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Abstract 

N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes 

and impacts a wide range of cellular processes, including protein quality control and stress 

tolerance. Despite its prevalence, the mechanisms regulating Nt-acetylation are still nebulous. 

Here, we present the first global study of Nt-acetylation in yeast cells as they progress to 

stationary phase in response to nutrient starvation. Surprisingly, we found that yeast cells 

maintain their global Nt-acetylation levels upon nutrient depletion, despite a marked decrease in 

acetyl-CoA levels. We further observed two distinct sets of protein N-termini that display 

differential and opposing Nt-acetylation behavior upon nutrient starvation, indicating a dynamic 

process. The first protein cluster was enriched for annotated N-termini showing increased Nt-

acetylation in stationary phase compared to exponential growth phase. The second protein cluster 

was conversely enriched for alternative non-annotated N-termini (i.e. N-termini indicative of 

shorter N-terminal proteoforms) and, similar to histones, showed reduced acetylation levels in 

stationary phase when acetyl-CoA levels were low. Notably, the degree of Nt-acetylation of Pcl8, 

a negative regulator of glycogen biosynthesis and two components of the pre-ribosome complex 

(Rsa3 and Rpl7a) increased during starvation. Moreover, the steady-state levels of these proteins 

were regulated both by starvation and NatA activity. In summary, this study represents the first 

comprehensive analysis of metabolic regulation of Nt-acetylation and reveals that specific, rather 

than global, Nt-acetylation events are subject to metabolic regulation. 

 

The abbreviations used are: Acetyl-CoA, acetyl coenzyme A; COFRADIC, COmbined 

FRActional DIagonal Chromatography; iMet, initiator methionine; KAT, lysine 

acetyltransferase; NAA/Naa, Nα-acetyltransferase gene/protein; NAT, N-terminal 

acetyltransferase; Nt,  N-terminal; TAP, Tandem Affinity Purification 

 

Free-form Keywords: Acetyl coenzyme A, Metabolism, N-terminal acetylation, N-terminomics, 

ribosomal proteins. Keywords: Acetylation*, Molecular biology*, N-terminal modifications*, 

Tandem Mass Spectrometry, Yeast* 
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Introduction  

N-terminal acetylation (Nt-acetylation) is a widespread protein modification, and approximately 

70% of all yeast protein species are fully or partially Nt-acetylated (1-4). The Nt-acetylation 

process involves the transfer of an acetyl moiety from acetyl-coenzyme A (acetyl-CoA) to the 

free α-amino group of (nascent) protein N-termini. The N-terminal acetyl group affects various 

protein properties, including protein quality control and stability (5-7), protein folding (8-10), 

protein-protein interactions (11-13), and subcellular localization (11-14) as well as cellular 

processes such as cytoskeleton dynamics (15) and gene regulation (16). In yeast Nt-acetylation is 

catalyzed by five different N-terminal acetyltransferases (NATs), termed NatA to NatE. Each 

NAT is composed of one or more specific subunits and acetylates a distinct subset of proteins, 

primarily based on the nature of the two first amino acids (1).  

 Despite the recent developments in the field of Nt-acetylation, the regulatory mechanisms 

underlying this common protein modification remain poorly understood. Several findings suggest 

that Nt-acetylation plays a key role in cellular surveillance systems that counteract environmental 

stressors. In the plant Arabidopsis thaliana prolonged drought stress leads to an accumulation of 

the stress hormone abscisic acid, which causes a downregulation of NatA. The diminished level 

of NatA and subsequent reduction of NatA-mediated Nt-acetylation elicits a stress response that 

limits plant growth and promotes plant survival (17). This study by Linster et al. was the first to 

describe a hormone-dependent adaption of NAT activity due to environmental stress. Moreover, 

Warnhoff and colleagues showed that reduced NAT activity contributes to increased resistance to 

heat, oxidative stress, and heavy metals in the nematode Caenorhabditis elegans (18). In yeast 

Nt-acetylation promotes nuclear-cytoplasmic shuttling of proteasomes during starvation (19). Nt-

acetylation was also proved essential for development and viability of multicellular eukaryotes 

(17, 20-22). Taken together, these findings underscore the biological importance of Nt-

acetylation and strongly suggest that it has a regulatory role in stress responses. Still, the 

molecular mechanisms at play and the protein-specific consequences of Nt-acetylation have only 

been elucidated for a limited number of substrates (2, 23). 

 Protein acetylation also frequently occurs at the ε-amino group of lysine residues within 

proteins (lysine acetylation or Nε-acetylation) in a post-translational process catalyzed by lysine 

acetyltransferases (KATs) (23, 24). In fact, reversible lysine acetylation of histone tails 
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constitutes a major part of the histone code (25). The intermediate metabolite acetyl-CoA serves 

as acetyl donor for all known acetyltransferases, indicating a crosstalk between protein 

acetylation and cellular metabolism (24, 26, 27). Indeed, several studies have shown that 

fluctuations in acetyl-CoA availability can affect lysine acetylation (28-32). Inactivation of 

acetyl-CoA synthetase 2 (Acs2), which is the main supplier of nucleocytosolic acetyl-CoA in 

yeast, leads to a rapid decrease in histone acetylation and reduced global gene transcription (30). 

Furthermore, yeast cells display reduced histone acetylation following entry into the stationary 

phase (28). Friis and colleagues demonstrated that refeeding yeast cells in stationary phase can 

temporary restore histone acetylation levels. This effect is mainly mediated by the untargeted 

activity of Piccolo NuA4 and SAGA complexes and relies on glycolysis. Together these findings 

link cellular metabolism and quiescence to chromatin regulation (29). A correlation between 

glucose metabolism and histone acetylation was also reported in mammalian cells. Wellen et al. 

showed that knockdown of ATP citrate lyase (ACL), which is the primary source of cytosolic 

acetyl-CoA in mammalian cells, leads to a significant reduction in histone acetylation, whereas 

non-histone targets, such as tubulin, appear unaffected (31). Similar to yeast, the addition of 

acetate rescued the effect in a manner dependent on AceCS1. Additionally, growth-arrested yeast 

cells show a global increase in mitochondrial lysine acetylation in a glycolysis-dependent manner 

(32).  

 The findings linking cellular metabolism to global histone acetylation (29-31) and the fact 

that many proteins are only partially Nt-acetylated (4) suggest that the NAT machinery might 

respond to metabolic cues. To address this hypothesis, we examined the effect of altered cellular 

metabolism on the global level of Nt-acetylation in the budding yeast Saccharomyces cerevisiae. 

