one after each other)[18, 19, 20]. However, the validity of the methods

explained in previous sections will be questionable as soon as the system becomes

sufficiently big such that it cannot longer be viewed as a 1D one. A way of expressing

mathematically this intuition is through the area law. One expects that the entropy of

a region increases with the number of spins at the border. For a MPS, it is simple to

see that there will be regions for which the the entropy will not scale at all in that way.

With TTS the same thing happens: whereas for some regions the entropy will grow even

as the logarithm of the number of spins on that regions, for some other regions it will

not grow at all. Apart from that, they will not give a translationally invariant state, as

it should be for homogeneous problems. Nevertheless, the renormalization scheme that

originates the TTS may be still applied to higher dimensional systems giving reasonable

results for sufficiently small systems [93]. The MERA can be chosen to fulfill the area

law, and thus they may be more appropriate than MPS and TTS for 2 and higher

spatial dimensions. The construction can be immediately adapted from the 1D one.

The issue of translational invariance still remains and thus the result may depend on

how the tensors are chosen. Besides that, the minimization with respect to the tensors

composing the TPS cannot be carried out as efficiently as with TTN, since it becomes

difficult to avoid imposing the unitarity (or isometry) condition on the tensors. In any

case, the first results on a 2D frustrated system in a 2D lattice have been recently

reported, reveling a great potentiality of the method [94].

Here we will mostly consider PEPS, which do not suffer from some of those

drawbacks, and for which it has been explicitly proven to efficiently approximate a

large set of problems, as mentioned in the introduction. The prize one has to pay is

that the determination of expectation values has to be carried out approximately, as

opposed to what happens with MPS, TTS and MERA. In practice, this does not pose

a crucial problem since the error in the approximation can be easily estimated and

made arbitrarily small by increasing the computational resources. PEPS algorithms

have been recently applied a variety of 2D problems with very promising results both

for finite [44, 95, 96, 97] and infinite [45, 98, 99] systems. We will also briefly mention

other states at the end of the section.
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Figure 10. Projected entangled pair state (PEPS). As in the 1D case, each spin is

replaced by four ancillas, which are maximally entangled with their neighbors. The

state is produced by locally mapping the states of the ancillas onto the original spins.

5.1. Projeted Entangled Pair States in 2 dimensions

We extend here the construction of MPS from a previous section to 2D [44]. For that,

we consider N spins in a square lattice. We replace every spin by four auxiliary ones

(Fig. 10), each of them in a maximally entangled state of dimension D with a nearest

neighbor (except for the borders). We then define a map, PM , acting on each of the

sites, M , that transforms the state of the auxiliary spins into the one of the original

spins. Now, we can write the map at site M in a particular basis, so that

PM =

D
∑

α,β,γ,δ=1

d1
∑

n=1

(An
M)α,β,γ,δ|n〉(〈α, β, γ, δ|, (46)

where we have used the same notation as before, but now we have fixed the dimension D

to simplify the notation. The state obtained after this procedure is called a PEPS. We

can write the PEPS in the spin bases, in which case we will have that the corresponding

coefficients will be given by the contraction of the tensors A according to the auxiliary

indices (Greek letters). This is represented in Fig. 11.

Given the PEPS construction, it is very simple to understand that they satisfy the

area law. First, if we look at the state of the auxiliary particles, the entropy of a region

A will be equal to the number of cuts, nA, of the entangled pairs across the border of
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Figure 11. Tensor network representation of a PEPS. (a) Representation of the tensor

corresponding to a single site. The indices in the plane correspond to the auxiliary

particles, whereas the one orthogonal is the spin one; (b) Representation of the whole

state where the auxiliary indices are contracted.

the region times logD. In fact, the rank of the reduced density operator will be exactly

DnA. On the other hand, the maps P cannot increase the rank of the density operator,

and thus we obtain the area law for the real spins, given that the entropy of an operator

is upper bounded by the logarithm of its rank.

The expectation values of observables in a PEPS have a similar structure to those

in a MPS (see Fig. 12(a)). We have to sandwich the operator between the tensors

corresponding to Ψ and Ψ̄ as shown in the figure. At the end, everything boils down

to contracting a tensor of the form shown in Fig. 12(b). This is very hard, in general.

The reason is that if we start contracting the tensors appearing there, the indices will

proliferate and in the middle of the calculation we will have of the order of
√
N indices,

which amounts to having an exponential number of coefficients. This is very different

to what occurs in 1D, in which chase the linear geometry makes it possible to contract

the tensors while always keeping two indices at most.

