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ABSTRACT 
Three mathematical software modes are investigated in this thesis: black-box 

software showing no mathematical steps; glass-box software showing the intermediate 

mathematical steps; and open-box software showing and allowing interaction at the 

intermediate mathematical steps. The glass-box and open-box software modes are often 

recommended over the black-box software to help understanding but there is limited 

research comparing all three. This research investigated students’ performance and their 

approaches to solving three mathematical task types when assigned to the software 

boxes. 

Three approaches that students may undertake when solving the tasks were 

investigated: students’ processing levels, their software exploration and their self-

explanations. The effect of mathematics confidence on students’ approaches and 

performance was also considered.  

Thirty-eight students were randomly assigned to one of the software boxes in an 

experimental design where all audio and video data were collected via a web-conference 

remote observation method. The students were asked to think-aloud whilst they solved 

three task types. The three task types were classified based on the level of conceptual 

and procedural knowledge needed for solving: mechanical tasks required procedural 

knowledge, interpretive tasks required conceptual knowledge; and constructive tasks 

used both conceptual and procedural knowledge. 

The results indicated that the relationship between students’ approaches and 

performance varied with the software box. Students using the black-box software 

explored more for the constructive tasks than the students in the glass-box and open-box 

software. These black-box software students also performed better on the constructive 

tasks, particularly those with higher mathematics confidence. The open-box software 
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appeared to encourage more mathematical explanations whilst the glass-box software 

encouraged more real-life explanations. 

 Mathematically confident students were best able to appropriate the black-box 

software for their conceptual understanding. The glass-box software or open-box 

software appeared to be useful for helping students with procedural understanding and 

familiarity with mathematical terms.  
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Chapter 1. Introduction  
“Learn not only to find what you like, learn 

to like what you find.” 
- Anthony J. D’Angelo 

1.1 Chapter Outline 
This chapter begins with the research background (Section 1.2) and the rationale 

for this research (Section 1.3). In the rationale, relevant literature is highlighted from 

which preliminary research questions are outlined (Section 1.4).The chapter finishes 

with an outline for the rest of the thesis (Section 1.5).  

1.2 Research Background 
Various types of mathematical software are frequently employed in the teaching 

and learning of mathematics at various levels of education (primary, secondary and 

tertiary). Mathematical software may be used either in advanced or graphical 

calculators, or on a computer. Software packages can be a) generic mathematics 

packages such as computer algebra systems (CAS), b) ubiquitous software such as 

spreadsheets or c) dedicated software for specific mathematical topics such as Lindo for 

linear programming (see Crowe and Zand, 2001; Dana-Picard and Steiner, 2004; Gass, 

Hirshfeld and Wasil, 2000; Hosein, 2005).  

Most mathematical software packages could probably be classified as what 

Buchberger (1990; 2002) termed ‘black-box’. In black-box software, tasks are solved 

without showing the intermediate steps. Traditionally, ubiquitous software such as 

spreadsheets, generic mathematical software and dedicated software have all been used 

as black-box software. However, recent software packages such as that employed by the 

Casio FX 2.0 calculator are able to show the steps during the solution process in its 

tutorial mode (Horton, Storm and Leonard, 2004). Buchberger referred to this mode of 

mathematical software that shows the internal steps of the algorithms as ‘white-box’ 

software. The terms, black-box and white-box, were derived from Myers (1979), who 
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used it in reference to software testing. In the software engineering testing literature, 

white-box is also referred to as glass-box (e.g. Bache and Mullerberg, 1990) and this is 

the terminology that is used in this thesis.  

Dana-Picard and Steiner (2004) explained that traditional black-box software 

can be used as more than ‘number crunchers’ for mathematical tasks, if ‘low-level’ 

commands are utilized by the students. Low-level commands are where each of the 

mathematical steps in a task is solved separately until the solution is achieved, thus 

enabling the students to see the solution procedure. Software packages are also 

produced which can mimic the solving of each step that Dana-Picard and Steiner have 

proposed. These software packages allow the student to examine and interact at the 

intermediate steps of the task. This software mode is different from the black-box and 

the glass-box and is classified separately. In this thesis, they are referred to as open-box 

software as the students are allowed to look into the software and use it. Open-box 

software has not been classified separately in any literature before. 

An illustration of these software boxes is shown in Figure 1. The bubble on top 

of each box shows the equation that the students input for solving the variable, x. The 

bubble at the bottom of each box shows the value of x computed by the software box. 

With the black-box software, the students are unable to see the steps for solving x, 

whilst in the glass-box software the students are able to see the steps. In the open-box 

software, the lines, on the right-hand-side connected to each step, show the additional 

input by student for solving the task.  
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Black-Box Glass-Box Open-Box 

 

Figure 1: An illustrative comparison of an algebra solution by black-box, glass-box and open-box 
software 

The aim of this thesis is to provide insight on how these three software boxes 

influence the understanding of mathematics at the university level. Past research studies 

investigating mathematical understanding utilising software have relied mainly on the 

black-box software; this thesis will extend the research into glass-box and open-box 

software. 

1.3 Rationale 
There are mixed views on the use of software in the understanding of 

mathematics. The supporting views often pertain to black-box software (including 

typical calculators) as this is the type commonly used in schools and universities 

(Crowe and Zand, 2000; Dreyfus, 1994). On one hand, black-box software packages are 

viewed positively because they enable students to reduce the quantity of tedious 

computations, lessen their anxiety about performing computations accurately and they 

allow students to work with more realistic examples (Heid and Edwards, 2001; 

Whiteman and Nygren, 2000). 

 On the other hand, black-box software packages are seen as potentially 

detracting from conceptual understanding by permitting students to solve problems by 

trial and error and encouraging students to accept calculated answers unquestioningly 
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(Buchberger, 1990; Crowe and Zand, 2000; Dana-Picard and Steiner, 2004; Whiteman 

and Nygren, 2000). Although there is a suggestion that the black-box software hampers 

conceptual understanding, studies on mathematical learning with black-box software 

(usually using a CAS or graphical calculator) have suggested the opposite. These 

studies implied that the black-box software promoted more of the students’ conceptual 

understanding when compared to those students who learnt without any software (see 

Heid, 1988; O'Callaghan, 1998; Palmiter, 1991).  

Conceptual understanding is related to conceptual knowledge and the latter is 

defined by Rittle-Johnson, Siegler and Alibali (2001) as the “implicit or explicit 

understanding of the principles that govern a domain and of the interrelations between 

units of knowledge in a domain” (p.346-347). There is also the associated concept of 

procedural knowledge which Rittle-Johnson et al. (2001) defined as “the ability to 

execute action sequences to solve problems” (p.346). Thus, conceptual understanding is 

the construction of relationships between information which helps students to further 

their understanding, whilst procedural learning is where students practise following 

defined steps to solve tasks. Both of these are discussed further in Section 2.2 (p.15). 

As already mentioned, the study by Heid (1988) found that students who used 

black-box software (i.e. CAS) gained greater understanding than those students who 

used no software. However, this perceived increase in conceptual understanding was 

probably not due entirely to the black-box software. In her study, the students using 

black-box software were exposed to pedagogical methods that could improve 

conceptual understanding. The students using the black-box software were taught to 

think more conceptually by the teacher since the teacher’s pedagogical emphasis was on 

concepts. For the students who did not have the black-box software the emphasis was 

on skills and algorithms. Thus, the difference that Heid found between these groups 

probably was because of how the mathematical topic was taught. Similar discrepancies 
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in how concepts were presented to and compared between groups were noted in 

separate studies by O'Callaghan and Palmiter (see Appendix 1, p.282). Therefore, there 

is still uncertainty as to whether the use of black-box software can improve the 

conceptual understanding of students.  

Buchberger (1990) pointed out that students who were taught using black-box 

software were unable to gain mathematical insight and learn general solving techniques. 

Further, Star and Seifert (2006) highlighted that students who were privy to multiple 

solution procedures and able to invent their own procedures were more likely to have a 

greater conceptual understanding. Therefore, as suggested by Buchberger, the glass-box 

software (shows the intermediate steps) can provide a way for students to investigate 

solution procedures and even invent their own. The open-box software is probably 

better poised than the glass-box software to allow students’ investigation of solution 

procedures. This is because the open-box software can allow students to interact and 

also investigate different solution steps. ‘Interact’ here means that the student would 

have to perform a manoeuvre before the next step is shown, for example, adding or 

subtracting values in an equation. 

However, there are few research studies into how students’ use of glass-box and 

open-box software may promote their understanding. Strickland and Al-Jumeily (1999) 

in their study of 26 secondary school students investigated how one group of students 

learnt algebra with open-box software (a CAS called TREEFROG) compared with 

another group using no software. After five 50-minutes sessions, students were given a 

hand-written test which examined procedural knowledge. Strickland and Al-Jumeily 

found from the hand-written tests that students using the open-box software performed 

better in the procedural tasks than those students who did not use any software.  

All of the studies discussed above have compared one software mode against not 

using any software. It, therefore, makes it difficult to ascertain where one software 
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mode may promote better mathematical understanding compared to others. The study 

by Horton et al. (2004) addressed this situation to some extent by comparing two 

software modes, the glass-box and black-box software. They conducted their study 

using 50 undergraduate students learning linear equations over a three week period. 

Through a written examination which tested procedural knowledge, they found that 

students who used the glass-box software performed better than those who used the 

black-box software. This opens an opportunity to explore more iterative types of 

software (that is, glass-box and open-box software), in particular, how the software 

boxes impact on students’ use of procedural and conceptual knowledge for their 

understanding.  

There is thus some evidence to show that students perform better in written 

examinations after they used the glass-box software when compared to students using 

the black-box software, but there are no formally documented comparisons using all 

three software boxes. Further, there is research which suggests that some software 

boxes promote procedural understanding, but studies relating to whether software boxes 

can promote any conceptual understanding have been limited and inconclusive.  

Thus far, mathematical understanding has been described as consisting of two 

separate forms of knowledge, that is, conceptual and procedural. Some researchers, 

however, believe that the two types of knowledge are linked (see Kadijevich and 

Haapasalo, 2001; Rittle-Johnson et al., 2001; Tall et al., 2001). Rittle-Johnson et al. 

(2001) suggested that conceptual and procedural knowledge lie on the extreme ends of a 

continuum and that they influence each other in a bi-directional manner: that is, any 

improvement in a student’s conceptual knowledge is linked to an improvement in the 

student’s procedural knowledge and vice versa.  

Therefore suggesting that tasks represent purely conceptual or purely procedural 

knowledge may be flawed. Using Galbraith and Haines (2000a) classification of 
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mathematical tasks is one way of addressing this flaw. They suggested using three task 

types based on the conceptual and procedural continuum. These task types are 

mechanical, interpretive and constructive. Mechanical tasks use mainly procedural 

knowledge, interpretive tasks use mainly conceptual knowledge and constructive tasks 

use a mixture of both conceptual and procedural knowledge. Table 1 presents examples 

of all three task types. The description column indicates the methods for solving the 

tasks. Where conceptual and procedural knowledge are needed for solving the tasks, 

these are presented in the brackets.  

This taxonomy is easily applicable to previously conceived tasks. For example, 

from examining the tasks in the studies mentioned above, it was noted that the tasks 

from Horton et al. (2004) were all mechanical tasks (representing procedural 

knowledge) whilst those from Heid (1988) were either interpretive or constructive tasks 

(representing conceptual knowledge).  

Table 1: Examples of Galbraith and Haines (2000a) classification of task types 

Task Description 

Mechanical: Find the minimum point of 

the function y = (x - 4)2 + 10 

Differentiate the equation to determine 

what the minimum point is (procedural) 

Interpretive: If the function y is modified 

to be y = (x - 4)2 + 3, in what direction 

would the minimum point be shifted? 

Recognise, by using the general quadratic 

equation y = a(x - h)2 + k, that k represents 

a vertical shift. k has been reduced and 

thus would mean that the minimum point 

would be shifted downwards (conceptual) 

Constructive: What is the new minimum 

point of the modified function y and what 

is the reason why it is different from the 

original function? 

Recognise that the shift is downwards and 

hence means that the original vertical 

point would be shifted by 7 units 

downwards (conceptual) and that the new 

minimum point coordinates will be 

(xoriginal, yoriginal - 7) (procedural).  
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In the past, educators have recommended that lecturers should use glass-box or 

open-box software instead of the black-box software when teaching students. For 

example, Buchberger (1990; 2002) indicated that students should be taught the solution 

steps when solving problems otherwise the students may lose important mathematical 

problem solving skills. He then suggested the use of the glass-box over black-box 

software for assisting students in understanding the solution steps. These steps perhaps 

could also be taught through the use of pen-and-paper or by using the open-box 

software. Buchberger further indicated that once students become practised in 

performing the procedural steps they then could move on to using the black-box 

software since the procedural steps are now trivialised. For example, if students solved a 

series of long division problems by pen-and-paper, then over time, the students would 

be able to apply the governing procedural steps without hesitation, that is, the steps have 

become trivialised. At the point where the steps become trivialised, students should then 

be allowed to use a computer or a calculator for computational purposes. 

 Winston (1996), on the other hand, recommended that students need only to 

learn the procedural steps if they are relevant to their discipline. For example, he 

indicates that for finance and marketing students, it is not necessary to learn how to 

calculate the steps of the simplex algorithm associated with linear programming as these 

students would not need this knowledge later in their lives or jobs. However, he 

suggested that students in the mathematical disciplines should learn how to calculate the 

steps as they may be able to improve the linear programming solving method. 

Whilst this debate is ongoing, this leaves lecturers in a predicament. The 

lecturers are uncertain of which software box to use in their teaching and whether they 

are doing a disservice to their students by omitting the procedural steps since this 

exclusion minimises the development and application of students’ mathematical skills. 

Indeed the debate may even suggest that procedural knowledge should not be taught and 
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students should only concentrate on learning conceptual knowledge. However recent 

studies (e.g. Rittle-Johnson and Alibali, 1999) have shown that acquiring one type of 

knowledge can affect the uptake of the other, that is, conceptual knowledge affects the 

uptake of procedural knowledge and vice versa. Thus omitting to help develop one type 

of knowledge may affect how students are able to use their other knowledge type 

effectively.  

 

Thus, the primary concern of this thesis is trying to understand how students’ 

understanding is affected by the three software boxes. However, the research outcomes 

should also be able to provide recommendations for teaching practices and software 

development. For example, in teaching, one software box can be recommended as the 

best for promoted students’ use of conceptual or procedural knowledge. The research 

could however find that students used the three software boxes differently and the 

software boxes helped develop different aspects of the students’ understanding. This 

finding may then impact on which software boxes should be included in the 

development of a mathematical software package. 

1.4 Research Questions 
The studies identified previously including the comparison of students’ 

performance when using the software boxes are presented in Table 2. These studies 

demonstrate that there is limited research in the measuring of students’ mathematical 

understanding when assigned to all of the three software boxes in the three task types.  

In all of these studies, students’ performance on tasks was used as an indicator 

for mathematical understanding. Horton et al. (2004) showed that students’ 

performance on mechanical tasks depended on their assigned software boxes, albeit the 

comparison was only for the black-box and glass-box. Unlike the glass-box software, 

the open-box software allows a student to see and interact and determine the next step. 
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These students using the open-box software are thus able to practice and learn the steps 

associated with mechanical tasks. Thus, in a written examination, students who have 

used an open-box software may perform better on mechanical tasks than those who 

have used a glass-box or black-box software. 

Table 2: Students’ performance on tasks when using the software boxes for selected studies 

Software 

Comparison 

Tasks 

(Examination) 

Studies Findings on students’ 

performance 

Black-box versus 

No Software 

Interpretive and 

Constructive 

(written test) 

Heid (1988), 

O'Callaghan (1998), 

Palmiter (1991) 

Black-box performed 

better but may have been 

influenced by pedagogy 

Open-box versus 

No Software 

Mechanical 

(written test) 

Strickland and Al-

Jumeily (1999) 

Open-box performed 

better 

Black-box versus 

Glass-Box 

Mechanical 

(written test) 

Horton et al. (2004) Glass-box performed 

better 

It is interesting to note that in the study by Horton et al., performance was 

assessed through a written test when comparing black-box and glass-box software. 

Whilst this is justifiable for studies comparing with and without software, the reason for 

a written test for comparing the glass-box and black-box software is unclear. This meant 

that any approach that students undertook in solving the mechanical task when using the 

software boxes was lost. Understandably if open-box software was being used, then 

students using glass-box and black-box software may be at an advantage as calculations 

will be performed quicker in the glass and black-box software since the students using 

the open-box software will need to interact at each step.  

The other two tasks identified by Galbraith and Haines (2000a) are different 

from the mechanical tasks as they require mostly conceptual knowledge (interpretive) or 

a mixture of conceptual and procedural knowledge (constructive). The software boxes 

are used primarily in solving procedural tasks and thus, similarly to the mechanical 
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tasks, the performance of students on constructive tasks may vary with the software 

box. However, since conceptual knowledge and procedural knowledge are probably 

linked (e.g. Rittle-Johnson and Alibali, 1999), they can influence each other. For 

example, the procedural steps being shown in the glass-box and the open-box software 

may influence the students’ conception of the task and may impact on their performance 

for interpretive tasks. 

Thus, the first research question for this study was: 

1. Does students' performance in solving the three task types (mechanical, 

interpretive and constructive) depend upon the software box they have 

access to? 

This research question uses the phrase ‘software box they have access to’. This 

term means that the students have access to a software box when they are solving tasks 

and not at some later time as in a written examination. For mechanical tasks, students 

solving this task type with the software boxes should solve it correctly whether using 

black-box or glass-box software, providing they enter the correct values. For the open-

box software there is more room for error in a mechanical task as the students have to 

decide on the manoeuvre they have to perform. 

Galbraith and Haines (2000a) indicated that the interpretive and constructive 

tasks were more difficult than the mechanical tasks for students to solve, and they found 

that the students performed worst in the constructive tasks. This trend is expected to be 

reflected in the task scores (i.e. performance) of students regardless of the software 

boxes, that is, students should perform worst on the constructive tasks. However, 

whether students’ task scores will be similar for all software boxes is uncertain. If the 

task scores are similar regardless of the software boxes, there is a possibility that the 

students’ approach in using the software boxes may vary as the software boxes are 
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different. On the other hand, if the students’ task scores were different for the software 

boxes, knowing whether the students’ approaches in solving tasks were dissimilar can 

probably flag potential strengths and weakness of each software box. Thus the second 

and third research questions for this study were: 

2. Do students' approaches to solving the three task types (mechanical, 

interpretive and constructive) depend upon the software box they have 

access to? 

3. How are students' approaches to solving the three task types 

(mechanical, interpretive and constructive) associated with their 

performance? And does this association vary with the software box they 

have access to? 

 Finally, no observed variation may be found in the approaches that students 

took when solving the tasks for a particular software box. An inquiry into how each 

software box aided the students in solving the three tasks may be pertinent. As a result, 

the final research question for this study was: 

How do students' approaches to the three task types (mechanical, 

interpretive and constructive) and their performance on these tasks depend on 

the software box they have access to? 

In fact, this final research question, in itself, was the overarching question with 

the other three research questions acting as subsidiary questions to answer it. These 

research questions are again refined in Section 2.10.1 (p.50). 

1.5 Thesis Outline 
This thesis has 7 chapters. This first chapter has provided an introduction with 

some background information to the research that was conducted. Chapter 2 expands on 

the studies presented here in Chapter 1. Further, literature is examined to determine how 
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to measure students’ performance and their approaches in solving the tasks. Three 

approaches are identified: explanations, explorations and processing levels. From this 

identification of approaches, an analytical framework is developed for comparing the 

tasks and software boxes. This framework also includes mathematics confidence as an 

attitudinal variable. The research questions are then refined. 

Chapter 3 outlines the methodological choices for this research, in particular 

how performance and approach to solving tasks are operationalised and measured. This 

chapter briefly outlines the four studies in this thesis (Supporting Study 1, Pilot Study 2, 

Pilot Study 3 and the Main Study). The data collecting method of remote observation is 

also explained as this allowed the recording of audio and video data of the participants 

via the internet. Chapter 4 discusses the results from Supporting Study 1 and the two 

pilot studies. The two pilot studies were used to test the remote observation method, the 

software boxes that were developed for this thesis and the tasks. The results from these 

studies influenced the design of the Main Study. 

The quantitative data (Chapter 5) provides the statistical analysis of differences 

in performance and approaches amongst the software boxes with respect to the task 

types. Chapter 6 presents the qualitative illustrations of how students answered the three 

task types with respect to the software boxes and discusses the influence of approaches. 

Chapter 7 concludes with the main findings of the studies and suggests 

recommendations for future research. 
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Chapter 2. Performance and Approaches 
“Knowledge is not a series of self 

consistent theories that converges towards 
an ideal view; it is rather an ever 

increasing ocean of mutually incompatible 
(and perhaps even incommensurable) 

alternatives, each single theory, each fairy 
tale, each myth” 

- Paul Feyerabend 

 

2.1 Introduction 
This chapter highlights and discusses the relevant literature in this thesis. In 

Chapter 1, the aim of this thesis was presented as determining the influence of the three 

software boxes on students’ mathematical understanding. In the reported studies 

highlighted in Chapter 1, students’ performance was used as a measure of mathematical 

understanding. This was operationalised by measuring students’ performance on tasks 

that required either conceptual or procedural knowledge. This chapter, firstly, elaborates 

on these knowledge types as a way of measuring mathematical understanding (Section 

2.2, p.15). 

This section is followed by discussing how both conceptual and procedural 

knowledge can be operationalised to determine students’ performance (Section 2.3, 

p.18). This links with the three task types (mechanical, interpretive and constructive) 

mentioned in Chapter 1. The studies mentioned in Chapter 1 on the software boxes and 

the measurement of conceptual and procedural knowledge, are then elaborated on. From 

these studies, inferences are made regarding students’ expected performance on the 

three task types and software boxes to help answer Research Question 1. 

Whilst performance can measure the extent of students’ mathematical 

understanding, it is unable to show the pathway or approach undertaken by a student to 

acquire the solution. The approaches that a student may undertake relate to Research 

Question 2. Three students’ approaches are then identified in the chapter: a) deep/ 

http://thinkexist.com/quotation/knowledge_is_not_a_series_of_self_consistent/181414.html
http://thinkexist.com/quotation/knowledge_is_not_a_series_of_self_consistent/181414.html
http://thinkexist.com/quotation/knowledge_is_not_a_series_of_self_consistent/181414.html
http://thinkexist.com/quotation/knowledge_is_not_a_series_of_self_consistent/181414.html
http://thinkexist.com/quotation/knowledge_is_not_a_series_of_self_consistent/181414.html
http://thinkexist.com/quotation/knowledge_is_not_a_series_of_self_consistent/181414.html
http://thinkexist.com/quotation/knowledge_is_not_a_series_of_self_consistent/181414.html
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surface processing level, b) explanations and c) explorations (Section 2.4, p.26). These 

approaches are not considered exhaustive of all the approaches that a student can 

embark on and neither are they mutually exclusive to each other. 

The chapter then discusses each of these approaches in terms of how they may 

influence performance and how they relate to each other (Sections 2.5, 2.6 and 2.7). 

Inferences are also made on what approach students may take depending on which 

software box they have access to. These inferences should help in answering Research 

Question 3. 

To account for attitudinal differences, self-efficacy is discussed for its influence 

on performance, the approaches and use of software boxes (Section 2.8, p.42). Finally, 

an analytical framework is presented to possibly show how performance is connected to 

the approaches and self-efficacy (Section 2.9, p.46). This analytical framework was also 

used for analysing the qualitative data in Chapter 6. The chapter concludes with the 

main points made and a refinement of the research questions (Section 2.10, p.49). 

2.2 Conceptual and Procedural Knowledge 
Both conceptual and procedural knowledge are acquired during learning by 

students. This section elaborates on conceptual and procedural knowledge and their 

connection with mathematical understanding. In particular, this section sets the basis for 

how performance can be an operationalised form of acquired conceptual and procedural 

knowledge by showing the link between knowledge and understanding.  

In Section 1.3 (p.3) definitions of conceptual and procedural knowledge were 

presented from Rittle-Johnson et al. (2001). There have been alternative definitions in 

various disciplines for both types of knowledge (see for example Anderson, 1995; de 

Jong and Ferguson-Hessler, 1996). These definitions are all consistent that conceptual 
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knowledge deals with relationships, whilst procedural knowledge deals with steps or 

rules.  

The definitions of procedural and conceptual knowledge most often used within 

the mathematical domain are from Hiebert and Lefevre (1986). According to Hiebert 

and Lefevre (1986), conceptual knowledge is “rich in relationships” (p.3) and “cannot 

be an isolated piece of knowledge” (p.4). Isolated pieces of information can be “part of 

conceptual knowledge only if the holder recognises its relationship to other pieces of 

information” (p.4). Further, the formation of conceptual knowledge occurs “between 

two pieces of information that already have been sorted in memory or between an 

existing piece of knowledge and one that is newly learned” (p.4).  

On the other hand, Hiebert and Lefevre noted that procedural knowledge is 

discrete knowledge and consists of two parts. The first part is “composed of the formal 

language, or symbol representation system, of mathematics” (p.5). Secondly, procedural 

knowledge is concerned with algorithms or rules, in particular the step-by-step 

instructions for completing a task.  

These definitions show that all knowledge acquired cannot be sorted into 

procedural and conceptual knowledge. Another type of knowledge that is common 

within the cognitive psychology literature is declarative knowledge which is often 

distinguished from procedural knowledge. Anderson (1995) defines declarative 

knowledge as the knowledge of facts: it is explicit knowledge of states of affairs, 

whereas, procedural knowledge is knowledge of how to do things which are not 

necessarily explicit. 

 Through acquiring conceptual and procedural knowledge, understanding may 

arise. Skemp (1976) classified ‘understanding’ into relational and instrumental. 

Relational understanding was explained as “knowing both what to do and why” (p.2) 
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whilst instrumental understanding was using “rules without reasons” (p.2). Relational 

understanding is associated with conceptual knowledge. Conceptual knowledge is about 

making links with previous knowledge but in relational understanding, the students 

know how to use their conceptual knowledge for solving a task. Instrumental 

understanding is associated with procedural knowledge, in that students follow steps 

and procedural knowledge can be applied with or without reason to tasks. If applied 

with reason, students are using procedural knowledge for relational understanding but if 

used without reason, then students are applying procedural knowledge through 

instrumental understanding.  

Associated with conceptual and procedural knowledge are two types of learning: 

meaningful and rote learning. Meaningful learning, according to Hiebert and Lefevre 

(1986), is rich in relationships and thus all conceptual knowledge “must be learned 

meaningfully” (p.8). On the other hand, procedural knowledge may or may not be 

meaningful. If procedural knowledge was acquired via meaningful learning then 

according to Hiebert and Lefevre, the procedural knowledge is linked with conceptual 

knowledge.  

The second type of learning, rote learning is when acquired knowledge is absent 

of relationships as it is “tied closely to the context in which it is learned” (p.8). The 

knowledge acquired is “accessed and applied only in those contexts that look very much 

like the original” (p.8) In other literature, particularly psychological experiments, this is 

referred to as near-transfer skills (e.g. Renkl, 1997). Hiebert and Lefevre also explained 

that conceptual knowledge cannot be acquired through rote learning, in that “facts and 

propositions learned by rote are sorted in memory as isolated bits of information, not 

linked with any conceptual network” (p.8).However at some later stage, the student may 

“recognise or construct relationships between isolated pieces of information” (p.8) and 

thus acquire conceptual knowledge from information that was originally learnt through 
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rote learning. In the situation of learning procedural knowledge through rote learning; 

Skemp’s reference to ‘rules without reason’ may apply and this may reflect instrumental 

understanding.  

In this view, the quality of conceptual and procedural knowledge acquired by a 

student would depend on their method of learning, that is, either meaningful or rote. For 

example, if they have meaningful learning of concepts such that they know what to do 

and why, then they will have acquired good understanding (relational). If however they 

used rote learning of procedures, then they will have succeeded in acquiring 

instrumental understanding. Their abilities to tackle tasks will be affected by their 

gained understanding. Therefore, the extent to which students’ conceptual or procedural 

knowledge aid them in solving tasks would depend on whether their understanding was 

acquired through meaningful or rote learning. 

2.3 Performance 
Mathematical understanding is determined by how well students apply their 

previously gained conceptual or procedural knowledge to tasks. Mathematical 

understanding can be measured by students’ ability to correctly solve tasks that are 

specifically created to use conceptual or procedural knowledge. The extent to which the 

students are able to solve these tasks correctly will be reflected in their performance. 

The use of students’ performance as an indicator for mathematical understanding is 

similar to a summative assessment (Bloom, Hastings and Madaus, 1971).  

It could be argued that students using relational understanding should 

outperform students using instrumental understanding on conceptual-based tasks. 

Further, for tasks that require the use of conceptual and procedural knowledge, students 

using relational understanding would again have the advantage and should do better 

than students using instrumental understanding. For tasks requiring mostly procedural 
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knowledge, then perhaps students using either relational or instrumental understanding 

should perform similarly. 

Therefore, the chosen tasks need to represent a range of understanding and it is 

important that these tasks are representative of both conceptual and procedural 

knowledge. This section on ‘Performance’ thus looks at how tasks can be classified into 

conceptual and procedural knowledge by using the three task types (mechanical, 

interpretive and constructive) proposed by Galbraith and Haines (2000a) and referred to 

in Section 1.3 (p.3). This is followed by considering issues in measuring performance 

with software in general and the issues of measuring performance for the three task 

types using the software boxes.  

2.3.1 The Three Task Types 
In this section, a brief history is provided on the development of the mechanical, 

interpretive and constructive task types by Galbraith and Haines. These three tasks types 

were developed based on the Mathematical Assessment Task Hierarchy (MATH) 

taxonomy of Smith et al. (1996). The MATH taxonomy was in turn based on Bloom 

(1956) and was modified for mathematics. Smith et al. grouped mathematical tasks into 

three types, A, B and C (see Table 3) based on increasing difficulty where A was the 

easiest and C the hardest.  

Table 3: The MATH taxonomy 

A B C 

Factual Knowledge Information transfer Justifying and interpreting 

Comprehension Application in new 

situations 

Implications, conjectures 

and comparisons 

Routine use of procedure  Evaluation 

Galbraith and Haines suggested that the taxonomy represented the extent of conceptual 

and procedural knowledge required for solving the tasks. Hence, students would 



 

 20 

perform the best in group A tasks, which Galbraith and Haines termed ‘mechanical’ 

tasks, as these tasks required only procedural knowledge, and worst in the Group C 

tasks (‘constructive’ tasks) as these required both a mixture of conceptual and 

procedural knowledge. Galbraith and Haines thus labelled the groups of tasks as 

mechanical (A), interpretive (B) and constructive (C). Through written exams over a 

period of three years with 423 university students studying graphical representations in 

algebra, they confirmed their hypothesis. Students consistently performed the best in the 

mechanical tasks, the worst in the constructive tasks and intermediate in the interpretive 

tasks.   

Rittle-Johnson et al. (2001) argued that conceptual and procedural knowledge lie 

on the ends of a spectrum. If tasks were developed to use only conceptual or only 

procedural knowledge, then using the results from Galbraith and Haines, this will 

suggest that the easiest tasks for the students are towards the procedural side and the 

hardest tasks are towards the conceptual side of the spectrum. Using the spectrum of 

conceptual and procedural tasks will suggest that tasks requiring a mixture of 

conceptual and procedural knowledge should be easier than tasks needing purely 

conceptual knowledge. However from Galbraith and Haines, this is known not to be 

true, as constructive tasks which required both conceptual and procedural knowledge 

were the hardest. Perhaps then conceptual and procedural knowledge do not lie on a 

spectrum, but rather the conceptual-procedural knowledge is a hybrid knowledge 

requiring the linking and mastery of both knowledge types. This ability of students, to 

apply a mixture of conceptual and procedural knowledge, could be argued to point to a 

superior mathematical understanding compared with those students who can only apply 

purely conceptual or purely procedural knowledge.  
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Therefore, students’ level of understanding can be inferred from their 

performance in the three task types. Students who have a better mathematical 

understanding can be identified through a higher score in the constructive tasks. 

2.3.2 Challenges of Measuring Performance when using Software 
In the previous section, the task types were defined to ensure that the measured 

performance operationalised the students’ use of conceptual or procedural knowledge. 

The focus in this section is looking at the challenges of measuring performance when 

software is involved. 

 One of the difficulties with using mathematical software is knowing whether 

the measured performance is a true indicator of the students’ ability to follow software 

instructions on how to solve the tasks or whether the students have genuinely applied 

their mathematical understanding for solving the tasks whilst using the software as a 

tool (Buchberger, 2002; Meagher, 2000; Tall, 1994). The first could be likened to 

instrumental understanding, where steps are followed without reason, and the second to 

relational understanding, where the students know not only what to input into the 

software but why the calculation is necessary. Students knowing ‘when’ to use software 

could therefore be seen as an additional aspect of relational understanding.  

2.3.3 Expected Performance using the Task Types and Software 
Boxes 

As noted in Section 1.3 (p.3), research studies into measuring performance when 

students are using the glass-box and open-box software have been limited. The main 

concern of the known research studies was determining whether these software boxes 

(glass-box or open-box) aided in students’ procedural knowledge when compared to 

students using the black-box software or pen-and-paper. In the study by Horton et al. 

(2004) they found that students who were trained with the glass-box software versus 

black-box software outperformed their counterparts via a written test. Similarly, 
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Strickland and Al-Jumeily (1999) found that the students who were trained with the 

open-box software versus those students who learnt with pen-and-paper outperformed 

their counterparts in procedural knowledge via a written test (see Section 1.2, p.3). This 

is not a completely surprising result considering that, in both the glass-box and open-

box software, students are presented with or trained to understand the steps, which is 

procedural knowledge. However, there are no studies indicating whether either of these 

software boxes (glass-box and open-box) may help in conceptual understanding. 

Interestingly, in the studies involving only the black-box software, the main 

focus was determining students’ performance on conceptual tasks by comparing 

student’s scores using the software versus a pen-and-paper method. These studies with 

the black-box software included that of Heid (1988), Palmiter (1991) and O'Callaghan 

(1998) (more information on these studies are provided in Appendix 1, p.282, see also 

Section 1.3, p.3). The conceptual tasks used in these studies can be grouped either into 

interpretive and constructive (see Figure 2 for an interpretive task). All three studies 

showed that students performed better when taught with the black-box software than 

when taught without. Although inferences made from these studies will be most 

relevant to black-box software, they will also be extended to the glass-box and open-

box software. 
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Figure 2: An interpretive (conceptual) task from Heid (1988) showing the scores obtained by the 
non-software (Comparison) and software (Experimental) students  

Dreyfus (1994) suggested that through the use of software (black-box), students 

were able to do the ‘trivial computations’ such as finding task solutions. This enables 

the students to “operate at a high conceptual level … they can concentrate on the 

operations that are intended to be the focus of attention and leave the lower-level 

operations to the computer” (p.205). Perhaps then in these three studies, the black-box 

software reduced the cognitive effort required for computation and the students were 

able to concentrate their cognitive effort towards applying their conceptual knowledge. 

However, Crowe and Zand (2000) noted that whilst computer software can carry out the 

trivial computations; the software does not replace conceptual thinking.  

From the three studies (that is, the studies by Heid , Palmiter and O'Callaghan), 

it was difficult to ascertain whether the students were free to concentrate on using their 

conceptual knowledge. The main reason for this difficulty was that the students using 

the black-box were taught to think conceptually by looking at multiple representations. 

The phenomenon of students doing better in conceptual tasks when using the black-box 
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software can probably be attributed to the teacher: specifically, the teaching method 

‘privileged’ the use of conceptual knowledge (Kendal and Stacey, 1999). Appendix 1 

(p.282) has more information on this study. 

As Kendal and Stacey (1999) noted, when students use mathematical software 

such as computer algebra systems (CAS), although conceptual errors in tasks are not 

eliminated, procedural errors such as incorrect arithmetic can be. This suggests that 

mechanical problems should always be solved if students decide to use mathematical 

software as procedural errors are minimised, providing that the correct numbers are 

inputted or they have chosen the correct procedure (such as integration, differentiation 

etc. in the software). Tasks completed through software compared to pen-and-paper 

should have little or no procedural errors, as these errors are eliminated through the use 

of software.  

Kendal and Stacey were referring to black-box software, and perhaps this 

argument can extend to glass-box software as well, since the only difference between 

both software boxes is that the steps are shown in the latter. However, in the open-box 

software where students have to decide and interact at each step, then procedural errors 

may still occur. Thus, students using black-box or glass-box software should obtain 

high performance scores because of their ability to perform the algorithm in mechanical 

tasks without making procedural errors.  

Interpretive tasks require mostly the use of conceptual knowledge. As little 

procedural knowledge is needed for the task, the probability of students using any of the 

software boxes to solve this task may be quite low. This does not mean the software 

boxes cannot impact on the performance of the interpretive task. As noted in the 

previous Section 2.3.1 (p.19), conceptual and procedural knowledge may be linked. 

Rittle-Johnson and Alibali (1999) showed that to some limited extent an improvement 

in conceptual knowledge could lead to an improvement in procedural knowledge and 
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vice versa. Drijvers (2000) found that some students like to know what is occurring and 

perhaps by showing these students the procedural steps, they will then try to make sense 

of the steps. Students who, therefore, used either the glass-box or the open-box software 

in solving mechanical tasks would be privy to the steps (that is, the procedural 

knowledge). Students who try to make sense of the steps may then improve their 

conceptual knowledge of the mathematical topic, that is, acquire a relational 

understanding. However, if the students are only willing to apply the rules without 

making sense of the steps, they may only gain an instrumental understanding.  

Therefore, there is a possibility that students having access to the open-box and 

glass-box software may outperform students using the black-box software in the 

interpretive tasks, providing the students, with the glass-box and open-box software, 

spent time trying to understand the steps conceptually. Perhaps as the students in the 

open-box software are ‘forced’ to do the steps, these students may gain the most 

conceptual knowledge from using this software and then outperform even the glass-box 

students in the interpretive tasks. This is all with the proviso that students actually 

engage with the open-box software and form conceptual knowledge, that is, relevant to 

the interpretive task.  

Constructive tasks require both the use of conceptual and procedural knowledge. 

For students to be successful at these tasks, they have to recognise the link between the 

procedural and conceptual aspect of the task. There is a possibility that students using 

glass-box or open-box software may concentrate on using their procedural knowledge 

by trying to make sense of the steps but devote little cognitive effort towards conceptual 

thinking. However, those students using the black-box software will not be sidetracked 

by the procedural steps and perhaps can devote most of their time towards conceptual 

thinking. Therefore this argument suggests that students with the black-box software 

should perform better on the constructive tasks than those with the glass-box and open-
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box software. It is still quite unclear which software box will produce the best 

performance on the three tasks as this is dependent on the student’s approach. 

2.4 The Approaches 
In the previous section, it was noted that students’ performance may be 

dependent on whether they engaged with the software boxes, that is, the extent to which 

the students attempted to make sense of the steps in the glass-box and open-box 

software. Of course, the students’ performance may also be affected by whether they 

engaged in learning the mathematical topic and the tackling of the tasks. There is also a 

possibility that the software boxes may also affect the extent of their engagement with 

the tasks. For example, students may more readily use the black-box software, versus 

the open-box software, for calculations, as the black-box software is quick and easy to 

use. Thus, the way that students engage with learning the mathematical topic, solving 

the tasks and using the software boxes will affect their performance.  

The way that students engage is considered to be the ‘approach’ in this thesis. 

Three approaches are identified but it is recognised that these approaches are not 

definitive of all the ways that a student may undertake when learning the mathematical 

topic, solving the tasks or using the software box.  

The first approach identified is the ‘processing level approach’ (Section 2.5, 

p.27). The processing level approach characterises how students engage with learning 

the mathematical topic and the solving of tasks. The processing levels are defined as 

either being deep or surface level (Marton, 1975; Marton and Säljö, 1976). The 

‘explanation approach’ (Section 2.6, p.32) is the second approach and it is typified by 

the quality and the quantity of explanations that students generate (Chi, Bassok, Lewis, 

Reimann and Glaser, 1989) in trying to understand the mathematical topic and solve the 

tasks. The final approach is the ‘exploration approach’ (Section 2.7, p.38) and it is 

exemplified by when and how often students decide to use the software boxes for 
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solving tasks. It is useful to note that whilst these approaches are identified separately, 

they are not mutually exclusive to each other; for example, the processing level used by 

a student may influence the quality of explanations produced.  

Finally, the approaches are only able to identify how or what a student is doing 

but this does not account for the students’ affective and attitudinal factors towards 

mathematics in general which may also influence the extent of their engagement and 

hence their approaches. One affective factor is examined in this thesis, that of self-

efficacy (Bandura, 1977; 1988) which is further discussed in Section 2.8 (p.42). Again, 

there are other influences that may affect students’ performance on the software boxes, 

for example other affective factors such as mathematics self-concept or additional 

approaches such as on what part of the software box the student places more emphasis. 

However, self-efficacy and the identified approaches are assumed as the most pertinent 

for affecting performance but other affective factors and approaches will be drawn upon 

if needed.   

The three approaches and self-efficacy are now discussed separately. Each 

section has an introduction to the topic and consideration is given to how each may 

influence performance, both generally and when students are using the software boxes. 

Where appropriate, discussions are made on how self-efficacy may affect the 

approaches undertaken by the students. The processing levels approach is discussed first 

followed by self-explanations and exploration approaches and then self-efficacy.  

2.5 Processing Levels Approach 
In this section, the extent to which students engage or process information when 

solving tasks is discussed and represents the first approach. Processing levels in this 

thesis are defined as either being surface or deep as identified by Marton and Säljö 

(1976).  



 

 28 

2.5.1 Processing Levels: A Brief Background 
Marton and Säljö determined these processing levels from a study involving 30 

university students. In this study, each student was asked to read a passage on 

‘curriculum reform’. Afterwards, the students were audio-recorded as they answered 

questions relevant to the passage. In particular, the students were asked to explain the 

passage (Marton, 1975). By analysing the transcripts, Marton and Säljö (1976) 

suggested that there were generally two types of processing levels, deep and surface. At 

a deep processing level, students based their understanding on the meaning of the 

learning materials, whilst in the surface processing level, students depended on 

memorising materials for reproduction (Richardson, 2005b). Marton (1975) further 

qualitatively assessed that the processing levels influenced the students’ performance: 

where a deep processing level was associated with a positive learning outcome, whilst a 

surface processing level led to a negative learning outcome. Laurillard (1979) contended 

that the use of deep or surface level processing was not an inherent quality of the 

student, but rather, changed depending on the learning context. 

Based on the previous research, Ramsden and Entwistle (1981) extended the 

processing levels concept by suggesting that some students may have a preference for 

either the deep or surface processing level when reading for a course. They proposed 

that students may adopt a ‘deep approach’ or ‘surface approach’ when studying for a 

course. Using their terminology, research has developed into the area of ‘approaches to 

study’. The term ‘approaches to study’ is most often used when referring to the deep 

and surface processing levels in the literature. Using the ‘approaches to study’ term may 

prove confusing when referring to the terminology in this literature, that is, the three 

approaches. Therefore, to avoid confusion with the three approaches in this thesis and 

the ‘approaches to study’ research, the terms deep and surface processing levels or just 
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processing levels will be used whenever referring to ‘the approaches to study’ literature 

where avoidable.  

 Through interviewing students on how they study, Ramsden and Entwistle  

developed a 64-item questionnaire which included items representing the processing 

levels. These items were statements which required students to use a Likert scale to 

indicate their extent of agreement. They named their questionnaire the ‘Approaches to 

Studying Inventory’ (ASI) which they administered to students at the end of a course. 