More specifically, we compared the degree of Nt-acetylation between yeast cells in exponential 

growth phase and starvation-induced stationary phase using positional proteomics (N-terminal 

COFRADIC). To our surprise, the overall Nt-acetylation levels remained remarkably constant 

upon nutrient starvation causing acetyl-CoA depletion. Intriguingly however, Nt-acetylation 

appeared dynamic in some specific cases. In summary, our work provides an important insight 

into metabolic regulation of protein Nt-acetylation in yeast.   
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EXPERIMENTAL PROCEDURES 
Yeast Strains  

A complete list of yeast strains and their genotypes is given in Table S1, with the majority being 

derivatives of BY4741. Deletion strains were generated by PCR-based homologous 

recombination using hphNT1 or kanMX4 selection markers. Gene-specific markers were PCR 

amplified from pFA6a-hphNT1 (33) or respective kanMX4-containing deletion strains 

(EUROSCARF). Transformations were performed according to Gietz and Schiestl (34) using 10 

µg of purified PCR product. Antibiotic selection was achieved using 250 µg/L hygromycin B 

(Invitrogen) or 200 µg/L geneticin (Gibco). Gene deletions were confirmed by colony PCR using 

crude DNA extracts (35). The primers used in this study are listed in Table S2.  

 

Culturing Conditions  

Yeast strains were cultured in standard YPD (Sigma Y1375; 2% glucose, 1% yeast extract, and 

2% bacteriological peptone) at 30 °C with 250 rpm shaking. 100 ml culture volumes in 1 L 

Erlenmeyer flasks were used for the COFRADIC and shotgun proteome analyses, whereas 10 ml 

culture volumes in 50 ml Falcon tubes were used for acetyl-CoA profiling and immunoblot 

analyses. Overnight cultures were diluted to OD600 ≈ 0.2. Cells in exponential growth phase were 

harvested after 6 h cultivation (OD600 1.0-1.5), whereas cells in the semi-active and stationary 

growth phase were harvested after 3 and 8 days, respectively. Stationary cells were added 0% 

(control), 2% or 10% (w/v) of D-glucose and harvested after 24 h, resulting in 9 days of total 

cultivation time. Cell pellets were washed twice with cold MilliQ water and stored at −20 °C 

until further processing. 

 

Acetyl-CoA Profiling by MS 

Cell culturing was performed as described above and OD600 was measured prior to harvesting. 

Metabolites were extracted using a modified filter quench method originally described by 

Crutchfield et al. (36). Cell harvesting was achieved by vacuum-assisted filtration over 0.45 μm 

nylon membrane filters (Supelco, USA). To quench cell metabolism and extract metabolites, the 

cell-containing filters were immediately placed in preheated extraction buffer (1 ml of 80% 

ethanol) and incubated for 3 min at 80 °C with 1,400 rpm agitation. After the samples had cooled 

down on ice, they were transferred to new tubes and filters were washed 3 times with 340 µl ice-
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cold acetonitrile. Cell debris and other insoluble material was removed by centrifugation at 

16,100 × g for 15 min at 4 °C and extracts were stored at −80 ˚C prior to LC-MS analysis. 

Targeted analysis of acetyl-CoA levels was achieved on a Dionex UltiMate 3000 Rapid 

Separation LC system coupled to a Q Exactive MS instrument (Thermo Fisher Scientific, USA). 

Chromatographic separation was conducted using ACQUITY UPLC BEH Amide Column, 

(130Å, 1.7 µm, 2.1 mm × 50 mm (Waters Inc., USA) at flowrate of 0.4 ml/min. Solvent A 

consisted of 50 μM NH4HCO3 pH = 9.2 and acetonitrile was used as Solvent B. The metabolites 

were separated in a 6 min program with the following HPLC gradient conditions: 80% to 65% B 

at 0-4 min, 1% B from 4-4.8 min, and 80% B from 4.8-8 min. Injection volumes were normalized 

to cell content in extraction solvents. The following parameters of heated electrospray ion (HESI) 

source were used: Sheath gas flow rate: 50 units; Aux gas flow rate: 13 units; Sweep gas flow 

rate: 3 units; Spray voltage: 3.5 kV; Capillary temperature: 263 °C; S-lens RF level: 90; Aux gas 

heater temperature: 425 °C. Mass spectra were recorded in the positive ion electrospray 

ionization mode and in single ion monitoring (SIM) mode using the following acquisition 

parameters: Target-SIM, polarity: positive, Resolution: 140,000 at 200 m/z; AGC target: 1E5 

ions, Maximum IT: 512 ms, Isolation window: 4.0 m/z, isolation offset: 1.0 m/z. The inclusion 

list consisted of the mass-to-charge ratio of the singly charged acetyl-CoA ion (810.13305 m/z). 

Data analysis was done using the label-free mass spectrometry differential analysis platform 

SIEVE Version 2.2.38 (Thermo Fisher Scientific, USA) followed by manual inspection of LC-

MS data. The following optional parameters of the SIEVE platform were used: Algorithm: 

FRAME, Experiment Target: METABOLOMICS, Experiment Type: NORMALIZED_TREND, 

ScanFilter: FTMS + p ESI SIM ms [809.13-813.13], AligmentMinIntensity: 10,000, 

MZWidthPPM: 5. 

 

N-Terminal COFRADIC Analyses, LC-MS/MS Analysis, and Data Storage 

Preparation of yeast cell extracts for N-terminal COFRADIC and subsequent LC-MS/MS 

analysis and data processing were performed as previously described (37). The analyses were 

performed on whole cell lysates from BY4742 obtained at 6 different metabolic conditions: yeast 

cultures grown for 6 h, 3 days, 8 days, 9 days + 0% glucose, 9 days + 2% glucose, and 9 days + 

10% of glucose. All primary protein amines were blocked using an N-hydroxysuccinimide ester 

of (stable isotopic encoded) acetate at the protein level (i.e. an NHS ester of 13C2D3 acetate) to 
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enable the assignment and the calculation of the degree of in vivo Nt-acetylation. In each case, a 

methionine oxidation step was introduced between the primary and secondary RP-HPLC 

separations, thereby shifting all methionine-containing N-terminal peptides to earlier elution 

times, allowing their enrichment (38). The obtained peptide mixtures were introduced into an LC-

MS/MS system, the Ultimate 3000 (Dionex, Amsterdam, The Netherlands) in-line connected to 

an LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) and LC-

MS/MS analysis was performed as described previously (3, 4). The generated MS/MS peak lists 

were searched with Mascot using the Mascot Daemon interface (version 2.2.0, Matrix Science). 