One way to proceed is to realize that the tensor network displayed in Fig. 12(b)

can be viewed as follows. The first row can be considered as a tensor which in turns is

built out of smaller tensors, in much the same way as a MPS is built out of the tensors

A. The next row can be viewed as a MPO. Thus the contraction of the first row with
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the second will give rise to a tensor like the first one but with a higher bond dimension

(the square of the original one). If we contract the next row, we will multiply the bond

dimension again, and at some point it will be impossible to proceed. Instead, what we

can do is to try to approximate the first plus second row by a tensor of the form of a MPS

but with reduced dimensions (Fig. 12(c)). For that, we use the technique explained in

previous sections on how to approximate states by MPS optimally. We can now iterate

this technique by adding the third row, and again decreasing the bond dimension of the

resulting tensor (Fig. 12(d)). In this way, we can keep all the dimensions under control

and obtain the desired expectation value. A word of caution must be called for here.

There is no guarantee that we will be able to obtain a good approximation at the end if

we decrease the dimensions of the tensors. In practice, however, we have performed all

those approximations and obtained very good results. Furthermore, one is always aware

of the error made in the contraction, since it can be determined through the procedure

itself. The reason why one obtains very accurate results in practice can be qualitatively

understood as follows. The contraction we are performing can be viewed as evaluating a

kind of partition function of a 1D quantum system at non-zero temperature. In fact, the

MPO of each row can be interpreted as a transfer operator, in much the same way as in

1D quantum (or 2D classical) systems. If that matrix has a gap, which occurs outside

the critical points, the procedure we are carrying out will tend to give the eigenvector of

the transfer matrix corresponding to the maximal eigenvalue. If this eigenvector has an

efficient representation as a MPS, then our procedure will succeed. Even though there

is no proof for that, the problem of finding the maximal eigenvector of the transfer

matrix in 1D is very reminiscent of that of finding the ground state of a Hamiltonian,

for which a MPS provides a good approximation (for short range interactions, although

numerically it also works for longer range interactions).

Once one has an efficient algorithm to determine expectation values, one can

literally translate all the algorithms developed for MPS to PEPS. In particular, one

can approximate time evolutions, thermal states, etc, with this methods. In Ref. [71]

those algorithms are explained in great detail.

Let us now explain why PEPS are well suited to describe spins in thermal

equilibrium in the case of local Hamiltonians in any dimension. Let us write H =
∑

hλ,

where hλ. For simplicity, we will assume that each hλ acts on two neighboring spins

although this can be generalized for hλ acting on a small region. We first rewrite the

(unnormalized) density operator e−βH = trB[|Ψ〉〈Ψ|], where |Ψ〉 = e−βH/2 ⊗ |Φ〉AB is

a purification [47] and |Φ〉AB a pairwise maximally entangled state of each spin with

another one, the latter playing the role of an environment. We will show now that |Ψ〉
can be expressed as a PEPS. We consider first the simplest case where [hλ, hλ′ ] = 0,

so that |Ψ〉 =
∏

λ e
−βhλ/2 ⊗ 1|Φ〉AB. The action of each of the terms e−βhλ/2 on two

spins in neighboring nodes can be viewed as follows [100, 43]: we first include two

auxiliary spins, one in each node, in a maximally entangled state, and then we apply

a local map in each of the nodes which involves the real spin and the auxiliary spin,

that ends up in |0〉. By proceeding in the same way for each term e−βhλ/2, we end up
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Figure 12. Determination of expectation values with PEPS. (a) The tensor network

corresponding to the expectation value is obtained by sandwiching the observable (here

at the position 2,4) with Ψ and Ψ̄. (b) We can join pair of indices in each bond to have

a single one. (c) In order to contract the resulting tensor, we observe that the first

row has the same tensor structure as a MPS. Then, we contract the first row with the

second, and approximate the result optimally by a set of tensors with the structure of

a MPS. (d) We do the same thing with the next row, and continue in the same way

until we find the result.

with the PEPS description. This is valid for all values of β, in particular for β → ∞,

i.e., for the ground state. In case the local Hamiltonians do not commute, a more

sophisticated proof is required [51]. One can, however, understand qualitatively why

the construction remains to be valid by using a Trotter decomposition to approximate

e−βH ≈
∏M

m=1

∏

λ e
−βhλ/2M with M ≪ 1. Again, this allows for a direct implementation

of each exp[−βhλ/2M ] using one entangled bond, yielding M bonds for each vertex of

the lattice. Since, however, the entanglement induced by each exp[−βhλ/2M ] is very

small, each of these bonds will only need to be weakly entangled, and the M bonds can

thus be well approximated by a maximally entangled state of low dimension. Note that

the spins belonging to the purification do not play any special role in this construction.

5.2. Other approaches

For translationally invariant Hamiltonians, one may directly consider the limit N → ∞.