Biggs (1987) also extended the work of Marton and Säljö (1976) and developed a 42-

item inventory which had items that measured the surface and deep processing levels of 

students reading a course. He called this the ‘Study Process Questionnaire’ (SPQ). 

A score for each of the processing levels is found by summing its associated 

inventory items. Therefore, a student obtains scores for each processing level through 

these questionnaires. The processing level scores cannot be compared against each other 

since their final processing level scores only demonstrates whether a student tended to 

have a high surface or deep processing level.  

2.5.2 Processing Levels: Mathematics, Tasks and Boxes 
Both the ASI and SPQ measured processing levels generally for all courses. In 

some cases, these questionnaires have been modified to be subject specific. For 

example, Crawford, Gordon, Nicholas and Prosser (1998a; 1998b) modified the SPQ to 

measure processing levels in mathematics courses. This inventory was called the 

‘Approach to Learning Mathematics Questionnaire’ (ALMQ). To test whether the 

processing levels impacted on performance in mathematics, Crawford et al. (1998a) 

administered the ALMQ to 127 students reading a first year undergraduate mathematics 

course. They found through a cluster analysis of the students’ performance scores 

(measured by their final examination mark) and the scores from the ALMQ that 

students with a high deep processing level score also had a high performance. This was 



 

 30 

similar to the results obtained by Marton (1975) who qualitatively assessed that there 

was a relationship between positive learning outcomes and the deep processing level for 

students studying the newspaper passage on curriculum reform. Therefore, Crawford et 

al. (1998a) were able to show empirically that processing levels were related to 

performance in mathematics. Hence, there is an expectation that students using a deep 

processing level should perform well on the three task types (i.e. mechanical, 

interpretive and constructive).  

Crawford et al. (1998a; 1998b) found that students’ conception of mathematics 

was related to their processing levels. Through analysing the open-ended responses on 

what students thought about mathematics, Crawford et al. developed the Conception of 

Mathematics Questionnaire (CMQ) to measure students’ conceptions of mathematics. 

They considered that there were two types of conceptions, fragmented and cohesive. In 

the fragmented conception, students consider mathematics as numbers, rules and 

formulas which are applied to tasks. On the other hand, in the cohesive conception, 

mathematics is considered as a way of thinking for carrying out complex problem 

solving and for providing new insights into the understanding of the world. Students 

with a cohesive concept of mathematics may thus have a better conceptual 

understanding of mathematics. 

 Through factor analysis, the results from the CMQ and ALMQ in the study by 

Crawford et al. showed that there was a relationship between the two questionnaires’ 

scales. That is, the surface processing level was linked to the fragmented conception of 

mathematics, whilst the deep processing level was linked to the cohesive conception of 

mathematics. Therefore students’ processing levels provide an indication of students’ 

mathematics conception and shed some insight on how the students will perform on 

tasks. In particular, the interpretive and constructive tasks will require students to have a 

more cohesive concept of mathematics to successfully solve them. 
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If students are asked to solve the three tasks, then it is expected that those with a 

deep processing level will perform better. However, how well students perform, when 

using the three software boxes for solving the three tasks, is uncertain. The reason for 

this uncertainty is that some students may have to process more information depending 

on which software box they are using and this may affect their performance.  

For example, let us take a group of students who use mainly a deep processing 

level. If the students are assigned to either the glass-box or the open-box software, then 

they will use a deep processing level to understand both the mathematical steps and the 

task. However, students assigned to the black-box software only use a deep processing 

level for understanding the task, since there are no steps in the black-box software. 

Students assigned to the glass-box and the open-box software may become more 

cognitively or mentally fatigued than students using the black-box software. The 

tendency towards cognitive fatigue in this thesis is based on the definition by Trejo et 

al. (2007) and it is understood to be where students who are alert and motivated become 

more unwilling to continue undertaking mental work. Therefore, those who have 

cognitive fatigue are not likely to expend their cognitive effort in understanding the 

information presented to them.  

The reason for this possible cognitive fatigue is that students using the glass-box 

and open-box software will have to find meaningful learning from the software steps 

shown, whereas the students using the black-box software would not have to do so. 

Therefore, this cognitive fatigue probably can affect performance using the glass-box 

and open-box software.  

This analysis suggests that students using the black-box software will have an 

advantage and should perform better. However, there is also the possibility that using a 

deep processing level to understand the steps in the glass-box and open-box software 

could also help in the solving of the tasks. Or alternatively, the students may only use a 
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surface processing level when looking at the steps in both of these software boxes and 

possibly then be able to solve these tasks with almost the same cognitive alertness as the 

students using the black-box software. Possibly, one way of knowing whether the 

students’ cognitive fatigue is affecting performance is to investigate the explanations 

that students are generating for themselves and to ascertain whether these explanations 

incorporate cohesive mathematical concepts. 

2.6 Self-Explanation Approach 
This section now turns towards the approach of explanations, in particular self-

explanations. The self-explanation process is where students generate explanations for 

themselves such as why things are occurring (Chi et al., 1989). Through making these 

self-explanations, students are then able to gain understanding. Chi et al. observed self-

explanations in a study where students were asked to think-aloud (Ericsson and Simon, 

1984). They asked ten students to think-aloud as they studied worked-out examples and 

solved 19 tasks in Newtonian physics. However, they only analysed 3 of the tasks in 

qualitative detail because at that time they did not have the opportunity to systematically 

analyse the voluminous amount of data. Further, only eight of the ten students were 

included in the analysis. The first student was not analysed because of a poor self-

explanation session and the other student was removed to have an even number of 

students analysed when they were split into groups. The 8 students were divided into 

‘good’ and ‘poor’ students (top scoring 4 and bottom scoring 4 respectively). From the 

think-aloud transcripts, Chi et al. noted that the students were explaining the 

information for themselves as they solved the tasks. Chi et al. (1989) termed these 

‘spontaneous self-explanations’.  

The think-aloud protocol was developed by Ericsson and Simon and is used to 

understand students’ information processing such as the logical processes of task-

solving. Smagorinsky (1998) put forward a major objection to the think-aloud protocol 
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as he considered speech being uttered by a student as being culturally mediated. He 

asserted that speech cannot be looked upon as a window into students’ minds since 

speech is ultimately a communicative or social tool and not a way to peek into the 

minds of people.  Ericsson and Simon's (1998) rebuttal was that thinking-aloud had 

minimal reactive influences on students’ thinking providing the students were asked to 

focus on the task and to just verbalise their thoughts. Ericsson and Simon pointed out 

that some students may think verbalising their thoughts is about explaining what their 

thoughts means. They thus suggested that students should do warm-up tasks to 

minimise this behaviour. 

 Chi et al. used the think-aloud protocol for identifying students’ self-

explanations rather than investigating students’ information processing steps. The 

protocol provides a method for gauging students’ sense making but could never be a 

true reflection of the sense making process (or any other protocol). For example, the 

verbalised thoughts may not be a true reflection as this could be a post-hoc 

rationalisation rather than an accurate representation of actual processes or that the 

sense making could be visual in nature rather than linguistic. Self-explanations may 

show how students interiorise (Piaget) or internalise (Vygotsky). In interiorisation, 

students construct their knowledge (Piaget, 1972; Tudge and Winterhoff, 1999) by 

creating meaningful or conceptual links between information gathered. Similarly, based 

on an experiment carried out with children, youths and adults involving verbal 

memorisation, Vygotsky (1931/1997) suggested that in internalisation, an adult learner 

uses an internal process through which the learner “actively makes connections between 

memorised words and the content … and organises the word into one pattern or another, 

etc.” (p.186).  

The verbalised self-explanation process is not an internal product, that is, it is 

made into an external product by speech. However, the verbalised self-explanations can 
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give some insight into how the internalisation/ interiorisation processes might occur. 

Possibly, the verbalised self-explanations might change the internalisation/ 

interiorisation processes but the self-explanations do provide a way of understanding 

how the mind makes sense of information. 

Self-explanations have also been determined via written self-explanations as 

used by Hausmann and Chi (2002) and Schworm and Renkl (2006), who found similar 

results to Chi et al. This method provides an alternative way of ‘looking into the mind’ 

but using pen-and-paper and as with speech, it is also an external product. 

2.6.1 Self-Explanations and Processing Levels  
Aleven and Koedinger (2002) suggested that self-explanation is a metacognitive 

activity that can help students’ performance. According to Flavell (1976), 

metacognition refers to: 

one’s knowledge concerning one’s own cognitive processes or anything related to them, 

e.g., the learning-relevant properties of information or data. For example, I am engaging 

in metacognition if I notice that I am having more trouble learning A than B; if it strikes 

me that I should double check C before accepting it as fact. (p.232) 

Therefore, through metacognitive activity, students become aware of their 

shortcomings whilst solving a task. Through the use of self-explanations, they are then 

able to make sense of the information. Chi et al. (1989) suggested that those students 

who made a high number of explanations (usually the ‘good’ students), that is, made 

more sense of the information, were able to perform better than those making a low 

number of self-explanations (usually the ‘poor’ students). Chi et al. also argued that the 

number of self-explanations was not a sufficient measure for performance but that good 

students (those students with high performance) generated high-quality self-

explanations. High-quality self-explanations were where students were able to use 

knowledge from the subject domain to explain their answers. Chi et al. noted that those 
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students who gave a high number of self-explanations were more likely to give higher 

quality of explanations.  

Roy and Chi (2005) suggested that the quality of self-explanations could be 

divided into high or low explanations. With low-quality self-explanations, the students 

generally reread or paraphrase during the learning process whilst when students 

generate high-quality self-explanations, the students demonstrate the making of 

inferences, integrating statements and filling in the gaps when linking to the tacit 

knowledge (Roy and Chi, 2005). The criteria of high-quality self-explanations seemed 

to be related to a deep processing level and cohesive conception, particularly in having 

meaningful learning through making inferences.  

This may imply that during learning, the students who are high self-explainers 

are the ones who are engaging in a deep processing level whilst those students who are 

low self-explainers are engaging in a surface processing level. Chi (2000) also referred 

to the high-quality self-explanations as being ‘deep’ explanations but she made no 

direct link to the deep and surface processing levels. 

2.6.2 Self-Explanations and Tasks 
Chi, De Leeuw, Chiu and Lavancher (1994) suggested that self-explanations, 

with respect to procedural tasks, facilitated students’ construction of their learning by 

integrating their new information with existing information and hence allowed the 

students to improve on their procedural skills. This may reflect students using self-

explanations to gain a relational understanding whereby they create new conceptual 

knowledge. 

Further, Chi et al. (1989) noted that, when good students (students who did well 

on the tasks) explained, they tended to relate their explanations to the physics domain 

that they were studying whilst the poor students’ explanations did not connect with 
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physics principles or concepts. Similarly, if the students were studying mathematics 

then high performing students would most likely use mathematical explanations, whilst 

the students who were low performers would use other types of explanations. These 

other type of explanations may come from a non-mathematical domain and it may be 

based on knowledge that they have created from their life experiences. Therefore, the 

high performing students should be able to link their conceptual and procedural 

knowledge in a mathematical way, whereas the low performing students only used non-

mathematical knowledge. As conceptual and procedural knowledge are linked, even 

though these tasks being used were mainly procedural (mechanical) tasks, this meant 

they were not precluded from integrating their conceptual knowledge.  

Renkl (1997) also looked at spontaneous self-explanations provided for near-

transfer and medium-transfer tasks in 36 students learning about probability. Near-

transfer tasks were tasks that were similar to an example of a mechanical task provided 

and thus required students to use procedural knowledge. In medium-transfer tasks, the 

structure of the task was different and required students to generate a modified solution 

procedure (Atkinson, Renkl and Merrill, 2003). The medium-transfer tasks required 

students to recognise the different structure and make the link that the tasks could be 

solved in a similar way to the near-transfer tasks. This required some use of conceptual 

knowledge. Renkl (1997) found through multiple regressions that students’ performance 

on medium-transfer tasks was better explained by the number of self-explanations than 

by their performance on near-transfer tasks. It seemed that more conceptual-oriented 

tasks required students to use more self-explanations, and thus perhaps for the 

constructive and interpretive tasks, more self-explanations will be expected for higher 

performance.  
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2.6.3 Self-Explanations and Software Boxes 
Jones and Fleischman (2001) suggested that when students are presented with 

worked-out examples, they seldom try to understand them, because only when there is a 

gap in students’ knowledge resulting from an impasse (a stumbling block) would they 

begin to spontaneously self-explain. Glass-box software provides a solution to a task 

that is quite similar to a worked-out example. Students may react similarly towards 

glass-box software and will not spontaneously self-explain when looking at the solution 

because they are not faced with an impasse.  

However, although impasses allow students to spontaneously self-explain, Chi et 

al. (1994) suggested that there could be learning gains from prompting self-

explanations, that is, a mechanism that asked students to self-explain. Most types of 

software are equipped with some kind of prompting mechanism which can tell students 

what they should do, such as through the help menu or a pop-up window. The 

prompting mechanism found in mathematical software does not necessarily prompt 

students to self-explain but perhaps could create an indirect prompt or an impasse which 

would encourage students to self-explain.  

Black-box software might involve the least impasses as this software would 

solve the task without showing any steps. Glass-box software might act similarly to that 

of the black-box but perhaps, with a solution being presented to the students, there 

might be a higher incidence of students determining there was a gap in their knowledge. 

This gap is then the impasse and hence would prompt more self-explaining. Thus, when 

students are shown steps in the glass-box software, they might decide to self-explain 

what the steps mean and create a better understanding of the mathematical topic than 

those students using the black-box software.  

The open-box software has the most impasses as the software mode requires the 

student to perform an action at each step. This impasse will allow the students to self-
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explain what is occurring at each step. However, the understanding gained by the 

students through the self-explanations of the steps in the software box may be mostly 

from procedural knowledge, although there may be also smaller gains in conceptual 

knowledge.  

A similar argument to the one that was made about software boxes and 

processing-levels can probably be applied here. It is possible that in mechanical tasks 

students will self-explain more when using the glass-box and open-box software. 

However, this may make them more cognitively fatigued and hence unable to provide a 

high number or good quality self-explanations for interpretive and constructive tasks. 

The discussion above presumes that the students start with the mechanical tasks which 

would be most likely the course of action as this ensures that the students have 

familiarity in using the software box. 

2.7 Exploration Approach  
This section discusses the exploration approach which is used to examine how 

and when students use software for solving tasks under their own volition, that is, 

without a teacher intervention or not following a pre-existing procedure. By 

interviewing teachers, Ruthven, Hennessy and Brindley (2004) noted that software 

packages used by secondary school students in the subjects of mathematics and English 

were used for: 

supporting processes of checking, trialling and refinement, notably with respect to 

checking and correcting basic elements of work, testing and improving problem 

strategies and solutions, and editing and redrafting written texts. (p.271) 

The key point to note from their interviews was that students used the software 

for testing and checking processes which implies that students were using software for 

exploring processes or scenarios. Similarly, Pierce and Stacey (2001) reported from a 

study of observing 30 students learning university calculus, that the students used CAS 
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as an ‘independent expert’. The students used the CAS to explore properties of 

functions for testing or making their own conjectures. For example, the students 

changed the values of coefficients and exponentials in mathematical functions to see the 

change in its corresponding graphs.  

Trouche (2000) developed a classification of how students use technology (CAS 

or graphical calculators) when solving tasks. His category of ‘overall calculator use’ 

indicated how often students were using these tools under their own volition. Hence, his 

classification of students is dependent on how and when students explore with the CAS 

or graphical calculators. He provided evidence for his categories by observing a senior 

level high school class undertaking a design engineering project that covered calculus 

and elementary analysis. He classified students into five extreme categories: theoretical, 

rational, thinker, experimenter and scholar (see Table 4).  

Table 4: Types of students based on their use of technology from Trouche (2000) (my translation) 

Student Information 

Source 

Meta-cognitive 

activity 

Privileged 

method of proof 

Overall 

calculator use 

Usefulness of 

calculator 

Theorist Notes Interpretation Analogy Average High 

Rationalist  Pen/Paper Inferences Demonstration Low Low 

Tinkerer Calculator Investigation Accumulation High Low 

Experimentalist All Comparison  Confrontation Average High 

Scholastic None Investigation Copy/ Paste Average High 

 

Trouche indicated that when solving tasks, each type of student privileges 

specific information sources and calculator uses. For example, the theorists use 

references (notes, paper), work towards interpretation for understanding, use analogies 

for proof, spend about average time exploring on the calculator overall but their 

exploration time spent is usually fruitful. Trouche suggested that some students may 

have a predisposition as to how they used the software, that is, students had a particular 

style.  
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However, these particular styles of exploring with software by Trouche may be 

rather strategies that students employ depending on the topic. Coupland (2004) in her 

study investigated how students appropriated the use of Mathematica (a CAS). She 

issued both the ALMQ and a Mathematica Experience Questionnaire to her students. 

The former measured students’ processing levels and the latter questionnaire measured 

the students’ mathematical engagement with the software and their computing 

experience. Through examining the responses from 113 students, she noted that 

students’ uses of the software were dependent on their processing levels. Her analysis 

showed that students with a deep processing level and a low computing background 

reported that they were still able to appropriate the tool to allow for mathematical 

engagement. In an earlier study, Laurillard (1979) found that processing levels may be 

dependent on the learning context. As Coupland showed that students’ appropriation of 

software is influenced by their processing level, then it is possible that Trouche's student 

categories are not stable, that is, students may opt for any of these strategies depending 

on the subject or task. 

Coupland also found that students’ exploration with mathematical software 

using their own initiative was quite poor. Students were requested to mark on a visual 

analogue scale, a position on the line anchored by ‘disagree’ on the left and ‘agree’ on 

the right. The line was approximately 41 millimetres. With 113 students returning 

completed questionnaires, she noted for one item, “I often used Mathematica to explore 

my own questions about mathematics”, that the students scored poorly. The students’ 

mean score for this item was 10.3 out of 41 which indicated a high disagreement with 

this statement.  

2.7.1 Exploration: Performance, Tasks and Processing Levels 
Coupland’s (2004) results suggest that the frequency of students’ exploration 

with the software boxes may be low. A low frequency of exploration by the students 
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might impact on students’ performance on mechanical and constructive tasks. If 

students choose not to use the software boxes then they would more likely have 

procedural or arithmetic errors for both the mechanical and constructive tasks. Further, 

through exploration, students can test scenarios and via self-explanations, can build 

their conceptual understanding. This could potentially impact on their performance for 

not only the constructive tasks but perhaps also the interpretive tasks.  

Moreover, Coupland found that students with a deep level of processing were 

more likely to choose to use the software for mathematical engagement than students 

with lower levels of processing. This might suggest that students with a deep level of 

processing would be more likely to explore with the software boxes for a purpose such 

as confirming answers or testing hypotheses.  

2.7.2 Exploration and the Software Boxes 
The frequency of exploration may also be dependent on the software box itself. 

Both glass-box and black-box software are able to solve procedural tasks easily as the 

student is only required to click the buttons to get the answer. However, the open-box 

software requires students to determine what they would do at each step and this may 

mean that students might be more reluctant to use this software for solving procedural 

tasks. This behaviour may thus impact on how students explore using the software 

boxes when solving the mechanical and constructive tasks. Students using the black-box 

and the glass-box software may then explore more for the mechanical and constructive 

tasks compared to students using the open-box software as there is a sense of more 

immediacy. As the mechanical tasks are relatively simple, that is, requiring only the 

inputting of values and executing a command, students may choose to always solve 

these tasks using the software boxes. 
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2.8 Self-Efficacy 
The last aspect that is looked at which may influence performance is self-

efficacy. Bandura (1986) defined perceived self-efficacy as “people’s judgement of 

their capabilities to organise and execute courses of actions required to attain designated 

types of performance” (p.391). The term ‘perceived self-efficacy’ is how students may 

view how well they can perform tasks. Whilst students who self-reflect through 

metacognitive activities about their ability to perform on tasks can increase their 

performance on tasks, Bandura suggested that this may also be a pit-fall for those 

students who produce “faulty thought patterns”(p.21). Depending on a student’s self-

efficacy perception, they may consider the following when approaching a task: 

• what to do 

• how much effort to invest in activities 

• how long to persevere in the face of disappointing results and 

• how to tackle the task i.e. anxiously or self-assuredly (p.21).  

Thus, students with a high self-efficacy when solving tasks will have more 

success since they will persevere until the task is solved. Often these students during the 

solving of the tasks will generate and test alternative forms of strategies (Bandura, 

1986: p.391). Alternatively the self-doubters (those with low self-efficacy) will be more 

likely to abort their initial efforts if it proved to be deficient. As students with high self-

efficacy have a higher tendency to test alternative strategies this suggests with respect to 

exploration, that students with high self-efficacy may explore more with the software by 

testing different numbers. However, this should be due to high perceived self-efficacy in 

the use of mathematics rather than in the use of computer software as Coupland (2004) 

found.  
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According to Schunk (1991), self-confidence is usually operationalised as the 

measurement of self-efficacy (see for example Gist and Mitchell, 1992; Pajares and 

Miller, 1994). Bandura (1986) suggested that high confidence students are students who 

are more likely to have high success and those with low confidence are more likely to 

be self-doubters. In fact, Collins (as cited in Bandura, 1986) carried out a study where 

students having high and low mathematical self-efficacy were given difficult problems 

to solve. He found that  

while mathematical ability contributed to performance, at each ability level, children 

who regarded themselves as efficacious were quicker to discard faulty strategies, solved 

more problems, chose to rework more of those they failed, did so more accurately, and 

displayed more positive attitudes towards mathematics. (Bandura (1986), p.391)  

Pajares and Miller (1994) in their study of self-efficacy and mathematics 

performance using path analysis found that “students' judgments about their capability 

to solve math problems were more predictive of their ability to solve those problems” 

(p.200) than other variables they investigated such as gender, mathematics self-concept 

and students’ prior ability. Their study was conducted with 350 undergraduate students 

at an educational college where they were given a series of questionnaires which 

measured mathematics confidence, perceived usefulness of mathematics, mathematics 

anxiety, mathematics self-concept, prior experience and mathematics performance. Both 

the questionnaires for mathematics confidence and mathematics performance consisted 

of the same arithmetic, algebra and geometry mathematics tasks and two problem types 

(real and abstract). In the mathematics confidence questionnaire, students were asked to 

assess how confident they were in solving the task and in the mathematics performance 

questionnaire they solved the tasks. The mathematics performance questionnaire was 

administered to the students last.  
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2.8.1 Self-Efficacy and the Approaches 
Thus far this chapter has suggested that processing levels, self-explanations and 

explorations affect performance. With the study by Pajares and Miller, students’ 

academic self-efficacy or confidence is also seen as having a positive impact on 

performance. This suggests that there might be a relationship between the processing 

levels, academic self-confidence and self-explanations. 

Duff (2004) conducted a study using the Revised Approaches to Study Inventory 

(RASI) that he administered to 244 business school students. The RASI is a revised 

version of the ASI but also includes items for measuring academic self-confidence. 

Through a correlation matrix, he was able to determine a relationship between high 

academic self-confidence and the deep processing level.  

Whilst there are few studies using the RASI for mathematics, it is possible that 

students with higher mathematics confidence, similarly to the business students in 

Duff’s study, would be more likely than students with lower mathematics confidence to 

engage in their work and try to make meaning out of their learning, that is, have a deep 

processing level. Students with low mathematics confidence on the other hand would be 

less engaged with the mathematical topic and thus adopt a surface processing level.  

Therefore, if students with high mathematics confidence should have a deep 

processing level, this would probably mean that these students will then appropriate the 

software boxes for their mathematics engagement as was noted in Section 2.7.1 (p.40). 

Further, as high mathematics confidence students may probably be more au fait with 

mathematical concepts and terms, then there is a possibility that their self-explanations 

should be within the mathematical domain, whilst those of the low mathematics 

confidence students would be less in the mathematical domain. 
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2.8.2 Self-Efficacy and Attitudes to Technology 
It might be worthwhile to investigate whether attitudes to technology might also 

influence performance.  

In a bid to find out how technology influenced mathematics learning when these 

two are combined, Galbraith and Haines (2000b) developed a Mathematics-Computing 

Attitudinal Scale (MCAS) to find out. Their original questionnaire had six scales which 

looked at student’s mathematics confidence, computer confidence, mathematics 

motivation, computer motivation, computer-mathematics interaction and mathematics 

engagement. Mathematics engagement was found to be highly correlated with 

mathematics motivation and the former was eventually dropped (Cretchley and 

Galbraith, 2002). A similar inventory was developed by Cretchley, Harman, Ellerton 

and Fogarty (2000) called the University of South Queensland Mathematics Technology 

(MathTech) questionnaire, which had three scales: mathematics confidence, computer 

confidence and attitudes to technology in the learning of mathematics.  

Both of these inventories were administered to university students in differing 

technology programmes. Their results were quite similar (Cretchley and Galbraith, 

2002), in that both of the questionnaires had low correlations between attitudes to 

mathematics and attitudes to computers. Further, Cretchley and Galbraith noted that 

from these two inventories the attitudes of learning mathematics with technology were 

more closely associated with the student’s attitude towards technology rather than 

mathematics.  

Pierce, Stacey and Barkatsas (2005) also sought to research attitudes towards 

mathematics and technology; however, unlike the previous two inventories mentioned, 

they applied their questionnaire in secondary schools and with a shorter number of 

items. Their questionnaire called the Mathematics and Technology Attitude Scales 

(MTAS) used items from both Galbraith and Haines and Cretchley et al. and measured 
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on similar scales. In addition, the MTAS made use of items of another secondary school 

inventory which had items on mathematics and technology by Vale and Leder (2004) 

but whose focus was to find gender differences. The MTAS questionnaire had five 

scales which assessed student’s mathematics confidence, their confidence with 

technology, their attitude of using technology for learning mathematics, affective 

engagement with mathematics and behavioural engagement with mathematics.  

They found that students’ attitudes to using technology for learning mathematics 

were dependent on gender and found for the males that this was positively related to 

their confidence with technology. However, for females, their attitudes to technology 

for learning mathematics were negatively related to their mathematics self-confidence. 

This phenomenon exhibited here by the secondary school students was not found in the 

studies at the tertiary level, where perhaps the gender attitudes towards mathematics or 

technology even out and are more equal across the genders. 

Therefore, university students with a high technology background should not 

have an advantage in their performance over those students with a low technology 

background when it comes to using the software boxes and solving the tasks. However, 

the students with a high mathematics confidence will definitely have an advantage over 

those students with low mathematics confidence.  

2.9 Analytical Framework 
This chapter has explored how performance may vary depending on the task and 

the software boxes and the types of approaches that students may implement. Three 

approaches that students may undertake were identified: explorations, explanations and 

processing levels. The exploration approach was with respect to the software box use 

whilst the approaches to explanations and the levels of processing were from an 

individual task-solving viewpoint. The exploration approach was heavily dominated by 



 

 47

whether students will use the software boxes and seemed only appropriate for the 

mechanical and constructive tasks. 

Throughout this chapter, conjectures have been made to suggest there are 

connections between self-explanations, internalisation, conceptual knowledge, self-

confidence and processing levels. These conjectures are presented in Figure 3 along 

with already established connections from the literature. As this figure shows, academic 

performance or learning outcomes (the centre of the triangle) is linked to the students’ 

quantity and quality of self-explanations, academic self-confidence and their processing 

levels. The vertices of the triangle represent the processing level approach, explanation 

approach and self-efficacy as influencing performance. 

 It is uncertain where exploration may lie with respect to the other two 

approaches and self-confidence in the analytical framework. Exploration perhaps can 

influence performance but it is wholly dependent on whether the student chooses to use 

the software box appropriately. For now, the exploration approach is not included into 

the analytical framework and will be updated once sufficient empirical data are 

provided that suggests an evidenced connection. The additional concepts such as 

conceptual knowledge and internalisation are placed external to the triangle as these are 

considered to be cognitively linked. The concepts on the triangle vertices are 

measurable; however, the external concepts on the right hand side may not be easily 

measurable. 



 

 

Figure 3: Analytical framework for performance and approaches in mathematics 
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The discussion so far has looked at how the understanding of mathematics might 

be evaluated from a cognitive view with respect to the software modes and the task 

types. As the task types were related to the conceptual knowledge, this would mean that 

the interpretive and constructive tasks which required conceptual knowledge would 

more likely need a deep processing level to be successful. As the processing levels were 

related to students’ academic confidence, then the conceptual tasks may be influenced 

by the students’ academic self-confidence. Thus, students’ deep processing level on 

constructive or interpretive tasks might be dependent on their self-confidence (Figure 

3). There is another dimension to the processing levels since they may also be 

influenced by quality of self-explanations being made by the students where high 

quality self-explanations should be linked to a deep processing level. The quality of 

self-explanations could perhaps be influenced by the level of confidence of the student. 

Further, most of the studies quoted in Figure 3 were with respect to learning 

mathematics or mathematical-type of problem solving. Both Pajares and Miller (1994) 

and Crawford et al. (1998a) dealt with mathematics whilst Chi et al. (1989) used 

mechanical physics problems which is sometimes taught as applied mathematics. 

However, Duff (2004) study dealt with management education. Based on the research 

questions, this study would be mainly based on using the linkages on the sides of the 

triangle for analysing any data. Since the data being used in this study would be with 

respect to learning mathematics, it might be useful to determine if processing levels are 

related to academic self-confidence and thus by doing this, the study would confirm that 

the results found by Duff (2004) could be extended to mathematics as well.  

2.10 Concluding Remarks 
This chapter discussed two types of knowledge, conceptual and procedural, and 

how these are formed through understanding (Section 2.2, p.15). Further, the chapter 

indicated how students’ performance can be measured on three task types which are 
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representative of conceptual and procedural knowledge (Section 2.3, p.18). For each of 

the identified three approaches (exploration, explanations and processing levels), their 

influence on performance of the tasks and their effects on how students use the software 

boxes were explored (Sections 2.5, 2.6 and 2.7). Additionally, self-efficacy was also 

suggested as a factor in students’ performance and how students used the software 

boxes (Section 2.8, p.42). Using the literature relating performance to the approaches, 

an analytical framework was created for analysing task-solving (Section 2.9, p.46). In 

light of this literature, the research questions are refined in the next section. 

2.10.1Another Look at the Research Questions 
From Section 1.4 (p.8), the research questions are updated for the study 

investigated as follows: 

How do students' approaches to the three task types (mechanical, interpretive and 

constructive) and their performance on these tasks depend on the software box they 

have access to? 

1. Does the students' performance in solving the interpretive and 

constructive tasks depend upon the software box the students have 

access to? 

2. Do students' approaches to solving the three task types (mechanical, 

interpretive and constructive) depend upon the software box they 

have access to? 

3. How are students' approaches to solving the three task types 

(mechanical, interpretive and constructive) associated with their 

performance? And does this association vary with the software box 

they have access to? 



 

 51

Research Question 1 is reduced to two tasks rather than three since with the use 

of software, students should always compute the correct answer for the mechanical task. 

The approaches have now been identified as explorations, explanations and processing 

levels. 

Explorations are drawn from the idea that students use the software boxes as an 

independent expert or for checking processes (Section 2.4, p.26) and hence exploration 

can be measured by judging whether students were using the software or not for these 

purposes. Further, students are able to self-explain and may draw on their knowledge 

domain when solving mathematical tasks either from mathematical principles or other 

principles such as real-life. The two levels of processes are the deep level and the 

surface level, and the students’ use of one rather than the other can be measured through 

the ASI.  
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Chapter 3. Methodology 
“At the beginning of all experimental work 

stands the choice of the appropriate 
technique of investigation.” 

- Walter Rudolf Hess 

3.1 Introduction 
The research questions set forth two aspects that needed to be measured or 

determined: namely, students’ performance and their approaches when solving the three 

task types. The literature review indicated that performance was a measurement of 

individual cognition and that assessing scores on tasks can provide a performance 

indicator. However, measuring an approach was more challenging and the literature 

indicated that there were four aspects that had to be considered: 

• How software boxes were being used (namely, the exploration) 

• Students’ level of cognitive processing demonstrated by self-

explanations and processing levels 

• Types of explanations such as real-life and mathematical explanations 

• The self-efficacy of the student: that is, students’ mathematics 

confidence 

All of these four aspects were not considered independent of each other but 

rather mutually influencing the approach that a student took when solving a task. This 

chapter reports on the study that was undertaken to collect the data representing the 

scores and these four aspects.  

This chapter begins with looking at the data variables related to the Main Study 

(Section 3.2, p.53). This is followed by a section on the summary of the design which 

discusses the Supporting Study 1, the two pilot studies and the Main Study (Section 3.3, 

p.57). The methods on how the data variables (including the approaches and self-

confidence) are operationalised are outlined next (Section 3.4, p.66). A brief description 
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of the remote observation method which was used for data collection is then provided 

together with the reasons for using this method (Section 3.5, p.78). Following this, a 

description of the sample and the recruitment of the participants are presented (Section 

3.6, p.81). The chapter rounds off with a description of the mathematical domain used 

(Section 3.7, p.86), some brief notes on the transcription of the think-aloud data 

(Section 3.8, p.90), a discussion on the ethical considerations (Section 3.9, p.92) and 

some concluding remarks (Section 3.10, p.93).   

3.2 Data Variables 
Determining students’ scores and approaches across the software boxes and 

tasks lent itself easily to an experimental design as students can be easily assigned to 

experimental groups. This design enabled the measurement of students’ performance 

and observation of their approaches. A summary of the data variables that were 

collected for the Main Study, based on the literature is presented in Table 5. An 

additional variable, ‘Problem’ is included in this table. Problem is used as a way of 

organising the tasks and is further discussed in Sections 3.3.4 (p.62) and 3.3.5 (p.63).  

The variables were grouped into independent variables, non-varying covariates, 

varying covariates and dependent variables. Independent variables were variables that 

the researcher manipulated such as the assignment of tasks and software boxes to 

students. Covariates were variables that this research had no control over but were 

present and may influence the study. The non-varying covariate was a variable that was 

not influenced by this research design, that is, the covariate remained the same (or near 

the same) throughout the study. Thus, a student’s mathematics confidence was expected 

to stay the same for the duration of the study. The varying covariates, such as the 

propensity towards self-explanations, on the other hand were assumed to be dependent 

on this research design.  
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Table 5: Variables used for collecting data 

Variables Description Data type 

Independent Variables   

Boxes Types of software Categorical 

Black-Box Software does not show steps  

Glass-Box Software shows steps  

Open-Box Software allows interaction at steps  

   

Problems Types of problems Categorical 

Problem 1 Toy manufacturing application 

problem 

 

Problem 2 Lumber manufacturing application 

problem 

 

Problem 3 Mathematically abstract problem  

   

Tasks Types of Tasks Categorical 

Mechanical Procedural knowledge using during 

solving 

 

Interpretive Conceptual knowledge used during 

solving 

 

Constructive Both procedural and conceptual 

knowledge used during solving 

 

   

Non-Varying Covariates   

Mathematics Confidence Confidence of the student to do 

mathematics 

Quantitative 

   

Processing Levels (A) The deep or surface processing levels 

that students take when solving all 

tasks 

Quantitative 

   

Varying Covariates   

   

Processing Levels (B) The processing levels (deep/ surface) Qualitative 
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Variables Description Data type 

that students use when solving each 

task 

   

Self-Explanations The propensity of students to generate 

out-loud explanations when solving 

each task

Qualitative 

   

Dependent Variable   

Performance Scores that students have made on the 

interpretive and constructive tasks 

Quantitative 

Explorations Frequency of using the software for 

testing numbers or conjectures for the 

mechanical, interpretive and 

constructive tasks 

Categorical 

   

Explanations Types of Explanations Categorical 

Mathematical Frequency of written mathematical 

explanations for interpretive and 

constructive tasks 

 

Real-Life Frequency of written real-life 

explanations for solving the 

interpretive and constructive tasks 

 

The final variables were the dependent variables. The data collected for these 

variables were determined by an outcome of the intervention at different levels of the 

independent variables, which in this case were the solving of tasks when provided with 

a software box. The outcomes of the intervention were the scores on the tasks, 

categorising whether students explored with the software, and categorising self-

explanations into real-life or mathematical explanations.  

A mixed-methods methodology was employed (Creswell, 2003) for collecting 

data in this study. A mixed-methods approach is where both quantitative and qualitative 
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data are collected for answering the research questions. Quantitative and qualitative data 

may either be collected concurrently or sequentially. Both the quantitative and 

qualitative data can then later be used for triangulation. In the concurrent method, both 

types of data are collected at the same time, whilst in the sequential method, either of 

the two data types are collected first then followed by the collection of the other data 

type.  

In the experimental design employed for the Main Study, quantitative and 

qualitative data were collected concurrently. Through the use of the concurrent 

triangulation method, agreement between the quantitative and qualitative data was 

sought. In the experimental design, empirical data were collected for the tasks 

(performance scores, explorations and explanations frequencies, and processing levels) 

which aided in determining if there were any statistical differences or similarities 

amongst the software boxes. However, this data do not on its own shed any light on 

why differences or similarities might be occurring. More data were thus necessary to 

understand why the statistics found were significant and what influenced its 

significance. Therefore observations (audio/video recordings and note-taking) of what 

students were doing when solving the tasks were conducted. This qualitative 

audio/video and note-taking data were then triangulated with the statistical findings. 

This meant that even though statistical differences may show quantitatively that there 

were no differences between the software boxes, subtle variations in how students 

interacted with the software boxes were then able to be obtained via the observational 

data.   

The use of quantitative data ensured that there was an extent of rigour and 

internal validity within the experimental design since statistical probability was used for 

determining quantitative variations (Hammersley and Atkinson, 1995; Howell et al., 

2005). According to Howell et al. (2005) validity is concerned with ensuring that what 
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was being measured would be able to answer the research questions, that is, the 

instrument being used would accurately measure or represent the concepts. They further 

explained that internal validity referred to the rigour under which the study was 

conducted whilst external validity referred to the extent that the results could be 

transferable or generalisable to a population (see also Campbell and Stanley, 1963).  

The study was based on university students and this meant that all variables 

could not be accounted for in an experimental design, since students’ characteristics can 

not be held constant as their behaviour is constructed and reconstructed during the 

course of experiment (Hammersley and Atkinson, 1995). To account for this effect, the 

qualitative data were collected to gain insight and provide richer data on the students’ 

behaviour (Hammersley and Atkinson, 1995; Savenye and Robinson, 1996), 

particularly when determining how certain approaches were used by a student in solving 

the tasks. With qualitative studies there is potentially more subjectivity than in the 

quantitative studies and thus precautions were made to minimise bias or at least be 

reflexive on how the interviewer/ observer influenced the data (Hammersley and 

Atkinson, 1995). Therefore in the observation notes, the researcher noted any activities 

that may have influenced the students (for example, notes were made when the 

researcher told the students of wrong data inputs into the software box). Further, in the 

transcripts, the researcher’s comments and actions were also included. 

3.3 Summary of the Design 
This section gives an overview of the research design. Justifications and reasons 

why these design choices were chosen are given separately. In this research there were 

four studies, one supporting study, two pilot studies and one main study (Figure 4). The 

studies were named as Supporting Study 1, Pilot Study 2, Pilot Study 3 and Main Study 

in this thesis.  
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A protocol, similar to that of Renkl and Atkinson (2003), was used for Pilot 

Study 2, Pilot Study 3 and the Main Study. This section first gives an overview of 

Supporting Study 1 and then discusses the protocol used for Pilot Studies 2 and 3, and 

the Main Study. This is then followed by summaries of these remaining studies.  

 

 Figure 4: List of supporting, pilot and main studies and their purpose and connections 

3.3.1 Supporting Study 1 
The analytical framework, presented in Section 2.9 (p.46), showed, based on a 

study by Duff (2004), that there was a link between self-confidence and processing 

levels for management education students. No previous study was found that showed 

Supporting Study 1: 
Mathematics-Computing 
Attitudes and Approaches to 
Learning Mathematics  
(Section 4.2, p.95).  

Pilot Study 2: Expected 
Values (Section 4.3, p.101) 

To test whether the remote 
observation method could 
work and if the three task 
types as proposed by 
Galbraith and Haines (2000a) 
could be used.  

Pilot Study 3: Linear 
Programming (Section 4.4, 
p.111) 

To test the revised remote 
observation method and the 
three task types developed for 
linear programming 

Main Study: Linear 

Programming, Software and 

Tasks (Chapter 5, p.124) 

To answer the proposed 
research questions.  

To determine whether 
mathematics confidence was 
related to the processing 
levels based on the analytical 
framework (Section 2.9, p.46)  



 

 59

there was a link between mathematics confidence and processing levels. Supporting 

Study 1 was thus used to determine whether there was a link and to establish that the 

analytical framework in Chapter 2 was representative for mathematics students. The 

relationship was tested through a factor analysis of two inventories: the Approaches to 

Learning Mathematics Questionnaire (ALMQ) and the Mathematics-Computing 

Attitudinal Scores (MCAS). The methodology and the results for Supporting Study 1 

are provided in Section 4.2 (p.95).  

3.3.2 Protocol of Pilot Studies 2 and 3 and the Main Study 
As there were several variables that needed to be measured, a protocol was 

established on knowing where and when each data type was collected. A scan through 

the literature of similar learning experiments with interventions when students were 

using software and doing mathematical problems, showed that a common method (e.g. 

Renkl and Atkinson, 2003) was a five step process. This process was adapted for the 

purposes of this study and Steps 6 and 7 were added (see Table 6).  

The original process meant that students first filled in a background survey, then 

a pre-test questionnaire, followed by the learning materials, practice in doing some 

questions and the post-test questionnaire. Steps 3 to 6 were part of the experimental 

design stage (3.3.5, p.63). In some research (e.g. Große and Renkl, 2006), step 2 and 

step 3 were interchanged. This research was fundamental in finding out whether the use 

of software boxes yielded any difference in the understanding rather than the influence 

of instructional materials which was more common in other research (e.g. Renkl and 

Atkinson, 2003; Renkl, Atkinson and Große, 2004). The pre-test questionnaire was 

given in the third step. This meant that any prior mathematical knowledge before using 

the software boxes was ascertained and the influence from the instructional materials 

was minimised. 
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Table 6: Quasi-experimental protocol modified from Atkinson, Renkl and colleagues 

Steps Instructions 

1.Background 

Questionnaire 

Students are asked to fill in a demographic questionnaire, including 

questions asking for mathematical level, age and gender 

2.Instructional/ 

Study Materials 

Students peruse materials to understand the fundamental concepts 

required for the learning of the topic 

3. Pre-test  Students took this test, from which the extent of their prior 

knowledge on the topic is determined before the influence of the 

intervention in the experiment. The pre-test tasks are at a lower 

difficulty level than the post-test tasks 

4. Experiment Students are provided with the interventions/ factors that are being 

studied 

5. Post-test Students work on a set of questions from which quantitative data 

are acquired and compared across the investigated interventions/ 

factors 

6. ASI Students were given one last questionnaire to determine their 

processing levels. 

7. Debriefing Students were allowed to ask questions related to this research, if 

they wished. This was an informal session. 

Further, using the background questionnaire students’ demographic factors were 

accounted for such as gender, age and level of mathematics attained. The affective 

factors acquired included students’ mathematics confidence, computer confidence and 

MS Excel confidence. Excel confidence was measured as this was the software 

programmed to represent the three software boxes (Section 3.4.2, p.68). The students 

were asked to self-assess their confidence levels on a scale from 1 to 10 (where 1 = low 

and 10 = high). Whilst this self-assessment is not as reliable as using the mean of 

several self-assessed items relating to confidence, Bandura (1977) suggested that people 

were reliable in assessing their own self-efficacy.  
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During the experimental stage, the students were assigned to software boxes and 

a sequence of tasks. In Pilot Study 2, the students used all three software boxes; 

however, in Pilot Study 3 and the Main Study, students were only assigned to one 

software box (Section 4.4.1, p.113). Although the experimental stage, according to the 

table, suggests that the assignment of the intervention occurred after the pre-test was 

conducted, this was actually predetermined before the student arrived. However, it was 

only after the pre-test that the student saw their assigned software box. Their tasks, 

however, were attached to the end of the instructional materials but they were only 

asked to solve these during the post-test stage. Further, prior to answering the post-test, 

students were provided with a practice task to enable them to gain familiarity with the 

software box and practice the think-aloud protocol which was essential for collecting 

data on the self-explanations and determining their processing level (Section 3.4.4, 

p.74). 