Searches were performed in the Swiss-Prot database with taxonomy set to Saccharomyces 

cerevisiae (baker’s yeast) (UniProtKB/Swiss-Prot database version 2016_01, containing 6,729 

protein entries). 13C2D3-acetylation of lysine side-chains, carbamidomethylation of cysteine and 

methionine oxidation to methionine-sulfoxide were set as fixed modifications. Variable 

modifications were 13C2D3-acetylation and acetylation of protein N-termini. Pyroglutamate 

formation of N-terminal glutamine was additionally set as a variable modification. Mass 

tolerance on precursor ions was set to 10 ppm (with Mascot’s C13 option set to 1) and on 

fragment ions to 0.5 Da. Endoproteinase semi-Arg-C/P (Arg-C specificity with arginine-proline 

cleavage allowed) was set as enzyme, not allowing for missed cleavages. The peptide charge was 

set to 2+, 3+ and the instrument setting was put to ESI-TRAP. Only peptides that were ranked 

one, had a minimum amino acid length of seven and scored above the threshold score, set at 95% 

confidence, were withheld. The estimated false discovery rate by searching decoy databases (a 

shuffled version of the yeast Swiss-Prot database made by the DBToolkit algorithm (39)) was 

below 1% on the spectrum level and below 2% at the peptide level. Quantification of the degree 

of Nt-acetylation was performed as described (3). More specifically, acetylation versus heavy 

acetylation of N termini (Acetyl:2H(3)C13(2) N-term) was selected as quantification option, and 

carried out using the Mascot Distiller Quantitation Tool. All data management was done in 

ms_lims (40). The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE 

partner repository (41) with the dataset identifier PXD004326. Annotated spectra have been made 

available in MS-Viewer via ProteinProspector 

(http://prospector.ucsf.edu/prospector/mshome.htm) with the following search key 8i9cwelrjh.  
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Shotgun Proteome Analyses 

Cell culturing was performed as described above. Pellets were washed with cold MilliQ and 

stored at −80 °C until further processing. Each condition was analyzed in triplicate and a total of 

18 samples were prepared for LC-MS/MS analyses. Frozen cell pellets were dissolved in 1 ml 

lysis buffer (20 mM HEPES pH 8.0, 9 M urea) of which 500 µl was used further. Lysis was 

performed using FastPrep (MP Biomedicals) with Lysing Matrix Y beads. Samples were 

vortexed 7 × 10 s using the FastPrep device at 4 °C (one replicate sample was lost), followed by 

sonication with 3 pulses of 15 s at an amplitude of 20% using a 3 mm probe. After centrifugation 

for 15 min at 16,000 × g at room temperature (RT) to remove insoluble components, the protein 

concentration was measured and 500 µg of protein from each sample material was used further. 

Proteins were reduced by incubation with 5 mM DTT for 30 min at 55 °C and then alkylated with 

10 mM iodoacetamide for 15 min at RT in the dark. Samples were further diluted with 20 mM 

HEPES pH 8.0 to a final urea concentration of 4 M and proteins were pre-digested with 2 µg 

LysC (Wako) (1/250, w/w) for 4 h at 37 °C. Samples were then further diluted to 2 M urea and 

digested with 5 µg trypsin (Promega) (1/100, w/w) overnight at 37 °C. The resulting peptide 

mixture was acidified by addition of 1% trifluoroacetic acid (TFA) and after 15 min incubation 

on ice, the samples were centrifuged for 15 min at 1780 × g at RT to remove insoluble 

components. Next, peptides were purified on SampliQ C18 columns (Agilent). These columns 

were first washed with 1 ml of acetonitrile and pre-equilibrated with 3 ml of solvent A (0.1% 

TFA in water/acetonitrile (98:2, v/v)) before samples were loaded on the column. After peptide 

binding, the column was washed with 2 ml of solvent A and peptides were eluted with 1.4 ml of 

solvent B (0.1% TFA in water/acetonitrile (20:80, v/v)). Purified peptides were dried completely 

by vacuum drying and stored at −20 °C until LC-MS/MS analysis. Purified peptides were re-

dissolved in solvent A and approximately 2 µg of each sample was injected for LC-MS/MS 

analysis on an Ultimate 3000 RSLCnano system (Thermo Fischer Scientific) in-line connected to 

a Q Exactive HF mass spectrometer (Thermo Fischer Scientific) equipped with a Nanospray Flex 

Ion source (Thermo Fischer Scientific). Trapping was performed at 10 μl/min for 4 min in solvent 

A on a 20 mm trapping column (made in-house, 100 μm internal diameter (I.D.), 5 μm beads, 

C18 Reprosil-HD, Dr. Maisch, Germany) after which the sample was loaded on a 400 mm 

analytical column (made in-house, 75 µm I.D., 1.9 µm beads C18 Reprosil-HD, Dr. Maisch). 
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Peptides were eluted by a non-linear solvent gradient from 2 to 56% solvent B’ (0.1% formic acid 

(FA) in water/acetonitrile (2:8, v/v)) over 140 min at a constant flow rate of 250 nl/min, followed 

by a 15 min wash reaching 99% solvent B’ and re-equilibration with solvent A’ (0.1% FA in 

water/acetonitrile (2:8, v/v)). The column temperature was kept constant at 50 °C in a column 

oven (CoControl 3.3.05, Sonation). The mass spectrometer was operated in data-dependent 

mode, automatically switching between MS and MS/MS acquisition for the 16 most abundant ion 

peaks per MS spectrum. Full-scan MS spectra (375-1500 m/z) were acquired at a resolution of 

60,000 in the Orbitrap analyser after accumulation to a target value of 3,000,000. The 16 most 

intense ions above a threshold value of 22,000 were isolated (window of 1.5 Th) for 

fragmentation at a normalized collision energy of 28% after filling the trap at a target value of 

100,000 for maximum 45 ms. MS/MS spectra (200-2000 m/z) were acquired at a resolution of 

15,000 in the Orbitrap analyser. The S-lens RF level was set at 55 and we excluded precursor 

ions with single and with unassigned charge states and with charge states above 5 from 

fragmentation selection. Data analysis was performed with MaxQuant (version 1.5.6.5) using the 

Andromeda search engine with default search settings including a false discovery rate set at 1% 

on both the peptide and protein level. Spectra were searched against the yeast proteins in the 

UniProt/Swiss-Prot database (database release version of August 2016 containing 6,721 yeast 

protein sequences, www.uniprot.org). The mass tolerance for precursor and fragment ions was set 

to 4.5 and 20 ppm, respectively, during the main search. Enzyme specificity was set as C-

terminal to arginine and lysine, also allowing cleavage at proline bonds with a maximum of two 

missed cleavages. Variable modifications were set to oxidation of methionine residues and 

acetylation of protein N-termini, while carbamidomethylation of cysteine residues was set as 

fixed modification. Matching between runs was enabled with a matching time window of 1 min 

and an alignment time window of 20 min. Only proteins with at least one unique or razor peptide 

were retained leading to the identification of 2,707 yeast proteins. Proteins were quantified by the 

MaxLFQ algorithm integrated in the MaxQuant software. A minimum ratio count of two unique 

or razor peptides was required for quantification. Further data analysis was performed with the 

Perseus software (version 1.5.5.3) after loading the protein groups file from MaxQuant. Proteins 

only identified by site, reverse database hits and potential contaminants were removed and 

replicate samples were grouped. Proteins with less than three valid values in at least one group 

were removed and missing values were imputed from a normal distribution around the detection 
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limit leading to a list of 1,918 quantified proteins that was used for further data analysis. The 

shotgun proteomics data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (41) with the 

dataset identifier PXD009214. Annotated spectra have been made available in MS-Viewer via 

ProteinProspector (http://prospector.ucsf.edu/prospector/mshome.htm) with the following search 

key ibi5m5495s. 