In that case, the PEPS is taken with identical maps P (equivalently, tensors A), in as
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much the same way as MPS are chosen to be FCS. The states so constructed have been

called iPEPS [45] and coincide with the vertex–matrix product ansatz introduced earlier

[22]. In that paper, another family of translationally invariant states was introduced,

motivated by the interaction round the face models in statistical mechanics. In a square

lattice, the tensors A are at the vertices of the B sublattice. The physical index, n, of

the tensor An
α11,α12,α21,α22

are associated to the vertices of the B sublattice, whereas the

auxiliary indices, αij, are at the bonds. Thus, the contraction of the indices in that case

is different, since each auxiliary variable is common to four tensors (and not two, like

in the other case, see Fig. 13) (see also [102, 103]. One can extend this last class of

states to include other tensor structures as shown in Fig. 13(c). In that state, there

are two kinds of tensors: those that are represented by circles and have one physical

index and four auxiliary ones, and those represented by squares with no physical index

[101]. The reason for the construction of those tensors is that this is an effective way

of increasing the entanglement among nodes without increasing the bound dimension,

but just the number of tensors. Since the PEPS algorithms typically have a much

milder dependence of the computational time with the number of tensors than with

the bond dimension, this has a very positive effect on the algorithms. Finally, there

is yet another interesting class of states introduced by Nishino and collaborators, who

also extend the ones proposed by Sierra and Martin-Delgado as interaction round a face

type. They naturally appear in the transfer matrix of 3D classical models. In those

states, each tensor now belongs to a plaquette, and depends on all the physical and

auxiliary indices around the plaquette (ie. have the form An11,n12,n21,n22
α11,α12,α21,α22

)). Note that

dropping the dependence on n12, n21 and n22 on that tensor we obtain the one of Fig.

13(b).

We finally briefly mention other states which have an interesting property: string-

bond-states [104] and the entangled-plaquette-states [105]. The coefficients of those

states in the spin basis are expressed as products of other coefficients. In the first case,

the latter coefficients are just MPS along different strings going through some spins in

the lattice; in the second, they correspond to large overlapping plaquettes. The main

feature of those states is that the expectation values can be calculated using Monte

Carlo methods. Other interesting states displaying that property have been introduced

by Sandvik [106, 107, 108].

6. Summary and perspectives

It is very remarkable that one can identify the corner of Hilbert space which is relevant to

describe the ground and thermal equilibrium states for a large variety of Hamiltonians.

Those states are the MPS and their generalization to higher spatial dimensions, the

so-called PEPS. Here we have reviewed those and other families of states (including the

TTS and MERA) which are a subclass of TPS. We have shown how most of them (all

except PEPS) follow immediately from some real-space renormalization procedure. We

have characterized them, and shown how one can build algorithms with them to perform
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Figure 13. Representation of a vertex (a) and a face (b) matrix product ansatz. The

tensors are specified by circles, and the auxiliary indices by the lines joining them. As

one can see, each auxiliary index appears in two (a) and four (b) tensors, respectively.

different tasks, ranging from finding ground states, thermal states, evolutions, etc.

There remain very important problems in the context of TPS. First of all, it would

be very interesting to prove beyond the intuitive arguments and the successful numerical

results that the different procedures to determine expectation values of PEPS converge

in practice. Also, even though we know that the state we are looking for is close to a

MPS or a PEPS, nothing guarantees that our algorithm (DMRG or its extensions) will

find it, although in all practical situations it does. Thus it would be very interesting

to find conditions under which this will be the case. Note that there exist problems for

which the ground state is a MPS but it cannot be found [109], or other in which it is a

PEPS and it cannot be efficiently contracted, since that would violate the general believe

in computer science that some problems are exponentially hard [110, 111]. Apart from

that, when we have talked about the corner of Hilbert space we have always restricted

ourselves to ground or thermal states of short-range interacting Hamiltonians. But,

what happens for long-range Hamiltonians? Or, for time evolution? In the last case it

can be shown that even in 1D a MPS can, in general, only approximate the state for

short times [112, 113]. This indicates that the MPS are not well suited to describe time

evolution for long times, and that the family of states describing that corner of Hilbert

space is a completely different one.
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Another challenge is to find more efficient algorithms that work in higher

dimensions. For example, the time resources associated to the algorithm based on PEPS

to determine the ground state of a 2D Hamiltonian with open boundary conditions scales

like N2D10, which allows to work with up to 20× 20 lattices of spin 1/2 particles with

D = 5. For problems with periodic boundary conditions or higher dimensions, the

dependence is even worse, which makes it unpractical. The same is true for the MERA

algorithms in 2 and higher dimensions. In particular, in 2D it scales as D16[115]. Thus,

we have to find ways of determining the states more efficiently, or new families of states

(related to PEPS) for which we can do this task much faster. One possibility which

is currently exploited and is very promising consists of combining the TPS and other

descriptions with Monte Carlo methods [104, 105, 106, 107, 108].
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