The details stated in the preceding paragraph were essentially what was done in 

the pilot studies (see Chapter 4, p.95), however, when it came to the Main Study an 

additional quantitative instrument was added to measure deep/surface processing levels.  

3.3.3 Pilot Study 2: Expected Values 
Pilot Study 2 (also called the Expected Values Pilot) was used for testing a new 

data collection method, testing the software modes and testing the three types of tasks. 

The data collection method was called remote observation and it involved collecting 

data on students’ interaction with the different software modes (black-box, glass-box 

and open-box) via the internet. In this method, audio and video of the student is 

captured via microphones and web cameras, and their interaction on the software modes 

is captured through application sharing software. Application sharing software allows 

two or more remote users to view and use the same software application. For the remote 

observation method, the researcher used two computers for collecting the data.  
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Nine tasks on ‘expected values’ were created based on Galbraith and Haines 

(2000a) taxonomy (three of each type). The software modes were then developed and 

coded in MS Excel using Visual Basic for Applications (VBA) for solving the expected 

values tasks. Instructional materials were also created for understanding expected 

values. The students read the instructional materials; they then proceeded to learn how 

to use the software boxes and finally using the software boxes for solving the tasks. 

In this pilot study, the software modes were tested to verify that they represented 

the software boxes and students were able to use the software boxes with minimum 

guidance from the researcher. Six students participated in Pilot Study 2 and tested all 

software modes and all nine tasks (one task type each per software box). Additionally, 

they also completed a pre-test on probability. 

3.3.4 Pilot Study 3: Linear Programming 
Based on the outcomes from Pilot Study 2, a new mathematical topic was 

chosen. This time, ‘linear programming’ was used because it was more complex to 

solve. Nine tasks were again recreated for this mathematical topic but now the three 

types of tasks were associated with a problem. That is, three problems were created each 

having a mechanical, interpretive and constructive task. These problems were referred 

to as Problems 1, 2 and 3. New software modes were coded in MS Excel using VBA for 

solving the linear programming problems. The software modes and the linear 

programming tasks were tested by three students.  

Based on the outcomes from Pilot Study 2, each student was assigned to using 

only one software box. The reasons for this are twofold; firstly, using one software box 

reduced the cognitive effort required by the student in learning how to use all three 

software boxes. Secondly, using the one software box prevented students from forming 

a preference to a particular software box and thus becoming frustrated when having to 

use another software box, which they could see little point of using. The data were again 



 

 63

collected via a remote observation method but this time with a new configuration of 

using only one computer. Both the new remote observation configuration and tasks 

were found to be acceptable and there were minor alterations to tasks where whole 

numbers were used instead of decimals. 

3.3.5 Main Study 
Using the experiences learnt from the Pilot Studies 2 and 3, the Main Study was 

designed as an experiment. The experimental design was a Latin Square design, where 

data on 38 students were collected. Approximately 12 students were randomly assigned 

to using each software box and solving the linear programming tasks. The same method 

as in Pilot Study 3 was used for collecting the data using similar tasks. For these 

students, the data were collected via the remote observation method. Thirty-six students 

were used from Trinidad and Tobago and two students from the United Kingdom (UK). 

Thus this meant that for any analysis for tasks, this required analysing 114 instances of 

the task type, that is, for example in interpretive tasks, there will be 38 students × 3 

problems × 1 interpretive task = 114 interpretive tasks instances.

The experiment required assigning students to one of the software boxes and this 

was thus a ‘between-subject’ variable, referred to in this study as Boxes. ‘Between-

subject’ refers to groups of students assigned to different conditions; in this case the 

condition is the software box.  

Tabachnick and Fidell (2007) pointed out that students can become increasingly 

fatigued or practiced as they complete a number of similar tasks. For example, if 

students answered Problems 1 to 3, then students had sufficient practice in answering 

the preceding Problems 1 and 2, and may find Problem 3 simpler to answer. This means 

that students will have a higher score for Problem 3 than Problems 1 and 2. To 

counterbalance these effects, Tabachnick and Fidell (2007) suggested using a Latin-

Square design. Campbell and Stanley (1963) indicated the advantage of the Latin-
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Square was that it controlled for internal validity, although external validity may be 

lacking. 

The problems were sequenced in three ways (see Table 7). Students were 

randomly assigned to one of the sequences. The variable representing the scores 

obtained from a particular problem sequence is referred to in this thesis as ‘Sequence’ 

and it is also a between-subject. In Table 7, ‘Question 1’ is the first problem solved by a 

student assigned to a particular sequence. For example in Sequence 2, the first problem 

solved by a student is Problem 2 and hence this is the student’s Question 1.  

The distribution of the students by software Boxes and Sequence is presented in 

Table 8. The modified protocol for conducted the Main Study is presented in Figure 5. 

The arrows represent the actions undertaken by or for the student. 

Table 7: The three problem sequences 

Sequence Question 1 Question 2 Question 3 

Sequence 1 Problem 3 Problem 1 Problem 2 

Sequence 2 Problem 2 Problem 3 Problem 1 

Sequence 3 Problem 1 Problem 2 Problem 3 

 

Table 8: Distribution of students according to sequence and software box 

Sequence Black Glass Open Total 

Sequence 1 4 4 4 12 

Sequence 2 5 5 4 14 

Sequence 3 4 4 4 12 

Total 13 13 12 38 

 



 

 

Figure 5: The protocol for conducting the Main Study 
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3.4 Operationalisation of the Variables 
This section of the thesis looks at how the variables identified (namely, the 

software boxes and the approaches) were operationalised. Also considered in this 

section are the choice of mathematical domain and the development of the tasks. 

3.4.1 Mathematical Domain 
Whilst there were endeavours to gather tasks that measure conceptual and 

procedural knowledge from the literature, this proved futile and the Galbraith and 

Haines’ (2000a) taxonomy was used for developing the tasks. However, this still meant 

finding tasks that were somewhat conceptual and procedural in nature. Tasks validated 

from previous research were sought as this would have provided a comparison between 

the data gathered in this study and the literature and also that there would have been less 

need to ensure that the tasks were able to measure conceptual and procedural 

knowledge.  

Although the tasks from studies involving secondary schools were found to 

measure conceptual and procedural knowledge to some extent (e.g. Kadijevic and 

Krnjaic, 2003; Star and Seifert, 2006), these were inappropriate for the higher education 

context for this study. Other mathematical tasks used in higher education (e.g. Heid, 

1988; O'Callaghan, 1998) were based on functions and calculus. Therefore in these 

topics, students were able to use both graphical and algebraic knowledge and translate 

from one to another. If the students are able to translate between these two types of 

representations from graphical to symbolic or algebraic representations, then this is 

considered a use of their conceptual knowledge. This meant that if these tasks (that is, 

from functions or calculus) were used, the influence of multiple representations had to 

be accounted for, which would have made the analysis difficult in determining whether 

the multiple representations (graphical, symbolic and algebraic) were the reason for the 
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influence of conceptual knowledge or the mode of software used. Further, such topics as 

functions and calculus do not lend themselves easily to be processed in software as 

steps or for the tasks that do, they are quite trivial (see Figure 6).  

( )123 ++ xx
dx
d  

=  23 2 +x

Figure 6: Example of a trivial calculus question 

As students with a wide range of disciplines were being used, this meant it had 

to be a task that students were not completely familiar with but yet arose naturally from 

secondary school mathematics. In the pilot study, the topic of expected values was 

chosen however these tasks were found to be trivial. As the expected value problem was 

trivialised students resorted to using pen/paper and making the need for the software 

boxes obsolete. Thus tasks needed to be developed from a domain where they can 

measure conceptual and procedural knowledge as well as lend themselves easily to 

being converted into the software boxes. Further, the steps could not be trivialised and 

as such algorithmic processes were looked into. 

The algorithmic processes were needed that were sufficiently complex and thus 

whilst the algorithmic process may be purely mechanical which ensures only procedural 

knowledge, other questions relating to its applications and underlying mathematical 

methods may generate the conceptual knowledge required. As such linear 

programming’s simplex method was chosen as it is used in various disciplines which 

meant that students from a wide variety of differing mathematical backgrounds would 

be able to it. Further, this was also a topic taught in the General Certificate of Education 

(GCE) Advanced Level (A-Level) examinations albeit in a special module and thus 

meant it was a topic that naturally arose from secondary school mathematics. 

Supposedly, other algorithms such as Gauss-Jordan elimination in linear algebra (on 
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which linear programming is based) could also have been used but it did not afford the 

same advantage of being popular in various disciplines.  

3.4.2 Problems and Tasks 
Whilst one of the concerns was ensuring that the tasks were not trivial and that 

they were related to the three task types, the only challenge left was deciding on 

whether the linear programming problems should be application-type or mathematically 

abstract-type problems. Hennessy (1999) has cautioned against the use of real-life 

contextual tasks as they do not provide students with a better grasp of mathematical 

concepts, and students may be confused where there may be several meanings and 

understandings. However, linear programming mathematical models were developed 

based on a real-life context during the 1940s and it was used as an efficient way to solve 

complex planning problems during World War II (Encyclopædia Britannica, 2009). 

Generally real-life or application type problems are taught first to the students as a way 

of understanding linear programming concepts in both courses (for example, all three of 

the Open University courses containing linear programming, MU120, BM240 and 

M373, are taught in this manner) and in textbooks (see Winston, 1994).  

Linear programming was thus introduced to the students through the 

instructional materials in a real-life context. The issue raised by Hennessy is still valid 

and thus the real-life application linear programming problems in the instructional 

materials and the post-test all dealt with receiving profit through production 

(agricultural, toy and furniture production) in order to keep the contexts similar. One 

problem was chosen as being abstract. As these were university students, the use of 

application or real-life contexts would have been familiar to them. Further, except for 

the linear programming problem introduced in the instructional materials, students were 

first asked to solve the linear programming model without any context and then the 

context was provided afterwards by indicating what product the variables represented. 
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Through providing the problem before providing context, it also ensured that students 

did not wrongly formulate the linear programming model.  

Problems from Winston (1994) were chosen and modified to fit with the 

mechanical, interpretive and constructive tasks. Each interpretive and constructive task 

had two parts, one part where students provided a solution or answer and the second 

part where they gave a detailed explanation for their solution/ answer.  

Whilst there were several aspects of linear programming that could have been 

chosen, only the simplex method, that is, the algorithm used for solving linear 

programming problems was chosen (see Section 4.4.1, p.113). Two application 

problems were chosen and one abstract problem. All three tasks were assigned to each 

problem and the reason for this was to reduce the monotony of doing the same thing as 

this was one of the complaints in Pilot 2: Expected Values pilot (Section 4.3.3, p.109). 

The chosen problems are listed in Table 9. 
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Table 9: The three problems and their associated tasks 

Problem 1 (Toy Application Problem) 

a) Mechanical: Solve  

Max z = 2x + y 

s.t. 

 2x + y ≤ 100  (constraint A) 

 x + y ≤ 80 (constraint B) 

 x ≤ 40(constraint C) 

 

b) Interpretive: Now, x refers to the no. of toy trains manufactured and y refers to the 

no. of toy soldiers manufactured whilst constraint A refers to painting hours and 

constraint B to carpentry hours. Interpret what this solution means to the toy company 

who wants to maximize their profit by producing toy trains and toy soldiers. Provide as 

detailed an answer as possible.  

 

c) Constructive: If the profit per train has increased by £1, how would this affect the 

number of toy trains and toy soldiers being sold and why? Provide as detailed an answer 

as possible. 

 

 Problem 2 (Furniture Application Problem) 

a) Mechanical: Solve 

      Max z = 30x + 15y + 10t 

s.t. 

8x + 6y + 2t  ≤ 48 (Constraint A) 

8x + 4y +     3t  ≤ 40(Constraint B) 

4x +    3y + t  ≤ 16  (Constraint C) 

  y  ≤5(Constraint D) 

b) Interpretive: Let x = no. of desks manufactured, y = number of chairs manufactured 
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and t = number of stools produced. Let also Constraint A = number of hours available 

for carpentry/day (i.e. building the product), Constraint B = feet of lumber available, 

Constraint C = the number of hours/day available for finishing (i.e. painting and 

polishing the product) and D is the demand for the number of chairs. Which product(s) 

was not produced and give the possible reason(s) why? Give as detailed an answer as 

possible. 

 

c) Constructive: If the number of hours available for carpentry/day is increased from 48 

to 60 hours, how would this change what the Furniture Company manufactured and 

why? Give as detailed an answer as possible.  

 

Problem 3 (Mathematical Abstract Problem) 

a) Mechanical: Solve  

Max z = 6x +8y +   13t –   u 

s.t.  

3x +4y +6t –   u ≤ 0 (Constraint A) 

2x +     2y +    5t  ≤ 100(Constraint B) 

         u ≤ 90(Constraint C) 

b) Interpretive: Why do we allow linear programming to have ≤ constraints rather than 

just < constraints? Which variable will we not want to have a high value for? Give as 

detailed an answer(s) as possible. 

c) Constructive: If u can be made greater than 90, what is the largest value that it can 

be? And why that value? Give as detailed an answer as possible.  

3.4.3 Software Boxes 
There was no known mathematical software that was able to represent or carry-

out all the actions of the three software boxes. Although there were separate software 

packages that represented each of these three boxes, a mixture of software were not 

considered because: 
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• There was no guarantee that these software types would solve the same 

type of mathematical domain tasks, that is, finding for example three 

software boxes for solving geometry or algebra 

• If there were three software types representing the boxes that solved 

tasks within one mathematical domain, then this raised the issue whether 

the students’ performance and approaches determined from the boxes 

were reliable and valid since the students’ performance or approach can 

be attributable to the user-design rather than ability of the software to 

show and interact with steps or not. 

As such, MS Excel was the software used, and it was programmed through 

Visual Basic Applications (VBA) to represent the characteristics of the black-box, 

glass-box and the open-box software. MS Excel was chosen as it was familiar to many 

students and thus minimized the effect that familiarity with other types of software 

might have on the learning of the topic. Further, using the VBA, answer sheets were 

developed in MS Excel to allow students to type their answers for the tasks. This 

reduced the risk of transcribing and inputting answer data incorrectly during the 

analysis stage. 

For the linear programming software boxes, the decision on which steps to 

include in the black-box, glass-box and open-box software (see Section 4.4, p.112) and 

the interface design had to be decided. The interface was dependent on the number of 

Problems given, as each Problem was programmed on an individual Excel sheet. Also, 

five buttons were created for each Excel sheet: ‘Input Problem’, ‘Iteration’, ‘Reset’, 

‘Answer Form’ and ‘Clear All’ (see Figure 7). 
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Figure 7: The glass-box software for solving linear programming which was developed in Excel 

The ‘Input Problem’ button allowed the students to input values. To solve the 

problem, the students clicked the ‘Iteration’ button. If it was a black-box the answer 

came up immediately without showing the iterations. However, for the glass-box, every 

time the student clicked Iteration, an iteration was shown. The student had to click 

iteration until a pop-up came up saying a solution was found. This pop-up was 

necessary to ensure that the student knew the VBA linear programming procedure had 

ended. The ‘Reset’ button was used for students to clear all the iterations but not their 

inputted values, whilst the ‘Clear All’ button erased the iterations and inputted values. 

The students used the ‘Answer Form’ button to enter their answers. There was one 

Answer Form per sheet. 
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3.4.4 Explanations 
Whilst the student’s approach to using the software was captured via the web 

cameras and screen recording in the remote-observation method and the scores from the 

intervention in the experimental design, thus far, little has been said on how the self-

explanations of students were captured during the solving of the tasks. Recall from 

Section 2.6 (p.32) that self-explanations are defined as explanations that students 

generate for themselves whilst learning or solving tasks. The think-aloud protocol 

developed by Ericsson and Simon (1984) was thus used where students were asked to 

verbalise their thinking processes out loud. From this, the spontaneous explanations that 

students generate for themselves were captured and analysed. Whilst written 

explanations could have been used, because of the remote observation method 

employed in collecting data (see Section 3.5.2, p.79), this could not be used for 

technical reasons, although there was a possibility that students could have typewritten 

them. However, instead when it came to students answering the problems based on the 

Galbraith and Haines (2000a), students were asked to give detailed answers and this in 

some way also represented the written explanations.  

Further, there was concern as to whether it was necessary to record students’ 

actions beyond what they were doing on the computer and what they were saying, for 

example recording whether they were writing on paper and reading the instructional 

materials. However, based on the pilot study, recording of the students’ actions were not 

necessary during the analysis if the students were able to think-aloud and say exactly 

what they were doing. For students who were more reticent, the recording of their 

actions allowed the researcher to know where their focus was. The recording of these 

actions were taken in two ways: the researcher made written observation comments with 

a time-stamp and also through the video recording of the students. The former was 

considered a less reliable method for recording the actions but when suitably 
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reconstructed with the screen-capture videos provided further insight through 

triangulation.  

3.4.5 Processing Levels 
In addition to the think-aloud protocol from which levels of processing could be 

determined, a 10-item Approaches to Study Inventory (ASI) used on the Social and 

Organisational Mediation of University Learning (SOMUL) project (Edmunds and 

Richardson, 2009; Richardson and Edmunds, 2007) was given to the students after they 

solved all tasks. This instrument is referred to as the SOMUL ASI in this thesis and it is 

used for quantitatively measuring whether students were using a deep or surface 

processing level more predominantly during the session (Section 2.5, p.27). 

The 10-items on the SOMUL ASI was chosen by Edmunds and Richardson 

(2009) from an unpublished ‘Approaches to Learning and Studying’ scale developed at 

the University of Edinburgh. Several inventories were considered for measuring the 

deep/surface processing levels. A shorter inventory than the traditional 64-items ASI by 

Ramsden and Entwistle (1981) was investigated since 64-items would be time-

consuming when added onto the experimental session which took between 1½ and two 

hours.  

Therefore inventories and questionnaires with a low number of items were 

considered including, an 18-item ASI questionnaire (Gibbs, Habeshaw and Habeshaw, 

1988), 12-item SOMUL ASI questionnaire (Richardson and Edmunds, 2007), 20-item 

Study Process Questionnaire (SPQ) by Biggs, Kember and Leung (2001) and the 26-

item Approaches to Learning Mathematics Questionnaire (ALMQ) (Crawford et al., 

1998a; 1998b). The shorter questionnaires were more satisfactory as they were less 

time-consuming and hence the 20-item SPQ and 26-item ALMQ were eliminated. The 

18-item questionnaire was not considered either as its internal consistency was 
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previously questioned by Richardson (2000). Although, there were concerns on whether 

the 12-item SOMUL ASI questionnaire would be sufficient for determining whether 

there was deep or surface processing levels, Richardson and Edmunds (2007) showed 

that the items loaded satisfactorily on the factors of deep and surface processing levels, 

except for two items each relating to either a surface or deep learning. These two items 

were dropped and a 10-item SOMUL ASI was used for this research instead. 

3.4.6 Explorations 
Whenever students used the software boxes for testing numbers or decided to 

redo a procedure to examine a process, this was termed ‘exploration’ (Section 2.7, 

p.38). Only for the mechanical tasks were students required to use a software box. The 

constructive tasks were devised to be solved by either pen-and-paper or a software box. 

The interpretive task was devised to be answered solely by pen-and-paper.  

By examining the students’ videos and observing what they were doing for each 

task, students were either coded as not-exploring (0) or exploring (1) for each task. Each 

video was checked at 5-10 second intervals to determine how the students were using 

the software. For mechanical tasks, students were coded as exploring if they used the 

software boxes for any other purpose besides solving the given mechanical task such as 

solving using a different number. In the case of the open-box software when students 

tested a different sequence of processes whilst solving the tasks such as using a different 

pivot variable, this was also coded as exploring. If the students used the software boxes 

for either the interpretive or the constructive task this was coded also as exploring. 

3.4.7 Mathematics Confidence 
As noted in Section 2.8 (p.42), mathematics self-confidence is used as an 

attitudinal measure in this thesis. Bandura (1986) pointed out that self-confidence 

should be measured as close as possible to the time period when performance is 

measured. He also stated that self-confidence should be measured before performance 
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as students’ evaluation of their prior experiences influences how they will perform in 

future tasks.  

There are several instruments for measuring mathematics confidence including 

the Mathematics-Computing Attitude Scales (MCAS) by Galbraith and Haines (2000b) 

or the Mathematics Confidence Scale (MCS) by Fennema and Sherman (1976). These 

instruments have a high level of internal consistency but use at least 30 items. However, 

during the 2-hour session, the experimental intervention required the students to learn 

linear programming, understand a software box and then solve nine tasks in linear 

programming using the software box. A scale was thus needed that will ensure the least 

fatigue for measuring mathematics confidence before the students proceeded to the 

experimental intervention. 

Bandura (1986) has suggested that students are quite capable of judging their 

own levels of confidence accurately but he cautioned that the assessment of confidence 

should be tied closely to the mathematical topic rather than a global assessment as in 

this case general mathematics. The linear programming topic was chosen because of its 

unfamiliarity to students. Whilst algebra was considered to be the closest topic to linear 

programming, some tasks required the use of logic and understanding word problems. 

Therefore, a general assessment of mathematics confidence was used to encompass all 

these areas.  

Students were asked to assessed their level of mathematics confidence on a scale 

of 1 to 10, where 1 = low confidence and 10 = high confidence. Collins in Bandura 

(1986) also used a similar method where he asked students to assess themselves on 

whether they had high and low mathematics confidence and he found through using this 

method that students’ performance was related to their assessed confidence levels. As 

this simplified scale was used, students were also asked to assess their computer 

confidence and their MS Excel confidence using a similar scale. 
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3.4.8 Performance 
Performance was measured by the marks acquired by students for each task. A 

marking scheme was developed for all problems and tasks and is presented in Appendix 

6 (p.313). For the mechanical tasks, all students were required to solve these via the 

software boxes. As the researcher ensured that all students inputted the correct values 

for the mechanical task, this meant all students got these tasks correct. It was imperative 

that students solved the mechanical tasks correctly to ensure they stood a chance of 

solving the interpretive and constructive tasks since both the interpretive and 

constructive tasks were linked to the mechanical task solution. Therefore, scores from 

mechanical tasks were not included when investigated performance differences between 

the software boxes.  

3.5 Remote Observation 
The remote observation method was used for collecting data in this study. This 

section deals with why remote observation was chosen and a brief overview of the 

remote observation process. This process is also further discussed in Chapter 4. 

3.5.1  Choice of Remote Observation method 
Given that this study was based at The Open University, which is a distance and 

online university, finding students to participate at the university was a challenge. As 

such remote data collection methods were investigated in which data can be collected 

from students in various geographic locations. Therefore, a method was needed where 

geographic location would not hamper data location particularly in collection time and 

set-up. Hence, web-conferencing remote observation was developed and used. In web-

conferencing remote observation, participants interacting with software were observed 

via the internet by employing web cameras for voice/video conversation and 

application-sharing facilities which were usually bundled into web-conferencing 

software. 
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Alternatively, data-logging remote observation (see Holzinger, 2005) could have 

been used. In the remote data-logging observation, special software is loaded onto the 

participants’ computers whereby keyboard and mouse clicks may be recorded and later 

collected for analysis. However, data-logging does not provide rich video data and 

further, any data collected using this method has to be returned to the researcher either 

through electronic or postal means. The web-conferencing remote observation process 

lent itself to both a qualitative and quantitative data collection. Firstly, this method 

allowed the collection of both video and voice data and provided a richer analysis than 

data-logging remote observation. Secondly, higher numbers of students could be 

compared if an on-site and user-lab observation was used. In the user-lab situation, the 

participants are invited to a lab where the participants interact with the software and can 

be observed by the researcher. The on-site observation is similar except that the 

researcher goes to the participants and observes them whilst they work on their 

computers. 

3.5.2 Details of Remote Observation method 
Application-sharing facilities allowed the researcher to share the software, in 

this case, the VBA-programmed MS Excel worksheets across the internet, and allowed 

the students to have control in interacting with the software. Either Windows Live 

Messenger (with Windows Messenger application sharing facility) or Skype with Unyte 

application sharing were used as the web-conferencing software. Students were thus 

required to have either Windows Live Messenger or Skype installed in their computer in 

order to participate in the study. Two set-ups of the web-conferencing remote 

observation were investigated, one using a two-computer configuration and the other a 

one-computer configuration. These are further discussed in Pilot Study 2 and Pilot 

Study 3 respectively.  
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Moreover, the experimental design and the protocol of the study were easily 

enabled through the web-conferencing remote observation method. As this method, 

used the internet, the background questionnaire, the pre-test and the SOMUL ASI were 

created and delivered via webpages to the student. Participants were then able to enter 

the answers online and these were then submitted directly to the researcher. This helped 

in getting an electronic copy of the data which reduced the need for transcribing or 

inputting data. Moreover, unlike the data-logging remote observation method, there was 

no dependence on participants’ conscientiousness in emailing the data. However, any 

additional workings that participants did such as scribble or sketch on pieces of paper 

were lost unless saved and sent to the researcher. Although technically participants 

could use sketching software which they can application-share as well, this would not 

have been natural as paper to them.  

Further, the remote observation was good for allowing the researcher to observe 

participants in their naturalistic environment and therefore allowing the participant the 

comfort of using their own equipment without creating any anxiety in operating new 

equipment. However, this was only the case for the data collected for the UK students in 

the Pilot Studies and the Main Study. Students were also recruited from Trinidad and 

Tobago for the Main Study through gatekeepers. Gatekeepers are used in this context to 

refer to persons who helped the researcher (Hammersley and Atkinson, 1995), by 

recruiting students in their university. The gatekeepers also set up a remote observation 

laboratory site in which students were brought to instead. Whilst initially it was 

interesting to investigate the students in their natural environments, the remote 

observation method allowed the setting-up of remote laboratories and observing people 

in varied geographic positions in the world.  

Also, as the participants were in their own environment or perhaps in a different 

environment to the researchers, there was no overwhelming issue of power relations 
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balance (Hammersley and Atkinson, 1995), that is, the research environment was not 

completely controlled by the researcher as it would have been in an user-lab situation. 

Further, this remote observation method allowed with minimal extra cost to extend the 

population or sample group to participants in different parts of the country or in 

different parts of the world.  

Using this method, problems involving logistics were minimized as the 

researcher’s personal computer was employed and all that was needed was an 

arrangement for a virtual meeting time with the participant. Further, the researcher 

effect was also minimised as the researcher to some extent had some freedom in being 

able to react to facial expressions to what the participants were saying without adversely 

affecting what the participant was doing, as participants were not likely to see them 

through the web camera once they started working on the application-sharing software. 

Further, the researcher was able to make notes without making the participant anxious 

about what was being written about them, as they were unlikely to see the researcher. 

3.6 Sample  
For the pilot studies, the participants that were used were from a purposive 

sample and intended to test the instructional materials, the tasks, the software and the 

remote observation method. The participants chosen for the pilot studies were all 

postgraduate students doing either their masters or PhDs. For Pilot Study 2, the 6 

students who participated were all from the Open University. These students were 

approached personally by the researcher and asked whether they will participate in Pilot 

Study 2. After these students showed an initial interest, an email invitation was sent to 

them. For Pilot Study 3, three students were also approached personally and were asked 

to participate in the study. This time only one student was from the Open University and 

the other two students were from elsewhere. There were more strictures set for the 
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selection of participants in the Main Study which is further explained in the next 

section. 

In the Main Study, based on the experimental design, the expected number of 

students was 36, although data from 38 students were collected (see Section 5.2.1, 

p.125). Whilst it might be argued that this yielded only a small number of participants, 

the sample size of 38 students was comparable to those used in other experiments on 

mathematical problem-solving at campus-based universities. For example, Renkl and 

Atkinson (2003) reported sample sizes of 34, 54, 45 and 28 in experiments that they 

conducted over several years. 

 Further, using a software developed by Lenth (2006), it was determined that 12 

students for each software box (that is, 36 students in all) should provide a statistical 

power of more than 0.8. Power indicates the ability of a statistical test to find a 

difference, if there is actually a difference and it is dependent on the number of groups 

and the sample size (Howell, 2002). Power values of over 0.8 are generally considered 

to be good. 

3.6.1 Accessing Students via the Internet 
Initially, these students were expected to be UK undergraduate students as the 

research main concern was investigating university students’ learning mathematics. 

Thus, a wide sample of UK undergraduate students was intended to be recruited as this 

would ensure that the results would be more generalisable. The UK students were 

recruited through social networking websites and students forums such as Facebook and 

the Student Room. 

 It was expected that recruiting students from their popular social networking 

sites such as Facebook would be easy. However, this was not a straightforward or viable 

method of recruiting students. After writing to 14 UK Facebook university communities 
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to post a recruitment notice on their forums, only 9 gave permission, and no students 

were recruited from these. Subsequently, paid advertisements targeting university 

students were used on Facebook. These advertisements appeared as electronic flyers on 

the ‘Home Page’ of each Facebook user. The flyers targeted participants based on their 

social network (e.g. university), age and gender.  

Three paid flyers were used which had a web link and offered a £10 

Amazon.co.uk voucher. Each flyer was for 1000 views by targeted Facebook university 

students. These students were chosen by reviewing 184 UK Facebook university 

communities. From this 104 UK Facebook university communities were selected based 

on having: a) at least 300 members and b) universities with mathematical disciplines. 

For each advertisement, 50 universities were chosen at random to proportionally 

represent Scotland, Wales and England (the Northern Ireland university communities’ 

numbers were low). Using this process, there were only three responses from potential 

participants of which only one participated. Additional posting on other internet student 

forums did not help either. Two gatekeepers at the University of Reading and the 

University of London posted advertisements on their electronic notice boards, but this 

yielded no contact from any students. 

There were perhaps several factors that influenced why students were not 

coming through these avenues; firstly it was probably due to the computer equipment 

requirements that were asked for such as web-cameras and microphones. Secondly, as 

the study was hoping to use some type of advanced mathematics, it was necessary that 

students had completed General Certificate of Secondary Education (GCSE) 

Mathematics or equivalent and some kind of mathematical type subject at a higher level 

either at A-level or at the university level for example in economics, statistics, 

chemistry or physics. Students from all disciplines were recruited as the study wanted to 
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have a wide selection of students as possible, so it can be more generalisable to the 

student population.  

Dwyer, Hiltz and Passerini (2007) also recruited participants through Facebook 

forums for their survey (they did not indicate how many forums); they were able to 

recruit 69 Facebook participants in exchange for a music download. Thus, it is possible 

for surveys to recruit participants via Facebook. Possibly asking for students to take part 

in a study requiring them to provide a web camera and microphone reduced the chances 

of finding students. Clough (2005) in her online survey of mobile learning had a high 

response rate when she posted a link on an online mobile technology forum. It seems 

plausible that if the survey is on a topic that the participants are enthusiastic about, then 

the participants are more likely to respond to internet advertisements. Given that the 

topic being advertised was mathematics, this maybe was not the best subject to find 

enthusiasts to take part in the study. Even so, one participant (Participant 33) took part 

because he was quite interested in how the Excel files were coded in VBA. The 

researcher sent him a copy of the Excel file after his participation in the study. 

3.6.2 Recruiting Students via Gatekeepers 
However, to counteract these problems and accessing these students became an 

issue. The next step was to find gatekeepers (Hammersley and Atkinson, 1995) that 

could aid in finding these students through snow-balling techniques (Sapsford, 1999), 

that is, by making contact through persons who knew undergraduate students such as 

colleagues and friends. As the methods (via internet and snow-balling techniques) for 

recruiting UK students failed considerably, a large portion of the students were recruited 

from the University of the West Indies in Trinidad and Tobago. One gatekeeper was 

able to access a large group of students. The choice of using remote observation as a 

way of collecting data also made this possible without any large technical difficulties.  
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The use of gatekeepers at the University of the West Indies proved to be 

successful. The past working relationship between the researcher and the gatekeepers 

was instrumental in the finding and recommending of students. These students were 

recruited personally rather than through advertisements. Further as a mini-laboratory 

(for the remote observation) was set up by the gatekeeper with the required equipment 

of a microphone and web camera, this made it easier to find students to take part in the 

study as they did not have to provide their own equipment.  

The gatekeepers only had a small pool of students whom they could personally 

ask and who were willing to do mathematical tasks. For example, after the second 

gatekeeper exhausted all her own students, the second gatekeeper found a third 

gatekeeper to help provide the last few students (9) for the study. These were the 

students who were mainly from engineering, mathematics and physics.  

Further, the students recruited via the gatekeepers were remunerated with 

chocolate bars at the end of the study, although they were not told in advance that they 

would receive chocolate bars. This showed that remuneration was less important in 

finding participants than having good gatekeepers who could personally ask students to 

take part and find students who were comfortable with the subject area. 

 Additionally, as the students in Trinidad and Tobago had a similar secondary 

school and tertiary system to the UK, this meant that results might be appropriate for 

UK students as well. In Trinidad and Tobago as in the UK, there is a secondary school 

examination that students take at age 16, which is called the Caribbean Examination 

Council (CXC) examinations which are equivalent to the GCSE. Further, at age 18 

students also need to matriculate through the UK General Certificate of Education 

(GCE) at the A-level or a local A-level called the Caribbean Advanced Proficiency 

Examination (CAPE, administered also by CXC) but the majority of the students take 

the GCE A-level. Further, the requirement for the university level is also similar to the 
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UK. According to Association of Commonwealth Universities (2008), in Trinidad and 

Tobago the university requires students to possess 2 GCE A-level subjects and 3 further 

subjects at the CXC level. This is similar for the UK except where GCSE passes in the 

subject levels are required. At the university level, the degree award system is the same 

since the University of the West Indies was initially an external college of the 

University of London until 1962 when it was granted charter to award its own degrees. 

3.7 About Linear Programming 
As linear programming (LP) is the mathematical topic that would be used in 

understanding mathematical software, it is necessary to understand what it is and studies 

that have been conducted using software in the teaching and learning of LP. First of all, 

LP is a mathematical principle that seeks to find the best possible solution for a set of 

linear inequalities. It is often used to maximize profit or minimize cost in the production 

of items which is subjected to a number of constraints. Figure 8 illustrates a LP problem 

for a toy store producing soldiers and trains with labour hour constraints and it is similar 

to Problem 1 in the post-test.  

There are usually three main topics in LP, the formulation of the problem, the 

solution to the problem and the sensitivity analysis. In the formulation of the problem, 

the students are required to take a word problem and transform this into a list of linear 

inequalities (Figure 8). In the solution to the problem, students are required to solve this 

problem either by hand or software. By hand these methods are the graphical method or 

the simplex algorithm. The graphical method, which is used for two variable problems, 

requires the students to draw the linear inequalities and find the optimal solution by 

using the intersection of these lines, a process similar to the graphical solution of 

simultaneous equations (see Figure 9).  
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Linear Programming Problem: 

Giapetto’s Woodcarving Inc. manufactures two types of wooden toys: soldiers and 

trains. A soldier sells for $27 and uses $10 worth of raw materials. Each soldier that is 

manufactured increases Giapetto’s variable labour and overhead costs by $14. A train 

sells for $21 and uses $9 worth of raw material. Each train built increases Giapetto’s 

variable labour and overhead costs by $10. The manufacture of wooden soldiers and 

trains requires two types of skilled labour: carpentry and finishing. A soldier requires 

2 hours of finishing labour and 1 hour of carpentry labour. A train requires 1 hour of 

finishing and 1 hour of carpentry labour. Each week, Giapetto can obtain all the 

needed raw material but only 100 finishing hours and 80 carpentry hours. Demand for 

trains is unlimited but at most 40 soldiers are bought each week. Formulate a 

mathematical method of Giapetto’s situation that can be used to maximize 

Giapetteo’s weekly profit.  

 

Solution: 

 

Figure 8: An example of a formulated linear programming problem 

0

20

40

60

80

100

0 20 40 60 80 100 120

T, No. of trains sold / wk

S,
 N

o.
 o

f s
ol

di
er

s 
so

ld
 / 

w
k

 

Figure 9: Illustration of the graphical method for solving linear programming problems 

Feasibility 

Region 

Finishing: 2S + T < 100

Demand: S ≤ 40 

Carpentry: S + T < 80

Profit: 3S + 2T

Optimal Point: 

Z=180, S = 20, 

T = 60 
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The simplex algorithm is an iterative process where students use similar 

principles to the linear algebra elementary row operations to solve the problem. In the 

simplex algorithm, several iterations have to be performed. First, however, all the 

inequalities are made into equations by adding something call a slack variable (the slack 

variables are represented as S1, S2 and S3). The equations are then manipulated by 

placing all variables on the left hand side (LHS) of the equal sign and all numbers are 

placed to the right hand side (RHS) of the equation. This generates what is termed the 

canonical form which is the first shaded portion in Table 10. 

Table 10: Simplex algorithm method for solving linear programming problems 

 Row 

Calculations 

Z S T S1 S2 S3 RHS BV Ratio Row 

  1 -3 -2 0 0 0 0 Z PV = S 0 

  0 2 1 1 0 0 100 S1 50 1 

  0 1 1 0 1 0 80 S2 80 2 

  0 1 0 0 0 1 40 S3 40 3 

3*R3 + R0 1 0 -2 0 0 3 120 Z PV = T 0 

-2*R3 + R1 0 0 1 1 0 -2 20 S1 20 1 

-R3 + R2 0 0 1 0 1 -1 40 S2 40 2 

1*R3 0 1 0 0 0 1 40 S N/A 3 

2*R1 + R0 1 0 0 2 0 -1 160 Z PV = S3 0 

1*R2 0 0 1 1 0 -2 20 T N/A 1 

-1*R1 + R2 0 0 0 -1 1 1 20 S2 20 2 

  0 1 0 0 0 1 40 S 40 3 

  1 0 0 1 1 0 180 Z   0 

  0 0 1 -1 2 0 60 T   1 

  0 0 0 -1 1 1 20 S3   2 

  0 1 0 1 -1 0 20 S   3 

The simplex algorithm then involves students choosing a variable that would 

increase the value of the profit (Z). The chosen variable is called the pivot variable (PV) 

and the value of this variable is increased through the iteration. For the first iteration, 
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this variable is usually the one with the highest positive coefficient in the objective 

function or the most negative coefficient when the objective function is changed to an 

equation (in this case S). Using this variable, elementary row operations are performed 

by manipulating the equation rows (R) either by the multiplication or addition of row 

coefficients from which a new set of equations are formed. The effect of increasing the 

pivot variable changes the coefficients of all the equations and the profit of Z.  

The iteration occurs again with these new set of equations, from which the pivot 

variable is chosen from the new set of equations. Each iteration in the table is shaded. 

The term ‘basic variable’ is also used in linear programming and was mentioned to the 

students. This term refers to the variables for which a value was found for it. Thus, in 

the example provided when the last iteration was performed, the basic variables would 

have been Z, T, S3 and S. More information on linear programming is available in 

Appendix 5 (p.304). 

There have been few studies that investigate the teaching and learning of LP. 

Some studies such as that by Albritton, McMullen and Gardiner (2003) and Hosein 

(2005) have used surveys of lecturers to investigate how LP is taught but few have 

looked empirically at how students learn LP except for Smith (1994). In her 

investigation of students learning LP with a CAS software called DERIVE, Smith found 

that students thought studying lecture notes and handouts were the most helpful in 

understanding LP. The students however found that working with computer individually 

and computer demonstrations were not very useful.  

It is unclear whether the approach of teaching could have influenced the learning 

preference of the students and their views on the use of computers. Perhaps also, the 

way the computer was integrated into the teaching of LP into the class may have 

influenced students’ opinion of software in the learning of LP. The preference of 

students for handouts and lecture notes may indicate an information transmission 
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approach by the students (Kember, 1997). Therefore, it may be useful to see how the 

studying approach may influence students’ use of software. Further, since the course 

targeted business and social science students, probably their attitudes towards CAS may 

have been more negative, as spreadsheets were preferred in these disciplines (Hosein, 

2005). Thus, students probably may have different attitudes towards different software 

depending on their discipline and this probably could influence their preference of 

studying approach.  

3.8  Transcription of Think-Aloud Data 
For the analysis of the results obtained in the Main Study, the students’ answers 

were coded (see Section 5.4, p.136) and also scored. Further, eight students’ video/ 

audio data were transcribed whilst students’ speech and actions (using paper or working 

on the software) were transcribed; the researcher’s remarks were transcribed as reported 

speech. Predominantly the researcher prompted the student to keep talking and had 

minimum conversational exchange with them during the solving of the tasks. The 

transcripts were used for determining students’ self-explanations or actions and not their 

interactions with the researcher. Hence, it was not considered necessary to include the 

students’ minimal interaction with the researcher within the transcriptions except as 

researcher’s summarized actions such as “after being prompted”.  

The marking scheme is presented in Appendix 6 (p.313). Students’ answers 

were coded for explanations within MS Excel by indicating whether the explanations 

were mathematical or real-life. The answers were then imported into NVivo and were 

coded according to problem, task, software, and student characteristics such as 

mathematics confidence and gender. Coding in this way allowed easy access through a 

query to answers that various group of students were making and hence a wide range of 

evidence could have been provided when discussing issues presented in Chapter 6 

(p.174).  
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Students’ answers however were corrected for spelling mistakes, for example 

changing ‘soliders’ to ‘soldiers’ and correcting text speech such as ‘d’ to ‘the’ when this 

data are presented in Chapter 6. The original answers are included in the attached CD.  

The transcripts of the 8 students were colour coded to allow easy analysis, since 

description of the video was also provided. The colour codes employed were black for 

actual speech, red was used for speech that the researcher was uncertain about due to 

internet interruptions or mumbling on part by the student, blue for recording what the 

students did or what the researcher said and brown for the typed in answer, for example: 

1:05:10: Turns back to the instructional materials, “Chairs … [mumbles] … give as 

detailed an answer as possible … ok. Why wasn’t it produced? The z is whaat?”, looks 

at the screen briefly, and begins to resume typing his answer, “reasons being 1)” and 

then fixes it to read, “reasons being maybe 1)”, continues to type his answer. 

 (Participant 30, M, GB, Higher MC = 8) 

This allowed easier scanning of the speech made by students when thinking-

aloud and determining their procedure in answering problems such as checking the 

instructional materials or looking at the screen. The participant codes provided with this 

student quote is explained in Table 11.   

Table 11: Participant Code Key 

Code Representation Alternative Codes 

Participant 30 Participant Identification 

Number 

 

M Gender M = Male; F = Female 

GB Software Box BB = Black-Box; GB = Glass-Box;     

OB = Open-Box 

Higher MC = 8 Level of Mathematics 

Confidence and the 

associated score 

Lower MC = Low Mathematics 

Confidence; Higher MC = High 

Mathematics Confidence; “= 8” is the 

mathematics confidence score 
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3.9 Ethical Considerations 
For Supporting Study 1, approval for conducting the online survey on The Open 

University (OU) students was granted by the OU’s Student Research Project Panel 

(SRPP). The SRPP reviewed the questionnaires and also asked the researcher to receive 

permission from the course managers.  

In the Pilot and Main studies, students were all asked to append their names to 

electronic consent forms which detailed information about the study and what was 

expected from them. Appendix 5 presents the consent form used in the Main Study 

which was similar for the Pilot Studies. In the Pilot Studies and the Main Study, the 

researcher answered all questions of the students pertaining to study and research with 

openness.  