 

Immunoblot Analysis 

Protein extracts from yeast cells were prepared according to Kushnirov (42) with minor 

adjustments. Alkaline treated cell pellets were resuspended in sample buffer (60 mM Tris-HCl, 

pH 6.8, 5% glycerol, 2% SDS, 100 mM DTT, and bromophenol blue) to a final concentration of 

50-75 mg wet weight pellet per ml. The cell suspensions were subsequently incubated at 90 °C 

for 10 min. To remove cell debris, the suspensions were centrifuged at 10,000 × g for 30 s. Equal 

amounts of protein extract (0.25 – 0.5 mg of wet weight) were resolved by Mini-PROTEAN 

TGX stain-free protein gels (Bio-Rad) and transferred onto a nitrocellulose membrane (GE 

Healthcare). Histone H4 was detected with mouse anti-Histone H4 and anti-acetyl-Histone H4 

(Merck Millipore, 05-858 and 06-598, respectively) using a 1:1000 dilution. TAP-tagged proteins 

were detected with rabbit anti-TAP (Pierce, CAB1001) at 1:500-1:6000 dilutions. Actin served as 

loading control and was probed with mouse anti-beta-actin (Abcam, ab8224) at 1:4000-1:6000 

dilutions. Membranes were probed with horseradish peroxidase-linked secondary antibodies (GE 

Healthcare) at 1:4000-1:6000 dilutions. All antibodies were diluted in milk-based blocking buffer 

(1-5% (w/v) dry milk powder, 1 × PBS, 0.5% (w/v) Tween-20). The immunoblots were 

incubated with SuperSignal West Pico (Thermo Scientific) and chemiluminescence signals were 

detected using ChemiDoc XRS+ and imaged with ImageLab v5.1 Beta (both from Bio-Rad). 

Immunoblots shown are representative of at least three independent experiments. Densitometry 

analysis was performed using ImageLab 

 

Experimental Design and Statistical Rationale 

Acetyl-CoA profiling was performed using six biological samples with six technical replicates. 

Significance was determined by Tukey's multiple comparisons test where p values <0.0001 

(****) and <0.05 (*) were considered significant. Abundance measurements were normalized to 
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average absolute abundance at 6 h. Mean ± SD is shown as a line. The COFRADIC analyses 

were performed with one biological sample for each condition. Differential Nt-acetylation was 

here defined as a minimum shift of 10% in Nt-acetylation between active phase and semi-active 

and/or stationary phase. This cut-off value was based on the very high correlation between the 

degrees of Nt-acetylation calculated in independent N-terminal proteomics experiments (R2 = 

0.998), for which a p value of p ≤ 0.01 was calculated when considering a minimum shift of 10% 

(3). Shotgun proteomics experiments were performed in biological triplicates except for day 9 

with 10% of glucose where one sample was omitted due to a technical error (see above). A two-

way ANOVA test was performed to compare the intensities of the proteins in the time group with 

the glucose percentage group. Proteins with p value <0.01 in at least one of both groups were 

considered to be significantly regulated. Gene Ontology (GO) enrichment analysis was 

performed using the GO Slim Mapper from the Saccharomyces Genome Database (SGD) using 

the quantified proteins as background set. p values were calculated using Fisher's exact test. GO 

terms with p value < 0.01 were considered statistically significant. Immunoblots shown are 

representative results of at least three independent biological experiments. The densitrometric 

values refer to the experiment shown. 

 

RESULTS 
Histone Acetylation is Sensitive to Acetyl-CoA Levels 

Previous research has shown that histone acetylation is sensitive to acetyl-CoA availability (28-

31), indicating that protein acetylation in general could be dynamic with respect to cellular 

metabolism. To investigate the effect of nutrient availability on global Nt-acetylation levels, yeast 

cells were grown in rich medium and harvested in exponential active, semi-active, and stationary 

growth phase (Fig. 1A). In addition, stationary cells were given 0%, 2% or 10% of glucose and 

harvested after an additional 24 hours of cultivation. We validated the experimental setup with 

respect to histone acetylation using immunoblot analysis, confirming hypoacetylation of histone 

H4 following entry into stationary phase (Fig. 1B) (29). Glucose addition to stationary cells 

reversed the effect of nutrient starvation causing hyperacetylation of histone H4. Moreover, we 

performed metabolite extraction from whole yeast cells to monitor the level of acetyl-CoA. The 

intracellular level of acetyl-CoA was significantly reduced (p < 0.0001) when the cells entered 

the stationary phase (Fig. 1C and Table S3), associated with glucose exhaustion. In agreement 
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with previous studies, the cellular level of acetyl-CoA was partly restored after glucose addition 

(29, 32, 43).  

Nt-Acetylation Remains Generally Stable as Yeast Cells Progress to Stationary Phase 

Based on the observed fluctuations in histone acetylation, we hypothesized that yeast cells 

transitioning from exponential growth to stationary phase, which entails a significant reduction in 

acetyl-CoA levels (Fig. 1C), would experience a reduction in overall Nt-acetylation. To address 

this hypothesis, we used N-terminal COFRADIC to quantify Nt-acetylation in whole protein 

extracts from 6 different cellular conditions (Fig. 1A). In total, we identified 1,168 unique N-

termini (Table S4). Annotated N-termini (i.e. N-termini starting at position 1 or 2 of the protein 

sequence) constituted the majority (1,056) of identified N-termini, while the remaining part (112) 

consisted of so-called alternative N-termini (i.e., N-termini starting beyond position 2 in the 

protein sequence). The latter likely point to alternative Nt-proteoforms generated by alternative 

translation initiation and/or splicing events (44). To our surprise, we found that the steady-state 

levels of Nt-acetylation of database annotated N-termini remained fairly stable following entry 

into stationary phase, despite a prominent decrease in acetyl-CoA and histone acetylation levels 

(Fig 2A). In fact, the majority of identified N-termini (~90%) did not respond to major changes in 

cellular metabolism induced by prolonged starvation or the subsequent addition of glucose. 

Differential Nt-acetylation was here defined as a minimum shift of 10% in Nt-acetylation 

between exponential growth phase and semi-active and/or stationary growth phase (see 

Experimental Design and Statistical Analysis).  

A Minor Fraction of The Yeast Proteome is Differentially Nt-Acetylated 

Further analysis of the COFRADIC data revealed that the acetylation status of 104 N-termini 

differed between exponential growth phase and intermediate or stationary phase (Fig. 2A), of 

which 71 N-termini were database annotated (Table S5) and 33 were alternative N-termini (Table 

S6). Based on generic k-means clustering of the differentially acetylated N-termini, two clusters 

appeared as determined by a Chi-square test of independence (p = 0.000167). Cluster 1 was 

significantly enriched for database annotated N-termini and displayed increased level of Nt-

acetylation following nutrient starvation, an effect that in most cases was reversed by glucose 

addition (Fig. 2B). For example, the degree of Nt-acetylation of Smy2 (MI-) increased from 34% 
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in exponential growth phase to 100% in stationary phase, and declined to 57% after glucose 

addition (Table 1). Cluster 2, on the other hand, was enriched for alternative N-termini (Fig. 2C) 

and presented the same acetylation trend as histones, becoming less acetylated following entry 

into stationary phase. For instance, the alternative N-terminus of Eis1 (ME- at position 164) was 

48% Nt-acetylated during exponential phase, but only 4% Nt-acetylated in stationary phase 

(Table 1). Moreover, the Nt-acetylation level of Eis1 increased to 16% after glucose addition. In 

total, 73% of the affected annotated N-termini were more Nt-acetylated in stationary phase (low 

acetyl-CoA) as compared to exponential phase (high acetyl-CoA) (Fig. 2A). Conversely, entry 

into the stationary phase caused a decrease in Nt-acetylation for a significant portion of the 

affected alternative N-termini. Glucose addition reversed the effect for most of the affected N-

termini. Based on these observations, we suggest that specific, rather than global, Nt-acetylation 

events are subject to metabolic regulation.  