For the Pilot and Main studies, students were asked permission to allow their 

images or videos be presented in conference or written material (for example in this 

thesis). Only one student in the Main Study expressed concerned about the possibility of 

her image being used elsewhere but was comfortable with being recorded for data 

analysis purposes only. This student was assured that her data will only be viewed by 

the researcher.  

Upon consultation with researchers in the educational technology field, ethical 

approval from the OU’s Human Participants and Materials Ethics Committee (HPMEC) 

was not sought for any of the studies. The reason was that the main ethical 

consideration of HPMEC was whether ‘any reasonable judgement would suggest that 

no harm could arise to any person, living or dead’ and this was the case in this research.  

In Supporting Study 1, students were required to fill in educational surveys 

which were completely anonymised and this data were held securely and confidentially. 

Therefore, there was no reasonable suspicion that this will harm the students.  
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With regards to the Pilot Studies and the Main Study, the only reasonable harm 

that was adjudged was perhaps normal fatigue arising from using the computer. 

Therefore, length of time at the computer was kept at a minimum with the expected 

participation period lasting for 1½ to 2 hours. This was not an unreasonable time limit 

as computer-based examinations such as the Scholastic Aptitude Test (SAT) and 

Graduate Record Examination (GRE) usually last about three hours and are more 

cognitively demanding than this current study.  

All video, audio and observation data from the students were held securely on a 

server and on an external hard-drive. Whilst transcriptions of eight students from the 

Main Study are provided in this thesis (see attached CD), the identities of the students 

have been concealed by using Participant numbers. Any of the students’ images used in 

this thesis is for software use illustration and there is unlikely to be any reasonable harm 

arising from the use of these images. Note again that the students gave consent for their 

images to be used in academic work. 

3.10  Concluding Remarks 
The chapter outlined briefly Supporting Study 1, the two pilot studies (Pilot 

Study 2 and Pilot Study 3) and provided detailed information on the choices and 

experimental design made for the Main Study (Section 3.3, p.57). A Latin-Square 

experimental design was also employed for the Main Study. This meant through 

statistical analysis of the quantitative data collected that the variances amongst the 

software boxes can be computed.  

The chapter also showed how the Main Study variables were operationalised to 

collect both quantitative and qualitative data for performance and the three approaches: 

exploration, explanations and processing levels for the tasks and software boxes 

(Section 3.2, p.53). Exploration is measured by how much students used the software 
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boxes, explanations by whether the students used real-life or mathematical explanations 

and processing levels via the ASI.  

The web-conferencing remote observation method was discussed which 

demonstrated why it was developed and how it helped in the collection of the students’ 

audio/video data via the Internet whilst students solved the tasks on the software boxes 

(Section 3.5, p.78). Issues regarding the recruitment of participants via social 

networking sites and the use of gatekeepers were highlighted (Section 3.6, p.81) along 

with ethical considerations in particular with respect to the remote observation method 

(Section 3.9, p.92).  
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Chapter 4. Supporting and Pilot Studies 
 “I would say in just about every 

investigation we have, there will be 
differences of opinion, where you have 

partial facts, as to what those facts mean.” 
-Robert Mueller 

 

4.1 Introduction  
In this chapter, one supporting study and two pilot studies are discussed and are 

labelled as studies 1, 2, and 3. The Supporting Study 1 was used to determine whether 

mathematics confidence was related to the deep processing level as indicated in the 

analytical framework (Section 4.2, p.95). Pilot Study 2 was used mainly to test the 

remote observation process set-up and to test the three software boxes programmed in 

Excel (Section 4.3, p.101). Pilot Study 2 used expected values as its mathematical topic 

and is referred also as the Expected Value study. Pilot Study 3 (Linear Programming 

Pilot) was used to test the chosen linear programming tasks to ensure that the 

participants were able to solve them (Section 4.4, p.112). The chapter presents the study 

design and the results from the three studies and also addresses the implications of the 

pilot studies for the design of the Main Study (Section 4.5, p.121). 

4.2 Supporting Study 1: Mathematics Confidence and 
Processing Levels 
Supporting Study 1 was intended to verify one aspect of the analytical 

framework developed in Section 2.9 (p.46). From the literature, Duff (2004) showed 

that academic confidence was related to the deep processing level, however this was in 

management education not in mathematics. This study thus aimed to investigate 

whether this relationship held true for mathematics.  

Duff used the Revised Approaches to Study Inventory (RASI) to measure deep 

and surface processing levels for management education students but the Approaches to 
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Learning Mathematics Questionnaire (ALMQ), which had been constructed for 

mathematics students, was better suited for this current study (Section 2.8, p.42). The 

ALMQ did not have a scale for measuring mathematics confidence but the Mathematics 

Computing Attitude Scales (MCAS) did (Section 2.8.2, p.45). The advantage of the 

MCAS was that it included scales for computer confidence as well as mathematics-

computing confidence and it would be of interest to determine whether the deep/surface 

processing levels that a student undertake might influence this as well, particularly as 

the current thesis was interesting in understanding how students were problem-solving 

with software. Thus, using both inventories meant that factor analysis could be used to 

determine if the deep processing level and mathematics confidence were loading on the 

same factor and hence from this infer that they would be related to each other.  

One aspect of this study was to ascertain students’ confidence and attitudes 

towards mathematics when using software and thus students were needed from a 

selection of disciplines using a variety of mathematical software. Thus, students were 

chosen from various courses such as psychology, mathematics, statistics and 

technology. All the students were currently enrolled on distance-education courses at 

the Open University. Table 12 shows the distribution of students. The 1800 students 

were selected by the Survey Office at the Open University based on their guidelines. 

Their guidelines ensure that the survey was not during a student’s examination period as 

well as making certain that the students were not selected recently for another survey.  

This population provided students with a reasonably wide variation in 

mathematics confidence. The students were chosen based on the software used in their 

courses and were equally distributed across the three categories of software (600 each). 

The three categories of software were computer algebra systems (CAS) which were 

typified by MathCad, spreadsheets (usually Excel) and statistical software which 
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included SPSS, Genstat and Minitab. All of these software types were black-box in 

nature as black-box is the most popular type.  

Table 12: Number of students surveyed from the 11 courses 

Course Subject CAS Spreadsheets Statistical Total 

D841 Psychology 0 0 28 28 

DD303 Psychology 0 0 250 250 

M248 Statistics 0 0 193 193 

M346 Statistics 0 0 129 129 

MS221 Mathematics 203 0 0 203 

MST121 Mathematics 230 0 0 230 

MST209 Mathematics 122 0 0 122 

T207 Technology 45 0 0 45 

T305 Technology 0 292 0 292 

T308 Technology 0 98 0 98 

U316 Technology 0 210 0 210 

Total  600 600 600 1800 

4.2.1 Online Questionnaire 
An online questionnaire consisting of two inventories was sent to the 1800 

students. The first questionnaire was the ALMQ (Crawford et al., 1998a; 1998b) which 

was based on the Study Process Questionnaire (SPQ). This questionnaire measured the 

deep and surface processing level scores of the students and used a 5-point Likert scale 

from 1 for ‘only rarely’ to 5 for ‘almost always’. The second questionnaire employed 

was the MCAS (Galbraith and Haines, 2000b). The original MCAS used a seven point 

linear scale ranked from 1 for ‘strongly agree’ to 6 for ‘strongly disagree’, which 

required students to mark their answers along a visual analogue scale. The inventory 

was modified for use in this Supporting Study to be a 5-point Likert scale from 

‘strongly agree’ to ‘strongly disagree’ as it needed to be coded for a webpage. Using 

this scale meant that lower scores in the 6 scales were related to students having higher 

mathematics confidence, mathematics motivation, computer confidence, computer 
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motivation, computer-mathematics interaction and mathematics engagement. Whilst for 

the ALMQ it was the opposite, higher scores meant higher deep processing level and 

surface processing level scores.  

In the MCAS, there were items that were negatively scored and hence the 

polarity was reversed when the scale was calculated. Many of the items in the MCAS 

referred to the use of computers; this was replaced with the term ‘software’. Most Open 

University students used computers to access their online conferences and as such the 

research needed to ascertain that the students knew that the items were referring to the 

mathematical software used in their course. Thus, the covering letter that was sent to the 

students indicated the course, the software and in what context learning mathematics 

was considered. Further, changes were made from referring to teacher to tutor with 

keeping with the Open University terms. A text copy of the questionnaire is attached 

along with a covering letter (see Appendix 2, p.285). 

Included with these two inventories was an open section where students were 

encouraged to type in comments on learning mathematics with software. Background 

information such as gender and age were obtained from the students’ administrative 

records. 

4.2.2 Sample Profile 
In all, 388 replies (22%) were obtained for the online questionnaire of which 

371 had completed all parts. The lowest response was from the T207 (9%) and MST121 

(13%) courses. The highest response rate was from D841 (36%). Of the 388 

respondents, 34% of the respondents were from courses with statistical software, 26% 

from courses with CAS and 42% from courses with spreadsheets. 

There were slightly more male respondents (55%) than females. The ages of the 

respondents were divided into 3 groups, young (<30), middle-age (30 to <50) and old 
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(≥50). About 67% of the respondents were between the ages of 30 to 50, whilst only 

16% each in the less than 30 and more than 50 age groups. The gender distribution 

varied with age (χ2 (2) = 6.83, p = 0.03), that is, the men tended to be older than the 

women in this sample. 

4.2.3 Factor Analysis of Two Inventories 
To determine whether mathematics confidence was related to processing levels, 

a factor analysis was performed. Firstly, since the ALMQ was scored oppositely to the 

MCAS, the deep and surface scores were recoded to calculate their scores such that a 

low score reflected a higher deep or surface processing level. The ALMQ was chosen to 

be recoded rather than the MCAS because there were fewer scales (2 versus 6) and this 

minimised any arising researcher error such as arithmetic and calculation errors. The 

full list of items for the Mathematics Engagement scale was used in the questionnaire 

but as suggested by Galbraith and Haines (2000b) two items were excluded when 

calculating the scores. Cronbach’s coefficient alpha was used to test the reliability of the 

items. The Mathematics Engagement scale had a low reliability (0.38) compared to the 

other scales (see Table 13). A correlation analysis showed that all scales were 

significantly correlated with each other except for Mathematics Engagement which did 

not correlate with any of the other scales. It was hence removed from the factor 

analysis.  

A principal component analysis using a varimax orthogonal rotation with a 

Kaiser normalization extraction method was performed. Two factors were identified 

that had eigenvalues greater than 1 (Kaiser in Field, 2000), two factors were extracted 

that accounted for 65% of the variance in the data. An oblimin oblique rotation was also 

performed to determine whether the oblique rotation or orthogonal rotation was 

appropriate for the data. Field (2000) explains an oblique rotation is used when the 

extracted factors are related whilst an orthogonal rotation is used when the extracted 
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factors are independent. To test whether the extracted factors were related, the factor 

correlations were examined. As the factor correlations for the oblique rotation were low 

(0.38), the orthogonal rotation was used (Field, 2000; p.439). The results of the varimax 

rotation performed in SPSS are presented in Table 13.  

Table 13: Factor analysis of scores from the MCAS and ALMQ 

 Factor 1 Factor 2 Coefficient 

alpha 

    

Mathematics Confidence 0.89 0.12 0.92

Mathematics Motivation 0.90 0.21 0.88

Computer Confidence  0.36 0.76 0.86

Computer Motivation  0.13 0.93 0.83

Computer-Mathematics Interaction 0.11 0.91 0.74

Surface -0.72 -0.11 0.79

Deep 0.73 0.23 0.90

Thus, this factor analysis agreed with Galbraith and Haines' (2000b) findings in 

that the computer attitude scales were distinct from the mathematics attitude scales. 

Further, these results were in agreement that the Computer-Mathematics Interaction 

scale was related to students’ Computer Confidence and not their mathematics attitudes. 

Also, whilst Galbraith and Haines found that Mathematics Engagement was associated 

with Mathematics Confidence and Mathematics Motivation, these results showed that it 

had no association with confidence and motivation.  

What was of more interest was that this factor analysis showed that Mathematics 

Confidence loaded positively for the Deep processing level and negatively for the 

Surface processing level on Factor 1. This suggests that these scales are related to each 

other and thus the conjecture that Mathematics Confidence and the processing levels 

were related confirms the findings of Duff (2004) that academic self-confidence and the 

deep processing level were correlated using the RASI. 
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Thus, any of the studies that had to be designed had to account for students’ 

mathematics confidence when looking at students’ understanding of mathematics as this 

could have impacted on their processing levels. 

4.3 Pilot Study 2: Expected Values  
The Expected Values pilot study was intended for testing the remote observation 

method. Also this study was used to test whether software boxes could be programmed 

in Excel and used for collecting relevant data with respect to the three task types. 

There were four parts in testing the remote observation process:  

• Determine the mathematical domain and tasks 

• Develop the software boxes 

• Determine the experimental design  

• Test and set up the remote observation equipment  

As indicated in Section 3.4.1 (p.66), a mathematical topic was chosen that was 

most likely unfamiliar to undergraduate students. Thus, a problem from the operations 

research/management science domain was chosen as this is mostly taught at the 

university level but required only secondary school level mathematics. The topic of 

expected values from decision theory was selected as it was considered a simple 

concept that students could understand in approximately twenty minutes. This topic 

used probabilities to compare and determine the best option from various alternative 

options. The probability concept is usually learnt by students at the secondary level.  

4.3.1 Design of Study  
Instructional materials on expected values and the principles for calculations 

were derived from Winston (1994). Whilst the expected values’ options were referred to 

lotteries in decision theory, when developing the instructional materials, this word was 
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replaced with the word ‘game’ to minimise confusion as the constructive tasks referred 

to real-life applications such as insurance. Expected values tasks were chosen and 

modified from Winston (1994) to fit the taxonomy of Galbraith and Haines (2000a). For 

the mechanical and interpretive tasks, there were three games each that students had to 

determine the best option.  

With respect to software boxes, there was no known software package that was 

exclusively used to solve expected values and, had there been one, it would probably 

have been of a black-box type. Thus, the three software boxes were developed in Excel 

spreadsheet using visual basic application (VBA). The black-box application allowed 

students to calculate the expected values without showing steps whilst the glass-box 

software performed calculations showing the steps for each game. Open-box software 

allowed the students to interact with the software at each step for the game particularly 

with respect to choosing the arithmetic calculation and in so doing calculating the 

answer. All three software boxes were developed in separate Excel sheets (see Figure 10 

on p.103 and Figure 11 on p.104). There were three more sheets also developed: 1) the 

data entry sheet in which the data could be entered before using the software boxes, 2) 

the scrap sheet in which students could do calculations if they wish and 3) the answer 

sheet in which students recorded their answers during the post test (see attached CD for 

examples of the software boxes). 
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Black-Box 

Figure 10: Screenshot of using the black-box software for solving expected values 

As indicated in Section 3.3.2 (p.59) an experimental protocol used by Renkl et 

al. (2004) was employed. The background questionnaire was set up as a web-page and 

sought to find answers relating to age, level of mathematics acquired, gender, 

confidence in mathematics, computers and Excel spreadsheet, and whether they had any 

knowledge on expected values. These values were intended to be used as covariates in 

the main study analysis. Whilst the recommendation for any covariates, particularly 

ones where the participants self-identified their levels should have a series of questions 

(e.g. Owen and Froman, 2005), it was felt that subjecting participants to a longer series 

of items would require more time from students and may affect the number of students 

willing to participate in the study. The instructional materials as mentioned before 

provided background information on expected value and were also supplemented with a 

technical manual on how the three software boxes worked (see Appendix 3, p.294). 
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Glass-Box 

 
Open-Box 

 

Figure 11: Screenshots of using the glass and open-box software for solving expected values  

The pre-test consisted of using simple probability questions which were awarded 

one mark each (see Appendix 3, p.294). An example of a pre-test question is as follows: 

If a dice is rolled, what is the probability that the dice will have a value of four or 

more? 

The pre-test was based solely on simple probability since Renkl et al. (2004) 

suggested using a level of difficulty that was lower than the post-test. 

In the post-test, there were 9 tasks (three from each task type): the first 6 tasks 

were multiple-choice and related to the mechanical and interpretive tasks (see Table 

14). The last three tasks (constructive) required the participant to solve by pen-and-
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paper or the software box and to provide an explanation for the answer. The answer 

sheet in Excel was used for entering the answers for the post-test. 

 Table 14: Examples of expected value tasks 

Mechanical Task: Which of the following games would I get the best expected value 

for?  

Game 1: 

1st prize: 47% probability of winning £105 

2nd prize: Expected prize of winning £58 

Game 2: 

1st prize: Expected prize £98 

2nd prize: 37% probability of winning £129 

Game 3: 

1st prize: 78% probability of winning £68 

2nd prize: Expected prize of winning £135 

Interpretive Task: Which of the following games would I get the best expected value? 

r is an arbitrary probability. Give your reasoning. 

Game 1: 

1st prize: (r-30%) probability of winning £56 

2nd prize: Expected prize of £25 

Game 2: 

1st prize: r probability of winning £55 

2nd prize: Expected prize of £25 

Game 3: 

1st prize: (r + 10%) probability of winning £25 

 2nd prize: Expected prize £21 

Constructive Task: Joan’s assets consist of £10,000 in cash and a £90,000 home. 

During a given year, there is a 0.001 chance that Joan’s home will be destroyed by fire 

or other causes. How much would Joan be willing to pay for an insurance policy that 

would replace her home if it was destroyed? 

Following the post-test a short interview was conducted with the students to 

elicit their opinions on the three software boxes and on expected values. Each task was 

awarded one point each. An additional practice task was also provided which was 
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mechanical in nature. All nine tasks were unrelated to each other. Only for the 

mechanical tasks, students were expected to solve using the software. For the 

interpretive tasks, these were expected to be logically deduced.  

This study used 6 students for testing the remote observation process and a 

rotational confounded study design (Campbell and Stanley, 1963) was tested, where 

each student used the three software boxes in 6 permutations. Students solved all 

mechanical tasks first, followed by the interpretive and the constructive tasks. The 

students solved one task type each with one software box (see Table 15). 

Table 15: The sequence the software boxes were used to solve expected values tasks 

Student Tasks 1, 4, 7 Tasks 2, 5, 8 Tasks 3, 6, 9 

1 B Open Black Glass 

2 J Glass Open Black 

3 G Open Glass Black 

4 Cl Glass Black Open 

5 Ch Black Glass Open 

6 R Black Open Glass 

4.3.2 Remote Observation: Testing 
Using the remote observation protocol for this study, students were expected to 

have either MSN messenger or Windows messenger installed on their computers and 

working on a Windows platform. Further, the students were required to have a web 

camera and headphones with a microphone. These were necessary for the observation of 

the students. Students used the remote application facility on their computer to connect 

to the researcher’s computer where they are able to interact and use the software boxes 

(see Figure 12).  

Netmeeting was the software required for using the application-sharing facility 

on a Windows platform and it is pre-installed on Windows. Application-sharing allows 

a user (Researcher) to share a software application (MS Excel) via the internet to 
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another user (Student). The receiving user (Student) is able to see the MS Excel 

application and request and receive control from the sharing user (Researcher) to use the 

software application. 

 

Figure 12: An illustration of the remote observation process 

Through the students’ web-cameras and video conversation facilities available 

on Windows Messenger, students were observed and interviewed whilst using the 

software. By using screen and audio capture software, students’ on-screen actions, web 

camera video and audio were all recorded.  

Before the actual observation date, students were contacted via email on whether 

they would like to participate in the study. These students were Open University post-

graduate students. The email indicated that they would be audio and video recorded and 

advisory times for the session (see Table 16). Although initially students were asked to 

load Netmeeting prior to the study, this actually occurred during the remote observation 

session as it only took a couple of minutes to load.  

Following this email with students agreeing to take part in the study, a time and 

date was set up. Students were then emailed two web-links. The first web-link was to a 

consent form on the webpage. The consent form for students participating in the remote 

observation study was challenging as signed consent was difficult to obtain when 

students were at a distance. Students were required to fill in their names on the form but 
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this provided no guarantee that this was indeed the student filling in the form. 

Therefore, to remedy this situation during the actual experimentation period students 

were asked for permission again as to whether they consented to be video and audio 

recorded and if there were any objections. The second web-link was linked to a 

webpage that had the background questionnaire. These web-links were used to 

minimize experimental time required by the student and provided more flexibility. 

Table 16: Sample of request email 

Dear ________ 

For the remote observation study, I need persons who have at least done mathematics at 

the secondary/ high school level. I'll be video-taping (via a webcam) you whilst you use 

a software (Excel) on the computer (which will also be recorded i.e. your actions on the 

computer via a screen capture software). Your voice conversation with me via the 

computer will also be recorded. As such you'll need to have a webcam and headphones 

loaded on your computer before the study. You will also need to have installed windows 

Netmeeting onto your computer which comes with Windows and also Windows 

Messenger or Msn Messenger installed. I'm hoping the remote observation session 

doesn't take more than 1 1/2 to 2 hrs. I may want to follow up our session with at an 

interview at some other time. 

 The remote observation will require you to do the following (the times are just 

guidelines - you may take less or more time): 

1. Fill in a survey (5 mins)  

2. Read Introductory materials into the topic (5 mins)  

3. Do a pre-test (10 mins)  

4. Read through the software (Excel) materials instructions (10 mins)  

5. Have a play with the software (15 mins)  

6. Practice the talk-a-loud strategy (5 mins)  

7. Do the post-test (40 mins)  

Thanks for helping.  

Anesa  
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Two to three days before the remote observation session, students were emailed 

the instructional materials, the practice question and the post-test questions. All three 

materials were held in one Word document. This allowed time for the students to print 

these materials and have it ready on hand for the remote observation session. They were 

discouraged from reading the materials until the remote observation session. The 

intention was to minimise students preparing or learning the topic prior to using the 

software boxes. 

The pre-test questionnaire link was provided to the student via Windows 

Messenger and was filled in during the experimental session. They were also told that it 

was not necessary to read these materials prior to the experiment. During the 

experiment, students were given time to read through the instructional materials on 

expected values and the software materials. The students were instructed to use a 

practice task for testing the three software boxes and also to practice the think-aloud 

strategy which constituted step 4 of the experimental protocol (Table 6, p.60).  

4.3.3 Results and Implications  
Students indicated that they eventually forgot about being seen with the web 

camera as when they maximized the screen with the Excel application this window went 

to the back. This perhaps improved the observation process as there was less sense of 

feeling that they were being watched. This however did not mean that any Hawthorne 

effect had been removed completely (see Landsberger, 1958). The Hawthorne effect is 

where students may work harder on tasks in response to being observed. The students 

also had the convenience of using their own computer and environment, so they were 

aware of where applications were located and where they could find implements such as 

pen, paper or calculators.  

However, some students indicated that they often felt a break in concentration 

when they were prompted to keep talking. Further, it appeared that most speech (and 
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possibly more explanations) occurred during the practising of the mechanical task and 

thus for the rest of the tasks there were few explanations. Most participants eventually 

said what they were doing felt like the same thing being repeated for both the tasks 

(mainly for the mechanical and interpretive tasks) and the software boxes. For example, 

Student 1B said the following when she was doing the tasks in the following sequence 

of software boxes 

Open-box: “Same calculations … same as the first one” …“They’re all the same” 

Black-box: “It’s quicker, but all the same”  

Glass-box: “Different layouts for them, but all the same” 

Student 1B in her reference to open-box software was indicating that the tasks 

were all similar. When it came to doing the tasks using the black-box software, she 

mentioned that the black-box software was quicker and the glass-box software had a 

different layout, but essentially they were all the same when it came to solving the tasks.  

The expected values tasks were perhaps quite simplistic as most students made 

passing comments to the effect that it would have been faster to do it by hand (for 

example Student 2J) and whether they could use pen and paper instead (e.g. Student 

6R). Student 5Ch however was the opposite in that initially he did not want to do the 

calculations using pen-and-paper as he did not understand how to calculate the expected 

values. Afterwards using the different software boxes, he then preferred to solve the 

tasks using pen-and-paper as he indicated that he had now learnt how to do the tasks by 

watching the software boxes. All students were able to obtain full marks on the 

mechanical tasks. Further, as the same instructional materials were used by all students 

this meant that there was no privileging of prior teaching styles (Kendal and Stacey, 

2001) and therefore this would not influence the way they learnt. 

The interpretive tasks required mainly conceptual knowledge, in which students 

could have worked out mentally by using mathematical logic for the solution. However, 
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some students opted to use trial-and-exploration methods of testing values either 

through the software boxes, or using algebraic equations to solve for the unknown 

quantity, r, although r was not required to be solved. This showed that for the 

interpretive tasks, students brought in other knowledge such as the algebraic models but 

were also likely to resort to the software boxes by exploring and testing their 

hypotheses. For example, in the interpretive task, some students worked out that r ≤ 

90% and r ≥ 20 %, and tested values for r in this range, until they could conclude which 

game was better. Also, students appeared to explore with the black-box or the glass-box 

software more than the open-box software as the latter required more interactivity.  

For the interpretive tasks, there appeared to be more self-explanations occurring 

for the black-box and glass-box than for the open-box software. Whilst for the 

constructive tasks, the students using the open-box and glass-box software appeared to 

have more self-explanations. However, this may be the nature of the tasks (being of a 

contextual nature) rather than the software boxes itself. Thus, in the Main Study there 

was a need to find out whether it was the task type that was causing the use of the 

software boxes in that way, that is, if there was a relationship between the task types 

and the software boxes used, or whether it was just the tasks alone that elicit that type of 

reaction. 

Also, there was a likelihood that open-box software promoted self-explanations 

more than the others since it had prompts. The open-box software was also considered 

tedious by the students, and perhaps the reason for avoiding it during exploration. The 

possible reason for this was that it perhaps needed a higher cognitive effort than the 

others, the procedures overly simplistic or it was just badly designed as students often 

mentioned that there was an irritating pop-up box. 
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4.4 Pilot Study 3: Linear Programming 
Based on the expected values study, it was noted that students thought the tasks 

were quite simple and resorted to using pen-and-paper. This meant that a more 

complicated mathematical domain was needed that students could not easily work out 

with pen-and-paper in order to determine the influence of the software and steps. 

Further reasoning for choosing linear programming was also indicated in Section 3.4.1 

(p.66). However, choosing the actual aspect of linear programming was challenging. 

The aim of this pilot study was to test whether the linear programming domain could 

adequately be used as tasks for testing the three software boxes. 

There were three main parts in linear programming: the formulation of the 

problem, the solution to the problem and the sensitivity analysis. When it came to steps, 

the research focused on the solution part requiring the simplex method as this was part 

of the task that could be easily converted into a type of software box, although the 

sensitivity analysis could do the same; this would have required more complex linear 

programming concepts such as the duality of the problem. The research needed to keep 

the introduction of new concepts to the students at a minimum to ensure there was not a 

large cognitive effort required. The dual problem required a more complex simplex 

method (two phase simplex method) which would be beyond the student to learn or 

understand in their first introduction to linear programming. 

In using the simplex method to solve linear programming problems, there are 

several steps that the user may have to do (Winston, 1994): 

1.Convert the problem into canonical form 

2.Decide what are the basic variables 

3.Decide the entering variable 

4.Calculate the ratio 
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5.Decide the pivot row 

6.Perform elementary row operations 

Whilst all these steps were needed, perhaps the key steps were from Step 3 to 

Step 5, as these required some ‘rule of thumb’ to do. For example, at Step 3 deciding 

the entering variable indicated which variable should be increased to provide the largest 

profit, whilst calculating the ratio and deciding the pivot row indicated how much the 

variable can be increased without violating the constraints (see also Section 3.7, p.86).  

The formulating of a word problem may or may not add to conceptual and 

procedural knowledge but this could not be translated easily to the software boxes, 

although perhaps it was able to add context to the students. As such the proposal for the 

tasks was worded problems that were already formulated for the students. An added 

advantage of using already formulated problems was that this ensured all students 

starting from the same point rather than having to account for wrongly formulated 

problems. Further, as the formulation would most likely occur through pen-and-paper, 

this type of data would be lost or obscured through the remote observation method.  

4.4.1 Design of Study  
Thus only the simplex algorithm which solved the problem using linear 

algebraic methods was considered. These were again developed in Excel spreadsheets 

using VBA, because although several linear programming software packages were 

examined (e.g. Excel Solver, MathLab, Lindo and MathCad), the software packages 

were unable to demonstrate the abilities of the black, glass and open-box software. 

Figure 13 represents a schema of the steps required for developing the three software 

boxes. Two options were considered for the open-box software (represented by OB in 

the figure). In the expected values pilot, the students had to do several arithmetic 

operations for the open-box software, the choice was in this case to allow the student to 
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do only one operation per step as it minimised the cognitive effort required by the 

students. Hence the choice of choosing the appropriate pivot variable was selected as 

the step (OB current). The steps for black-box and glass-box software are represented 

by BB and GB respectively in the figure. 

   

(1) Enter 
Numbers     

( 2) Click  
Iteration   

(3) Choose 
Variable 

(4) 
Variable
correct? 

No  

Yes 

( 7 ) Display  
Iteration   

( 8 )  Problem 
Solved? 

No   

( 9 ) Display 
Problem Solved 

Yes Steps involved:   
BB: 1,2,7   
GB:  1 - 2, 7 - 9   
OB  (current) :  1 - 4 , 7 - 9   
OB (original)  :  1 - 9   

(5) Choose 
Pivot Row 

(6) 
Variable
correct? 

No   

 

Figure 13: The schema for developing the black-box, glass-box and open-box software 

Snapshots of the black-box software (Figure 14), the inputting of the values 

(Figure 15), the choice of pivot variable for the open-box software (Figure 16) and the 

iterations and solutions for both glass-box and open-box software (Figure 17 and Figure 

18) are shown below. An annotated screen shot (Figure 7, p.73) along with the 

explanations of all the buttons was discussed in Section 3.4.3 (p.71). 
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Figure 14: Linear programming black-box software showing the canonical form and solution  

 

Figure 15: Linear programming software-box showing input problem screen 

 

 

Figure 16: Linear programming open-box software showing the choosing of the pivot variable 
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Figure 17: Linear programming software (glass-box or open-box) showing first iteration 

 

 

Figure 18: Linear programming software box (glass-box or open-box) showing iterations and 
solution 

The study design was again similar to that for the expected values, but in this 

case students were only expected to use one software box. This ensured that students 

did not feel as if the software boxes were repetitious and also to decrease any fatigue 
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that students may acquire through the learning of three different software boxes. Three 

problems were given but this time each problem had three parts, where each part was a 

mechanical, interpretive and constructive task (see Table 17).  

These three tasks were all related to each other. Both the interpretive and 

constructive tasks were dependent on the mechanical task. This was used to diminish 

the feeling that all the tasks were the same and ensured students would not feel as if 

they were repeating the same task again. Students were thus required to compute the 

mechanical task correctly in order to do the interpretive and constructive tasks. 

Table 17: Example of a linear programming problem 

Linear Programming Problem: 

a) Solve  

     Max  2x1 + x2

              2x1 + x2 ≤ 100           (constraint A) 

                X1 + x2 ≤ 80   (constraint B) 

                X1 ≤ 40(constraint C) 

                X1, x2 ≥ 0(Mechanical Task: 2 marks) 

b) If x1 = no. of toy trains manufactured and x2 refers to the no. of toy soldiers 

manufactured, and constraint A refers to painting hours, constraint B to carpentry hours 

and constraint C, the demand for toy trains. Interpret what this solution means to the toy 

company who wants to maximize their profit by producing toy trains and toy soldiers. 

Provide as detail answer as possible. (Interpretive Task: 2 marks)  

c) If the cost of trains has increased by £0.50, how would this affect the number of toy 

trains and toy soldiers being sold? Provide as detail as an answer as possible. 

(Constructive Task: 2 marks) 

 In the expected values study, the students solved all the mechanical tasks 

correctly because it only required the students inputting the values and clicking 

calculate. Even in the open-box software where students had to interact with steps in the 

expected values study, the students were still able to choose the appropriate steps. 

Therefore for the linear programming mechanical tasks, the same was expected, that is, 
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all students will calculate the mechanical task correctly. This was particularly true in the 

linear programming open-box software, in that, as students only had to choose the 

correct pivot variable, this would not affect the computation in any way. There was also 

the possibility that the students would get the wrong answer if they inputted values 

incorrectly for any of the software boxes. Thus, the researcher ensured that the students 

entered the correct values and by doing this, it meant that students were able to achieve 

the same performance scores for the mechanical tasks regardless of software boxes. 

The three problems were selected; two were of application types and the other 

was an abstract type. The first application problem dealt with the manufacturing of toys 

and the second with the manufacturing of furniture. Further, the abstract problem and 

the application problems were mixed in to determine whether more explanations were 

occurring for the application problems versus the abstract problem. However, this 

would only be an indication since there was only a comparison between three problems.  

Only for the mechanical tasks were students required to use the software boxes. 

Students could have answered the constructive task with or without software, that is, it 

was possible to solve the constructive task using pen-and-paper. It was expected that for 

the interpretive task, that students would not use the software boxes. The software boxes 

were used only to show the procedural steps and hence it was expected from examining 

the software boxes that students will build their procedural knowledge. If indeed there is 

a conceptual-procedural link as suggested by Rittle-Johnson et al. (2001) (see Sections 

1.3, p.3 and 2.3.1, p.19) then students’ conceptual knowledge should be impacted on 

when they examine the procedural steps. 

However, as indicated in Section  (p. )2.3.3 21 , for students to build any 

conceptual knowledge, it would depend on the approach (that is their level of 

engagement such as using a relational understanding approach) that students undertake 

when examining not only the procedural steps from the software boxes but also the 



 

 119

instructional materials. Thus, if students engage with the procedural steps from the 

simplex algorithm, they may notice that the slack variables’ values are also calculated. 

Conceptually a student may realise that a calculated slack value would mean that there 

is a surplus of resources for that constraint. The constructive tasks are devised to take 

advantage of these calculated slack values, that is, in all of the constructive tasks, the 

students are asked what will occur when a constraint with surplus resources was 

increased.  

Therefore, if the students were able to engage with the procedural steps and also 

build conceptual knowledge, they probably would not need the software box to 

recalculate the constructive task but instead determine the answer from examining the 

linear programming problem and its calculated answer (from the mechanical task). If 

they were unable to build this conceptual knowledge, then recalculation, that is using 

the software box, would be their only option.  Further a difference in interpretive task 

scores for the software boxes may also indicate that students were able to build 

conceptual knowledge from the software boxes, as the interpretive tasks mostly require 

the application of conceptual knowledge. 

Since the interpretive and constructive tasks were dependent on the answer from 

the mechanical task, it was imperative that the students got this correct and hence the 

researcher ensured that numbers entered were correct. Further, the software boxes were 

devised to indicate to the student when the best solution was found. In this Pilot Study, 

three students participated to test one software box each (that is Student 1 tested the 

black-box, Student 2 the glass-box and Student 3 the open-box). The remote 

observation process occurred similarly to that of the expected values study. 

4.4.2 Results and Discussion  
The data collected from the student using the glass-box software was 

unfortunately lost because of computer hard-drive problems due to insufficient space 
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during video rendering. However, the data from the other two students using the black-

box and the open-box were transcribed and coded. During the mechanical and 

interpretive tasks students did not provide numerous out-loud self-explanations. The 

student using the open-box software was more talkative and seemed keen on 

understanding how the iterations within the open-box software worked. It was uncertain 

whether this was because of the type of student he was or it was genuinely the open-box 

software encouraging this type of reflection. Students provided self-explanations for the 

black-box and open-box software in all tasks (see Table 18 and Table 19 for 

explanations in the constructive task).  

Table 18: Self-explanations for the constructive questions using the black-box 

“Okay then let’s have a little think” : Thinking about why 

“Well, I expect it’ll reduce demand maybe … increase profit? … oh well, let’s have a 

guess”: Coming to an explanation (Real-life) 

“Well, obviously it would increase something … it would increase the amount of 

furniture … I suppose … I don’t know how much … and which bits”: Thinking about 

why (Real-life) 

 

Table 19: Self-explanations for the constructive questions using the open-box 

“You need to find a relationship between the cost … the increase in cost and the 

demand … can you do it?” : Thinking about why (Mathematical) 

“Obviously to get the same maximum profit, you need less trains, the x would have to be 

lower”: Coming to an explanation (Mathematical) 

“You would expect an increase in cost to reduce the demand, but if you didn’t you will 

have … more profit”: Relating to life 

“What I can’t understand, there is no relationship between cost and demand in the 

equations”: Relating to mathematics principles 

Whilst the student using the black-box software did not have many explanations 

the student using the open-box software did; again, it was uncertain if this was because 

of the type of student. The open-box software student made explanations in relation to 
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the mathematics principles whilst the black-box software student made explanations 

which tended to be towards real-life. Thus, the dividing of the explanations into 

mathematical and real-life seemed to work in this situation particularly where there 

were application problems. 

4.5 Implications for the main study 
Linear programming seemed to work reasonably well in allowing students to use 

the software boxes. Further the developed tasks did not appear to have the same issue as 

in the expected values of having the feeling of ‘sameness’. 

Using money with decimal places in the linear programming study seemed to 

give students more difficulty than rounded figures and as such tasks were changed to 

have rounded figures in case there were students who found decimal figures 

challenging. Also, as there were hardware problems this meant that equipment with 

larger storage capacity that could handle the data was also needed. 

4.5.1 Updates from Pilot Study 3 to the Main Study 
There were a few changes in how the data were collected from Pilot Study 3. 

First of all, students were allowed to use either Skype or Windows Live Messenger for 

the voice/ video conversation. Further, if students used Skype then an additional 

programme, Unyte Application Sharing was used for sharing the Excel spreadsheet. 

This meant that students using other operating systems such as computers operating on 

a Mac operating system were also able to participate. Students using Windows Live 

Messenger continued to use the application sharing facility that came in-built with 

Windows.  

Further, students were expected to be recruited through the internet such as 

through advertisements on Facebook and on web forums however only three students 

were recruited. Of these three, only one took part in the study. Instead, students were 
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recruited through gatekeepers from Trinidad and Tobago. The gatekeepers installed 

computer set-ups in two locations, one using Windows Live Messenger and the other 

using Skype. Skype was used instead because Local Area Network (LAN) permissions 

would not allow the use of Windows Live Messenger voice/ video conversation 

permission. Since the gatekeepers recruited the students for only one session, the 

background questionnaire and consent form were given to the students at the start of the 

session to fill in before the observation session started.  

Windows Live Messenger provided the best results for the remote observation, 

since Skype sometimes had conflicts with Unyte application sharing which caused it to 

be unstable and in some cases resulting in the lost of data. Further, Skype sends 

voice/video data at 32 kbps (Windows Live Messenger: 16 kbps) bandwidth, and so 

faster speeds were required; as a result, smooth conversation was not always achieved 

with Skype since the internet speeds in Trinidad and Tobago were lower than in the UK. 

The new equipment that was used provided a slightly updated method to the 

remote observation method where only one computer by the researcher was used which 

used large screen to capture the Excel spreadsheet and the web camera videos (see 

Figure 19 compared with Figure 12, p.107). 

 

Figure 19: Updated remote observation method 

An external hard-drive of 320 GB was used to store the video data for all of the 

38 students which ensured that the computer’s hard-drive had sufficient space for 

storing students’ data that were being recorded at that time. The random access memory 
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was expanded to 1 GB to accommodate for the rendering of video. Also, a dedicated 

Asymmetric Digital Subscriber Line (ADSL) was used instead of the LAN as minimum 

LAN security was needed in sending and receiving video and doing application sharing. 

4.6 Concluding Remarks 
From Supporting Study 1, it was shown that mathematics confidence was related 

to deep processing level and thus confirmed the findings from Duff (2004) (Section 4.2, 

p.95). Further, from the two pilot studies (Pilot Study 2 and Pilot Study 3), it was 

confirmed that the remote observation could be used for observing students and 

collecting useful data for purposes of answering the research questions. Further, it was 

noted from Pilot Study 2 that simple tasks were not well suited for testing the software 

boxes and hence a more complicated mathematical domain was needed which could 

force the students to use the software boxes rather than pen-and-paper (Section 4.3, 

p.101). There was more success in ensuring that students used the software boxes when 

linear programming was used in Pilot Study 3 (Section 4.4, p.112).  

Further from the Pilot Studies, the three software boxes were coded and 

developed in MS Excel as well as tested in two mathematical domains. From these 

pilots, linear programming was chosen as the mathematical topic for the Main Study. 

MS Excel appeared to be a reasonable program for configuring the three software boxes 

and also stable for conducting the remote observation studies as there were no particular 

complaints of using it. This is probably because these students were already familiar 

with it as it is one of the programs used during secondary school and university. 
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Chapter 5. Main Study: Quantitative Data Analysis 
“No more than these machines need the 

mathematician know what he does.” 
- Jules Henri Poincaré 

5.1 Introduction 
This chapter reports on the quantitative findings from the Main Study. The Main 

Study used an experimental design in which students answered three problems each 

having three associated tasks: mechanical, interpretive and constructive. Two problems 

were application-oriented and one was abstract. Each student was randomly assigned to 

one of the three software boxes. 

Based on the remote observation method developed and discussed in Chapter 4, 

data collected were: a) observational data of the students through the use of web 

cameras and screen capture software, b) typewritten answers to tasks and c) audio data.  

This chapter investigates quantitatively the following three areas: 

1. If students’ performance varies across: problems, tasks and software 

boxes 

2. If the identified approaches in Chapter 2 (explorations, explanations and 

processing levels) vary with problems, task and software boxes and 

3. If there is any relationship between the identified approaches and 

performance and if the relationship varies with the software boxes. 

This chapter begins with providing a sample profile of the participants that took 

part in the study (Section 5.2, p.125). There are a number of statistical terms and tests 

presented in this chapter. These variables and statistical terms are briefly explained in 

Section 5.3 (p.131). The reliability of the scoring of marks by the research and the 

coding of explanations are discussed in Section 5.4 (p.136). The performance scores of 

the students across software boxes and tasks are then investigated (Section 5.5, p.139) 
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which is followed up with further investigation of students using the exploration 

approach (Section 5.6, p.146), the explanation approach (Section 5.7, p.152) and the 

processing levels approach (Section 5.8, p.161) for the software boxes and tasks. The 

chapter rounds up with a discussion on how the analysis in this chapter relates to the 

research questions (Section 5.9, p.165) and finally concluding remarks are made 

(Section 5.10, p.172). 

5.2 Sample Profile  
This section provides an overview of the participants used in the analysis. The 

analysis was performed on data collected from 38 students.  

5.2.1 Participants in the Data Collection 
In all 46 students were recruited for the data collection but only 38 students were 

used. The reasons for this are outlined in this section. After the data were collected for 

Participant 23 (glass-box), Participant 38 (glass-box) was used to replace her because 

the former did not use the spreadsheets to solve the mechanical tasks. Instead, she chose 

to solve the mechanical tasks by pen and paper. This meant that she did not arrive at the 

correct answer for the mechanical tasks, unlike all the other students who used the 

software. Having the correct answer for the mechanical task was essential for solving 

the interpretive and constructive tasks (Section 4.4.1, p.113), thus she was removed 

from further analysis.  

Whilst recording the observation session with Participant 5 (black-box), the 

audio data were corrupted and subsequently Participant 37 (black-box) was used as a 

replacement. This ensured that data from the think-aloud self-explanations were 

obtained. Participant 39 (glass-box) was given the wrong sequence of problems and 

hence another student had to be recruited. The typewritten answers from both 

Participants 5 and 39 were included in the quantitative analysis. 
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Subsequently after the data collection, during the synchronization of video and 

audio, it was found that the audio data for Participant 13 (glass-box), Participant 18 

(glass-box) and Participant 26 (open-box) were missing or corrupted. The reason for 

this seemed to be a mixture of poor internet connection, the use of Skype and a conflict 

with the Unyte Application Sharing software. Skype uses a higher quality of audio; it 

sends data at 32 kilobytes per second as opposed to MSN messenger which sends audio 

data at 16 kilobytes per second. This meant more internet bandwidth was being 

occupied by Skype, and this provided choppy audio. In some of the audio recordings, 

before Unyte Application Sharing software started, both the researcher and the 

participant audio were recorded. However, once the Unyte Application Sharing software 

started, the participant’s audio stopped recording perhaps because of a software conflict. 

Therefore, transcribing these participants think-aloud sessions was not considered.  

In addition, two participants recruited from Facebook (both from the UK) did 

not participate in the study. For one participant, the researcher was unable to receive 

video data due to recent changes to the wireless network permissions at The Open 

University, which blocked the transmission of video data. The other participant was 

interested in taking part but was unable to obtain a web camera although she indicated 

that she should be receiving one soon. Although sending a web camera to her was 

considered (but not communicated to her), she then indicated she had other 

commitments. It should be noted that both of these students did not reach the stage of 

being assigned a participant identification number. 

Similarly, two other participants who had volunteered withdrew from taking part 

in the experiment because of other commitments. One participant was from the UK and 

was suggested by Participant 9, the other was recruited by a gatekeeper. Three more 

participants started the experiment but two sessions were cancelled because of poor 

internet connections. Poor internet connection caused the software application to run 
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slower such that calculations of the software boxes on the internet-shared Excel file 

were slow and voice conversations were choppy. This was frustrating to the students 

and the researcher. In the third case, there was a conflict between Skype and Unyte 

Application sharing which caused the computer to crash and thus all data were lost.  

All 38 students’ typewritten answers were marked and coded into real-life and 

mathematical explanations. A summary profile of the final 38 participants with their 

participation identification numbers is provided in Appendix 4 (p.302). 

5.2.2 Gender, Age, Mathematics Level and Degree 
Of the 38 participants, 36 participants were under 25. The percentage of males 

(47%) and females (53%) were fairly similar (see Table 20). Most students had attained 

A-level mathematics (50%) or had done some type of university mathematics (32%), 

with the remaining students acquiring General Certificate of Secondary Education 

(GCSE) equivalent mathematics (18%).  

Students were categorised into three discipline groups: physical sciences 

(physics/ mathematics/ engineering), life sciences (biology/ biochemistry/ medicine) 

and other. There were twice as many students from the life sciences than from the 

physical sciences. Two gatekeepers were primarily from medicine and biology and the 

third gatekeeper was mainly from physics or mathematics which possibly influenced the 

disciplines from which the students were drawn. Only 3 students were categorised into 

‘other’ discipline (economics, tourism, general BSc). There was a gender difference 

(χ2(2) = 7.01, p = 0.03) in that there were more males than females within the physical 

sciences and more females than males in the life sciences. The physical sciences usually 

attract more males than females and this may be the reason for this distribution.  
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Table 20: Distribution of participants across discipline, gender and mathematics level 

Discipline Mathematics 

Level Phys. Sci. Life Sci. Other Total 

Female     

GCSE 0 3 0 3 

A-level 1 8 1 10 

University 2 3 2 7 

All  3 14 3 20 

     

Male     

GCSE 0 4 0 4 

A-level 4 5 0 9 

University 5 0 0 5 

All 9 9 0 18 

     

Total 12 23 3 38 

Students performed similarly in the pre-test regardless of mathematics level, 

gender or disciplines with an average mark of 4.3 (SD = 1.2) out of 6. Most of the 

students (34) did not know the basic principles of linear programming. Indeed, many 

(14) had never even heard of linear programming. Only four students indicated that they 

had previously solved any linear programming problems. Further examination showed 

that two of the students (Participants 3 and 8) had completed mathematics only up to the 

Advanced Level (A-level) or equivalent. Thus, they possibly solved the linear 

programming problems within the A-level curriculum. These A-level problems are not 

related to the simplex algorithm which is used in this research but rather the graphical 

method. The remaining two students (Participants 5 and 29) completed mathematics at 

the university level and they were both in Engineering (Physical sciences). For these 

two students, it was possible that they had done some advanced linear programming. 

However their scores did not indicate that they were at any advantage to the other 

students as their total scores from the post-test were within the confidence limits. 
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5.2.3 Mathematics, Excel and Computer Confidence 
Students assessed their own confidence levels on a ten-point scale on doing 

mathematics, using computers and using Excel (where 1 = low and 10 = high). Students 

had a mean mathematics confidence of 6.2 (SD =1.70) (see Table 21).  

Table 21: Mean confidence scores on mathematics, computer use and excel use by mathematics 
level, gender and discipline 

 N Mean Confidence Scores 

  Mathematics Computer Excel 

Mathematics 

Level 

    

GCSE/ equivalent 7 4.4 7.4 6.0 

A-Level 19 6.7 7.4 6.5 

University 12 6.6 6.3 5.4 

     

Gender     

Female 20 5.8 6.2 5.6 

Male 18 6.8 8.1 6.6 

     

Disciplines     

Physical Sciences 12 7.1 7.0 6.0 

Life Sciences 23 6.0 7.3 6.1 

Other 3 5.3 5.3 6.0 

     

All 38 6.3 7.1 6.1 

The females’ self-assessment was significantly lower than males for 

mathematics confidence (F(1,36) = 4.23, p = 0.05), computer confidence (F(1,36) = 

13.84, p < 0.01) and marginally significant for Excel confidence (F(1,36) = 3.95, p = 

0.06). The difference in mathematics confidence is possibly an effect of mathematics 

level. Females with a General Certificate of Secondary Education (GCSE) mathematics 

level had a lower mathematics confidence (2.7) than males with GCSE (5.8). As their 

GCSE grade was not recorded, it is uncertain whether their grade level was an 
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influence. Note that regardless of mathematics confidence, both genders scored 

similarly in the pre-test (males: 4.1 and females: 4.6).  

Although the difference in the computer confidence was about 2 points between 

males and females; their difference in Excel confidence was about 1 point which meant 

that the lack of computer confidence for the females may not be strongly related to the 

use of MS Excel. 

Whilst students were confident in using computers (M = 7.1, SD = 1.8), they 

were less confident in using Excel (M = 6.0, SD = 1.7). Across the different disciplines, 

students had similar computer and Excel confidence. Students who had only GCSEs 

were significantly less confident in mathematics (F(2,35) = 6.66, p < 0.01) than the 

students who had done A-level or university mathematics.  

5.2.4 Distribution of Students for Software Boxes and Sequence 
Although students were randomly assigned to a Sequence (that is, a sequence of 

problems), chi-square tests were performed to determine whether students were 

distributed equally across groups. Any uneven distribution was due to chance rather 

than design since the students were assigned randomly. The distribution of students by 

pre-test scores, mathematics level, gender, disciplines, mathematics confidence, 

computer confidence and Excel confidence across the three software boxes was similar. 

Hence, the students were evenly distributed based on their ability, confidences and 

gender in their assigned software groups. 

Students were also randomly assigned to which sequence they would answer the 

problems. Students in their respective sequence was evenly distributed for discipline 

(χ2(4) = 4.49, p = 0.34) and gender (χ2(2) = 1.57, p = 0.46). However, students who had 

done university mathematics (75%) were more likely to answer problems in Sequence 2 

(χ2(4) = 13.84, p < 0.01).  
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Students who solved problems in Sequence 3 had the least mathematics 

confidence (M = 4.92, SD = 1.68) (F(2,35) = 8.62, p < 0.01). Students’ distributions of 

Excel confidence (F(2,35) = 0.04, p = 0.96) and computer confidence (F(2,35) = 0.05, p 

= 0.95) were similar across the Sequences. Students’ total pre-test scores were also 

found to be similarly distributed across sequence (F(2,35) = 0.21, p = 0.81). 

5.3 Understanding the Variables and Statistics 
This chapter uses statistical analysis to address the first two research questions 

and to some extent the third research question. Using the first research question as an 

illustration, the variables and statistical terms are explained. 

The first research question was interested in whether performance scores were 

dependent on the software boxes used. Performance scores consisted of marks received 

from interpretive and constructive tasks within each problem. Mechanical task scores 

were not included since the researcher ensured that all students got this task correct by 

drawing the students’ attention to mistakes in input. All tasks and problems were 

answered by each student; hence these two variables were manipulated within-subjects. 

Scores were obtained for three problems and six tasks (three interpretive and three 

constructive); this meant that for each student there were three scores associated with 

the variable Problem and 6 scores associated with the variable Task. Throughout this 

chapter, when referring to a variable in a statistical analysis, the variable’s first letter is 

capitalised. For example, ‘Problem’ and ‘Task’ are referring to the variables in the 

statistical design and have a value associated with them. The software Boxes were the 

group variable and hence manipulated between-subjects.  

To determine whether there was an influence of software Boxes on performance, 

a mixed-design analysis of variance (ANOVA) with both between-subjects and within-

subjects factors was conducted. The means obtained or reported in this chapter for any 

variable is based on this ANOVA which provides an average of all means. For example, 
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as each task was scored out of two, this meant that the combined score of Task was the 

mean of the interpretive and constructive scores, which meant that Task means scores 

were out of two as well. Further, the means for Problems were the mean of Task means 

across all problems and thus the reported mean Problem scores were also out of two.  

The Latin-Square experimental design required analysing two variables, 

Sequence and Question for determining if there was any carry-over effect by solving 

problems in different sequences. The Sequence group variable measured the scores 

obtained based on the sequence in which problems were presented to the student 

(Section 3.3.5, p.63), for example Sequence 1 represented students solving Problem 3 

first followed by Problem 1 and then Problem 2. ‘Question’ is used to differentiate from 

Problem and represents which problem the student is answering for example, Question 

1 represented students solving their first question such as Problem 1 if in Sequence 3, 

Problem 2 if in Sequence 2 or Problem if in Sequence 1. An ANOVA indicated that 

Sequence and Question did not influence performance scores and these variables were 

hence removed in other ANOVAs involving performance scores (Annex 3, p.324). Note 

that the statistical annexes are all located under Appendix 7 (p.315).  

5.3.1 ANOVA Assumptions and Statistical Terms 
The ANOVAs performed in this study, the scores for the Problems and Tasks 

did not have a normal distribution. This was probably due to the relatively small number 

of students doing these tasks. Although, the assumption of normality for the ANOVA 

has been violated, the ANOVA is robust for moderate departures from the normal 

distribution (Howell, 2002: p.323). Further, Rider and also Pearson in Glass, Peckham 

and Sanders (1972) found that non-normality on the F-tests were not affected providing 

the degrees of freedom of the residual variance were not too small. In this study, the 

residual variance degrees of freedom varied from 29 to 64 and these degrees of freedom 

may be reasonable. 
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The within variables of Problems and Tasks were also found to have 

heterogeneous variance based on Levene’s test of homogeneity. Schultz (1985) 

explained that the Levene’s test is conservative for small sample sizes and it is perhaps 

why heterogeneity was observed for the small sample sizes used in this study. Thus, the 

ANOVA was considered sufficiently robust against this heterogeneity and was used in 

this study (see Annex 1, p.316 for a more detailed explanation). 

The concept of effect sizes (Cohen, 1988) is also used within this thesis. An 

effect size represented by eta-squared (η2) is used to understand how large a difference 

is found when a significant difference (p < 0.05) is obtained in an ANOVA. The effect 

size measures the proportion of variance in the dependent variable, that is explained by 

the independent variable.  

In this thesis, instead of quoting effect size in the ANOVAs, partial effect size 

(ηp
2) is used. According to Tabachnick and Fidell (2007), ηp

2 should be quoted instead 

of η2 when there are several variables. In the ANOVAs, the variables used are Problem, 

Task, Mathematics Confidence and software Boxes. Partial effect size is the proportion 

of variance explained by the independent variable, partialling out the effects of the other 

independent variables and any interactions between them. It is represented 

mathematically as the proportion of the effect variance (SSeffect) to its variance and its 

associated error variance (SSerror): 

erroreffect

effect
p SSSS

SS
+

=2η  

A consequence of using ηp
2 is that the effect sizes do not add up to one unlike η2. 

Cohen (1988) provided guidelines for sizes of η2
 but not for ηp

2. Richardson (through 

personal communication as reported by Ramanau, 2007) explained that Cohen put 

forward criteria for small, medium and large values of eta-squared, but that he himself 
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, as 

ects, 

ffect sizes including Richardson’s 

explana

mits to determine where the differences lie 

(see Annex 1, p.316 for more information). 

5.3.2

ance 

f) is 

causing

y to split a 

ney, 

 

applied this to values obtained when partialling out the effects of covariates. Hence, 

they can also be used when partialling out the effects of other independent variables

with partial eta-squared. Thus the guidelines used for ηp
2 are the same used for η2, 

which were that 0.01, 0.06 and 0.14 represented ‘small’, ‘medium’ and ‘large’ eff

respectively. A more detailed explanation on e

tions is provided in Annex 1 (p.316).  

Further, when an interaction is observed for example between Task and Box, 

Fisher’s Least Significant Difference (LSD) test was used for post-hoc analysis. The 

LSD test takes into account the confidence li

 Mathematics Confidence – Introduction of a Grouping 
Variable 

An initial ANOVA using a model of Box, Problem and Task for predicting 

performance scores showed that there was no influence of software Box on perform

scores. However, upon adding Mathematics Confidence (MathConf) as a covariate 

through an analysis of covariance (ANCOVA), there appeared to be a Task by Box 

interaction. This meant that MathConf was influencing the Task by Box interaction. 

However, the interaction effect was being adjusted by the covariate rather than a main 

effect. When an interaction effect is adjusted, it means that the variable (MathCon

  a violation of the homogeneity of slopes assumption in the ANCOVA.  

The usual practice for resolving this violation caused by the MathConf variable, 

is to split the variable and recode it.  Within the psychology discipline, the wa

continuous variable, in this case the Mathematics Confidence covariate, is to 

dichotomise the variable using either the mean or median split. Whilst a number of 

researchers advise against splitting a variable (see Cohen, 1983; Maxwell and Dela

1993; Owen and Froman, 2005), Owen and Froman indicated that when there is a
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n. A full explanation of the violation 

and its 

an 

to lower 

and higher Mathematics Confidence. This variable was called MathConfRec. 

homogeneity of slopes violation in a repeated measures ANCOVA, splitting the 

covariate maybe the most legitimate course of actio

resolution is provided in Annex 2 (p.320).  

The mean for the Mathematics Confidence distribution was 6.3 and the medi

at 6.5 (see Figure 20), thus either the median or mean can be used for the split, as 6 

would be the demarcation point. Mathematics Confidence was thus recoded in
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Figure 2

ne at 8. This suggests that there are probably two levels of Mathematics 

Confid

 

 

se 

0: Distribution of frequency scores for Mathematics Confidence 

Lower Mathematics Confidence was grouped for the range 2 to 6 and higher 

Mathematics Confidence for the range 7 to 10. This evenly divided the students into 

groups of 19 participants. This split makes sense in that they appears to be two peaks 

one at 5 and o

ence.  

 Note that the students in this study generally had assessed their performance

quite highly with 34 of the 38 students assessing themselves 5 and over. Whilst the

groupings were divided into lower and higher, it was with respect to this group of 

students. The lower confidence group may not genuinely represent students who have 

very low mathematics confidence. The reason why these students probably had the
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ts and that 80% of the students had learnt mathematics at either A-

level o

ce as the 

variable, this represents the recoded Mathematics Confidence, MathConfRec. 

 22: D on ware Box and Mathematics Confidence 

ox M cs Co  otal 

high mathematics confidence scores were that they were from disciplines that had 

mathematics elemen

r university. 

The sub-groups of Box and Mathematics Confidence did not have equal sample 

size (see Table 22), although a chi-square suggested that they were similarly distributed 

(χ2(2) = 3.85, p ≤ 0.15). From hereon, when referring to Mathematics Confiden

Table istribution of students based  the soft

B athemati nfidence T

 Lo r Higher  we

Black 4 9 13 

Glass 9 4 13 

Open 6 6 12 

Total 19 19 38 

In this thesis, when reporting values for Mathematics Confidence based on 

MathConfRec, the terms Higher MC and Lower MC are sometimes used to represent 

Higher and Lower Mathematics Confidence respectively. Also, the actual Mathematics 

Confidence score is provided when reporting on a particular participant. 

5.4 

 

ose this answer (see Appendix 6, p.313). These two parts were given one 

mark e

Reliability Analysis of Marks and Explanations Coding 
The answers from the students were scored based on a marking scheme which 

allocated 2 marks each to the interpretive and constructive tasks. Both the interpretive 

and the constructive tasks had generally two parts, one part which required the students

to write an answer to the question and another part which asked the student to explain 

why they ch

ach. 
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 real explanations. Mathematical explanations 

were easier to define than real-life explanations. For mathematical explanations the 

following should hold true, the student: 

• t 

• 5; x is 

 

ay 

; x approaches infinity; no change to x and y 

 

• n the mechanical task) with the software and 

typed the solution from their exploration or indicated they had explored and also 

gave an explanation as above 

t to ≤ in the explanations above as this was the 

way that students inputted the sign during the session since ≤ is a formatted symbol 

and not a keyboard input button. 

The real-life explanations were more obscure and seemed to draw from life-

experiences. Real-life explanations were: 

• atics such as numbers or equations but using 

rules of thumb or heuristics that were commonplace such as “increasing 

production would increase profit” 

Further, each interpretive and constructive task was coded into whether the 

explanations provided were real-life or mathematical explanations. A coding scheme

was developed for the mathematical and

Wrote a mathematical equation e.g. 2x + 3y = 20 which aided in an argumen

Used inequalities or equalities to help the explanation e.g. x <= 20; y = 

greater than y. That is they must say something like “Since x <= 20 and y =

5 then ….”. Thus, an argument must ensue from writing it in this w

• Calculated a value or some indication of calculating a value e.g. z will be 

negative; 40 - 20 = 20

• Did not rewrite numbers that were calculated by the software e.g. number of

chairs produced = 20 

Explored numbers (not given i

The symbol <= is used to represen

 Not based on any explicit mathem
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• When students drew conclusions based not on any mathematics but rather on 

what they ‘felt’ might be true e.g. “the demand is too low to have any 

production” 

• When students drew from their own feelings or experience on how the 

manufacturing world works e.g. “this would not be economical”. 

Examples of both of these explanations are presented in Table 23.  

Table 23: Types of explanations provided by students for a constructive problem 

Participant 4 (F, BB, Higher MC = 8): Want to produce more trains if the profit is 

increased. (Real-Life Explanation) 

Participant 9 (F, BB, Higher MC = 7): profit would increase to 140 but the numbers of 

toys made stays the same because constraints is that x =40 maximum so even though 

they get more profit they can’t make any more trains. (Mathematical Explanation 

resulting from an exploration) 

Participant 13 (M, GB, Higher MC = 8): If the profit per train is increased, it would 

likely be more profitable to produce more trains and fewer soldiers. However 

Constraint C puts an upper bound on the number of trains that can be produced -- a 

bound which has already been achieved. Hence it is not possible to produce more trains 

and the number of toy trains and toy soldiers produced would remain the same. This 

was confirmed by solving the modified problem. (A Mathematical Explanation 

confirmed with the testing of the software) 

The answer transcripts from all 38 students were marked and coded according to 

the marking and coding scheme by one researcher. To ensure that the marking and 

coding were consistent, five randomly selected answer transcripts were coded by 

another judge and the reliability between these two judges were determined. These 

transcripts were from Participants 7, 8, 20, 24, and 25. Participant 15’s transcript was 

used as an example for showing how the answer scripts were marked and coded by the 

principal researcher. Inter-rater reliability between the judges for the scores and coding 
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were calculated based on the intra-class correlation (ICC) using a 2-way random 

Analysis of Variance (ANOVA) design (see Shrout and Fleiss, 1979).  

Upon discussion between the two judges about the marks and coding, the ICC 

for performance scores was calculated as 0.96, whilst real-life and mathematical 

explanations were 0.94 and 0.73 respectively. Inter-rater agreement was determined 

between the two judges based on the percentage of similarity between scores and 

explanations. The inter-rater agreement for scores (83%) was lower than the real-life 

(97%) and mathematical explanations (87%). The observed disparity between the inter-

rater agreement and inter-rater reliability for performance scores was because 

performance scores allowed half marks and hence whilst it may correlate between two 

judges as near equal, it meant that this showed disparity in full agreement. The low 

inter-rater reliability and inter-rater agreement of the mathematics explanations as 

opposed to the real-life explanations and scores was possibly due to the second judge 

being unfamiliar with linear programming and not primarily from a mathematical 

domain. 

5.5 Performance Scores  
The purpose of this section is to determine if performance scores on Tasks were 

affected by Boxes. To accomplish this, an ANOVA was performed (see Table 24). As 

indicated in Section 5.3 (p.131), the Sequence and Order variables were removed 

because they had no influence on scores. Also, Mathematics Confidence was added as a 

recoded variable (Section 5.3.2, p.134). 

5.5.1 Performance on Problems and Tasks 
From the ANOVA, the performance scores on Tasks were dependent on 

software Boxes as the Task × Box interaction was significant. Before proceeding into 

understanding this interaction, this section first provides an overview of the students’ 
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performance on Problems and Tasks and then looks at the influence of the software 

Boxes.  

Table 24: ANOVA of Box×Mathematics Confidence×Problem×Task 

 SS df MS F p ηp
2

Between Subjects       

Box 0.06 2 0.03 0.04 0.96 0.00 

MathConfRec 2.25 1 2.25 3.42 0.07 0.10 

Box × MathConfRec 0.42 2 0.21 0.32 0.73 0.02 

SS within 21.10 32 0.66    

       

Within Subjects       

Problem 12.58 2 6.29 29.41 0.00 0.48 

Problem × Box 1.11 4 0.28 1.30 0.28 0.08 

Problem × MathConfRec 2.15 2 1.07 5.02 0.01 0.14 

Problem × Box × MathConfRec 0.65 4 0.16 0.76 0.56 0.05 

Problem × SS within 13.68 64 0.21    

       

Task 17.04 1 17.04 78.11 0.00 0.71 

Task × Box 2.84 2 1.42 6.51 0.00 0.29 

Task × MathConfRec 2.00 1 2.00 9.15 0.00 0.22 

Task × Box × MathConfRec 0.23 2 0.11 0.53 0.60 0.03 

Task × SS within 6.98 32 0.22    

       

Problem × Task 3.58 2 1.79 6.70 0.00 0.17 

Problem × Task × Box 1.58 4 0.40 1.48 0.22 0.08 

Problem × Task × MathConfRec 1.33 2 0.66 2.48 0.09 0.07 

Problem × Task × Box × MathConfRec 1.69 4 0.42 1.58 0.19 0.09 

Problem × Task × SS within 17.11 64 0.27    

In all three problems, the students performed the best in Problem 2 (1.04) but 

attained about half this mark in Problem 1 (0.48) and Problem 3 (0.55). The reason for 

this difference is uncertain as all three problems had the same format (Section 3.4.2, 

p.68), that is, they each had a mechanical, interpretive and constructive task. The 
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interpretive task in all three problems required the student to examine the solution 

computed during the mechanical task and to then interpret what the solution meant 

within a particular situation.  

Although the interpretive task in Problem 3 had the same format, there was an 

extra part which asked students about a general condition of linear programming. 

Similarly, all the constructive tasks required understanding what happened if a value 

was changed in the linear programming model. They either explained this through 

examination of the task or solving the linear programming problem again. Therefore the 

problem formats were perhaps not the reason for the difference in scores. The problem 

type, that is, being abstract or applied, is also not a reason for the observed difference 

since Problems 1 and 2 are both application problems but students performed 

significantly better in Problem 2 than Problem 1. 

The problem scores comprised the mean of the interpretive and constructive task 

scores. By examining these tasks individually, this will shed light on why there is a 

difference in the Problem scores. Overall students performed better in the interpretive 

task (0.98) than in the constructive task (0.40). As mentioned in Section 5.3 (p.131), the 

Task scores provided are means and are all out of two. Note that the sum of the Task 

mean scores will not be equal to the sum of the Problem scores, however the mean of all 

Problem scores will equal to the mean of all Task scores.  

Students performed similarly in the interpretive task for Problem 2 (1.23) and 

Problem 3 (1.03). Figure 21 illustrates these results. Students’ mean score for Problem 

1’s interpretive task (0.68) was at least 0.5 marks lower than that of Problem 2. Students 

scored the highest in Problem 2’s constructive task (0.84) but did abysmally in the same 

task for Problem 1 (0.29) and Problem 3 (0.07).  
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Figure 21: Means scores for Task depending on the Problem 

There are two things that are highlighted here, firstly that students performed 

well in Problem 2 regardless of which task they were given, that is, they scored highly 

in both the interpretive and constructive tasks. Problem 2 was perhaps an ‘easy’ 

question for the students and why this was easy will be further discussed in Chapter 6. 

An interesting phenomenon of Problem 2 was that students performed similarly 

regardless of their Mathematics Confidence level (Higher MC: 1.00 vs Lower MC 

1.08). This was not the case for Problem 1 and Problem 3 where higher mathematics 

confidence students scored higher in these problems than the lower mathematics 

confidence students (see Figure 22).  

Generally across all problems, students with higher mathematics confidence 

(0.79) did marginally better (p = 0.07) than students with lower mathematics confidence 

(0.58). Whilst mathematics confidence influenced interpretive task scores (Higher MC: 

1.18 vs Lower MC 0.70), there was no apparent influence on the constructive task 

scores (Higher MC: 0.41 vs Lower MC: 0.40). 
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Figure 22: Mean scores for the Problems for the interpretive and constructive Tasks based on the 
students’ Mathematics Confidence 

Therefore, students’ Mathematics Confidence was affecting their performance 

on tasks, however, only with respect to the interpretive tasks. The results for the 

interpretive task confirmed that there was a genuine statistical difference between the 

two mathematics confidence levels, as there was a large effect size (ηp
2 = 0.22). Further 

the performance difference in the interpretive and constructive scores confirmed the 
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results from Galbraith and Haines (2000a). Now that performance with tasks was 

determined, the question to ask was whether the variation in performance was 

dependent on the software boxes that the students were assigned to. 

5.5.2 Software Boxes and Performance 
The attention is now turned to the main focus of this section, that is, whether 

performance varied with software boxes. In Section 5.3.2 (p.134), it was mentioned that 

using an ANOVA, software Boxes appeared to have no influence on performance until 

students’ Mathematics Confidence was taken into account. From the task means for the 

three software boxes, students using the black-box (0.83) performed worse than those 

with the glass-box (1.09) and the open-box (1.01) software in the interpretive task. For 

the constructive task, the mean score for the black-box (0.58) was higher than the glass-

box (0.30) and open-box (0.32). Figure 23 illustrates this data.  
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Figure 23: Mean scores for the interpretive and constructive Tasks depending on the software Box 

Using Fisher’s LSD, both the constructive and interpretive mean task scores 

were tested to determine which software Box was causing the difference. These 

statistical tests indicated that the scores across all three software boxes were not 

statistically different (p > 0.10) except between the black-box and the glass-box 

software for the interpretive task (p < 0.08). 
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Even with the marginal significance between the glass and the open-box 

software, the highly significant Task × Box interaction (p < 0.01) was still puzzling. The 

mean scores showed that the black-box software was under-performing and 

outperforming in the interpretive and constructive tasks respectively and only with the 

interpretive task there was any sort of significance. A graph of the mean task scores for 

the software boxes was then examined to determine where the significant interaction 

was arising. From the graph (Figure 23), a small difference between the interpretive and 

constructive tasks mean scores was noted for the black-box software compared to the 

task score differences of the glass-box and open-box software. This disparity in 

difference task mean scores was due to the Task × Box interaction and was confirmed 

using an ANOVA (see Annex 4, p.325).                                                                                                 

From the first research question this result shows that students’ performance on 

tasks was dependent on the software boxes. However, there is no clear answer on how 

the software boxes were influencing the performance. As the software boxes were used 

almost exclusively for the mechanical and constructive tasks (as is seen in the next 

section), then this result provides an indication that the black-box may be influencing 

the performance on constructive tasks. The higher scores in the interpretive tasks for the 

glass-box and open-box software may point to students engaging with these software 

boxes to build their conceptual knowledge but this influence is puzzling as it is not 

reflected in the constructive tasks which also require conceptual knowledge. Students all 

scored the same for mechanical tasks and hence their performance was not affected by 

exploration. Thus, investigating whether the students’ approach for the three software 

boxes was different in solving the tasks and whether this influenced the scores may help 

in the clarification. This is now investigated quantitatively here but is discussed again in 

Chapter 6 from a qualitative perspective. 
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5.6 Exploration Approach 
The three approaches of exploration, explanations and deep/surface learning are 

now discussed with respect to the software Boxes and Tasks. This section deals with the 

exploration approach and to some extent how the exploration approach affected 

students’ performance. Section 5.7 and Section 5.8 provide results on explanations and 

processing levels respectively.  

Students were coded as exploring (1) or not exploring (0) for the interpretive and 

constructive tasks depending on whether they used the software boxes or not. The 

mechanical task was only coded as exploring or not-exploring when students were using 

the software box for other purposes than just solving the mechanical task (Section 3.4.6, 

p.76). 

Students were overwhelmingly more likely to explore for the constructive task 

(61%) than any of the other two tasks (see Table 25). Four of the five students who 

explored the mechanical tasks used the open-box software; the other student used the 

black-box software. This difference in exploration of tasks was due to the nature of the 

tasks, in that interpretive tasks were not expected to be explored although a couple of 

students did. Secondly, the kind of software box influenced the number of explorations 

in the mechanical tasks, in that students using the glass-box and black-box software 

were not expected to explore when doing the mechanical task as the answer was 

provided to them by a click of a button. However, the students using the open-box 

software explored the order of inputting various pivot variables to determine whether 

this influenced the answer (see Section 6.3.2, p.190). An explanation of how one 

student used the software boxes for exploring the interpretive task is presented in 

Section 6.4.2 (p.203). 
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Table 25: Number of students exploring across the three tasks 

Exploration Mechanical Interpretive Constructive 

Not explored 33 (87%) 36 (95%) 15 (39%) 

Explored 5 (13%) 2 (5%) 23 (61%) 

Total 38 38 38 

The values presented in Table 25 are for students exploring at least once with 

the software-boxes. There were three constructive tasks and some students explored all 

three. Hence the total number of possible explorations for the three constructive tasks 

per student is three. Thus for the sample of 38 students, there is a possibility of 114 

explorations (38 × 3 = 114) for the constructive tasks. The same logic applies for the 

mechanical and interpretive tasks. Using 114 as the total number of explorations per 

task, the percentage of explorations by students in all of the mechanical, interpretive and 

constructive tasks are 5%, 2% and 33% respectively.  

Again, these percentages points to students exploring more for the constructive 

task. As constructive tasks had the most explorations; the rest of this section deals with 

exploration only in the context of constructive tasks and with respect to the total number 

of constructive task explorations (i.e. 114). 

5.6.1 Exploration and Constructive Tasks 
Sequence effects were tested for exploration in the constructive task before any 

further analysis was completed. There was no evidence that the sequence in which 

problems were presented affected the number of explorations.  

For the constructive task across all three problems, students explored more in 

Problem 2 (61%) than in any of the other problems; only seven students explored 

Problem 1 (18%) and eight students explored Problem 3 (21%). Taking into account 

mathematics confidence, six students with higher Mathematics Confidence explored 



 

 148 

Problem 1 compared to one student with lower Mathematics Confidence. Figure 24 

illustrates this data.  

Although from the graph, lower Mathematics Confidence students explored 

more in Problem 2 (68%) than the students with higher Mathematics Confidence (53%), 

a chi-square test indicated that this was not significant (χ2(2) = 0.99, p = 0.32). Even so, 

this is interesting in connection with why students might have been exploring more in 

Problem 2. This is further discussed in Section 6.6.2 (p.226). 
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Figure 24: Number of Explorations depending on Mathematics Confidence for the constructive 
task in each Problem 

Recall from the calculation of the possible total number of explorations for the 

constructive tasks across all three problems by 38 students is 114; the total number of 

possible explorations per software box is calculated in a similar manner. The number of 

possible explorations will vary as the number of students assigned to each software box 

is not the same. Thus, the possible total number of explorations that all students in the 

black-box software can make is 39 (3 constructive tasks × 13 students), for glass-box it 

is also 39 but for open-box software it is 36 (3 constructive tasks × 12 students). Table 

26 illustrates this data for software Boxes and Mathematics Confidence. 
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Table 26: Number of Explorations across Mathematics Confidence and software Boxes groups for 
constructive tasks 

Software Mathematics 

Confidence 

Exploration 

Black Glass Open 

Total 

Lower No 10 16 13 39 

 Yes 2 11 5 18 

 Total 12 27 18 57 

Higher No 12 10 15 37 

 Yes 15 2 3 20 

 Total 27 12 18 57 

Total  39 39 36 114 

By examining the number of explorations made across all three software Boxes, 

the results showed that students using the black-box software (44%) explored more than 

students using the glass-box (33%) and the open-box (22%) software. Whilst there was 

not a significant chi-square association there was a significant linear by linear 

association (p < 0.01) for the number of explorations in the three software Boxes. This 

shows that the number of explorations decreased linearly with the difficulty of using the 

software box for computing an answer.  

Taking into account Mathematics Confidence, an interesting pattern emerges 

(see Figure 25). Students with higher Mathematics Confidence were overwhelmingly 

more likely to use the black-box software for exploration (56%) than lower 

Mathematics Confidence students in the black-box software as well as all the students 

using the glass-box and open-box software (χ2(2) = 9.44, p < 0.01). The lower 

Mathematics Confidence students were exploring more with the glass-box (41%) and 

the open-box (28%) software than with the black-box software (17%), but this was not 

found to be significant.  
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Figure 25: Number of Explorations for the constructive Task depending on Mathematics 
Confidence and software Box 

Therefore, this section indicated that when it came to the approach of 

exploration, students using the open-box were more likely to explore the mechanical 

tasks than the students using the other two software boxes. Further, the black-box 

encouraged more explorations for constructive tasks and was favoured by the high 

mathematics confidence students. What may be more interesting is determining whether 

this approach had any influence on the performance. 

5.6.2 Exploration and Constructive Scores 
An overview of the scoring pattern of students when it came to explorations 

showed that if students explored the constructive task they had an 82% chance of 

scoring whilst those who did not explore had a 9% chance of scoring. For Problem 2, if 

students explored, then they all obtained a performance score. Problem 1 had slightly 

worse results than Problem 2, in that, if students explored, only 71% of the students 

were able to score. For Problem 3, the ability of students to score if they explored was 

low (38%). This probably points to students being unsure what to do when confronted 

with solving Problem 3’s constructive task. 
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When students engaged in exploration, the percentage of times that they were 

able to obtain a score was 88% for the black-box software, 69% for the glass-box 

software and 88% for the open-box software. Thus, students who explored with the 

glass-box software were less likely to achieve a score than those students using the 

black-box and the open-box software. Perhaps as the students who explored with the 

glass-box software were mainly from the lower Mathematics Confidence grouping, this 

may indicate that they were uncertain how to solve the task with the software. This is 

corroborated by looking at how students with lower Mathematics Confidence were 

scoring based on their explorations for the glass-box software (see Table 27). These 

students were only able to score 64% of the time when they explored. Generally, the 

higher Mathematics Confidence students across all the software boxes, once they 

explored they were more likely to score (90%) than the students with the lower 

Mathematics Confidence (72%) but this was not significant. 

Table 27: Number of Explorations that achieved a scored by software Boxes and Mathematics 
Confidence 

Software Black-Box Glass-Box Open-Box Total 

Confidence Lower Higher Lower Higher Lower Higher Lower Higher 

Explored 2 15 11 2 5 3 18 20 

Scored 2 13 7 2 4 3 13 18 

Scored (%) 100% 87% 64% 100% 80% 100% 72% 90% 

Overall if students decided to explore there was a significant difference in their 

performance than those who did not explore. This therefore implies that using the 

approach of exploration may increase performance scores in constructive tasks. This 

section also showed that for the black-box and open-box software students, if they 

explored they were more likely to achieve a better performance. Students who had 

higher Mathematics Confidence and explored were more likely to score than those with 

lower Mathematics Confidence. The higher Mathematics Confidence group did 
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however explore more with the black-box software than any other software box and the 

lower Mathematics Confidence students explored more with the glass-box software. 

5.7 Explanation Approach 
The second approach that was looked at quantitatively was explanations. 

Students were asked to give detailed answers for the interpretive and constructive tasks. 

These answers were coded into real-life and mathematical explanations based on the 

coding scheme presented in Section 5.3 (p.131). Since the mechanical tasks only 

required the students to provide a numerical solution this was not coded into these two 

types of explanations. Answers were only coded 13 times into both having a 

mathematical and real-life explanation. The reason for the two explanations coding is 

that conceptual knowledge was considered to be making connections with previous 

experiences. Therefore, the previous experiences in doing mathematical problems could 

probably be of two kinds. Firstly, knowledge relating to mathematics and mathematics 

principles and secondly knowledge from other experiences which most likely would be 

from social/ cultural experiences and was labelled real-life experiences. 

Each student solved the three constructive and three interpretive tasks. All 

students, at least once, provided either a mathematical or real-life explanation when 

solving the tasks. Thirty-four students provided mathematical explanations and 33 

students provided real-life explanations. The number of possible explanations was 

calculated similarly to the total number of possible explorations. There were six 

possible mathematical and six possible real-life explanations for both tasks combined 

(i.e. real-life explanations: 2 task types × 3 problems = 6 explanations). Hence for each 

student there was a possibility of them making 12 explanations (6 mathematical and 6 

real-life). Thus for all 38 students, the total number of possible explanations was 456. 

The number of real-life (74) and mathematical (86) explanations made by all students 

was similar. This represented 35% of the total possible number of explanations.  
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5.7.1 A Sequence Effect 
This section looks primarily at how Sequence (the sequence in which problems 

were answered) affected the number of explanations. By examining the total number of 

explanations across Sequence, it was noted that the number of explanations were 

affected by Sequence (χ2(2) = 5.92, p = 0.05). Therefore, the sequence in which 

problems were solved impinged on the number of explanations written by the students.  

The students in Sequence 1 had the smallest percentage of explanations (27%) 

compared to Sequence 2 (45%) and Sequence 3 (39%). The percentages are calculated 

based on the total possible number of explanations per Sequence. Students in Sequence 

1 started with the abstract problem (Problem 3). Perhaps as Problem 3 was 

mathematically focused, it encouraged students to think mathematically as well in the 

subsequent problems and hence discouraged real-life explanations. Therefore, the total 

number of real-explanations in the subsequent problems should be less (see Table 28).  

Table 28: Percentage of real-life and mathematical Explanations for Problems depending on 
Sequence  

Problem Sequence 1: 

n = 12 

Sequence 2: 

n = 14 

Sequence 3: 

n = 12 

Total:  

n = 38 

Real-Life     

Problem 1 6 (25%)  16 (57%) 8 (33%) 30 (39%) 

Problem 2 12 (50%) 13 (46%) 13 (54%) 38 (50%) 

Problem 3 2 (8%) 2 (7%) 2 (8%) 6 (8%) 

Total (Real-Life) 20 (28%) 31 (37%) 23 (32%) 74 (32%) 

     

Mathematical     

Problem 1 5 (21%) 7 (25%) 4 (17%) 16 (21%) 

Problem 2 2 (8%) 10 (36%) 14 (58%) 26 (34%) 

Problem 3 12 (50%) 17 (61%) 15 (63%) 44 (58%) 

Total (Maths) 19 (26%) 34 (40%) 33 (46%) 86 (38%) 

Total 39 (27%) 65 (45%) 56 (39%) 160 (35%) 
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Note that the percentages in Table 28 are based on the total possible number of 

real-life or mathematical explanations in each Sequence. For example, there are two 

tasks (constructive and interpretive) for each problem and therefore the total number of 

possible real-life explanations for any problem is two (one for each task). Therefore as 

Sequence 1 has 12 students (n = 12), then the total number of possible real-life 

explanations made by these 12 students will be twenty-four (12 students × 2 = 24) for 

each problem.  

However from Table 28, this is not what happened since Problem 2 actually had 

a lower number of mathematical explanations (8%) in Sequence 1 than in any of the 

other Sequences. Perhaps instead students starting with Problem 3 began to self-explain 

less or resorted to real-life explanations because they encountered a ‘hard’ problem and 

then was manifested in their written answers. Although Problem 3 had almost similar 

scores to Problem 1, it was a ‘hard’ problem, as the students’ lack of exploration in 

Problem 3’s constructive task suggested that they were uncertain on how to solve this 

task. Further, their answers as illustrated in Section 6.5.3 (p.214) and Section 6.6.3 

(p.231) suggested that students had difficulty in even hazarding a guess for either the 

interpretive or the constructive tasks of Problem 3. 

On the other hand, students who started off with an ‘easy’ problem (as 

demonstrated by their scores) such as Problem 2 (Sequence 2) were more likely to 

generate explanations in the subsequent problems. For example, students doing Problem 

1 in Sequence 2 had the highest number of real-life explanations (57%) than in any of 

the other Sequences.  

One conjecture was that since students performed well in Problem 2, that is, 

students were able to determine Problem 2’s solutions quite readily; this gave them a 

boost of confidence. From this boost of confidence they were able to self-explain more 

or think of different explanations (not necessarily the right ones) and then type these 
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various explanations. However, students starting with Problem 3 were perhaps 

demoralized by it being ‘hard’ or abstract and did not feel like self-explaining any more. 

In Sequence 2, Problem 1 was done after the ‘hard’ Problem 3, and it may seem that 

whilst students in Sequence 2 generated more explanations, following the ‘hard’ 

problem, the students decided to generate more real-life explanations for Problem 1. 

This may be an indication of the efficacy-performance spiral (Gist and Mitchell, 1992; 

Lindsley, Brass and Thomas, 1995). The efficacy-performance spiral suggests that when 

students are not able to solve tasks correctly (performance), they lose confidence. 

However by losing confidence, they affect their approach to solving tasks in future since 

they are no longer keen to investigate different task-solving strategies (such as making 

more explanations). Hence their performance drops and the vicious cycle continues.  

Also, there are studies that indicate that students perform better when tasks are 

placed from easy to hard (e.g. Plake, Ansorge, Parker and Lowry, 1982; Towle and 

Merrill, 1975). A performance difference was not seen between Sequences in this study 

probably because there were only three problems and students were randomly assigned 

to each Sequence. Possibly this known occurrence is manifested in this study through 

the number of explanations. Perhaps if a larger sample of students, more problems and 

more permutations of the problem sequences were used then the effect of problem 

sequence on explanations and performance can be observed.  

Thus to sum up, there was a sequence effect affecting the number of 

explanations, with students who started off with Problem 3 (i.e. those following 

Sequence 1) being less likely to generate any explanations. The suggested reason for 

this effect was that students were less likely to self-explain and type these explanations 

following this ‘hard’ problem probably because of an efficacy-performance spiral 

effect.  
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5.7.2 Explanations: Problems, Tasks and Boxes 
Whilst a Sequence effect is found, when looking at the number of explanations 

across Problems, Tasks and software Boxes, one should note that students were 

randomly assigned to Sequence. Each software Box had a similar number of students in 

each Sequence which meant that any effect from Sequence will be evened out across 

Problems, Tasks and Software Boxes.  