Differential Nt-Acetylation May in Some Cases Be Related to Changes in Protein Abundance 

Since COFRADIC analyses can only be used to determine changes in Nt-acetylation levels and 

not changes in overall protein abundance, we next performed label-free shotgun proteomics to 

quantify protein expression using the same cellular conditions. In total, we identified 2,707 

proteins (Table S7) of which 1,918 were reliably quantified (proteins with at least 3 valid LFQ 

intensity values in one of the six conditions, see Experimental Procedure) (Table S8). To reveal 

proteins whose expression level was significantly affected between the different metabolic 

conditions, sample groups were defined based on time (6 h vs. 3 days vs. 8 days vs. 9 days) and 

glucose percentage (0% vs. 2% vs. 10%) and a two-way ANOVA test was performed to compare 

the intensities of the proteins in the time group with the glucose percentage group. For each 

protein, this resulted in a -log p value for time and a p value for glucose percentage. 401 proteins 

with a p value <0.01 in at least one of both groups were considered to be significantly regulated. 

The intensities of these proteins are shown in a heat map after non-supervised hierarchical row 

clustering (Fig 3). In the row tree, 5 clusters were observed, corresponding to proteins with 

different expression profiles in the sample groups (Table S9). In total, six proteins (Mxr1, Sse1, 

Met6, Gdh1, Ser3, and Glt1) were assigned to cluster 1, cluster 3, and cluster 4. In these cases, 

we observed varying expression changes upon entry into stationary phase, but they all showed 

increased protein abundance after glucose addition. Proteins in cluster 2 (218 proteins) exhibited 
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increased expression in stationary phase whereas the opposite was the case for proteins in cluster 

5 (177 proteins). For example, we observed increased expression of Fbp1 (Fructose-1,6-

bisphosphatase; required for glucose metabolism) upon entry into stationary phase followed by a 

prominent decrease after glucose addition. Conversely, the protein level of Gpp1 (glycerol-1-

phosphatase; involved in glycerol biosynthesis) decreased from exponential growth phase to 

stationary phase. The effect of prolonged starvation was partly reversed upon glucose addition. A 

gene ontology (GO) enrichment analysis of the proteins in cluster 2 and cluster 5 revealed a 

strong enrichment for genes involved in oxidation-reduction process (p value < 2.18e-14) and 

translation (p value < 1.13e-34), respectively. When glucose becomes exhausted from the growth 

medium yeast cells redirect their cellular metabolism from fermentation to respiration. This 

metabolic reprogramming is accompanied by reduced gene expression and protein translation. 

Hence, our findings are in agreement with known proteome changes in response to prolonged 

growth (45). 

We next compared the N-terminal COFRADIC data with the shotgun results to determine 

whether the observed differential Nt-acetylation was related to changes in protein abundance. 64 

out of the 101 unique proteins that were found differentially Nt-acetylated were detected and 

quantified by label-free shotgun proteomics. Of these, 69% displayed protein abundance levels 

that were not significantly affected by changes in cellular metabolism (Table 1 and Table S10). 

We do note, however, that only 21% of the quantified proteins were differentially expressed, as 

opposed to 31% of the differentially Nt-acetylated proteins. For example, Cox12 (A-) showed a 

marked increase in Nt-acetylation following entry intro stationary phase (from 46% to 82%), but 

the Nt-acetylation level decreased to 36% following glucose addition. The expression level of 

Cox12 was relatively low in exponential growth phase, but rapidly increased as the yeast cells 

progressed to stationary phase (assigned to cluster 2). Thus, since we only looked at changes in 

the steady-state protein levels and not new protein synthesis, we cannot rule out the possibility 

that altered translation rates have an impact on the differential Nt-acetylation observed, especially 

for suboptimal NAT substrates.  

Differential Nt-Acetylation Does Not Appear to Be Caused by NAT Enzyme Regulation 

Yeast expresses five different NATs (NatA to NatE) that differ in their subunit composition and 

substrate specificity, which is mainly dictated by the nature of the first two amino acids of the 
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substrate protein (1). We next compared the distribution of the affected N-termini against the 

substrate profiles of the different NATs. Among the major NATs, NatA targets N-termini which 

have gone through initiator methionine (iMet) removal, whereas NatB and NatC acetylate the 

iMet when followed by an acidic or a hydrophobic/amphiphatic residue, respectively (1). All the 

identified and differentially acetylated N-termini were accordingly classified as NatA, NatB, or 

NatC-type substrates. N-termini that could potentially be acetylated by several NATs (redundant) 

or are not acetylated at all (proline starting) (46) were classified as ‘other’ or ‘none’, respectively. 

We found that all the major NAT substrate classes were represented among the N-termini that 

were differentially acetylated (Fig. 4). More specifically, the annotated N-termini within the NatC 

and ‘other’ groups were most susceptible to differential Nt-acetylation (i.e. a 1.63 and 1.89 fold 

increase was observed, respectively) compared to NatB-type N-termini. With respect to 

alternative N-termini, we found that the NatB and NatC groups were more frequently affected in 

their degree of Nt-acetylation. Furthermore, classifying the differentially Nt-acetylated proteins 

according to increased or reduced degree of Nt-acetylation did not reveal any clear signs of up- or 

downregulation of specific NAT activity (data not shown). That is, the proteins that are subject to 

changes in their Nt-acetylation status do not share any particular NAT substrate profile, but 

appear enriched for suboptimal NAT substrates.  

To investigate the possibility that differential Nt-acetylation could be affected by altered 

NAT expression, we examined the protein levels of the individual NAT subunits by 

immunoblotting. Yeast cells endogenously expressing TAP-tagged NAT subunits were harvested 

at exponential, semi-active, and stationary growth phase. Generally, the protein levels of the 

individual NAT subunits decreased upon entry into stationary phase (Fig. 5). The most 

pronounced reduction of a catalytic subunit was observed for NatD (Naa40). In contrast, 

prolonged starvation caused increased levels of the catalytic components of NatB (Naa20) and 

NatE (Naa50). While increased presence of Naa20 and Naa50 might explain why some N-termini 

are more acetylated during starvation, the changes in NAT subunit expression levels per se do not 

provide a valid explanation for observed changes in the Nt-acetylome following nutrient 

starvation.  