Amongst the three problems, students made slightly more explanations for 

Problem 2 (64 explanations) than Problem 1 (46 explanations) and Problem 3 (50 

explanations). The abstract problem, Problem 3, had a very low percentage of real-life 

explanations (8%) compared to the two application problems, Problem 1 (39%) and 

Problem 2 (50%). However, Problem 3 had a high percentage of mathematical 

explanations (58%) compared to Problem 1 (21%) and Problem 2 (34%). Percentages 

are calculated based on the possible number of real-life or mathematical explanations 

for each problem (i.e. total number of possible real-life explanations per problem: 38 

students × 2 tasks per problem × 1 real-life explanation = 76 real-life explanations). 

Figure 26 presents these results. 
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Figure 26: Number of mathematical and real-life Explanations for each Problem across all students 
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These results suggest that if there is a real-life application task, students were 

more likely to rely on making real-life type explanations and to a lesser extent 

mathematical explanations to support their answer. However if the task is abstract then 

students probably did not see the relation to a real-life situation and rely mostly on 

mathematical explanations (Section , p. ). 6.4.2 203 With the application problems, 

students probably brought in real-life knowledge to help understand the task (Boaler, 

1993), whether this hampered their performance or understanding is ascertained in the 

next section and Chapter 6.

Overall there were more explanations for constructive tasks (93) than 

interpretive tasks (67). Constructive tasks had more than 1.5 times the number of 

mathematical explanations (47%) than the interpretive task (28%). The bracketed 

percentages are based on the possible number of mathematical explanations per task 

(i.e. 114). Students made almost equal numbers of real-life explanations between both 

tasks (see Table 29).  

Table 29: Number of real-life and mathematical Explanations for Problem and Task 

Tasks Interpretive Constructive 

Explanations Maths Real Maths Real 

Problem 1 5 (13%) 5 (13%) 11 (29%) 25 (66%) 

Problem 2 8 (21%) 26 (68%) 18 (47%) 12 (32%) 

Problem 3 19 (50%) 4 (11%) 25 (66%) 2 (5%) 

All 32 (28%) 35 (31%) 54 (47%) 39 (34%) 

Given that students made more mathematical explanations in Problem 3, this 

was reflected in the high number of mathematical explanations in the interpretive (50%) 

and constructive tasks (66%) and the low number of real-life explanations in both of 

these tasks for this problem, as seen in Table 29. The percentages are based on the total 

possible number of explanations, per task per problem which is 38. Therefore the 

number of explanations for the task per problem also represents the number of students 
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making that type of explanation. Students gave more real-life explanations for Problem 

2’s interpretive task (68%) than any other interpretive task whilst Problem 1’s 

constructive task attracted the most real-life explanations (66%) amongst all the 

constructive tasks. The real-life explanations were the predominant explanation type for 

these two tasks (i.e. Problem 1’s constructive task and Problem 2’s interpretive task). 

Problem 1’s interpretive tasks and Problem 2’s constructive task had similar number of 

mathematical and real-life explanations. 

Now whilst all of this is interesting, what is important for this thesis is to know 

whether the software Boxes influenced the number and type of explanations. Using a 

chi-square test, only marginal significance (χ2(2) = 5.19, p = 0.07) was found such that 

the software Boxes were associated with the number of real-life explanations (see 

Figure 27). Students using the glass-box software (41%) were more likely to have a 

higher number of real-life explanations than those students on the black-box (32%) or 

open-box (24%) software.  
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Figure 27: Number of real-life and mathematical Explanations for the software Boxes 

This association of real-life Explanations and software Boxes was mostly due to 

the students with higher Mathematics Confidence (χ2(2) = 7.65, p = 0.02). Higher 

mathematics confidence students using the glass-box software provided real-life 
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explanations for half of their tasks (constructive and interpretive combined), whilst 

higher mathematics confidence students in the open-box software barely gave any real-

life explanations (17%). Higher mathematics confidence students using the black-box 

software provided real-life explanations for 30% of their tasks.  

Perhaps the open-box software because of its mathematical steps made students 

feel that any explanations should be more mathematical in nature and hence they 

reduced their number of real-life explanations. The reason why the higher mathematics 

confidence students using the glass-box were providing more real-life explanations is 

uncertain. However, as the higher mathematics confidence students did not explore with 

the glass-box greatly, they probably tried to explain their given answers by providing 

real-life explanations. The ratio of mathematical to real-life explanations for all students 

was found to be the lowest in the glass-box software (0.75) and the highest in the open-

box software (1.71). Black-box software had a ratio of 1.32. 

Thus to sum up this section, students solving the constructive task gave the most 

number of explanations. The constructive task asked students to explain what will 

happen if a value changes (such as profit or number of products) and this was followed 

with why the change (or no change) occurred. This probably gave students a wider berth 

to use a range of explanations. Mathematical explanations seemed to be more popular 

for Problem 3, for both its interpretive and constructive tasks. The number of real-life 

explanations was popular in one interpretive task (Problem 2) and one constructive task 

(Problem 1) which were both related to application problems (Problems 1 and 2). 

Finally, higher mathematics confidence students were more likely to provide real-life 

explanations if they were using the glass-box software. 

5.7.3 Explanations and Performance 
This section investigates student’s performance scores based on their 

explanations. Of the total number of tasks answered by all students (228 i.e. 38 students 
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× 3 problems × 2 tasks), only for 133 of these tasks was a score obtained. Hence, the 

total possible number of explanations that can be made for these scored tasks will be 

266 (i.e. 133 tasks × 2 explanations). Students had the same percentage of explanations 

(35%) for the scored tasks (94 explanations) and non-scored tasks (66 explanations) 

based on their respective possible number of explanations. This shows that even if 

students were unable to obtain the correct answer, they still provided an explanation to 

justify what they wrote. 

Students, who were unable to score in Problem 1, provided more real-life 

explanations (60%) than those students who did score (17%), (χ2(1) = 14.89, p < 0.01). 

The few students, who were unable to score in Problem 2, all provided real-life 

explanations (see Table 30). Regardless of how students performed on Problem 3, they 

provided substantially more mathematical explanations to explain their answer. It 

appears that for the application problems that students’ lack of performance is 

associated with real-life explanations.  

Table 30: Number of real-life and mathematical Explanations by Problem for scored and non-
scored Tasks 

 Scored Tasks Non-Scored Tasks 

 Real-Life Maths Tasks No. Real-Life Maths Tasks No. 

Problem 1 6 (17%) 9 (25%) 36 24 (60%) 7 (18%) 40 

Problem 2 31 (49%) 26 (41%) 63 7 (54%) 0 (0%) 13 

Problem 3 4 (13%) 18 (53%) 34 2 (5%) 26 (62%) 42 

Total 41 (31%) 53 (40%) 133 33 (35%) 33 (35%) 95 

 Looking at the interpretive task, there were 95 scored interpretive tasks and 19 

non-scored interpretive tasks. Students had a slightly higher percentage of explanations 

for scored (61%) and non-scored (47%) for this task but it was not significant. For the 

constructive task, out of the 38 scored tasks, 26 of these had mathematical explanations 

(68%). For the non-scored constructive tasks, only 28 of the 76 tasks (37%) had any 
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mathematical explanations. A chi-square test (χ2(1) = 10.13, p < 0.01) indicated that 

there was a positive association between the number of mathematical explanations and 

the performance scores for the constructive task. This association seemed primarily due 

to the high percentage of mathematical explanations in the constructive tasks of 

Problems 1 and 2 between the scoring and non-scoring tasks (see Table 31). 

Table 31: Percentage of real-life and mathematical Explanations for scoring and non-scoring 
constructive Tasks 

 Scoring Constructive Tasks Non-Scoring Constructive Tasks 

 Real-Life Maths Tasks No. Real-Life Maths Tasks No. 

Problem 1 4 (44%) 6 (67%) 9 21 (72%) 5 (17%) 29 

Problem 2 5 (19%) 18 (69%) 26 7 (58%) 0 (0%) 12 

Problem 3 1 (33%) 2 (67%) 3 1 (3%) 23 (66%) 35 

Total 10 (26%) 26 (68%) 38 29 (38%) 28 (37%) 76 

The effects of Mathematics Confidence and software Boxes were also 

investigated for explanations across the scoring and non-scoring tasks and there were no 

significant associations.  

5.8 Processing Levels 
The two approaches of exploration and explanations discussed thus far were 

with respect to each task type. However, for the third approach, the deep/surface 

processing levels, this was not possible, since the processing levels were determined for 

the whole session. The processing levels were measured through the SOMUL 

Approaches to Study Inventory (ASI) (Section 3.4.5, p.75). Thus, determining whether 

the deep/surface processing levels differed for task was not possible. However it was 

possible to determine whether this differed for the software Boxes and Mathematics 

Confidence (Section 5.3.1, p.132).  
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5.8.1 Processing Levels and the Main Variables 
From the ASI, the students’ scores on both the surface (out of 20) and deep (out 

of 30) scales were obtained. Only 37 of the 38 students’ ASI scores were obtained as 

one was lost due to technical problems. An ANOVA was used to determine whether 

there was a significant difference for the processing levels depending on software 

Boxes, Sequence or Mathematics Confidence (see Table 32).  

Table 32: ANOVA for Deep and Surface scores depending on Box, Mathematics Confidence and 
Sequence 

Source SS df MS F P ηp
2

Surface       

MathConfRec 6.10 1 6.10 0.83 0.37 0.04 

Sequence 100.72 2 50.36 6.85 0.01 0.40 

Box 2.06 2 1.03 0.14 0.87 0.01 

MathConfRec × Sequence 9.83 2 4.92 0.67 0.52 0.06 

MathConfRec × Box 32.79 2 16.39 2.23 0.13 0.18 

Sequence × Box 60.51 4 15.13 2.06 0.12 0.28 

MathConfRec×Sequence×Box 9.63 2 4.82 0.66 0.53 0.06 

Error 154.50 21 7.36   

   

Deep   

MathConf Rec 10.49 1 10.49 0.68 0.42 0.03 

Sequence 5.67 2 2.83 0.18 0.83 0.02 

Box 7.20 2 3.60 0.23 0.79 0.02 

MathConfRec × Sequence 3.81 2 1.91 0.12 0.89 0.01 

MathConfRec × Box 25.52 2 12.76 0.83 0.45 0.07 

Sequence × Box 10.48 4 2.62 0.17 0.95 0.03 

MathConfRec×Sequence×Box 4.92 2 2.46 0.16 0.85 0.02 

Error 324.92 21 15.47   

Firstly, students scored low on the surface scale (9.2 out of 20) compared with 

that of the deep scale (24.1 out of 30). This meant that students used mostly a deep 

processing level and less of a surface processing level during the study. Students 
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generally had high Mathematics Confidence, that is, 34 of the 38 students assessed 

themselves as having a Mathematics Confidence of at least 5. Therefore, as deep 

processing level is associated with mathematics confidence then this was probably the 

reason why the students had such high deep scores and low surface scores. 

The only significant effect from this ANOVA was that students’ surface scores 

were significant for Sequence (F(2,21) = 6.85, p < 0.01, ηp
2 = 0.40). Students who had 

been assigned to Sequence 1 (i.e., they started with Problem 3 – the abstract problem) 

were likely to have a lower surface processing level score (6.52) than those who were 

assigned to Sequence 2 (10.92). This was noteworthy since it followed a similar pattern 

to the number of explanations for Sequence (see Figure 28, p.163).  

Students with a low number of explanations were expected to have a more 

surface processing level but perhaps the quality of explanations exceeded the quantity, 

because the scores obtained by students in all Sequences were similar (no sequence 

effect for scores). Also the number of explanations was not an indicator that students 

were not doing well, but rather the type of explanations (i.e. mathematical 

explanations).
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Figure 28: Deep and Surface Scores for students depending on Sequence 
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However, the argument made in the Section 5.7.1 (p.153) was that students 

assigned to Sequence 3 were probably demoralised and hence they self-explained less. 

However, the ASI scores showed that students who started in Sequence 1 were more 

likely to have a lower surface score. Further, the ANOVA for Sequence and Surface 

scores indicated that there was a significant difference between the Surface scores 

obtained for Sequence 1 and Sequence 2. This may mean that the experience of solving 

the tasks in Sequence 2 led to higher surface scores.  

It was possible that instead of Sequence 1 actually demoralizing students it kept 

them on track with the explanations that were required to answer the subsequent 

problems. Whilst the students in Sequence 2, because they were thinking of a wider 

range of possibilities, that is, both mathematical and real-life explanations, they got 

more confused and probably made more explanations but not necessarily deep and 

connected explanations. Hence, the conjecture that in Sequence 1 they were making 

more minimalist explanations since they knew which explanations would possibly aid in 

answering the task. Whilst the surface scores were different, the deep scores were the 

same for all groups of students and the question arises whether the deep processing 

level influenced the performance as was expected. 

5.8.2 Processing Levels and Performance  
To ascertain whether the deep/surface processing levels were related to the 

performance of students for the Tasks and software Boxes, correlations were performed 

between the deep and surface scores and performance scores which showed that there 

were no significant relationships (Table 33).  

Students with lower mathematics confidence scored 9.5 and 25.0 for the surface 

and deep scales respectively. Those students with a higher mathematics confidence 

scored 8.8 and 23.2 for the same scales respectively. From Chapter 2, the literature 

indicated that the deep processing level should be aligned with the performance scores 
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and from Chapter 4 that the processing level scores should be related to the mathematics 

confidence. Based on these values, there is no disparity perhaps because the SOMUL 

ASI with only its 10 items was not able to discern sufficiently between the two groups 

of mathematics confidence considering that students had a relatively high mathematics 

confidence in this study.  

Table 33: Correlation coefficients between the processing levels and task scores 

  Surface Score (n = 37) Deep Score (n = 37) 

Mathematics Confidence 0.01 -0.28

Interpretive Task Score -0.06 0.05

Constructive Task Score -0.13 -0.29

Total Score -0.12 -0.15

5.9 Discussion 
This section provides a discussion on all the results found in this chapter and 

tries to align these results with the identified research questions. 

5.9.1 Performance due to Tasks and Boxes 
The performance scores were dependent on the problem (Section 5.5.2, p.144). 

Students performed well in Problem 2, which was an application problem. The scores 

for the other application problem (Problem 1) and abstract problem (Problem 3) were 

lower than that of Problem 2. Students may perform better in the application problems; 

however, the experimental design did not allow an exhaustive look at the abstract and 

application problems. Further, it was found that whilst mathematics confidence did not 

influence how students performed in Problem 2, it did influence the performance in 

Problems 1 and 3, where students with higher mathematics confidence were more likely 

to do better. Therefore, students with higher mathematics confidence should mostly 

perform better than lower mathematics confidence students as expected but there may 

be problem types where mathematics confidence may not always influence 

performance.  
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Performance was also found to be associated with tasks (Section 5.5.2, p.144). 

The scores obtained for the interpretive and constructive tasks corroborated the 

prediction and results of Galbraith and Haines (2000a) that students performed better in 

interpretive tasks than constructive tasks. The study by Galbraith and Haines was based 

on students solving these two task types with pen and paper. In the current study where 

there is a technology-enabled environment, students performed better in the interpretive 

tasks than in the constructive tasks. Although students had access to technology to solve 

the procedural part of the constructive task, this did not provide any advantage to the 

students, possibly as knowing what to do with the software box rather than being able to 

use the software box played an important role in the performance of the constructive 

task. 

 A comparison of scores obtained by Galbraith and Haines for their 

undergraduate students solving tasks in polynomial algebra showed that their students 

scored 37% less in the constructive task than in the interpretive task. In the present 

study, the students performed even worse as they scored 60% less in the constructive 

task than the interpretive task. This probably is because the two studies were in two 

different mathematical domains or possibly because Galbraith and Haines used more 

tasks (6 each).  

The scores obtained for the interpretive and constructive tasks also varied with 

Problem, where students performed better in the interpretive tasks for Problems 2 and 3. 

The suggested reason for this was because the answers for these two interpretive tasks 

had to be deduced from previously calculated values and these required interpreting or 

reading off the variables carefully. For the constructive tasks, students all performed 

significantly different on each problem, performing best on Problem 2’s constructive 

tasks and the worst in Problem 3’s constructive task. This may point to an effect of 
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problem type for the constructive task, with the students performing better on the 

applications problems than the abstract problem. 

Task types were also found to be affected by mathematics confidence with 

students who had higher mathematics confidence performing better in the interpretive 

tasks, whilst performing equally well in the constructive task regardless of mathematics 

confidence. This probably meant that since interpretive tasks required conceptual 

understanding that these students with higher mathematics confidence compared to 

lower mathematics confidence students were more likely to make connections between 

the answers ascertained from the mechanical task and then deduce what they meant, 

such as in the cases of Problems 2 and 3. 

It was interesting that the students regardless of mathematics confidence 

performed the same in the constructive task, as this required finding relationships 

between procedural and conceptual knowledge and then applying them together. It was 

expected that the higher mathematics confidence students were probably more poised to 

do these tasks since they had a higher likelihood of undertaking a deep processing level 

and connecting their procedural and conceptual knowledge. 

Now, looking at the first research question, that is: 

 Does the students' performance in solving the three task types depend upon the 

software box they have access to? 

What has been noted was that performance was dependent on task type but this 

was already known from Galbraith and Haines. Now, was performance on the tasks 

influenced by the software boxes? A cautionary yes is put forward. Performance on 

either the interpretive or the constructive tasks was not significantly dependent on the 

software boxes, although the difference in performance scores between the interpretive 

and constructive scores was (i.e. the interpretive score minus the constructive score) 
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dependent on the software boxes (Section 5.5.2, p.144). In particular, students using the 

black-box software had the smallest disparity in their scores compared to the students 

using the glass and open-box software. Further, marginal significance showed that 

students using the glass-box software were doing better in the interpretive tasks than 

those students in the black-box. Although there was no statistical significance, graphical 

trends indicated that students using the black-box were performing best in the 

constructive task. This suggested that for the constructive tasks, students using the 

black-box software were more likely to grasp the conceptual-procedural knowledge 

connection required for solving constructive tasks and perhaps the black-box software 

influenced the ease in which the students were able to make this connection.  

5.9.2 Exploration Approach for Tasks and Boxes 
The exploration approach for only the constructive tasks was looked at in detail 

since for the mechanical and interpretive tasks very few students explored these since 

they were probably not tasks that encouraged exploration. Students who explored the 

mechanical tasks were more likely to be students using the open-box software since it 

allowed the exploration of different processes such as in the choosing different pivot 

variables.  

Therefore, using only the constructive task to investigate explorations, it was 

found that students explored more with the black-box (44%) than the glass-box (33%) 

and the open-box software (22%) (Section 5.6.1, p.147). Students also explored more 

for Problem 2’s constructive task and least for Problems 1 and 3’s constructive task. 

The number of explorations was found to be dependent on students’ mathematics 

confidence. Students who had higher mathematics confidence were more likely to 

explore Problem 1 than the lower mathematics confidence students but all students 

regardless of mathematics confidence explored similar amounts for Problem 2 and 3.  

Now, the research question to be answered: 



 

 169

Does the students' exploration approach when solving the three task types 

depend upon the software box they have access to? 

Again, the answer to this question is a cautionary yes as it is with only with 

respect to the constructive tasks. The exploration of tasks was dependent on the 

software boxes with the black-box software having the most exploration. The students 

with higher mathematics confidence were more likely to explore using the black-box 

software. Also, the students with the black-box software scored higher in the 

constructive tasks. The link between this approach and performance is now looked at.  

How is the students’ exploration approach when solving the three task types 

associated with their performance? And does this vary with the software box they have 

access to? 

First of all, there is evidence to show that the exploration approach affects the 

performance. However the influence of exploration was dependent on the problem and 

the students’ mathematics confidence. In general, if students decided to explore they 

scored higher than students who did not explore (Section 5.6.2, p.150). However the 

greatest disparity was dependent on whether students explored for Problem 2’s 

constructive task, because if students explored this task, there was a good chance of 

them scoring. This was quite different for students exploring Problem 3, since whether 

the students explored or did not explore, their scores were similar.  

Now with respect to whether the software boxes had any influence, it appeared 

that students who had higher mathematics confidence were marginally more likely to 

have a higher score if they explored with the black-box software than all the other 

students (low mathematics confidence or using glass or open-box software). Therefore, 

the software box that students had access to as well as students recognising a 

conceptual-procedural link influenced the performance when using this approach.  
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5.9.3 Explanations Approach for Tasks and Boxes 
The number of explanations varied with Sequence. The Sequence effect was 

dependent on whether students started with Problem 3 (abstract). If students started with 

this problem they were less likely to generate explanations (Section 5.7.1, p.153). 

Whilst the number of explanations may have decreased, the quality of explanations 

leading to higher performance scores probably was not affected, as was demonstrated 

by the number of explanations having no influence on the performance scores (Section 

5.7.3, p.159).  

The number of explanations also varied with Problems and Tasks (Section 5.7.2, 

p.156). Problem 2 generally had more explanations possibly because it was ‘easy’ (as 

demonstrated by their scores). Thus, students probably felt better to posit explanations 

whether they be real-life or mathematical. Students were more likely to give more 

explanations for the constructive tasks and less for the interpretive tasks.  

Further it was found whilst quantity of explanations did not affect the 

performance, the type of explanations did (Section 5.7.3, p.159). Students who used 

mathematical explanations were more likely to score higher, particularly in the 

constructive tasks. The data also suggested that higher mathematics confidence students 

using the glass-box software were more likely to generate more real-life explanations. 

The possible reason for this is still unclear. The higher mathematics confidence students 

using the open-box software provided more mathematical explanations and less real-life 

explanations (a ratio of 2.67). Perhaps for the students using the glass-box software, just 

seeing the steps did not encourage them to engage with the software in a 

mathematically-minded manner unlike the students in the open-box software and hence 

relied mainly on real-life explanations to help support their answers. 

Now to answer the research question: 
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Does the students' explanation approach when solving the three task types 

depend upon the software box they have access to? 

The answer is yes to some extent. The type of explanations did vary across 

software boxes but was dependent on mathematics confidence (Section 5.7.2, p.156). 

Higher mathematics confidence students using the glass-box software provided more 

real-life explanations than the higher mathematics confidence students using the open-

box software, where the latter students preferred less real-life explanations but favoured 

more mathematical explanations. 

 Further the type of explanations also differed across tasks. For the interpretive 

task, students had a preference for more real-life explanations than mathematical 

explanations. This suggested that perhaps when students approached the solving of 

tasks they will try and make sense of the task from their knowledge experience, either 

using their mathematical or real-life knowledge. Further, the type of problem also may 

influence which explanations that they will use, in particular, if they had an abstract 

problem they will use a mathematical explanation, however, application problems will 

most likely cause students to use real-life explanations. Thus, when students are solving 

an application problem the students will try and make sense of this from a real world 

experience and from a mathematical perspective equally. 

How is the students' explanation approach when solving the three task types 

associated with their performance? And does this vary with the software box they have 

access to? 

The students’ explanation approach was shown to influence performance. The 

total number of explanations did not influence the performance of the students but the 

number of real-life or mathematical explanations did (Section 5.7.3, p.159). Generally 

there was a positive association between mathematical explanations and their 
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performance on constructive tasks for two out of three problems. The number of 

explanations was not influenced by software box and mathematics confidence and 

hence students’ performance with regards to explanation was not influenced by software 

box.  

5.9.4  Processing Levels Approach with Tasks and Boxes 
For the final approach, the processing levels were investigated. As deep and 

surface scores were measured over the study period rather than on a task by task basis, 

the students’ processing levels were analysed within this context and thus only their 

influence on students’ performance was determined quantitatively. The processing 

levels approach is examined at the task level qualitatively in Chapter 6. 

How is students' processing levels approach when solving the three task types 

associated with their performance? And does this vary with the software box they have 

access to? 

Quantitatively, no apparent link was found between performance and the deep 

and surface scores or that the deep or surface scores varied with the software boxes, but 

this issue is also investigated qualitatively in Chapter 6. 

5.10  Concluding Remarks 
This chapter presented the results from the quantitative investigation of the links 

between software boxes, tasks, performance and the three approaches (Sections 5.5 to 

5.8) and discussed how these results answered the research questions (Section 5.9, 

p.165).  

Software boxes were found to influence performance (Section 5.5, p.139). 

Further, students having access to the black-box software were more likely to explore 

(44%) than the students using the other two software boxes (33% glass-box software 

and 22% open-box software) (Section 5.6.1, p.147). Open-box software promoted more 
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mathematical explanations whilst the glass-box software promoted more real-life 

explanations (Section 5.7.2, p.156). Mathematical explanations were associated with 

better performance but only on constructive tasks. There was no apparent influence of 

software Boxes on the association of mathematical explanations and performance. No 

quantitative relationship was found between the deep or surface processing levels and 

the software boxes or performance (Section 5.8, p.161). 

The detailed quantitative findings are summarised in Appendix 7 (p.315) for 

performance scores (Annex 5, p.326), frequency of exploration (Annex 6, p.328), 

exploration and performance scores (Annex 7, p.329), frequency of explanations 

(Annex 8, p.330), explanations and performance scores (Annex 9, p.332), and 

processing levels (Annex 10, p.332). Each quantitative finding is numbered and would 

be referred to by its finding number in Chapter 6. 

In this chapter it was noted that the influence of students’ deep and surface 

processing levels and quantity of explanations could not conclusively be determined as 

to why there were differences in tasks and software boxes. The literature review in 

Chapter 2 suggested that students’ processing levels and quality of explanations should 

affect how students solved the tasks. Chapter 5 dealt with the quantitative data in 

particular students’ performance scores. Thus, it is possible that even if students 

produced the wrong answer that the students’ processing levels and explanations could 

still differ when arriving at their answers. Thus, in Chapter 6, the explanations and the 

students’ processing levels are discussed qualitatively for the software boxes and tasks. 

The explanations and processing levels are considered qualitatively for each task by first 

understanding the findings from Chapter 5 based on the students’ performance scores 

and mathematics confidence and further in the case of the constructive tasks, their 

exploration habits. Approximately 11 main Findings (Findings 2 to 5, 7 to 8, 11 to 15) 

are drawn upon to help further this examination.  
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Chapter 6. Tasks, Boxes and the Approaches: 
Qualitative Analysis 

 “The mind uses its faculty for creativity 
only when experience forces it to do so. “ 

- Jules Henri Poincare 
` 

6.1 Introduction  
This chapter deals with Research Question 3 and the overarching research 

question. These questions seek to know how performance is influenced by the 

approaches and how this influence varies across the software boxes. In Chapter 5, the 

quantitative data showed that students’ performance on task types were dependent to 

some extent on explanation types, students’ mathematics confidence and explorations. 

Further, the performance was also dependent on the software box that the students had 

access to. This chapter tries to describe how or why there is a relationship between 

performance and approaches by looking at how the students solved and answered the 

tasks, using the collected think-aloud data, the typewritten answers and the screen 

capture videos of the student and the software boxes. 

This chapter begins by reflecting on the qualitative data collected (Section 6.2, 

p.175). The chapter is then structured into three main sections representing each of the 

task types: that is, mechanical (Section 6.3, p.181), interpretive (Sections 6.4 and 6.5) 

and constructive (Section 6.6, p.220). Each section then discusses how performance was 

affected by the approaches as well as mathematics confidence. This is then followed up 

by looking at how the different software boxes impacted on these relationships. When 

discussing the interpretive and constructive tasks, the analytical unit used for 

comparison is the problem. The analytical framework presented in Figure 3 (p.48) is 

used as a lens to investigate the relationships. The updated framework includes the 

finding from Supporting Study 1 that mathematics confidence is related to mathematical 

processing levels. The chapter finishes with how the results presented both here and in 
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Chapter 5 help to answer the research questions (Section 6.7, p.237) and then 

concluding remarks are made (Section 6.8, p.242).  

6.2 Think-Aloud and Typewritten Data 

The tasks on the post-test were marked on a scheme (Appendix 6, p.313). The 

marking scheme provided the expected answers but any variation or answers that were 

near to these were accepted, particularly when students answered the tasks from a 

mathematical aspect. 

During the post-test, which lasted approximately one hour, the students were 

asked to think-aloud (Ericsson and Simon, 1984) as they worked through the tasks. 

Students were prompted to think-aloud by using phrases such as “Keep talking”, “What 

are you thinking?” and “What are you doing now?” It was necessary to use the latter 

two phrases when students were not forthcoming or were engrossed in working with the 

software or watching the screen. Students were not prompted to talk whilst inputting 

data or typing in their answers. As indicated in Section 5.2 (p.125), the audio session 

was either missing or corrupted in the case of four participants (Participants 5, 13, 8 and 

26). The typewritten answers for the tasks by all 38 students came to over 11,210 

words: that is, approximately 295 words per student. In addition, over 40 pages of 

observation notes by the researcher were taken (see Figure 29).  

To support this data, 8 students’ sessions were transcribed. This is similar to the 

number of transcripts used by Chi et al. (1989) in her self-explanations study where 8 

students’ transcripts were also compared. The eight students in this study were chosen 

to be representative of their assigned software box, their mathematics confidence and 

the sequence they solved the problems. The students were selected based on at least one 

student representing each software box in the higher and lower mathematics confidence 
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groups. Also, for each mathematics confidence grouping, at least one participant had to 

represent one of the sequences. 

 

Figure 29: Example of observational notes for Participant 13 whilst solving Problem 2 (Question 3) 

Further, students were chosen based on their performance scores and how vocal 

the students were, that is, the frequency of speech during the think-aloud session. The 

students’ frequency of speech allowed the researcher to investigate more fully the self-

explanation process and hence students who were more verbose were considered for 

selection. Also, students with average to high scores were more likely to be considered 

for selection within the groupings because these were the students who provided more 

written or think-aloud explanations as some students often wrote “I don’t know” 

without providing any think-aloud explanations. These students with minimal think-

aloud or written explanations were still used for illustrative purposes when discussing 

qualitative data in this chapter with respect to their written answers. As mathematics 

confidence was found to influence performance scores, a high and low performance 

scorer from the higher (Participants 9 and 39 respectively) and lower mathematics 

confidence groupings (Participants 33 and 6 respectively) were also chosen.  

The participants whose sessions were transcribed are presented in Table 35. The 

term ‘Part.’ in the table represents participant. N/P in the table indicated that there was 

no participant representing that combination and ‘Missing audio’ indicated that there 
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was one participant who fit the profile but the audio was missing. The blanks represent 

combinations that were not transcribed.  

Table 34: Participants whose session was transcribed depending on Sequence, Mathematics 
Confidence and Box 

Maths 

Conf.  

Box Sequence 1 Sequence 2 Sequence 3 

Lower Black N/P Part. 6 (5, 0.3)  

 Glass Part. 15 (5, 0.8 )1   

 Open Missing audio  Part. 33 (6, 1.0) 

     

Higher Black Part. 1 (8, 0.8)  Part. 9 (7, 1.8) 

 Glass Part. 16 (7, 0.6) Part. 39 (8, 0.4) N/P 

 Open  Part. 30 (8, 1.0)  

1 Numbers in the parentheses represent the actual mathematics confidence scores and mean 

performance scores for the participant (out of 2) respectively 

All the data (that is, the observational notes, videos, typewritten answers and 

transcripts) were used together for cross-referencing purposes when trying to explain 

what the students did. The examples illustrating the steps undertaken by the students 

were drawn mainly from the 8 students’ transcripts. Any noted student behaviour for a 

group combination (for example, glass-box software and low mathematics confidence) 

was cross-checked with the observational notes and, if necessary, additional student 

data were presented for illustration (see for example think-aloud data from Participant 

12, p.217).  

The think-aloud session was intended to determine students’ thought processes 

or their self-explanations. However, from the transcripts, students’ thought processes 

could not accurately be determined except when they were typing their answers, 

because when the student read the question in most instances they began typing the 

answer soon after and creating explanations as they typed. For example: 
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1:22:56: Clicks Q3C in the answer form and then reads instructional materials. “Last 

part. If the number of hours of carpentry per day is increased from 48 to 60 …”, 

continues reading out the question. 

1:23:20: “Right … obviously”, looks at the screen, “obviously first of all the total 

production would be increased”, looks down from the screen.  

1:23:27: “So, firstly”, begins to type the answer, “total production would be increased, 

overall production …”, continues typing, “kinda obvious”, continues typing, “would be 

increased and in particular”, stops typing, looks at papers, “ ... they would increase the 

number of stools produced”, continues typing, “… would increase the number of stools 

produced as the solution to the first question, the first part of the question.”  

(Participant 16, M, GB, Higher MC = 7).

The codes in Participant 16, M, GB, Higher MC = 7, refer to, firstly, the 

participants’ gender (F = female; M = Male), the second code refers to the software box 

(BB = black-box, GB = glass-box and OB = open-box) and the last code refers to 

mathematics confidence (MC), where lower and higher MC are used to refer to 

mathematics confidence groupings and “= 7” refers to the actual mathematics 

confidence score. These participant codes are also located in Table 11 (p.91). 

 Hausmann and Chi (2002) found that students who produced spontaneous self-

explanations were inhibited when required to type their self-explanations rather than 

just thinking-aloud. In their experiment, students studied only the instructional materials 

rather than solving the tasks when thinking-aloud. In the present study, in contrast, the 

students did not have to type their self-explanations but were rather encouraged to 

think-aloud and to type their answers whilst solving the tasks. It is possible that typing 

may have inhibited the self-explanations that students were able to generate out loud. 

Further, Gentner (1988) suggested that typing may inhibit cognitive ability and 

Hausmann and Chi (2002) suggested that the inhibition of their cognitive ability may be 

a contributory factor in the self-explaining process. However, as students were required 

to type, they perhaps knew they could change the answer they typed as versus with a 
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pen-and-paper when the answer should be written usually correctly the first time. 

Students often changed their answers, by either erasing phrases and rewriting new 

phrases or adding in new words when typing in their answer. 

46:01: “This is a shot in the dark … you won’t want to have a high value for u”.  

46:09: “There must be a reason”, Types answer: “you wouldn't want a high value for u 

because as u in(creases)”, then erases the last bit to have, “you wouldn't want a high 

value for u because as u approaches 90 it would”, then erases the last bit to finally 

have, “you wouldn't want a high value for u because”.  

(Participant 16, M, GB, Higher MC = 7). 

Hausmann and Chi (2002) suggested that having to check grammar or spelling 

when typing may inhibit students from interacting with the materials in a deep way. In 

this study, students were told not to worry about spelling and grammar as long as the 

researcher understood what they were typing. Even so, it was observed that students 

‘fiddled’ with their typewritten answers such as fixing grammar or erasing parts of the 

sentences, such as Participant 16 (in his answer above). However, although the students 

typed their answers immediately, it was possible that they were still engaging with their 

materials. There were two types of students when it came to typing answers: there were 

those who spoke as they typed their answers and those who typed without speaking. 

Further, some students were more verbose when it came to thinking-aloud than others 

and this may be due to personality where people who were more talkative tended to 

think-aloud better than the quiet personalities. According to Ericsson and Simon (1984) 

using a practice task should get a student accustomed to thinking-aloud and through 

prompting, students will be forthcoming in thinking-aloud. However, the practice task 

used in this study did not seem to overcome the differences in personalities. For 

example, even when prompting, some students were not forthcoming in their answers 

(1st example) whilst others were quite verbose (2nd example). 
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1:00:34: Restarts the tasks, and clicks input problem and inputs the numbers. Clicks 

iteration and then looks at her instructional materials.  

1:02:20: I ask ‘What are you looking at?’: “Ah, the solution for number 2 and I’m 

gonna answer the thing now.” 

1:02:43: Enters the answer. 

(Participant 1, F, BB, Higher MC = 8) 

40:18: After being prompted to talk by saying ‘Just keep talking’: “I’m reading 

equation 2 on page 2. So, that whole paragraph there, I’m just looking for something to 

wing this problem 2, so I can give you an answer.” 

40:59: After being prompted to talk again by saying ‘Just keep talking’, “Alright well, 

then part b, then since they didn’t find, what the, what the x, y and t was then I’m 

guessing if we relate it to the … well, to page 2, right, of the introduction and it was 

talking about the farmer, I’m thinking those problems, those… ummm... those variables 

could actually be like real-life stuff like key ones like how they had it labourers and they 

could actually for the constraints, they could actually have a value that would equal to 

something less than or equal to a number because … because of what? Hold on … I lost 

my thought there … sorry.” Continues looking at instructional materials. 

(Participant 15, M, GB, Lower MC = 5)  

Since there were different levels of think-aloud, emphasis was placed more 

heavily on the answers that students typed since, for both the constructive and 

interpretive tasks, students were asked to give detailed explanations. This was also used 

to ascertain the explanations they were making. Whilst the typewritten answers did not 

represent ongoing cognitive processes, they did represent or indicate the sort of self-

explanations the students were generating when solving the tasks. The attached 

Compact Disc (CD) has a compilation of these answers.  

The explanations were coded into whether students were using mathematical 

principles (using any type of mathematics) or relating to real life (using their own 

practical experience) to solve the tasks (Section 5.4, p.136). The explanation 

classification helped in determining what direction the students’ conceptual thinking 
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was heading. Also, as some of the students began typing their answers immediately, 

their self-explanations were actually ongoing or formed as they typed and this could be 

observed by their sometimes fractured typewritten sentences that were corrected or 

erased, as was seen with Participant 16 (p.296).  

6.3 Mechanical Tasks  
All 38 students performed the mechanical tasks correctly, as this simply required 

inputting values and clicking buttons. Further, if there were any inputting errors, the 

researcher brought this to the attention of the student. Here is an example of the 

researcher correcting Participant 16 for Problem 3’s mechanical task: 

32:41: “So, I’ll input the values into the programme” inputs the values. 

34:44: He has inputted the wrong thing for the third constraint (inputting numbers from 

the second constraint) so I ask him which line he is reading and then he reads out the 

second constraint and indicated to him he entered that before and then he says, “Oh 

shucks”. He leaves the variables without any coefficients blank 

35:57: He double checks his values and then tells me, “I’m just double-checking the 

values for any errors”, and then continues double checking the values. 

 In real educational settings, there would not be someone ensuring the correct 

input of values and errors can arise from misreading, transcription errors or inputting 

numbers in the wrong order. 

Although scores were not collected for the mechanical tasks, it was interesting to 

investigate how students used the software boxes. This is important as it was 

determined in Chapter 5 that students’ mathematics confidence affected their 

exploration. This section is divided into sections where the black-box and glass-box 

software explorations for mechanical tasks are discussed first, followed by the 

explorations of students using the open-box software. 
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6.3.1 Exploration Approach: Black-Box and Glass-Box Software 
Beyond the ‘normal’ clicking of buttons to solve the task, only one student 

(Participant 1) using the black-box software was interested in knowing or understanding 

the steps, although Participant 9 thought it was ‘cool’ to just get the answers. Here is 

Participant 1 transcript on knowing the steps whilst solving the practice task: 

28:06: “If you don’t have to do anything then what’s the point ... if you don’t have to do 

anything, if it does it, like what are you supposed to do then?” 

28:21: I explain it just gives you the answer when you solve it 

28:34: “If it gives you the answer, then you don’t really have to do anything. I thought 

like I would have to do something with these four values and kind of see where it varies 

and where you’re getting the maximum” 

28:45: “I don’t know, if it gives the answer then just … so that’s all you supposed to do 

with that, click iteration and it gives you the answer” 

 (Participant 1, F, BB, Higher MC = 8) 

For the glass-box, only 5 students (Participants 13, 15, 18, 21 and 24) tried to 

conjecture and explain the steps out loud. For example, here is Participant 15 

conjecturing what each constraint in an iteration for the practice task represents (the 

variables w and c represent the production of wheat and corn respectively): 

24:09: Clicks iteration. “Ok, so, I just clicked the iteration button and it came up .. the 

second set of values came up. I’m seeing Row … seeing Row 1, well 0, 1, 2”, (the labels 

for the rows), “And for Row 0, there is 9000, Row 1 the answer is 40 and for Row 2 the 

answer is 30. So, I guess [mumbles]”, referring to the objective function and the 

subsequent constraints. 

24:57: “Well the best, well the answer that the programme said will be the best would 

be like 2 acres of wheat” hovers over 2w in the first constraint of the second constraint, 

“and no corn” hovers over 0c in the first constraint, “and that will give 40 pounds, 

right? So I believe ... minus s2?” Hovers over the s2 column. Scrolls his mouse across 

the 1st constraint (-½ s2) and then the second constraint. 

25:25: Hovers over s2 column, “Hold on, I’m checking to see what s2 means”. Turns to 

the instructional materials.  
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23:31: “s2 … slack variable”, says whilst looking at instructional materials returns to 

the screen and then back to the paper. 

26:01: “Ok, s2 is the slack variable but it is minus so, I guessing that is for, that is the 

fertilizer control … and I believe that we would have a minus value for the fertilizer 

control, can we?” I replied don’t know. 

26:21: Looks at this instructional materials, “No, I don’t think so you could have a 

minus value for the fertilizer control … then that would mean, that you already put too 

much fertilizers and you would cross the amount of 120 that you have and the slack 

values to actually accommodate for the … to make up the 120. So, having a minus value 

there would mean that you’re going over the limit. So, I think the best one would be 

number 2.” Hovers over the 3rd constraint (referring to Row 2 I think), “So, that should 

be a ½ acre of wheat and 1 acre of corn and that would be the best … and that would 

be the best one for to make the most amount of money. The best feasible one.”  

(Participant 15, M, GB, Lower MC = 5) 

There were possibly other students using the glass-box software who were trying 

to make sense of the steps but it was difficult to know without them uttering their 

conjectures. The conjectures and explanations of the iterations made by the students did 

not always correspond to the theory as with Participant 15 above who thought each 

constraint represented a production of wheat and corn. It was observed that those glass-

box students who were trying to understand the steps did this mainly during the practice 

task and the first mechanical task but the need for understanding the steps for each 

progressive task decreased. For example, this is seen for both Participants 15 (see 

Figure 30) and 16 (see Figure 31, p.187).  

In fact, most students resorted to using the glass-box like a black-box by 

clicking the iteration button until they got the answer. Participant 15’s (M, GB, Lower 

MC = 5) transcript whilst he was solving the practice task and subsequently when 

solving Problem 3’s mechanical task illuminates what was occurring (see Figure 30). 
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Practice Question 

24:09: Clicks iteration. “Ok, so, I just clicked the iteration 

button and it came up ... the second set of values came up. I’m 

seeing Row … seeing Row 1, well 0, 1, 2”, (the labels for the 

rows), “And for Row 0, there is 9000, Row 1 the answer is 40 

and for Row 2 the answer is 30. So, I guess [mumbles]”. 

24:57: “Well the best, well the answer that the programme said 

will be the best would be like 2 acres of wheat”, hovers over 2w 

in the first constraint of the second constraint, “and no corn”, 

hovers over 0c in the first constraint, “and that will give 40 

pounds, right? So I believe ... minus s2?” Hovers over the s2 

column. Scrolls his mouse across the 1st constraint (-½ s2) and 

then the second constraint. 

25:25: Hovers over s2 column, “Hold on, I’m checking to see 

what s2 means”. Turns to the instructional materials.  

23:31: “s2 … slack variable”, says whilst looking at 

instructional materials returns to the screen and then back to the 

paper. 

26:01: “Ok, s2 is the slack variable but it is minus so, I 

guessing that is for, that is the fertilizer control … and I believe 

that we would have a minus value for the fertilizer control, can 

we?” I replied ‘don’t know’. 

26:21: Looks at his instructional materials, “No, I don’t think 

so you could have a minus value for the fertilizer control … 

then that would mean, that you already put too much fertilizers 

and you would cross the amount of 120 that you have and the 

slack values to actually accommodate for the … to make up the 

120. So, having a minus value there would mean that you’re 

going over the limit. So, I think the best one would be number 

2”. Hovers over the 3rd constraint (referring to Row 2 I think), 

“So, that should be a ½ acre of wheat and 1 acre of corn and 

that would be the best … and that would be the best one for to 

make the most amount of money. The best feasible one.”  

27:01: I say to him ‘Ok, I’ll like your thinking, but it is not 

exactly where we are getting the answer from. You’ve got to 

Researcher indicates 
to click iteration 
button to get the 
solution – this may 
influence how he 
works in the future 

Tries to understand 
the constraints – but 
incorrectly interprets 
them – so, to some 
extent engaging in 
the problem solving 

Checks what s2 – 
suggests not an initial 
engagement with the 
instructional 
materials 
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click iteration until it says the problem has been solved.’ 

27:14: “Ok”. He clicks iteration and then I tell him ‘Right. 

Click iteration again’ and then the “best solution has been 

found” pops up. Then I say, ‘Right, now say ok’. He clicks 

“ok” on the pop-up. I say ‘The solution is actually … can you 

see the solution?” He looks at the screen.  

27:51: “Oh well, I’ll tell you just now” … “We see that w, the 

wheat is 20 and corn is 20. But that is planting no wheat or 

corn. There are no acre …”. I interrupt him by saying, ‘say 

that back again’. 

Problem 3 (Question 1) 

36:05: He clicks ok. He hovers over answer form and I tell him 

‘Oh, could you just go back to input problem, I just realised 

something, you made a mistake in, constraint B, it is supposed 

to be 100, less than or equal to 100, you got 1’. “Thank you, 

alright gonna put that in”. I tell him, ‘Alright that’s it’. He now 

double checks the values. 

36:55: Clicks iteration three times until the pop-up comes up, 

“And they found an answer.” He clicks ok. “There it is. Ok, I 

see the answer now, z is 105, x is 0, y is 0, t is 15 and u is 90. 

So, that’s the best answer … solution they can get.” He wants 

to know if he should go onto part b, and then I tell him he’s got 

to put it into the answer form and wants to know if he can 

copy/paste it and tell him he’s got to type it in which he 

proceeds to do. 

Clicks iteration 3 
times without much 
time spent reflecting 
during the iterations  

Figure 30: Think-aloud transcript of Participant 15 (M, GB, Lower MC = 5) solving a mechanical 
task for the practice task and Problem 3 using the glass-box 

When solving the mechanical tasks, both Participants 15 and 16 initially spent 

some time looking at the steps in the practice tasks. Participant 15 appeared to engage 

with the steps more than Participant 16, although Participant 16 was interested in 

knowing what BV (basic variable) represented [26:54]. However for their subsequent 

tasks, both Participants 15 and 16 quickly clicked through till they got an answer.  
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Practice  

26:15: “Right, so, I click iteration to solve the problem”. 

Clicks iteration. Looks at the new iteration and then looks at 

instructional materials. 

26:37: After being prompted to talk: “Right, so, that’s the 

iteration and so … ummm…”. Keeps moving his mouse over 

the iteration. 

26:54: “What’s BV again?” Sees this in the iteration. Looks 

at instructional materials, “Basic variable”. Keeps reading 

his instructional materials. 

27:20: “I guess we click answer form now and then enter the 

answer”. He clicks answer form. I tell him, ‘Ok, not so fast 

… you got to click iteration’ when the answer form pops up, 

I tell him, ‘click cancel for a minute’, he clicks cancel on the 

answer form, and continue telling him, ‘you got to click 

iteration, until you see a pop-up, that tells you the problem 

has been solved’. “Ok”. I reply, ‘alright’. 

27:42: Clicks iteration again, and gets the pop-up that says 

problem has been solved 

 

Problem 3 (Question 1) 

32:41: “So, I’ll input the values into the programme”, inputs 

the values. 

34:44: He has inputted the wrong value for the second 

constraint (inputting numbers from the second constraint). I 

ask him, ‘Which line are you reading’, he replies, 

“pardon?”, I say again, ‘Sorry, I said which line are you 

reading?’. He replies, “Umm…after the second line … 3x + 

4y + 60 – u”. I say to him, ‘You’ve just entered that before’. 

He says “Oh shucks”. Erases the values and continue 

entering the values. He leaves the variables without any 

coefficients blank 

35:57: He double checks his values, “I’m just double-

checking the values for any errors”, and then continues 

double checking the values. 

Wants to 
understand some 
aspects of the 
steps i.e. BV 
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36:11: Clicks ok, “And now I click iteration”. Clicks 

iteration thrice, until the solution have been found pop-up 

comes up. 

No longer 
interested in 
understanding the 
steps but just 
getting the answer

Figure 31: Think-aloud transcript of Participant 16 (M, GB, Higher MC = 7) solving a mechanical 
task for the practice task and Problem 3 using the glass-box 

Both Participants 15 and 16 clicked the iteration button quickly to get an answer 

(timestamp [36:55] and [36:11] respectively) in their subsequent task that they solved 

which was from Problem 3. Timestamps for students’ transcripts are represented in 

square brackets in this thesis. The rapidity with which they clicked the iteration button 

might at first appear to be due to the researcher, who indicated to both of them that they 

should click the iteration button until the pop-up button appeared ([27:01] and [27:20] 

respectively for Participants 15 and 16). However, similar instructions had been given 

in the instructional materials (Appendix 5, p.304).  

The students here were treating the glass-box software like black-box software, 

but not all students did this. Participant 39 was told the same thing during the practice 

task [21:08] and in the subsequent task that he solved which was Problem 2, what was 

noted was that after each iteration he looked at the screen and then clicked iteration 

afterwards [29:53] (Figure 32). There is uncertainty whether Participant 39 was thinking 

or at least observing what was happening at each iteration step. Similarly, when he did 

the mechanical task in his second question (Problem 3) (not shown) and his third 

question (Problem 1) [55:33], he appeared to again be looking at the screen after each 

iteration, although it was difficult to know for certain since there were internet 

interruptions. At timestamp [56:25], he made the statement “I’m just figuring it out”, 

although the thought was fragmented, it suggested that he was thinking what the 

answers from the software or linear programming might be representing. 
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Practice 

20:00: “And I [mumbles] the iteration button”. Clicks 

iteration button and gets the first iteration, “Well, I … uh … 

iterate … ok”, keeps looking at the screen, “…Is that the 

answers from before?” Turns to the instructional materials, 

“Yes, it was uh … z is 10,000”, looks back at the screen, 

“Something is amiss here”, keeps looking at the screen, “I 

got 9000, 40 and 30”. He turns back to the instructional 

materials, “Yeah, that’s right, ok”, and then looks back at the 

screen. I tell him, ‘Just a minute, the excel file is saving 

itself, so it might go blank in a minute’. Excel file saves. I 

tell him, ‘you can go ahead now.’ 

21:08: “What do I do … reset it now?”. He hovers over the 

rest button. I tell him, ‘No, no. Actually you haven’t got the 

answers as yet. You got to click iteration until it says the best 

solution has been found’.  

21:18: Hovers over iteration, “Oh ok …”, turns to the 

instructional materials, “So, the 20 acres, the 20 acres of 

wheat and the 10000 dollars … no, ok”, clicks iteration, 

“Iteration again”. Looks at the screen, “Ok that’s it … yeah, 

that’s it”, I tell him, ‘just click iteration. Just once more. Just 

for me to show you this. Just click iteration.’ He clicks 

iteration and the best solution pop-up comes up and I tell 

him, ‘right, that’s how you know the best solution has been 

found’, he says, “The best solution has been found … Ok … 

it come up, the best solution … that’s good …Ok”, clicks ok. 

Problem 2 (Question 1) 

29:53: Clicks iteration. Looks at the screen. Clicks iteration 

again. Keeps looking at the screen, “Ok”, clicks iteration, the 

pop-up comes up, “The best solution has been found”.  

30:23: “Ok, when I solve it, store it in the answer form?”, I 

tell him, ‘yes’. Clicks answer sheet, “Ok, z is 140, x is …” 

and then types in the answer 

Problem 1 (Question 3) 

55:33: Clicks iteration. Looks at the screen. Clicks iteration 

Clicks iteration – 
appears to pause 
between each 
iteration 

Researcher also 
indicates he must 
click iteration 
until he gets the 
pop-up box 

Looks at the 
screen after each 
iteration 

Looks at the 
screen after each 
iteration for the 
problem right 
after the practice 
problem 

He checks back 
the instructional 
materials for the 
answer not a 
definition
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again. Keeps on looking at the screen (not sure if it is 

because the internet is slow). Clicks iteration and the pop-up 

comes up, “Alright”, clicks ok and gets rid of the pop-up. 

His mouse hovers over the last column in the last iteration 

for the answers rather than the separate answer column, then 

he keeps looking at his instructional materials. 

56:25: “Oh”, Prompts him to speak as he clicks answer 

form, “No, the answer … [mumbles] … I just figuring it out 

… Mhmmm …. Uh … pen”, types in the answer, clicks ok 

and gets rid of the answer sheet. 

Figure 32: Think-aloud transcript of Participant 39 (M, GB, Higher MC = 8) solving a mechanical 
task for the practice task, Problem 3 and Problem 2 using the glass-box 

Further, he hovered over the iteration where it appeared as if he read out the 

values of the variables from here rather than the separate column where the answers are 

placed. This suggests he was looking at the iterations and making sense of the new 

equations being presented to him after each iteration. However, without him explicitly 

stating that he was looking at these equations meant the conjecture that he was engaging 

with glass-box software is not conclusive. 

The main difference amongst Participants 15, 16 and 39 was that Participants 15 

and 16 appeared to lack engagement with the instructional materials as well as with the 

glass-box software whilst Participant 39 appeared to have made efforts to observe and 

perhaps understand what was happening whilst using the software. There were thus two 

ways students were using the glass-box software to solve mechanical tasks. The first 

way was that some students paid attention to the steps in the practice task but in 

subsequent tasks dismissed the need to look at the steps and then began treating the 

glass-box software almost as black-box software. The second way was that the students 

continued to be interested in observing and looking at the steps even when they had 

completed four mechanical tasks (that is, the practice and three mechanical tasks from 

the problem). The former group of students thus had less engagement with the glass-box 
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software and this may reflect a surface processing level when using glass-box software. 

The second type of student who engaged more or at least paid attention to the screen 

was probably using a deep level of processing. 

6.3.2 Exploration Approach: Open-Box Software 
In the open-box software, the solving of mechanical tasks was slightly more 

complicated than in the black-box and glass-box software since students decided which 

pivot variable to choose (see Figure 33).  

 

 

Figure 33: Think-aloud transcript of Participant 33 (M, Lower MC = 6) solving a mechanical task 
for Problem 2 using the open-box software 

Although in most cases, students’ initial conjectures (that is, choosing the 

variable that would yield the highest profit) were true, (for example at timestamp 

[52:06] for Participant 33 in Figure 34) , they often got muddled when presented with 

the second iteration and were uncertain as to how to proceed (see timestamp [52:57 to 

54:49] for an example in Figure 34). Further, when the students using the open-box 

software had to interact with the software box, they were often concerned about whether 

they were doing the task correctly and if they were getting the right answer (for example 

Problem 2 (Question 2) 

49:51: “Ok, let’s see what this one is talking about” read the 

instructional materials, “First of all, let’s solve it, ok, so we 

can do that”. 

50:18: Looks at the papers and the screen [….]

51:20: “Let’s see if I can pick which one to solve.” [ ….] 

52:06: “Ok, I’m going with x having the biggest influence, so, 

I’m going to choose that as my pivot variable”, chooses x and 

gets his first iteration 

52:57: Hovers over the column x in the new iteration, hover 

over y and then t. 

53:12: “The next one I’m going to do is t … which I think is … 

appears less often, which you want more of”. Hovers over y 

2nd iteration: 
Unable to choose 
correct PV 

1st iteration: 
Decides the PV 
correctly  
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[55:27 to 56:51] in Figure 34). The students using the black-box and glass-box software 

did not have these qualms. 

Investigating the transcripts, videos and observation notes of students solving 

the mechanical task with the open-box, it appeared that those with higher mathematics 

confidence were more likely to spend longer on the tasks and trying to understand the 

process. This did not mean that students with lower mathematics confidence did not 

have similar scores, but perhaps tackled the tasks with less engagement. 

For example, Participant 33 indicated that he had a lower mathematics 

confidence but still seemed to understand basic mathematics principles and engaged 

with the instructional materials to some extent. For example, he understood what the 

slack variables were when he was presented with the canonical form of the practice 

problem (see Figure 34, [14:25]). Recall that the canonical form is the basic structure of 

linear equations, with all the variables on the left-hand side and all numbers on the 

right-hand side (Section , p. )3.7 86 . Recall also that slack variables are the variables 

added to make inequality constraints become equations (that is, have an equal sign). 

However, when carrying out the mechanical part of the Problem 1, he wanted to 

pivot z [26:58]. Recall that the pivot variable is the variable that is increased in order to 

increase the profit, z (Section 3.7, p.86). The pivot variable is usually the variable with 

the largest influence on z and the pivot variable is chosen based on its coefficient. As 

coefficients change from one iteration to the next, this means that the pivot variable will 

also change. The variable z (the profit) could never be the pivot variable as its value is 

dependent on the other variables. Thus, Participant 33’s logic for choosing z was that he 

needed a variable that appeared once [26:58] as this was why he had initially chosen x – 

“the simplest one” [26:00]. He further expected that he could not choose y since it 

appeared in all the equations [26:58]. Here, he was making a conjecture that did not 

seem to be grounded in the mathematics of the problem.  
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Practice

14:25: “Ok, so it makes all the slack values for me ... that’s 

handy”. 

Problem 1 (Question 1)

26:00: “So, we work with the simplest one, which is the x 

one and I’m going to click on iteration with x”  

26:12: Proceeds to click iteration and choose x, “And we’ll 

see what happens”. The iteration is produced.

26:58: “I think I want to know if to iterate again and just 

trying to work out which one basically. Well, y appears in 

most of the equations. So, don’t know if that is a good one 

to go for. I tried to go for ones that appear once last time. 

So, I might try and go for the z one this time.” 

27:22: Iterates and chooses z and realises it says it cannot 

use that variable choose another. “Alright, I got to use 

another one” 

27:59: “I got to see if there is anything left in there.”  

28:25: “Let’s go for the y then” Chooses y and gets an 

iteration.

Chooses x since it 
is the simplest one 

Problem 2 (Question 2)

52:06: “Ok, I’m going with x having the biggest influence, 

so, I’m going to choose that as my pivot variable”, chooses 

x and gets his first iteration 

52:57: Hovers over the column x in the new iteration, hover 

over y and then t. 

53:12: “The next one I’m going to do is t … which I think is 

… appears less often, which you want more of”. Hovers 

over y 

54:00: “Or I could just try them randomly until I get one”. 

54:05: “Try y” Chooses y. And gets that he cannot uses that 

variable 

54:17: “Yeah, if I try to do x, y” 

54:23: Chooses t, and gets a new iteration. 

[…] 

55:27: “I’m just curious to see what would happen if I had 

Decides to use y 

Wants to use t – as 
it appears less 
often 

Chooses x since it 
had the highest 
influence 

Uses y when z 
does not work 

Does not choose y 
because it appears 
in all – but wants 
to pivot z 
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chosen different ways around. So, I’m just going to see if 

there is a difference, to get rid of these two variables here”. 

Hovers over the y column in the canonical form and t 

column in the first iteration 

[…] 

56:49: “I can’t really remember what I got the first time 

around”. 

56:51: “I remember y was zero and therefore the same 

again … maybe it doesn’t matter too much then but I 

already did it”.

Tries the pivot 
variables in a 
different order 

Problem 3 (Question 3)

1:08:43: “Uh it doesn’t seem to matter which one you pick 

once it is the right answer … just pick any”. 

[…] 

1:10:10: Clicks iteration: “Cause we have 4 variables this 

time we need to do one more, so we need to do for u as 

well”, chooses u for the iteration, “it’s a bit bigger”, and 

gets his iteration.

Realises the order 
does not matter

The variables and 
no. of iterations 
relationship 

Figure 34: Think-aloud transcript for Participant 33 (M, Lower MC = 6) whilst solving mechanical 
tasks using the open-box software 

However, when he began to carry out the mechanical task in Problem 2, he made 

the correct conjecture by using x since it had the biggest influence [52:06] but then 

returned to his previous deduction to use t as it appeared less often [53:12]. This did not 

last long as he changed his mind and decided to use y, but, soon realising that this did 

not work, he reset the mechanical task to its canonical form and then used t as his pivot 

variable [54:05 to 54:23]. 

The reason why he changed to y in this case may be a latent effect from when he 

did the mechanical task in his first question (Problem 1), where his conjecture of using a 

variable because it appeared less did not work, but using a variable (y) that appeared 

several times worked [28:25]. Whilst the reason why this was working seemed to 
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confuse him, he was unable to determine a satisfactory reason and persisted in using this 

conjecture for Problem 2. 

One of the things that Participant 33 did wonder about was whether the order of 

choosing the variables made a difference to the answer he got [55:27 to 56:51]. Hence, 

when he started Problem 3, he indicated that he no longer had to decide since he could 

pick any pivot variable [1:08:43]. However, his reasoning for the number of iterations 

he had to go through was interesting as he indicated that because there were 4 variables 

he had to do 4 iterations [1:10:10]. Whilst, this was not strictly true, in the case of the 

linear programming tasks he had to solve, this was a rule-of-thumb that could have 

worked. 

The way in which Participant 33 worked out how to carry out his iterations was 

quite different from Participant 30 who had a higher mathematics confidence. 

Participant 30 also understood the canonical form with the practice task, but apparently 

with a deep level of processing, since from the canonical form of the iterations he 

understood the basic solution (z = 0, w = 0, c = 0) of the canonical form (see [26:00 to 

27:21] in Figure 35).  

In the practice task, he proceeded to do the iterations by first choosing c and 

then w as his pivot variables. When he started his first question (Problem 2), he chose x 

as his first pivot variable and then proceeded to choose y; however, the open-box 

software indicated through a pop-up box that he could not use y. The reason why y 

could not be used was because it had a positive coefficient in the iteration. This 

prompted him to go back to the practice task to understand what he did previously. He 

then proceeded to solve the practice task again to ensure he understood what was 

occurring. Participant 30 finally solved Problem 2’s mechanical task by comparing it 

with the practice task [53:46 to 56:03]. 
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Practice 

26:00: […] “So … ok, this is where z is 0, so we have to 

find … I think …”, looks back at the instructional materials 

and reads, “w and c equal to 0, to find for z … that’s”, 

hovers over s1, “hmmm”, looks back at instructional 

materials. 

26:59: […]“A step-by-step … well, we have to make w and 

c 0 first to find”, clicks cancel to close the input variable 

dialog, “and after that you have to find a next … well, 

choose one of the variables … just now … I think I 

confusing myself, I hope not”. 

27:21: Looks at instructional materials again, “Ok, so … 

right … everything there. W and c zero … right, so then 

you can calculate for the rest. Like z, s1 and s2. Like since 

z is zero now, you have to substitute … ok s1 is 100 and 

120 for s2 …. Hmmm … right … ok … so, pivot variable,” 

Problem 2 

53:46: Clicks Problem 1 sheet. “Hmmm … alright so”, 

hovers over t in the canonical form, “You take that one”, 

moves his mouse across all of the slack variables, “this”, 

hovers over the s1 column, “wait just now”, goes back to 

the practice sheet. 

54:07: Moves his mouse over s1 and s2 on the practice 

sheet and then c in the canonical form, then s1, turns to his 

instructional materials, “s1 comes from the equation B … 

right [mumbles]”, looks back at the screen, “Ok”, yawns, 

“sorry … the equation”, hovers over c and s1 in the 

canonical form, “closest to it … [mumbles]”. 

54:52: Clicks problem 1 sheet. “Ok”, hovers over s1 in the 

canonical from, “[mumbles] … ok, so”, clicks iteration, 

“this one”, […] Clicks ok and gets the second iteration. 

55:29: “Ok, umm … we have to do this here”, keeps 

looking at the screen, “So, it’s c for t … right”, hovers 

over the s1 and s2 columns in the canonical forms, then 

hovers over the t column.  

Makes a 
relationship 
between the c in 
the practice sheet 
to the t in his 
Problem 2 sheet 

Corresponds 
between the 
practice sheet and 
his Problem 1 
sheet to 
understand 
solving the 
problem 

Understood the 
canonical form 
and basic solution 
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56:03: Clicks iteration and gets the pop-up that the 

problem has been solved, “That’s it?”, I confirm, “You for 

real? I, I … nah, I do something wrong”. 

Problem 3 

1:29:04: After being prompted: “I was trying to get 

…umm … the different variables but I only get the same 

answers all the time”, laughs, “Right, just now … I could 

regroup”, laughs, “right … so”, moves his mouse along 

the column t for all iterations, clicks practice sheet.  

[…] 

1:35:47: After being prompted: “Well, first I was looking 

for the umm … uh … the highest yield, I was looking, well, 

the first variable, the first equation, negative 6, negative 8 

and negative 13. And I was just thinking of the number 

line and choosing negative 6 as the highest … or is that a 

wrong line of thought?”, I tell him I cannot comment, 

“Ok, right, yeah so I was thinking about that being the 

highest, you know, to start it off with that variable and 

each one, every … well, after I iterate a value, the 

negative 6, I got other equations and substituted a next 

variable from the umm the resulted equations, I got 

another set of equations that giving me the same values, 

you know”.  

Figure 35: Think-aloud transcript for Participant 30 (M, Higher MC = 8) as he solves mechanical 
tasks using the open-box software 

When he started doing his second question (Problem 3), he felt he was on the 

correct track but realised that, when he did the iterations, the values on the right-hand 

side were not changing. He hence doubted whether he was performing it correctly and 

decided to check the practice task again [1:29:04]. He was actually using an almost 

correct conjecture concerning how to solve the task [1:35:47]. However, he was using 

the highest coefficient in the objective function in the number line, rather than the 

highest negative number. The highest negative coefficient would have represented the 

Getting the same 
answer for the 
iterations 

His conjecture on 
using the iteration 
except uses the 
lowest negative 
number rather 
than the highest 
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variable with the highest profit. Hence his conjecture was not correct, and he started 

doubting himself when it came to using the software box. Thus he was choosing the 

value -6 rather than -13, because -6 was the highest coefficient on the number line. 

When he was carrying out Problem 1, he did not have this difficulty, since in that task 

there were only two negative variables and choosing either one would have produced an 

answer quite readily using the open-box software.  

Participant 30 was interesting, because he seemed to be using a worked-out 

example. Chi et al. (1989) indicated that poor students may look back at instructional 

materials. They noted that using worked-out examples was a phenomenon that occurred 

for both Good and Poor students. However, Good students looked at worked-out 

examples differently, in that they used them for a specific reference. Thus Participant 30 

probably was using the practice task as a reference to understand what was occurring in 

the other mechanical tasks he was solving. However, Participant 33 did not look at his 

practice task, because once he realised that the iterations would always give him the 

correct answer he had no need to understand what or why something was occurring. 

Therefore, it appeared that Participant 30 probably had a deeper processing level than 

Participant 33 when it came to using the open-box software.  

Therefore, looking at how students were approaching the mechanical tasks, it 

seems that students using the black-box software were not concerned with 

understanding the calculations or steps as they were never presented to them. However, 

the students using the glass-box software might be interested at first in the steps but not 

after carrying out subsequent tasks. The students who were not interested in the steps 

tended to be in the lower mathematics confidence group (Participant 15 was a notable 

exception) and were probably less likely to use a deep processing level for observing the 

steps. Although only 2 participants were presented here for the open-box software, the 

illustrative examples show how a higher mathematics confidence student was able to 
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have cohesive thoughts on when using the software box unlike the student with lower 

mathematics confidence who demonstrated fragmented mathematical thoughts, even 

though both scored similarly on the tasks.  

6.4 Interpretive Tasks, Performance and Approaches 
In Chapter 5, there were several important findings with respect to the 

interpretive tasks. Firstly, students who had higher mathematics confidence did better in 

the interpretive tasks than those with lower mathematics confidence (Section 5.5.1, 

p.139). Secondly, for the interpretive tasks, all students performed better in Problems 2 

and 3 than in Problem 1. This section provides insights into these findings by discussing 

performance and mathematics confidence. The impact of software boxes on the 

interpretive tasks is discussed in Section 6.5 (p.207) 

6.4.1 Performance and Mathematics Confidence  
Some typical answers by students for the interpretive task in all three problems 

depending on their mathematical confidence are presented in Table 35. 

In the quantitative data it was found that students with higher mathematics 

confidence tended to obtain higher scores than those with lower mathematics 

confidence across all tasks (Finding 3 in Annex 5, p.326) but particularly for 

interpretive tasks (Finding 7 in Annex 5, p.326). By examining the answers between the 

higher and lower mathematics confidence students, there appeared to be longer 

typewritten explanations for the answers. This is not true for all students, for example, 

Participant 12 (F, BB, Lower MC = 2) gave quite verbose answers for all her problems, 

but these were not always correct. 

 

Table 35: Answers by high and low scorers for the interpretive Task depending on Mathematics 
Confidence 

Interpretive 

Task 

Lower Mathematics Confidence Higher Mathematics Confidence 
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Interpretive 

Task 

Lower Mathematics Confidence Higher Mathematics Confidence 

Problem 1   

Low Score The solution states that more 

time is spent on painting rather 

than carpentry. In order to 

maximize profits more time 

should be spent on carpentry 

hours. (Participant 20, F, GB, 

Lower MC = 5) 

From the values of the 

calculations it is clear that it is 

much easier to make toy trains 

than carve toy soldiers. So to 

maximise profits would mean to 

divert the some of the painting 

hours to that of carpentry hours 

to create a balance in the time 

spent on each item. As well as 

they can then increase the overall 

hours of work. (Participant 39, 

M, GB, Higher MC = 8). 

High Score To make the most profit twice as 

many trains should be made as 

soldiers. Carpentry is not being 

maximised. Painting being run at 

full. (Participant 33, M, OB, 

Lower MC = 6) 

Make 40 toy trains and 20 toy 

soldiers 

80 hours painting toy trains and 

20 hours painting toy soldiers 

40 hours making trains and 20 

hours making soldiers 

(Participant 9, F, BB, Higher MC 

= 7) 

Problem 2   

Low Score Chairs were not produced. 

demand for chairs was low 

(Participant 6, M, BB, Lower 

MC = 5) 

The chairs. The demand for the 

chairs was very low so it was not 

profitable to manufacture. 

(Participant 27, F, OB, Higher 

MC = 8). 

High Score No chairs were produced 

Not enough time, there wasn't a 

high demand for chairs. 

(Participant 32, F, OB, Lower 

MC = 5) 

Chairs were not manufactured. 

This may be because they require 

more of the limited resources for 

their products. Time and material 

available can more easily 
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Interpretive 

Task 

Lower Mathematics Confidence Higher Mathematics Confidence 

produce desks and stools. 

(Participant 18, F, GB, Higher 

MC = 8). 

 

Problem 3   

Low Score The constraints are always set at 

minus or equal to a number 

because the variables usually 

represent products and it is 

impossible to produce a negative 

product. Cannot tell. (Participant 

35, F, OB, Lower MC = 3)  

Maybe the values are of a 

continuous variable. Hence all 

the less than or equal to 

constraints that a problem might 

naturally have may not 

accurately be converted to 

strictly less than constraints. 

x and y should be small because 

of the constraints. (Participant 1, 

F, BB, Higher MC = 8) 

 

High Score Constraints are usually the 

limiting factor in the 

maximization of the profit. 

Therefore, the max value of the 

constraint can be utilized. Rather 

than a value less than it. This 

would help to increase profit. 

Will not want to have a high 

value for u since this variable 

would decrease the maximum 

value of z...from the equation (z 

= 6x + 8y + 13t - u ) (Participant 

19, F, GB, Lower MC = 6) 

Solution: 

We allow <= constraints in 

linear programming rather than 

just < because sometimes we may 

be interested in solutions on the 

boundaries of the given problem. 

We will not want to have a high 

value for u since all the variables 

are non-negative and in 

determining z, each of the terms 

besides the term in u take 

positive values whereas the term 

in u takes negative values, 

thereby the contribution from this 

term reduces the value of z. 

hence we would want to keep this 
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Interpretive 

Task 

Lower Mathematics Confidence Higher Mathematics Confidence 

term small in adding the terms to 

determine z. (Participant 25, M, 

OB, Higher MC = 8)  

 

The students with higher mathematics confidence appeared to engage more with 

the material as they were explaining why things were occurring. For example, in 

Problem 1’s interpretive task, students were required to explain what the solution from 

the mechanical task meant for the toy company. The solution to the interpretive task 

was that 40 toy trains and 20 toy soldiers should be manufactured to make a profit of 

£140 and that this manufacturing combination would ensure that demand for the market 

was met and that all painting hours were used with 20 hours of carpentry remaining. 

From Table 35, in Problem 1 of the low scorers, whilst both the lower and 

higher mathematics confidence students’ answers were inaccurate, the higher 

confidence student tried to explain why things were occurring or at least provide a more 

elaborate explanation: “So to maximise profits would mean to divert the some of the 

painting hours to that of carpentry hours to create a balance in the time spent on each 

item”. Here the student is suggesting that the painting and carpentry hours should be 

balanced. The lower mathematics confidence student made statements and gave no 

explanations even though detailed explanations were asked for: “to maximize profits 

more time should be spent on carpentry hours”.  

Chi et al. (1989) found that high scorers were students who provided more 

spontaneous self-explanations from which they gained additional understanding of the 

underlying principles. They indicated further that poor scorers had limited self-

explanations; when they did self-explain, their explanations were disconnected from the 
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underlying principles and concepts. For example, Participant 12 who had lower 

mathematics confidence (Lower MC = 2) was quite verbose but her answers were not 

connecting with underlying mathematics principles: 

The equation gives an insight into how the manufactures should deal with their capital 

in order to maximise their profits at a minimum cost. Here we see that the maximum 

number of hours for both the painting and carpentry processes are limiting factors. 

Since the job requires a maximum of 100 for painting and 80 for carpentry and this is 

as essential as the number of toys produced at that time, then it would be essential to 

understand the where the trade off should lie between the cost of production and the 

cost for production. Hence using the equation the manufactures are able to pre-

determine which one of these factors should be sacrificed and by how much to develop 

the required trade off for maximum profits. From the answer acquired the farmer can 

be more than able to meet his overall objective by producing either of the toys because 

it would simply take 80 toy trains and 20 toy soldiers to get him to a profit 

(Problem 1’s interpretive task, Participant 12, F, BB, Lower MC = 2) 

In fact, she was paraphrasing (cf. Hausmann and Chi, 2002) her typewritten 

answer by describing what the equations meant, rather than making any connections to 

the underlying mathematics principles such as finding implications of what this meant 

for the manufacturer.  

Perhaps the reason higher mathematics confidence students were scoring higher, 

was that they were better at using their relational understanding in these tasks. 

Interpretive tasks require the use of conceptual knowledge. Therefore, when students 

engaged with the materials they provided self-explanations as to why the solutions were 

occurring by using a deep level of processing. The students in the lower mathematics 

confidence bracket were providing typewritten answers that lacked explanations, and it 

may be that they were using surface processing. Note that this conjecture may appear 

not to be supported by the findings in Chapter 5, where the frequency of explanations 

was found not to be influenced by mathematics confidence. However, in Chapter 5 the 

results applied to the number of explanations and type of explanations (real-life or 
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mathematical). Here what is being suggested is that the quality of their explanations 

(that is, the detailed content of the explanations) was related to their level of 

mathematics confidence.  

6.4.2 Interpretive Tasks: Performance and Approaches 
Whilst the previous section showed why students with higher mathematics 

confidence performed better in the interpretive tasks, the question still remained why 

students performed better in Problem 2 and 3’s interpretive tasks than Problem 1 

(Finding 4 in Annex 5, p.326), and also why students performed better overall in 

Problem 2’s interpretive task (Finding 4 in Annex 5, p.326). The reason seemed to be 

dependent on the nature of the interpretive task. 

 For Problems 1 and 2, the first part of their interpretive task required the 

students to match the variable with the number found in the mechanical task. For 

example, in the first part of Problem 2’s interpretive tasks, students had to note that the 

variable y referred to chairs, and hence the solution of y = 0 in the mechanical task 

meant that no chairs were produced.  

Problem 3’s interpretive task was different from the two previous interpretive 

tasks, as the students had to infer a reason from the instructional materials as to why 

less-than and equal-to constraints were used rather than only equal-to constraints. Also, 

students were asked to identify which variable should be minimised. The second part of 

both interpretive tasks requiring the students to explain their answers. This was 

conveyed by asking students ‘why?’ in Problem 2 and 3’s interpretive tasks, whereas in 

Problem 1’s interpretive task students were only asked to interpret and give detailed 

explanations. Problem 2 and 3’s interpretive tasks are discussed first, and then 

comparisons are drawn with Problem 1’s interpretive task. 
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For Problem 2’s interpretive task, all but one student was able to perform the 

first part correctly, which is one reason why Problem 2’s interpretive task had a high 

score. In Problems 2 and 3, students had low scores in the second part (that is, 

answering the why part of the interpretive task). In Problem 2’s interpretive task 

students were often able to give an explanation, but it was usually an incorrect one. 

Students would note the constraint y ≤ 5 (the demand for chairs) when examining the set 

of linear inequalities and then deduced that this was the reason chairs (y) were not being 

produced (see Table 35). However, if students examined the solution, they could have 

noted that the value of 5 was well within range for desks (x = 2) and stools (t = 8). 

 It seemed as if this was an answer to which they quickly connected without a 

thorough engagement with the material. Students with lower mathematics confidence 

were mostly satisfied with saying that the demand was low, whereas higher 

mathematics confidence students were more likely to realise that it was because chairs 

required more resources to make (7 higher MC vs 3 lower MC students). In the case of 

Participant 13 (M, GB, Higher MC = 8), after deciding that the demand should not have 

any effect, he confirmed this on his glass-box software. He removed the demand for 

chairs (y) constraint in the software box by changing all the coefficients on the left hand 

side and the value of the constraint on the right hand side to zero for this constraint.  

In Problem 3’s interpretive task, students were often stumped and at least 7 

students wrote “I don’t know” for the question, albeit mostly for the second part of the 

question rather than the first part. Whilst in Problem 2, a guess could be hazarded, 

students were unable to make an educated guess, perhaps because of the abstract nature 

of the interpretive task. Hence any explanation had to be related to mathematics 

principles. Whilst both lower and higher mathematics confidence students chose to use 

mathematics principles to explain these tasks, it was the higher mathematics confidence 

students who used the relevant mathematical principles to ensure that they were typing 
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the correct answer. The lower mathematics confidence students tended to have problems 

with algebra (see below). Since the higher mathematics confidence students were more 

likely to explain according to relevant mathematics principles (as seen in Table 35), this 

was perhaps why the higher mathematics confidence students performed better in this 

task.  

 However, in Problem 1, whilst there was a similar read-out to Problem 2, (that 

is, corresponding variables to calculated values), students were not able to match the 

values as quickly, possibly because students seemed uncertain about how to answer 

“interpret what this solution means”. Often instead of interpreting the solution with 

respect to the variables and associated numbers, they tried to explain what the 

constraints were saying (see Table 35), rather than pointing to the fact that the solution 

meant that the toy company had to produce 20 soldiers and 40 trains. Perhaps, to the 

students, this was implicitly stated and no longer needed to be reiterated.  

Students of both mathematics confidence levels tended to paraphrase or explain 

the set of equations rather than trying to understand the implications of the solution to 

the manufacturer and this was reflected in their answers. Thus, both set of students 

performed poorly in this task, although the higher mathematics confidence students 

performed slightly better. The underlying question here is what caused the students to 

paraphrase rather than self-explain? One of the interesting things about this task was 

that whilst it asked the student to explain what this solution meant to the manufacturer, 

it did not include the explicit key word ‘why?’. Hence students may have decided that 

this meant presenting things in a paraphrased manner, and so they simply described 

what was happening. However, in tasks that explicitly used the word ‘why?’, students 

were prompted spontaneously to self-explain. 

Further, some students appeared to have poor algebra skills in interpreting 

Problem 1’s solution correctly as they seemed to have a misunderstanding about 
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variables and coefficients. The students found and wrote the solution to the mechanical 

task as x = 40 and y = 20. However, when these students explained what the number of 

toy trains (x) and toy soldiers (y) were, they seemed to mix up the profit (from the 

objective function: z = 2x + y) obtained by the toy trains and toy soldiers with the 

amount produced. These students became confused and indicated that the number of toy 

trains (x) being produced was 80 (that is, 2 × 40). For example: 

The maximized profit z, was calculated to 100, where the no of toy soldiers 

manufactured is 20 and the no. of toy trains manufactured is 80.  

(Participant 10, F, BB, Lower MC = 5) 

At first, this confusion appeared to be due to the lower level of mathematics 

confidence. However, students in both mathematics confidence groups made similar 

errors, although the frequency of errors was higher for the low mathematics group. 

Further, the students’ algebra pre-test showed that there was no significant difference in 

scores between the students of higher and lower mathematics confidence. It was 

possible that students’ procedural skills in doing algebra were not affected by their 

mathematics confidence but that their conceptions of the algebra (in particular, their 

understanding of coefficients and variables) were.  

In short, students found it easy to match variables with answers; however they 

were apparently able to spontaneously self-explain more if the task asked ‘why?’. This 

could possibly be a good prompt in helping students to self-explain. The higher 

mathematics confidence students used this prompt more effectively as demonstrated by 

the higher performance scores from their explanations. Further the students answering 

the interpretive tasks were affected by their wrong conception of variables and 

coefficients in algebra. 
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6.5 Interpretive Tasks and Software Boxes 
As noted in Section 5.5.2 (p.144), students using the glass-box software 

performed marginally significantly (p < 0.08) better in the interpretive tasks than those 

using the black-box software (Finding 8 in Annex 5, p.326). Looking at Figure 23 

(p.144), one would note that the scores obtained for the interpretive tasks using the 

glass-box and open-box software were similar and larger than those using the black-

box. As noted in Section 5.5.1 (p.139), the interpretive task scores were dependent on 

the mathematics confidence of the students and it was conjectured that the higher 

mathematics confidence students were making better self-explanations and hence using 

a deep processing level. 

 There was no quantitative evidence to suggest there was an interaction between 

the effects of mathematics confidence, problem and software box for the interpretive 

task. The qualitative data are used to shed some light on why the students with glass-

box and open-box software were performing better. Before triangulating with the 

qualitative data, the quantitative data are examined to determine where the differences 

may be occurring, even though they are not significant. In Table 36, the scores of the 

students with lower and higher mathematics confidence and their software box are given 

for the three software boxes. The maximum score was two. Unusual trends (although 

not significant) in the data are highlighted in bold and each problem’s interpretive task 

is now looked at separately.  
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Table 36: Mean interpretive task scores for the software Boxes depending on the Problem and 
Mathematics Confidence 

Problem Black Glass Open 

Low Mathematics Confidence    

Problem 1 0.25 0.50 0.83 

Problem 2 1.13 0.89 1.25 

Problem 3 0.38 1.17 0.58 

High Mathematics Confidence    

Problem 1 0.72 0.75 1.00 

Problem 2 1.39 1.75 1.00 

Problem 3 1.11 1.50 1.42 

Total    

Problem 1 0.49 0.63 0.92 

Problem 2 1.26 1.32 1.13 

Problem 3 0.74 1.33 1.00 

6.5.1 Problem 1’s Interpretive Task 
In Problem 1’s interpretive task, it was noted in Table 36 that students using the 

black-box software with lower mathematics confidence had a lower score than those 

students using the glass-box and open-box software.  

For Problem 1’s interpretive task, the students were required to explain what the 

solution of z = 100, x = 40 and y =20 meant to the toy manufacturer. The students were 

supposed to match these values to what the variables represented: that is, they were 

expected to write an answer such as “The toy manufacturer will make a profit of £100 if 

they manufacture 40 toy trains and 20 toy soldiers”. There were additional statements 

that they could have made with respect to the constraints, such as whether the toy 

manufacturer had met the market demand for toy trains and also whether the toy 

manufacturer had used all the carpentry and painting hours available. 

Examining the answers, which were provided by the students using the glass-

box and open-box software versus those students using the black-box software, yielded 
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an interesting observation. All but one of the lower mathematics confidence students 

using the black-box software explained the solution in terms of the constraints rather 

than by matching the values to the variables. For example, Participant 37 in Table 37 

restated the painting constraint (2 trains and one soldier in 100 painting hours) and then 

suggested from this constraint what the manufacturer could do to increase his profit 

(decrease the time it takes to produce a train). On p.202, there is also an example of 

Participant 12 (F, BB, Lower MC = 2) describing constraints for this interpretive task.  

This was also seen for students using the glass-box software (for example, 

Participant 19) but to a lesser extent as most students appeared to match the values to 

the variables even though sometimes it was not explicitly stated. However, most 

students assigned to the open-box software were likely to interpret the solution as being 

20 toy trains and 40 soldiers manufactured or, if not explicitly stating the solution, they 

provided insight into how this production would affect the constraints (see also 

Participant 33 in Table 35, p.198). 

These results suggest that the glass-box and open-box software may encourage 

students who have lower mathematics confidence to associate the values with the 

variables compared to students using the black-box software. Given more time and 

resources, it might be possible to substantiate this using a larger number of participants. 
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Table 37: Answers to Problem 1’s interpretive task for low mathematics confidence students 
depending on their assigned software box 

Black-Box Software 

the max z stand s at 2 trains and one soldier in 100 painting hours a reasonable 

suggestion would be to decrease the time it takes to produce a train in such a manner 

that another soldier or train can be made within the carpentry hours, increase the 

carpentry hours or increase the painting hours possible by 20 hours so as to increase 

the no. of soldiers painted per day. 

(Participant 37, M, BB, Lower MC = 6) 

more trains can be made in the allotted hours for both carpentry and painting than 

soldiers 

(Participant 6, M, BB, Lower MC = 5) 

Glass-Box Software 

Producing 40 trains and 20 toy soldiers gives the max profit 

(Participant 17, M, GB, Lower MC = 6) 

the amount of hours available for painting is 100 hrs 

the amount of hours for carpentry is 80 hrs 

the toy train takes twice as long to paint when compared to the toy soldier... 

they both take the same time to make 

therefore, in terms of labour, the toy soldier would be more profitable 

2x + y 

means that the train earns twice as much profit as the soldiers... 

no of trains has some constraint (c) 

(Participant 19, F, GB, Lower MC = 6) 

Open-Box Software 

Maximum profit is attained by producing 40 toy trains and 20 toy soldiers. The number 

of hours spent painting and on carpentry work was equal to 20 hours each. 

(Participant 35, F, OB, Lower MC = 3 

 

it takes twice the amount of hours to paint toy trains than toy soldiers 

while it takes the same amount of carpentry hours 

(Participant 31, F, OB, Lower MC = 5) 



 

 211

6.5.2 Problem 2’s Interpretive Task 
Table 36 (p.208) showed that the higher mathematics confidence students using 

the open-box software were performing more poorly than their counterparts using the 

black-box and glass-box software for Problem 2’s interpretive task. To further examine 

this trend, the scores obtained from the interpretive task were decomposed into their two 

parts (see Table 38). It was noted that whilst the higher mathematics confidence 

students with the open-box software were able to obtain the correct answer that chairs 

were not produced, all were unable to produce a reason from which they would gain a 

score. They instead stated that the demand for chairs was low as discussed in Section 

6.4.2 (p.203).  

It, therefore, seemed that the higher mathematics confidence students using the 

open-box software were presenting answers that would have been typically that of lower 

mathematics confidence students. Examining the answers provided by the open-box 

higher mathematics confidence students (Table 39), what was noted, as with most 

higher mathematics confidence students, is that they put forward answers that had 

lengthier explanations, a phenomenon which was discussed in Section 6.4.1 (p.198). 