Protein-Specific Consequences of Differential Nt-Acetylation  
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Finally, we examined whether differential Nt-acetylation affects the expression level of substrate 

proteins. We therefore selected, based on protein abundance and strain availability, seven 

proteins (Atg8, Pbp1, Pcl8, Rpl7a, Rsa3, Smy2 and Tom70) for further analyses. To this end, we 

used yeast strains endogenously expressing TAP-tagged candidate proteins and deleted the 

cognate catalytic NAT subunit by homologous recombination. This allowed us to study the 

expression level of Nt-acetylated and presumed unacetylated forms of the candidate proteins by 

immunoblot analyses. By comparing the steady-state protein levels in the wild-type strain and the 

deletion strain, we observed a substantial difference in the protein level of three confirmed NatA 

substrates (37) following entry into stationary phase (Fig. 6). The Nt-acetylation level of cyclin 

Pcl8 (A-), which negatively regulates glycogen synthesis (47), was found to be 73% Nt-

acetylated in exponential growth phase (Table S4). The protein level of Pcl8 increased upon entry 

into stationary phase and simultaneously the protein became fully Nt-acetylated (100%). 

Interestingly, deletion of NAA10 (ARD1) abolished the observed increase in Pcl8 protein levels 

during starvation. Overall, these findings suggest that NatA-mediated Nt-acetylation may directly 

or indirectly upregulate or stabilize Pcl8 during starvation. Increased Nt-acetylation after 

starvation was also observed for two components of the pre-ribosome complex (48, 49). The Nt-

acetylation level of Rsa3 (S-) increased from 42% to 72%, while an increase from 12% to 44% 

was observed for Rpl7a (A-). In these cases, however, entry into stationary phase was associated 

with decreased protein levels (Fig. 6). Our shotgun proteomics data confirmed reduced 

abundance of Rpl7a (assigned to cluster 5). The lack of NatA-mediated Nt-acetylation caused a 

marked increase in Rpl7a and Rsa3 protein levels, the latter only during starvation.  

Consistent with previous studies, the protein level of the core autophagy component Atg8 

(MK-) increased during starvation (Fig. 6) (50). Simultaneously, the Nt-acetylation level of Atg8 

increased from 26% to 65%. Loss of NatC activity did not, however, have a considerable effect 

on Atg8 protein levels. The largest variation in Nt-acetylation between exponential and stationary 

phase was observed for Smy2 (MK-) (i.e. from 34% to 100%). There are diverging reports on the 

cellular role of Smy2, including mRNA surveillance (51, 52), targeted translation control (53), 

and vesicular transport in the early secretory pathway (54, 55). The protein level of Smy2 

decreased upon entry into stationary phase, an effect that appeared independently of NatC-

activity. We also examined the expression of Pbp1 (MK-), a protein that localizes to cytoplasmic 

stress granules during glucose deprivation (56) and Tom70 (MK-), a member of the outer 
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mitochondrial membrane protein complex (57). Both shotgun proteomics and immunoblot 

analysis showed decreased expression of Pbp1 in stationary phase, whereas no major effect was 

observed for Tom70. Loss of NatC-activity did not have any apparent effect on Pbp1 and Tom70 

protein levels.  

 

DISCUSSION 
The biological significance of Nt-acetylation is becoming increasingly evident, but still we know 

very little about the molecular mechanisms and the cellular effects of this widespread protein 

modification and whether it is subject to regulation. Our study revealed that yeast cells maintain 

global Nt-acetylation levels during unfavorable growth conditions. Indeed, we found that the 

steady-state levels of Nt-acetylation did not majorly fluctuate between active and stationary 

growth phases, despite a prominent decrease in acetyl-CoA levels. Overall, our data suggest that 

Nt-acetylation, in general, is not a very dynamic protein modification. Our findings contradict a 

previous study in mammalian cells proposing that Nt-acetylation is globally regulated by cellular 

metabolism and acetyl-CoA availability (58). The discrepancy between the two studies might be 

explained by differences in the experimental setups. To investigate possible metabolic regulation 

of Nt-acetylation, Yi and colleagues developed a biochemical method where subtiligase 

biotinylates unmodified protein N-termini that are subsequently assessed by immunoblotting. 

This indirect method was employed on a limited set of apoptotic regulators, including several 

caspases (58). We instead performed untargeted N-terminal proteomics to investigate global 

changes in Nt-acetylation in response to changes in nutrient availability. In order to enrich for N-

termini the COFRADIC technology relies on extensive fractionation, which increases sensitivity 

but may simultaneously induce sample loss. Nevertheless, this experimental approach allowed us 

to obtain quantitative Nt-acetylation data and to cover a wider range of proteins as compared to 

the subtiligase-based method (58). In total, we observed 1,168 unique N-termini accounting for 

26.5% of the theoretically detectable proteome and 17.4% of the entire yeast proteome.  Based on 

the observation that less than 1% of all measured Nt-acetylation values differed more than 10% 

when comparing the degree of Nt-acetylation between two independent control experiments 

(>1000 N-termini) (3), we only analyzed one sample per time point. Thus, we cannot rule out the 

possibility that N-terminal peptides with biological functions remain undetected. It could also be 
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that higher eukaryotes have evolved mechanisms to regulate Nt-acetylation and use it more 

prominently for regulatory purposes.   

Although Nt-acetylation represents a considerable energy cost it remains stable despite 

major metabolic reprogramming. This finding emphasizes the importance of Nt-acetylation and 

indicates that the levels are there for a reason and is necessary for general protein function, 

regardless of metabolic state. From a metabolic perspective this raises several interesting 

questions, including how intertwined is mitochondrial and cytosolic acetyl-CoA metabolism and 

to what extent does NAT-activity affect acetyl-CoA abundance? We found that the expression of 

acetyl-CoA hydrolase (Ach1) increased substantially following entry into stationary phase (Fig. 7 

and Table S9). This finding is consistent with a previous study showing that the expression of 

ACH1 is glucose-repressed (59). Ach1 was initially perceived as a mitochondrial acetyl-CoA 

hydrolase (60, 61). However, Fleck and Brock later on suggested that Ach1 promotes acetate 

detoxification by transferring the CoA-moiety from succinyl-CoA to acetate. Thus, Ach1 would 

conserve energy rather than perform energy-wasting hydrolysis (62). According to Chen and 

colleagues these two processes are not mutually exclusive. They were able to identify a putative 

route for acetyl-CoA synthesis where Ach1 catalyzes the hydrolysis of intra-mitochondrial 

acetyl-CoA to acetate which is shuttled to the cytosol where it can be reconstituted to acetyl-CoA 

by Acs1/2 (63).  Based on these findings, we hypothesize that during glucose exhaustion small 

quantities of mitochondrial acetyl-CoA could be transferred to the cytosol as acetate, which is 

subsequently reconstituted by cytosolic Acs1. Overall, this may contribute to a local 

accumulation of acetyl-CoA which is utilized by the NATs to co-translationally acetylate nascent 

polypeptides. Histone acetylation would not be able to benefit from such a confined cytosolic 

increase since it is secluded in the nucleus. Monitoring the level of acetyl-CoA in different 

subcellular compartments and during various metabolic conditions is paramount in understanding 

how enzymes and other factors contribute to the cellular distribution of acetyl-CoA (24, 64). 

Unfortunately, these measurements are hampered by technical difficulties. Thus, whether the 

maintenance of global Nt-acetylation levels can be attributed to local pools of mitochondrial-

derived acetyl-CoA, or perhaps is caused by a higher affinity of NATs versus KATs for acetyl-

CoA, remains to be determined. The NatA complex is considered being the major contributor of 

Nt-acetylation and deletion of its catalytic subunit Naa10 does not appear to effect the 

intracellular level of acetyl-CoA, as determined by acetyl-CoA profiling (Table S3).  
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 We also observed reduced levels of several ribosomal subunits following entry into 

stationary phase (Fig. 7 and Table S9), which is consistent with reduced translation rates at such 

conditions. This finding may partly explain why the protein level of most NAT subunits was 

reduced following nutrient starvation (Fig. 5), as the NAT enzymes act mainly co-translationally. 

Despite the marked decline in acetyl-CoA levels and reduced NAT presence, most proteins 

maintained their Nt-acetylation status in exponential versus starvation-induced stationary phase. 

For instance, Naa40/NatD specifically acetylates histones H2A and H4 (65), and we found that 

H2A (Hta1) was fully Nt-acetylated under all conditions tested.  

 Nt-acetylation of annotated protein N-termini is generally unaffected by the transition into 

stationary phase. We did, however, find several examples of dynamic Nt-acetylation where the 

proteins undergo significant changes in Nt-acetylation in response to changes in nutrient 

availability (Fig. 2, Table 1). There are at least four possible scenarios that can account for this: 

(i) a regulated deacetylation of selected protein N-termini, (ii) specific degradation of N-termini 

depending on their acetylation status, (iii) de novo Nt-acetylation, or (iv) altered translation rates. 

Regarding the first scenario, since N-terminal deacetylases are yet to be discovered, Nt-

acetylation is still considered to be an irreversible protein modification. Thus, this is not the most 

likely scenario. By clustering differentially acetylated N-termini according to NAT specificity we 

found that these were evenly distributed amongst the NATs. This finding supports targeted 

degradation, rather than de novo acetylation, as the causative factor for the observed differential 

Nt-acetylation. That is, protein degradation affects the ratio of acetylated and unacetylated forms 

of specific proteins. The increased levels of Naa20 and Naa50 during starvation could potentially 

cause increased Nt-acetylation of their target substrates. However, this does not provide an 

overall explanation for the observed changes, like for the affected NatA substrates. Thus, other 

factors such as altered translation rates might also (indirectly) impact the degree of Nt-acetylation 

for a subset of proteins upon starvation. In this respect, it is noteworthy that alternative 

translational start site selection is subjected to regulations (66, 67), thereby changing the 

repertoire of Nt-proteoforms expressed. The ~2-fold higher spectral counts observed for 

alternative N-termini in the stationary setup hint to their increased abundance by increased 

synthesis. The combination of increased synthesis and reduced acetyl-CoA level might reduce the 

efficiency of Nt-acetylation, which could explain why the majority of affected alternative N-

termini were less acetylated in stationary phase. 
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 Yeast stores two types of glucose polymers, namely glycogen and trehalose, and their 

quantities vary with environmental conditions (68, 69). Lillie and Pringle showed that both 

polymers accumulate in cells approaching stationary phase (70). Trehalose synthesis commences 

with glucose exhaustion, while glycogen synthesis is simultaneously shifted towards degradation. 

Glycogen synthase is partially regulated by the cyclin-dependent kinase Pho85. Deletion of the 

cyclin partners PCL8 and PCL10 results in activation of glycogen synthase and 

hyperaccumulation of glycogen (47). Our study revealed that Pcl8 (A-) is differentially Nt-

acetylated between exponential and stationary phase (74% vs. 100%). Moreover, deletion of 

NAA10 prevented upregulation of Pcl8 in stationary phase (Fig. 6). We suggest that NatA-

mediated Nt-acetylation of Pcl8 is important for its stability and possibly its activity in the Pcl8-

Pcl10-Pho85 complex. In this regard, it is also worth noting that Tps1 and Tps2, two enzymes 

involved in trehalose synthesis (69), and Pgi1, which catalyzes the interconversion of glucose-6-

phosphate and fructose-6-phosphate, were also differentially Nt-acetylated.  

 Intriguingly, we found that two factors that are required for efficient ribosome biogenesis 

was also regulated by NatA (Fig. 6). The Nt-acetylation level of Rsa3 (S-) increased upon entry 

into stationary phase (from 42% to 72%). Moreover, lack of NatA activity resulted in increased 

Rsa3 protein levels during starvation. Rsa3 likely associates with pre-60S ribosomal particles and 

has a role in ribosome maturation (48, 71). Overexpression of Rsa3 improves growth during 

environmental stress (72). Conversely, deletion of RSA3 leads to a deficit in free 60S ribosomal 

subunits, an accumulation of half-mer polyribosomes, and a slight reduction in the amount of 

mature 25S rRNA (48). Interestingly, similar phenotypes were observed in yeast lacking the 

ribosomal 60S subunit L7a (Rpl7a). Jakovljevic and colleagues showed that depletion of Rpl7a 

leads to defects in pre-rRNA processing and diminished levels of four neighboring ribosomal 

proteins (49). We found that the Nt-acetylation level of Rpl7a (A-) increased from 12% to 44% 

upon entry into stationary phase. Moreover, lack of NatA-mediated Nt-acetylation lead to 

increased Rpl7a protein levels. Both Rsa3 and Rpl7a are required for efficient pre-rRNA 

processing, as assembly factor and ribosome subunit respectively (48, 49, 71). The decreased 

protein levels of Rsa3 and Rpl7a observed in stationary phase complies with reduced ribosome 

biogenesis and cellular savings during less favorable conditions (73). Since a similar decline is 

not observed in yeast lacking NAA10, Nt-acetylation seems to be essential in this regard, perhaps 

through a destabilizing effect. Furthermore, Nt-acetylation of ribosomal proteins may be required 
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for optimal protein synthesis. Kamita et al. reported decreased protein synthesis of ribosomes 

purified from NatA and NatB mutant strains. Moreover, they proposed that NatA has a role in 

translation fidelity whereas NatB is important for proper 80S ribosome assembly (74). Finally, 

we note that deletion of NatA subunits leads to slow growth, reduced glycogen accumulation, 

temperature sensitivity, defective mating, inability to enter stationary phase, and inability to 

sporulate, suggesting that NatA has an important role in determining cell fate (75-77).  

 In summary, our study suggests that nutrient starvation impacts Nt-acetylation of specific 

proteins. These acetylation events might be critical for the cellular adaptation to starvation, 

including regulation of glycogenesis and ribosome biogenesis. The herein observed fluctuations 

in Nt-acetylation may be connected to studies performed in A. thaliana (17) and C. elegans (18), 

in which Nt-acetylation was linked to various stress responses and further supports a role for Nt-

acetylation in stress resistance (17, 18). Nt-acetylation is implicated in cardiac arrhythmia, 

developmental delay (20, 78-84) and cancers (85). Identifying factors that regulate Nt-acetylation 

is therefore of great importance. Hopefully, our findings will provide clues for further studies on 

the regulation of NAT activity and Nt-acetylation.  
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Figure legends  

FIG. 1. Nutrient availability affects histone acetylation and cellular acetyl-CoA levels. A, 

Schematic outline of the experimental setup. Yeast cells were grown in rich medium and 

harvested at the indicated growth phases. Stationary cells were given 0%, 2% or 10% (w/v) of 

glucose and harvested after an additional 24 h of growth. B, Histone acetylation declines as yeast 

cells progress to stationary phase, but is partially restored after glucose addition. Immunoblot 

analysis of H4 acetylation, bulk H4 expression, and actin (loading control) at indicated time 

points. C, Intracellular acetyl-CoA levels changes with nutrient availability. Metabolites were 

extracted from whole yeast cells at the indicated growth phases and acetyl-CoA levels were 

measured by MS. Data were normalized to the average value at 6 h.  Normalized data are shown 

as log10. Mean ± SD is shown as lines. 6 h, 100%; 3 days, 2%; 8 days, 1%, 9 days + 0% glucose, 

1%; 9 days + 2% glucose, 5%;  9 days + 10% glucose, 30%. ****, p < 0.0001; *, p < 0.05; n = 6.  

FIG. 2. Metabolic effect on Nt-acetylation in yeast. A, Total distribution of annotated and 

alternative N-termini identified and overall acetylation trend following prolonged starvation. Free 

N-termini refers to N-termini that cannot be acetylated (MP- and P- starting). (B-C) Differences 

in Nt-acetylation of affected N-termini upon entry into stationary phase and following glucose 

addition. k-means clustering of affected N-termini (104) revealed two distinct clusters (p = 

0.000167). B, Cluster 1 is enriched for annotated N-termini (blue) that are more Nt-acetylated in 

stationary phase and experiences a reduction of Nt-acetylation upon glucose addition. C, Cluster 

2 is enriched for alternative N-termini (red) and show an acetylation trend that is opposite of 

cluster 1.  

FIG. 3. Heat map of the non-supervised hierarchical clustering of 401 yeast proteins that 

display differential expression levels across different metabolic conditions. Each row 

represents a protein and metabolic conditions are depicted in columns (6 h, 3 days, 8 days, 9 days 

+ 0% glucose, 9 days + 2% glucose, and 9 days + 10% glucose). The color key indicates relative 

abundance, ranging from green (low abundance) to red (high abundance). Five main clusters 

were observed when the significance threshold was set at p <0.01. Three independent biological 

samples were obtained at each sampling time (except for 9 days + 10% glucose having only two).  
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FIG. 4. Total distribution of differentially acetylated N-termini among NAT substrate 

classes. Differentially acetylated N-termini were classified according to NAT specificity. The pie 

charts illustrate NAT distribution among total N-termini identified and corresponding annotated 

and alternative N-termini. The respective numbers are indicated below the pie charts. N-termini 

which can be acetylated by several NATs are categorized as ‘Other’. MP- and P-starting peptides 

cannot be acetylated and are classified as ‘None’.  

FIG. 5. Protein expression profiles of NAT subunits upon entry into stationary phase. Yeast 

cells endogenously expressing a TAP-tagged NAT subunit were grown in rich medium and 

harvested at indicated time points. Whole cell extracts were analyzed by immunoblotting using 

anti-TAP and anti-actin (loading control). The proteins are listed according to NAT affiliation 

and the catalytic subunit is shown at the top. The protein level of each NAT subunit relative to 

actin at the each time point were quantified by densitometry analysis and normalized to the value 

at 6 h. 

FIG. 6. Immunoblot analysis of differentially Nt-acetylated proteins under different 

metabolic conditions and in presence/absence of the cognate NAT. Wild-type, naa10Δ and 

naa30Δ yeast strains endogenously expressing a unique TAP-tagged protein were grown in rich 

medium and harvested at indicated time points. Whole cell extracts were analyzed by 

immunoblotting using anti-TAP and anti-actin (loading control). Two individual deletion strains 

per candidate protein were used. The levels of TAP-tagged candidate proteins relative to actin at 

each time point were quantified by densitometry analysis and normalized to the wild-type sample 

within the same metabolic condition. 

FIG. 7.  Protein abundance varies during yeast growth. Based on iBAQ values in all 17 

samples analyzed by shotgun proteomics, a profile plot of the fold changes in LFQ intensities for 

the 100 most abundant proteins identified is shown. The profile of acetyl-CoA hydrolyse (Ach1), 

highlighted in red points to increased expression of Ach1 upon entry into the stationary phase. 

The profiles of 45 ribosomal proteins (highlighted in blue) are indicative of the generally 

decreased steady-state levels of ribosomal proteins upon entering stationary phase.  
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Table 1 Selected N-termini that are subject to differential Nt-acetylation upon entry into 

stationary phase.  

 
*Stationary cells (day 8) were given 2% or 10% (w/v) glucose and harvested after additional 24 hours of 
growth. Hyphen (-) indicates that the N-terminus was not detected in the particular sample. Ø denotes 
samples that were detected and quantified by shotgun proteomics, but whose expression level was not 
significantly affected between the different conditions. In general, proteins in cluster 2 showed higher 
expression in stationary phase whereas proteins in cluster 5 were less expressed in stationary phase.  
 

 

 

 

  

Standard 
name 

Systematic 
name N’term Start 

N-terminal acetylation in percentage 
Cluster 6 

hrs 
3 

days 
8 

days 
Day 9* 

0% 2% 10% 
Annotated N-termini 
Atg8 YBL078C MKSTF 1 26 28 65 63 44 38 ø 
Atg22 YCL038C SYGTI 2 - 60 - 55 58 69 - 
Pbp1 YGR178C MKGNF 1 72 93 100 100 94 92 5 
Pcl8 YPL219W ANDQD 2 74 92 - 100 86 - - 
Rpl7a YGL076C AAEKI 2 12 44 43 47 50 - 5 
Rsa3 YLR221C SAGDI 2 42 72 - 70 71 - - 
Smy2 YBR172C MIAPD 1 34 59 100 90 53 57 ø 
Tom70 YNL121C MKSFI 1 18 47 46 50 56 56 ø 
Tps1 YBR126C TTDNA 2 34 44 46 48 49 56 ø 
Tps2 YDR074W TTTAQ 2 79 86 90 88 89 91 2 
Alternative N-termini 
Eis1 YMR031C METTS 164 48 38 13 4 16 -  
Fbp1 YLR377C MEQAG 300 - 6 34 21 - -  
Pgi1 YBR196C MESNG 366 - 86 39 21 41 82  
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Figure 2 
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Figure 3 
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Figure 5 

 

 

Figure 6 
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Figure 7 
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