Table 38: Frequency of scores depending on Mathematics Confidence and software Boxes for the 
second part of Problem 2’s interpretive task  

Scores Black Glass Open 

Lower mathematics confidence    

0 3 8 4 

0.5 1 0 1 

1 0 0 1 

Total 4 8 6 

Higher mathematics confidence    

0 5 1 6 

0.5 1 0 0 

1 3 3 0 

Total 9 4 6 
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Table 39: Responses by higher mathematics confidence students using the open-box software for 
Problem 2’s interpretive task  

Chairs were not manufactured because of its low demand  

(Participant 28, OB, M, Higher MC = 7) 

product not produced = chairs 

reasons being: maybe, 

1) the no. of hours available for carpentry were not sufficient 

2) the feet of lumber available were not enough 

3) the demand for chairs was not great therefore they were not a priority to make 

(Participant 30, OB, M, Higher MC = 8) 

According to the solution given by the program the # of chairs (y ) = 0 i.e. no chairs 

have been produced, due to the constraints and in order to gain a profit of 140 the 

number produced had to be 0 for the desk and stools brought the profit desired.  

(Participant 34, OB, M, Higher MC = 7) 

No chairs were produced. Maximum was 140 so according to the equation 

when x=2, and t=8, y=0 gives the maximum profit.  

Z= 140 also y is less than or equal to 5  

(Participant 29, OB, F, Higher MC = 7) 

Some of the higher mathematics confidence students using the open-box 

software (but not all: for example, Participant 28) appeared to be answering this task 

with a mathematical bias, in that they were using mathematical symbols. This was in 

contrast to students using the black-box and the glass-box software who tended to use 

more prose (Table 40). This did not mean that black-box and glass-box software 

students did not use mathematical symbols, just that they tended to use them less.  
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Table 40: Responses by higher mathematics confidence students using the black-box and glass-box 
software for Problem 2’s interpretive task 

Program advises me not to produce any chairs since the demand for chairs is not very 

high. I will not get a high profit from manufacturing chairs and would be wiser to 

produce more stools and desks since there is a demand.  

(Participant 7, M, BB, Higher MC = 7)

Chairs were not produced. Maximum profit that can be obtained from the maximum 

number of chairs that can be produced is less than the profit that can be gained from 

the iterated number of stools produced. 

(Participant 5, BB, M, Higher MC = 8)

From the answer to the previous question where y=0 no chairs were produced which 

may be as a result of poor demand which is less than 5  

(Participant 16, M, GB, Higher MC = 7)

Chairs were not produced due to the low demand of chairs as well as the amount of 

lumber available was preferred to make desks and stools.  

(Participant 39, M, GB, Higher MC = 8)

It seemed that for students using the open-box software that doing the 

procedural steps may have made the students more inclined to present their answers in a 

mathematical pattern as can be see from Participant 30 (M, OB, Higher MC = 8): 

1:04:11: After being prompted, “This umm … this answer for this part B, when they say 

as detailed as possible, you need a detailed mathematical explanation or just a normal 

detailed explanation?”, I tell him ‘as detailed as you interpret it to be’. “Ok, because I 

could interpret this to be mean a lot of things”. 

He had divided possible explanations into two types, mathematical and other, 

which is interesting as this is the same distinction proposed in the present research 

(Section 5.3, p.131). Note however that the mathematical use of symbols would not 

necessarily be coded as a mathematical explanation. Also, from the quantitative results, 

on the interpretive task, students who used mathematical explanations were also likely 

to use real-life explanations (Section 5.7.3, p.159 and Finding 29 in Annex 9, p.332), if 

they scored a mark. Perhaps, the students with the open-box software tended to latch 

onto using mathematics to answering the interpretive task; whilst this task could be 
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answered mathematically, perhaps a practical and mathematical approach to 

determining why stools and desks were chosen as opposed to chairs might have served 

them better. Instead, the students tried to justify the reason for achieving the maximum 

£140 profit and indicated that this could only happen if y = 0 (Participants 29 and 34), 

which mathematically works out correct for the equations. Hence, it seems from their 

explanations, they were not taking a surface processing level but rather were asking 

themselves the wrong question when they were self-explaining, and perhaps this is 

where prompted self-explanations could be quite useful (see Chi et al., 1994). 

In this case the open-box software seemed to influence the manner of answering 

the task for the higher mathematics confidence students. In particular, the open-box 

software seemed to encourage the students to type their answers from a more 

mathematical view. These students were providing their answers as they understood and 

saw the inequalities within the iterations presented in the software.  

6.5.3 Problem 3’s Interpretive Task 
To understand why students using the glass-box software obtained higher scores 

in Problem 3’s interpretive task, the scores obtained from this task (see Appendix 6, 

p.313) were once again decomposed into their two parts (see Table 41). A higher 

percentage of students using the glass-box software answered correctly the first part of 

this interpretive task (that is, “Why do we allow linear programming to have ≤ 

constraints rather than just < constraints?”) regardless of mathematics confidence 

levels.  
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Table 41: Frequency of scores by software Boxes and Mathematics Confidence for the first part of 
Problem 3’s interpretive task  

Box Score 

Black Glass Open 

Total 

Lower mathematics confidence     

0 2 1 4 7 

0.5 1 0 0 1 

1 1 8 2 11 

Total 4 9 6 19 
  

Higher mathematics confidence  

0 3 1 2 6 

0.5 3 0 0 3 

1 3 3 4 10 

Total 9 4 6 19 

The reason for this was not apparent instantly. However, upon examining the 8 

transcripts, it was noted that 2 of the 3 glass-box software students (Participants 15 and 

16) referred to the section related to linear programming in their instructional materials 

before answering that part of Problem 3’s interpretive task. Upon cross-examining the 

observation notes with the videos, it was noted that 3 additional students using the 

glass-box software also cross-checked with the instructional materials before typing in 

their answers (Participants 19, 22, 38). One student using the black-box software 

(Participant 12) and two using the open-box software (Participants 26, 36) also did the 

same. Further, except for Participant 16, all of the students were grouped into the lower 

mathematics confidence bracket. Participant 12 who used black-box software and 

Participants 26 and 36 who used open-box software were the only students of lower 

mathematics confidence who got it fully correct. Students in the higher mathematics 

confidence group generally did well in this interpretive task regardless of the software 

box that they were using. 
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At first this high interpretive score for the glass-box software students suggested 

that these students were being more conceptual and drawing deeper self-explanations 

and hence connecting their knowledge to what was read. However, Chi et al. (1994) 

found that high self-explainers tended to refer to the text a lot less than the low-

explainers when they were solving problems. They suggested that the high self-

explainers may know the “knowledge inference”. Chi et al. (1989) also indicated that 

successful problem solvers were the ones who referred to examples more quickly and 

usually were goal-oriented in finding their answers. Although most of the students using 

glass-box software checked the instructional materials, it cannot be suggested that the 

glass-box software influenced the way the students were learning during the reading of 

the instructional materials as they were only presented with the software box after 

reading the instructional materials. All students read the instructional materials first and 

were then presented with the type of software. So were the students using the glass-box 

software more conceptually minded because they got this interpretive task part correct, 

or were they using a surface processing level and had to return to the instructional 

materials to find the answer? 

As mentioned in Section 6.4.2 (p.203), there were 7 students who answered “I 

don’t know” to Problem 3’s interpretive task. Examining this further, only three 

students provided this answer for the first part of Problem 3’s interpretive task and all 

were black-box software students. As this first part of Problem 3’s interpretive task 

yielded low scores for the black-box software students, it was perhaps something in the 

glass-box software that cued the students to look back to the materials. Although 

Participant 12 who used the black-box software also looked back at the instructional 

materials, it was unlikely that this was due to a cue in the software, because of what she 

said just after reading out Problem 3’s interpretive task: 
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2:55:32: “Just now I saw it …”, begins turning through the instructional materials, 

“hmm … something couldn’t be less than something and … yes … it’s at the 

beginning.”  

What she meant by “just now I saw it” was that, while responding to Problem 

1’s interpretive task, she looked back at the instructional materials to try and understand 

how to explain the Problem 1’s interpretive task, and hence perhaps this was the reason 

that she remembered it.  

Participants 15 and 16, who used the glass-box software, both returned to the 

same example or place in the instructional materials (that is, the constraint on 

labourers):  

40:18: After being prompted to talk: “I’m reading equation 2 on page 2. So, that whole 

paragraph there, I’m just looking for something to wing this problem 2, so I can give 

you an answer.” 

40:59: After being prompted to talk, “Alright well, then part b, then since they didn’t 

find, what the, what the x, y and t was then I’m guessing if we relate it to the … well, to 

page 2, right, of the introduction and it was talking about the farmer, I’m thinking those 

problems, those ummm, those variables could actually be like real-life stuff like key 

ones like how they had it labourers and they could actually for the constraints, they 

could actually have a value that would equal to something less than or equal to a 

number because … because of what? Hold on … I lost my thought there … sorry.” 

Continues looking at instructional materials.  

41:51: “Ok, for the twelve, ok for the linear programming to actually have the less than 

or equal to constraint rather than just the less than constraint because the value you’re 

leading out, that would equal to the … you could have a value that would be equal to an 

answer, to the best possible answer. You could have that possibility. So, you need to 

include, that equal value to not just the less than. So, that’s why I’m thinking, that value 

could be important in some cases, so that’s why they need to include it in the 

programming also.” 

(Participant 15, M, GB, Lower MC = 5) 

39:21: “Well, I guess they would the constraints with less than or equal to rather than 

just less than because the boundary constraints … “ looking at papers, “like in the 

sample question where you know, they couldn’t, well, they only had 100 labourers so 
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you couldn’t go pass 100 labourers, so, the boundary would be less than or equal to. 

Cause you have available 100 workers so you can utilize the whole 100 you know, 

equal to 100 instead of just less than a hundred … cool, so uh … now to put it into 

words”.  

(Participant 16, M, GB, Higher MC = 7) 

A possible reason is that this was where the term constraint was first introduced. 

Thus, it was probable the idea of what a constraint was prompted the glass-box software 

students to return here. After seeing all the iterations in the glass-box software with the 

various constraints changing and perhaps not paying attention to what the constraints 

meant, it prompted the students to realise they did not quite understand what a 

constraint was and hence returned to the definition of a constraint. Once they returned to 

this section, they began to self-explain for themselves why this was occurring (see 

[40:59] to [41:51] for Participant 15 and [39:21] for Participant 16). Both Participants 

15 and 16 perhaps used a surface processing level when reading the instructional 

materials as the former did not know what slack variables were after it was mentioned 

several times in the instructional materials (see [25:25] to [25:31] in Figure 30) whilst 

the latter did not know what ‘BV’ stood for (see [26:54] in Figure 31). Both basic 

variables and slack variables were defined in Section 3.7 (p.86). Therefore, it seemed 

that the glass-box software was not promoting a conceptual way of thinking; rather, if 

students started with a surface processing level it persisted in their use of the software, 

particularly if they had lower mathematics confidence.  

Possibly the same thing happened for the two students using the open-box 

software (Participants 26 and 36). From their videos and observation notes, it was noted 

that these two students were choosing pivot variables in solving the mechanical tasks to 

only get a new iteration. From their think-aloud session this implied they were doing 

this without trying to understand what was happening and hence were probably using 

mostly surface level processing. Again, as previously noted the reason that the students 
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seemed to spontaneously self-explain was because of the cue ‘why?’. Thus, whilst the 

students appeared to be using a surface processing level with the software boxes, by 

asking them ‘why?’ in Problem 3’s interpretive task, the cue prompted them to self-

explain why this phenomenon was occurring. Therefore, the software boxes were not 

themselves promoting a deep or surface processing level. Rather, the processing level 

that the students adopted to study the instructional materials was manifested in their use 

of the software boxes. 

Therefore, these results imply that those students who wrote the correct answer 

without referring back to the instructional materials had already made these knowledge 

inferences. Also, they were aware of what was in the instructional materials (Chi et al., 

1994) and hence relied on their own wits in answering this task.  

For the second part of the interpretive task, where students were asked “which 

variable will we not want to have a high value for?”, 15 students with higher 

mathematics confidence were able to obtain a mark. Only 5 students with lower 

mathematics confidence were able to obtain a mark. From Table 35 (p.198), the answers 

by students with higher and lower mathematics confidence illustrate where the 

differences lie. Students with the higher mathematics confidence were more often able 

to note by examining the objective function that the variable ‘u’ was negative and hence 

by having a large value for u will reduce the value of z (the profit). Most students with 

lower mathematics confidence were unable to note this. Students who were unable to 

state u as their answer, provided any of the other variables (such as x, y or t) or simply 

noted ‘I don’t know’. Three students suggested that a constraint (particularly Constraint 

A) should not be increased rather than indicating a variable. This suggests a poor 

conception of the difference between a constraint and a variable.  

Initially it was thought that perhaps students using the open-box software and, to 

a lesser extent, students using the glass-box software should be more likely to notice 
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that u was the answer since they were going through the iterations. However, students 

had similar answers for this part of the task regardless of software box used. Again 

these results confirmed that students with higher mathematics confidence are better able 

to make sense of the interpretive tasks than the students who have lower mathematics 

confidence. 

6.6 Constructive Tasks 
This section looks at the constructive tasks. As the correct solution of the 

constructive tasks was dependent on whether students explored, the discussion on 

constructive tasks is confined mainly to exploration with the software boxes. As in the 

previous sections, the problem is used as the analytical unit for comparing the 

constructive tasks and approaches.  

  As noted in Section 5.5.1 (p.139), students all scored differently for the 

constructive task depending on the problem, with students scoring the highest in 

Problem 2’s constructive task followed by Problem 1 and Problem 3’s constructive task 

(Finding 5 in Annex 5, p.326). Unlike the interpretive tasks, there was no significant 

difference between the performance for the higher and lower mathematics confidence 

students in the constructive tasks (Finding 7 in Annex 5, p.326). Further, as noted in 

Section 5.6.2 (p.150), the students who explored the constructive tasks were 

significantly more likely to obtain a mark (Finding 14 in Annex 7, p. ) and also that 

exploration was dependent on software box and mathematics confidence (Finding 13 in 

329

Annex 6, p. ). 328 Hence, any discussion of the scores obtained by students has to be 

taken within this context.  

6.6.1 Problem 1: Performance, Approaches and Software Boxes 
Starting with Problem 1, only 9 students were able to obtain a score for this 

constructive task. This task required the student to explain how the toy manufacturer 

should change his production if the profit on the toy train was increased by £1.The 
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increasing of the profit by £1 should not make a difference to the production as the 

demand for toy trains (40 toy trains) had already been met and hence production should 

not change but the profit will increase. This answer was only true for students using the 

black-box and glass-box software. The students using the open-box software may have 

also obtained an alternative solution where demand was not met (see Appendix 6, 

p.313). 

Four students obtained a score without using any software box, two each from 

the lower and higher mathematics confidence group. Seven students used the software 

boxes, of whom five were able to obtain an answer that yielded a score. Six of the 

students who did explore were from the higher mathematics confidence group. The two 

students from the lower mathematics confidence grouping (Participants 12 and 21) who 

did not use the software seemed to give an answer based on a guess rather than any real 

understanding of what was happening (Table 42).  

Although Participant 21 seemed to be on the right track, her mention of the price 

being too high showed there was a lack of understanding. The reasons they provided for 

why the number of toys produced would remain constant pointed to a feeling rather than 

an explanation determined from the task, and they used this feeling to understand the 

economics of the problem. On the other hand, the students from the higher mathematics 

confidence grouping who did not explore showed some ability of understanding what 

would occur to the profit but then also reverted to using their own idea of economics. 

For example, Participant 21 suggested that the company would be pleased with the 

profits and would not change production. The remaining students (who did not explore 

their answers) tended to use their own economics’ beliefs in explaining their answers 

and this perhaps influenced their mainly real-life explanations. 
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Table 42: Responses for Problem 1’s constructive task by the lower and higher mathematics 
confidence students not using a software box for solving the task 

Lower Mathematics Confidence 

If the profit per train has increased by one dollar the number of trains being 

manufactured should by no means also increased if the farmer insists on keeping his 

profit at 1 dollar more. However, dependant on how much of a profit the farmer is 

operating by, perhaps, it may not be to his detriment to produce a couple more of these 

toy pieces. Conversely, if he is operating at a 'dead- beat' loss, it may be better for him 

to count his blessings and maintain production as is. 

(Participant 12, F, BB, Lower MC = 2) 

The same constraints apply there the total number of toys produced will be the same but 

the profit will be dependant on the consumers because if the price of is too high the toys 

will not be purchased 

(Participant 21, F, GB, Lower MC = 4) 

Higher Mathematics Confidence 

So if the profit per train increases by 1 then the max profit would reach 140, I would say 

that production on trains should increase or something 

(Participant 3, M, BB, Higher MC = 9) 

If the increase in profit per train is $ 1 then this would mean that the company receives 

an overall profit of 20 x $1 = $20 with the current constraints. This may mean that: 

1)The company is pleased with the profits and decides not to increase production of the 

trains, or 

2)The company can reinvest in the trains and increase their train production...to further 

increase profits. 

(Participant 30, M, OB, Higher MC = 8) 

It was previously observed (p.205) that some students confused the terms 

variables, coefficients and constraints and it persisted during the constructive task, 

particularly for those students who had lower mathematics confidence. For example, 

Participant 33 thought that the demand constraint x ≤ 40 had to be increased to find the 

profit. He increased this constraint to x ≤ 40 + 1 rather than changing the coefficient in 

the objective function: 

43:21: “Well, let’s see here”, looks at the screen and moves mouse around the last 

iterations, “there ought to be a value of cost assign to each of them, so, you’ll know if 
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you have 40 times a pound you’ll have 40 pounds, and if you had one £20 times maybe 

£2 then you’ll have £40, and then you can just add in £1 to the first one and then see 

what additional … well, how much it makes extra.” 

44:02: “Working back from that, you’ll probably want to put that into one of our 

constraints”, hovers along the whole x column of all the iterations.  

44:16: Looks back to the paper: “Umm … the C constraint … maybe … we want to 

change that and then find a different solution. So, if we change the … if we move it up to 

41, then make 41 toy trains then we will be making less soldiers probably.” 

44:59: Clicks for the answer sheet: “Could be completely wrong but [mumbles]” 

45:06: Types in answer: “Increase profit by £1 may chance constraint C to x<= 40 +1 

and since x=40 was our previous answer this may mean it would now mean x increases 

and y decreases”, and says, “don’t know how to do the symbols”, when typing in the 

x<=40+1. 

(Participant 33, M, OB, Lower MC = 6) 

It was likely, because x was found to be 40, which meant the profit from x would 

have been £40, he saw x as money rather than the number of toys being produced. This 

suggested that he saw the increase of profit as related not to the coefficient but rather to 

a change in the variable.  

Further, some students had difficulty in distinguishing between profit and cost 

and gave their answers or explanations in terms of the price of the product increasing 

rather than the profit (see Table 43). This seemed to happen for both lower and higher 

mathematics confidence students.  
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Table 43: Confusion between profit and cost for both lower and higher mathematics confidence 
students 

Lower Mathematics Confidence 

The number of trains and soldiers purchased would decrease due to an increase in 

price 

(Participant 32, F, OB, Lower MC = 5) 

If the profit per train increased, this means the price of the train increased, if the price 

of the train is higher than the price of the soldiers, consumers would more likely 

purchase the cheaper item 

(Participant 20, F, GB, Lower MC = 5) 

Higher Mathematics Confidence 

It would decrease the number of toys being sold because if the profit increases it means 

that the price for the item has gone up. 

(Participant 27, F, OB, Higher MC = 8) 

more soldiers would be sold as this means that the price of trains would have increased 

and the company would now have to make more soldiers 

(Participant 2, M, BB, Higher MC = 8)  

Looking at the explorations, it was mostly the higher mathematics confidence 

students who explored (Finding 11 in Annex 6, p.328), which may be because the 

students recognised the connection between profit and changing the coefficient, since all 

but one were able to get the answer. Participant 11 (F, BB, Higher MC = 7) was unable 

to obtain an answer because she confused the concept of profit and cost and instead 

reduced the coefficient of x by 1 rather than increasing it. There was only one student 

(Participant 38, F, GB, Lower MC = 5) in the lower mathematics confidence group who 

recognised the solution and rewrote the objective function as z = 3x +y. Whilst she 

understood that the profit was connected to the coefficient, she felt prior to solving the 

constructive task that x should increase and y should decrease to maintain the profit of 

£100. Hence, when she used the glass-box software to modify the mechanical task and 

calculated the new answer, she still maintained what she thought earlier. Perhaps, in a 

situation like this, Participant 38 may have benefited from prompted self-explanations.  
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Further, out of all the students who explored, four used the black-box software, 

two used the glass-box software and one used the open-box software. This provides 

some indication that black-box software may be slightly better for exploration and 

possibly explains why students with the black-box software were scoring slightly higher 

in the constructive tasks (Finding 8 in Annex 5, p.326). Even though the students had 

been randomly assigned to the different boxes, there was a larger number of higher 

mathematics confidence students using the black-box and a larger number of lower 

mathematics confidence students using the glass-box, which may have influenced the 

results. Further, there was one student (Participant 34, M, OB, Higher MC = 7) using 

the open-box software who recognised that the objective function had to be changed but 

did not test this using his software box. It is difficult to ascertain whether he knew what 

to change in the equation; he commented as follows: 

40:20: “Are we dealing with only facts or are we … or can we interpret a reason”, I tell 

him “you choose how you wish to answer it”. Looks at the instructional materials. 

 40:49: Looks up at the screen. “Ohhh… Ok … So, if the profit is increased by £1, then 

the z would change, so therefore changing the x and y values ok”. 

Which he follows by typing this as his answer: 

Profit has increased by 1 therefore changing the initial equation and so giving different 

values for the number of toy soldiers. 

(Participant 34, M, OB, Higher MC = 7) 

This raises the question whether the use of the open-box software detracted him 

from checking whether this was correct, since the open-box software required a longer 

time and perhaps more cognitive effort for producing the answer. Or probably he could 

have been just using a perception-based answer. (Perception-based answers are looked 

at more closely when examining Problem 2’s constructive task in the next section.) On 

the other hand, Participant 13 (M, GB, Higher MC = 8) had already determined the 

answer but used the software box to confirm his answer. Probably he could readily 
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confirm his answer with the software since he was using the glass-box software which 

required less cognitive effort and time: 

If the profit per train is increased, it would likely be more profitable to produce more 

trains and fewer soldiers. However Constraint C puts an upper bound on the number of 

trains that can be produced -- a bound which has already been achieved. Hence it is not 

possible to produce more trains and the number of toy trains and toy soldiers produced 

would remain the same. This was confirmed by solving the modified problem. 

Participant 13 (M, GB, Higher MC = 8) 

Therefore, the difficulty of having poor algebra persisted and influenced the 

performance on the constructive tasks and also affected the students’ ability to 

distinguish between profit and cost, which occurred across mathematics confidence 

levels. Exploration seemed to arise in students in the higher mathematics confidence 

group, particularly those assigned to the black-box software. This links to the work of 

Coupland (2004), in that higher mathematics confidence students are the ones with a 

cohesive conception of mathematics and thus they may be able to use the software 

boxes to promote their understanding. The black-box software seems to lend itself more 

easily to exploring, which may also be a factor in students’ ability to do well on the 

constructive task. Students, who had previously had a misconception of the answer 

before exploring, were able to try and justify their calculated answers by using the 

equations provided. 

6.6.2 Problem 2: Performance, Approaches and Software Boxes 
Across the constructive tasks, students scored the highest in Problem 2 (Finding 

5 in Annex 5, p.326). In this task, students were asked how the production should 

change for a furniture company if the carpentry hours were increased. As there was 

already a surplus of carpentry hours, the production should remain the same.  

Only three students were able to obtain a mark for their answers without 

exploring, two in the lower mathematics confidence group and one in the higher 
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mathematics confidence group. The 23 students who did explore with the software were 

all able to obtain a mark (Finding 15 in Annex 7, p.329). Examining the transcripts of 

the students who used the software showed that students who explored identified 

quickly (usually within about 30 seconds) that they needed to change the right-hand side 

of the carpentry constraint and resolve the mechanical task. For example: 

39:13: “The number of hours available for carpentry has increased to 60 how does this 

change...”. Clicks ok and get rids of the answer sheet. 

39:22: “Right. Click the reset button”. Clicks reset button and then clicks input 

problem. “So, that will be carpentry/ day. Constraint A is changed from 48 to 60”. 

Changes the RHS of A from 48 to 60, “OK”, clicks ok. “Iteration”, clicks iteration. 

Then clicks answer sheet. 

(Participant 9, F, BB, Higher MC = 7) 

1:02:08: Reads the instructional materials 

1:02:18: “Ok .. right, Let’s rerun it and change the input problem. [Mumbles], let’s 

make a note of it 140, 2 ..” Writes down the answer on paper (??) 

1:02:35: He resets the problem and changes 48 to 60 on the input problem form for the 

first constraint 

 (Participant 33, M, OB, Lower MC = 6) 

The remaining 15 students did not use the software box to answer this 

constructive task, either because they chose not to do so or because it simply did not 

occur to them to do so. For example: 

1:22:56: Clicks Q3C in the answer form and then instructional materials. “Last part. If 

the number of hours of carpentry per day is increased from 48 to 60 …”, continues 

reading out the question. 

1:23:20: “Right … obviously,” looks at the screen, “Obviously first of all the total 

production would be increased”, looks down. 

1:23:27: “So, firstly”, begins to type the answer, “total production would be increased, 

overall production …”, continues typing, “kinda obvious”, continues typing, “would be 

increased and in particular”, stops typing looks at papers, “ ... they would increase the 
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number of stools produced”, continues typing, “… would increase the number of stools 

produced as the solution to the first question, the first part of the question.” 

 (Participant 16, M, GB, Higher MC = 7) 

Participant 16 thought that the answer was obvious and began to think of his 

answer fairly soon after reading the task. It was interesting that some students decided 

to use the software boxes whilst others did not. Whilst it was thought that this might 

have been related to the students’ confidence in computers or Excel, an examination of 

students’ self-identified computers and Excel confidence scores found that these 

confidence scores were similar between those who explored and those who did not. It 

was possible that some students did not explore because they thought the answers in the 

constructive tasks should be solely perception-based and that this formed the basis on 

how they would answer their future tasks.  

For example, Participant 5 (M, GB, Higher MC = 8) when answering Problem 

2’s interpretive task asked whether [34:16] “the answer is mine … like, uh, mine, why it 

wasn’t possible right?” which may have carried over in his perception of how he should 

answer the constructive task. Similarly, Participant 30 (M, OB, Higher MC = 8) made a 

similar statement when answering the interpretive task, in that he asked [1:04:11] “If I 

just … ummm … speak to you about my perception” and continued “Oh, it is just totally 

my perception”.  

 There did not seem to be any obvious link to the students’ processing levels, 

mathematics confidence or self-explanations to explain why students were acting in this 

manner. However, one might conjecture that, since the students easily obtained an 

answer for the interpretive task (that is, no chairs were produced), and also provided a 

relatively easy explanation (albeit in most cases a wrong answer, that the demand was 

low), that they may have proceeded to Problem 2’s constructive task with more 

confidence. That is, the students probably felt that this interpretive task was easy, which 
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minimised any anxiety, leaving them able to conjecture or decide how to proceed with 

Problem 2’s constructive task quite easily either by using the software boxes or making 

a quick explanation. Perhaps, therefore the act of exploring with the software box in this 

constructive task was not directly related to the students’ mathematics confidence but 

rather to their perception of what the answer should be. Those with the preconception 

that the answers had to be explained by themselves were less likely to use the software 

box whilst those who had neither of these preconceptions and who were propelled with 

some sense of mathematics confidence could directly see that they could use the 

software box to resolve the task.  

An alternative explanation comes from an idea put forward by Trouche (2000), 

who suggested that there were particular strategies to using technology in solving 

problems, based on the extent that students used technology (in his case, calculators: 

Section 2.7, p.38). For example, the theorist used references, interpretation and analogy, 

the rationalist used paper and pen, inference and proof, whilst the tinkerer used the 

calculator, investigation and accumulation whilst solving problems. It may be that 

students who chose not to use the software boxes and who followed their perception 

were acting as theorists or the rationalists. From the think-aloud protocol, it was 

difficult to determine which profile these students fitted into. However, Participant 30 

indicated that he preferred working with pen and paper than on a computer, which may 

have resulted in him not taking to exploring with the computer:  

53:16: After being prompted: “Ok, I don’t know … when I’m doing maths … sometimes 

I don’t really talk to myself … but just use a whole set of scrap paper … never really do 

maths on the computer before … let’s see … [mumbles] … good”.  

There may be a completely different explanation as to why students seem to 

have explored more for Problem 2. This may depend on how they saw the linear 

programming equations. Upon examining the answers that students provided for 
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Problem 1’s constructive task, most students appeared to believe that the production 

would only be affected if the constraints had changed (see Table 44). 

Table 44: Student’s conception of the linear programming problem from Problem 1’s constructive 
task 

[….] because the constraints are still the same only the variables have changed 

(Participant 15, M, GB, Lower MC = 5) 

[…] Toy soldiers would decrease because of the limited resources and constraints 

(Participant 19, F, GB, Lower MC = 6) 

The number of trains and soldiers being sold would not change as the constraints were 

based on carpentry and painting, not profit. 

(Participant 28, M, OB, Higher MC = 7) 

Hence when Problem 2’s constructive task indicated that a change in the 

constraint had occurred, the students recognised that production might change and 

hence the linear programming task had to be run again with the changed constraint to 

determine what will be the new production. Sometimes, the students had an inaccurate 

perception of what the answer should be before they ran the numbers again through the 

software, but when they got the new answer, they examined the equations further to 

determine the reason why this was occurring: 

39:22: “Right. Click the reset button”. Clicks reset button and then clicks input 

problem. “So, that will be carpentry/ day. Constraint A, is changed from 48 to 60”. 

Changes the RHS of A from 48 to 60, “OK”, clicks OK. “Iteration”, clicks iteration. 

Then clicks answer sheet. 

40:01: “And it is exactly the same …”, (laughs), “Ok.” Begins to type, “Increasing the 

number of hours available carpentry had not change the results” 

40:43: “Uh … it must be the case, there must be something else. Is a main constraint? 

Let’s see x t, t is 8”, perhaps referring to the LP answer, “that’ll be 16. 2 … so, 

Constraint C is already … and”, begins to type again, “Because no more furniture can 

be made because … Constraint C is already at its maximum with x=2 and t=8 because 

this equals 16 and constraint C can’t exceed 16”. Clicks Ok and gets rid of answer 

sheet. Final answer: “increasing the number of hours available for carpentry did not 

change the results because no more furniture can be made because constraint c is 
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already at its maximum with x=2 and t-8 because this equals 16 and constraint c can’t 

exceed 16” 

(P2C: Participant 9, F, BB, Higher MC = 7) 

Participant 9 thus had a perception that the production would change, which was 

why she indicated some surprise at [40:01]. She began to think that there had to be a 

reason for this [40:43] and then re-examined the equations to determine the reason for 

there not being a change. 

Thus, this section has indicated that Trouche’s categories do not explain why a 

majority of the students chose to explore this constructive task rather than other 

constructive tasks. If this was a predisposed strategy, then there should be roughly equal 

amounts of exploration across all the tasks. Thus, there may be other influences on the 

answering of the tasks: in particular, the students’ conception of what linear 

programming represented and their perception of what the task demanded of them. In 

the first instance (that is, students’ conception of linear programming), their conception, 

that increasing the right hand side of the carpentry constraint would change the 

production, led them to explore in Problem 2’s constructive task because they knew 

what they had to change. However, in Problem 1’s constructive task, the students’ 

conception of profit and cost did not immediately connect with the conception of profit 

being attached to the coefficients of the variables. Instead their perception (the second 

instance) of what they thought the task wanted took over: that is, they started using real-

life heuristics to help to solve the tasks. 

6.6.3 Problem 3: Performance, Approaches and Software Boxes 
Across the three constructive tasks, students performed poorly in Problem 3 

(Finding 5 in Annex 5, p.326). They were asked to determine the highest value that the 

variable u could become. The students should have been able find this answer either by 
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examining the constraints or by testing values of u (using Constraint D) with the 

software boxes. 

Whilst in the other constructive tasks some students were able to obtain a mark 

without using the software boxes, in this task only students who used the software boxes 

were able to determine the answer. Students who had lower mathematics confidence 

were more likely to give up earlier, whilst those with higher mathematic confidence 

were more likely to persist in understanding or finding a solution. Of all the students 

who were unable to obtain a mark on this constructive task, 6 students wrote “I don’t 

know” which included Participant 15 who tested values for u using the glass-box 

software. Otherwise the most popular answer seemed to be that u would be infinity 

(Participants 2, 8, 35, 38). Some of these answers are presented in Table 45. 

 Other answers suggested that u should not be higher 100, and this was probably 

because Constraint B was 100 even though u was not included in this constraint. The 

four out of the five students who gave this answer were from the lower mathematics 

confidence group (Participants 21, 26, 31, 32) whilst the other student was from the 

higher mathematics confidence group (Participant 30). Another answer that was popular 

was given by five students (Participants 11, 17, 28, 34, 39), who suggested that u should 

not be higher than 105. Their reason for this was that u should not be higher than the 

profit (z) they found, which was £105. Interestingly, four of the students who gave this 

answer were from the higher mathematics confidence group. Possibly students with 

higher mathematics confidence who although gave wrong answers were still able to 

provide in-depth explanations as to what was occurring, whereas the lower mathematics 

confidence students just gave any answer. The lower mathematics confidence students 

tended to provide general explanations as to why things were occurring, whilst the 

higher mathematics confidence students gave more specific explanations. 
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Table 45: Examples of answers provided for Problem 3’s constructive task 

u = Infinity 

u can be made to a value that is a multiple of 90, such as, 180. Due to this fact, u can 

have an infinite value as long as the other variables in the equation are multiplied by 

the same factor. 

(Participant 2, M, BB, Higher MC = 8)

The largest value should be infinity because of the number system 

(Participant 38, F, GB, Lower MC = 5)

u =100 

The max value for u could be 100 due to the presumption that u is the slack value. 

(Participant 21, F, GB, Lower MC = 4)

Largest u value would be 100 because the maximum constraint value is 100. 

(Participant 30, M, OB, Higher MC = 8)

u =105 

So a value of u grater than 90 - 105 so the value of t = 0 so as to maintain a profit of 

105 

(Participant 34, M, OB, Higher MC = 7)

Maximum value for u would be 105 since it cannot exceed this value 

(Participant 17, M, GB, Lower MC = 6)

Eight students explored using the software for this constructive task, a similar 

number to those who explored Problem 1’s constructive task; however, for Problem 3’s 

constructive task only three students were able to find the correct or partially correct 

answers. Of these 8 students, four used the black-box software, three used the glass-box 

and one used the open-box software. All of the students using the glass-box and open-

box software were from the lower mathematics confidence group, whilst those assigned 

to the black-box software were all from the higher mathematics confidence group. 

Three out of the four black-box software students were able to obtain an answer for this 

task. It appeared that the reason for them obtaining an answer was that they were able to 

explore a wider range of numbers for u.  
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For example, for the black-box software, Participant 9 tested 200 and 1000, 

Participant 7 used three numbers (100, 200, 300) and Participant 1 tested numbers 200, 

1000, -100, -200, -1000 after first exploring what occurred if a constraint was removed 

(see Figure 36). The remaining student, Participant 3, only tried one number (125) as he 

was confirming a calculation that he had made. 

The one student (Participant 32) using the open-box software tested one number 

(91). For the three students using the glass-box software, Participant 22 tested two 

numbers (95 and 100), Participant 15 tried four numbers (100, 105, 120 and 170) and 

Participant 38 tried one number (100). All four students using the glass-box and open-

box software made the wrong conjecture in the end. Participant 15 who tested the most 

numbers eventually gave his answer as being “I don’t know”. Students needed to test 

numbers above 200 to make the correct conjecture, which is why the three students 

using the black-box software got it correct. 

What was interesting here was that only students using the black-box software 

tested a large range of numbers and hence found the correct answer. The students using 

the other software boxes seemed to limit their exploration to smaller numbers. In 

particular, the open-box software student only tested one number. His limit to testing 

only one number possibly was because of the longer time or cognitive effort required to 

test numbers.  
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48:34: She changes the u coefficient in the last row to 0 

and the RHS from 90 to 0 and performs the iteration. 
Changes the 
constraint to find the 
highest value for u 

49:23: After being prompted to talk: “Yeah I just had 

tried the putting back the equations without the 

[internet] constraint without the u and gave the answer 

as … the best value for it to be 200 but I’m not sure if 

that is the maximum value, I’m still thinking about it”. 

Proceeds to look at the papers she has and correspond 

with the screen. 

51:24: Clicks ok to get rid of the answer sheet and 

changes the u coefficient in the last row to 1 and the 

RHS to 200 and do the iteration. 

52:21: She changes the RHS of the last row to 1000 and 

do the iteration 

52:31: She clicks input problem highlights the 

coefficient of u in the last row but then looks back at 

her papers 

53:34: After being prompted to talk: “I’m trying 

something with …um … the input problem to see what 

different values the last constraint will give me.” 

53:49: Changes the RHS of the last row as -100 and the 

coefficient of the u as -1 (I had to tell that to put it as -1 

rather than just a -) 

54:27: She re-changes the RHS of the last row to -200 

and clicks iteration. 

54:59: She changes the RHS of the last row to -1000 

and clicks iteration. 

55:52: I explain to her that I am not certain whether this 

software works with negative RHS and she says ok. 

56:11: Goes back to looking at her papers. 

57:35: After being prompted: “Well I’m looking at the 

constraints to see if 200 is the highest value it can get 

and looking at Constraints A and B.” 

Test constraints for 
200 and 1000 

Test constraints for -
100, -200 and -1000 

Figure 36: Think-aloud transcript for Participant 1 (F, BB, Higher MC = 8) whilst doing the 
constructive task for Problem 3  
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Further, participants using the glass-box and open-box software who had lower 

mathematics confidence did not seem to be keen to explore further. This was seen 

particularly with Participant 15, who gave up because the software was not giving him 

an answer. Bandura (1986) explained that: 

Weak self-precepts of efficacy are easily negated by disconfirming experiences, 

whereas people who have a strong belief in their own competence will persevere in their 

coping efforts despite mounting difficulties … (p.396) … the stronger the perceived 

self-efficacy, the more likely are persons to select challenging tasks, the longer they 

persist at them, and the more likely they are to perform them successfully (p.397)  

The ease with which students were able to explore with the black-box software 

both in Problem 1 and Problem 3 may indicate why there was a significant difference in 

exploration among the software boxes. These students were generally the higher 

mathematics confidence students. According to Coupland (2004), students with 

cohesive concepts are more likely to use the software effectively. However, in this study 

the software mode available to the students seemed to also influence how the students 

used it. In particular, the black-box software was used most effectively by the students 

with cohesive concepts rather than the glass-box or open-box software. For the lower 

mathematics confidence group the software mode did affect their frequency of 

exploration and it may be that these students need guided help with a teacher to achieve 

any useful learning from the software boxes.  

As most of the higher mathematics confidence students were using the black-

box, it seemed that they may be well equipped with the kind of software box that could 

work to their advantage. However, those students who had lower mathematics 

confidence were mainly assigned to the glass-box software, and this software box 

possibly confused them more and probably caused them to treat it as black-box 

software. The lower mathematics confidence students, however, if they saw steps with 

the mathematical terms, were able to ask themselves appropriate questions. These 



 

 237

questions then prompted them to look for information or to self-explain what these 

mathematical terms meant and how they related to each other, as was seen by the 

students using the glass-box software.  

Further, students using the software boxes were able to test their initial 

perceptions, which were usually based on real-life. If a new solution from the software 

boxes contradicted their initial thoughts, then the students dug deeper to find out what 

was occurring. Also, students’ perceptions of what should happen and their conceptions 

of linear programming helped them to decide whether they should explore, for example 

in Problem 1, the relationship between coefficients and profit, in Problem 2, the 

changing of the right hand side of the carpentry constraints, and in Problem 3 that u was 

related to a constraint. 

6.7 Discussion 
This chapter investigated the overarching research question: 

How do students' approaches to the three task types and their performance on 

these tasks depend on the software box they have access to? 

To answer this question, the data and findings from Chapter 5 were used to 

answer why students’ performance was affected by their approaches. Further, the 

developed analytical framework was used as a lens to try to understand and interpret the 

data. Students’ typewritten answers to the tasks and 8 students’ transcripts of their 

think-aloud session were further used to explore the influence of students’ approaches 

and mathematics confidence on their performance on the different tasks.  

This section answers the overarching question by drawing together discussions 

from Chapters 5 and 6.  
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6.7.1 Performance and Tasks 
The quantitative data confirmed Galbraith and Haines (2000a) findings that 

students tended to do worse in constructive (0.40) than interpretive tasks (0.98) and also 

that students would be most successful at the mechanical tasks (Section 5.5.1, p.139, 

Finding 2 in Annex 5, p.326). However, being successful at the mechanical task was 

expected given the nature of the software boxes. Galbraith and Haines had their students 

solve mechanical and constructive tasks by hand. It was interesting that students’ poor 

performance in the constructive tasks in this current study persisted even when the 

students had the option of using the software boxes (Section 5.5.2, p.144). Hence the 

results from this study showed that software did not seem to help students perform 

better in the constructive task over the interpretive task.  

Galbraith and Haines suggested for constructive tasks that the “interaction of 

conceptual and procedural knowledge where procedures had to be introduced by the 

student” (p.13) was the least developed. Using software boxes, that were able to interact 

with the procedural steps or even show the procedural steps, did not enable the students 

to introduce their procedural knowledge to the constructive task. However, it appeared 

instead that the students’ mathematics confidence when using the software boxes 

impacted on the linking between students’ procedural and conceptual knowledge in the 

constructive task provided that the appropriate software was available. 

Students with higher mathematics confidence who used the black-box software 

were more likely to introduce procedural knowledge to the conceptual part of the 

constructive task, as demonstrated by their high frequency of exploration (Section 5.6.1, 

p.147 and Finding 13 in Annex 6, p.328). The black-box software provided the best tool 

for these higher mathematics confidence students to explore, possibly because the 

black-box software required the least cognitive effort (Section 6.6.3, p.231) and ensured 

the least mental fatigue (Section 2.5.2, p.29). As suggested by Coupland (2004), 
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students who adopted a deep processing level (usually the ones with the higher 

mathematics confidence) were more likely to use software in a meaningful way for their 

learning. Therefore, whilst mathematics confidence influenced whether a student 

explored, having the appropriate tool may facilitate the connection of procedural and 

conceptual knowledge. Thus, to extend Coupland’s (2004) statement, students with a 

deep processing level can use software in a more meaningful way for their learning, but 

this will be dependent on the software box. Black-box software can be most meaningful 

in constructive types of learning tasks. The open-box software and to some extent the 

glass-box software can allow some students to engage in more meaningful learning in 

mechanical tasks as they are able to see mathematical terms and make sense of them 

(Section 6.5.3, p.214). 

Further, students’ conception of how a task works (for example, in Problem 2’s 

constructive task, that changing the right-hand side of the constraint would yield a 

different result) possibly affects whether they could find a connection between the 

conceptual and procedural knowledge. This is also related to students’ perception of 

how they should solve a task. If students thought that the answer had to come from their 

perception only, they neglected the use of software. Perhaps the level of cognitive effort 

required to use the software box decreased the extent to which the student would bother 

to use it (Section 5.6.1, p.147). 

6.7.2 Performance and Software Boxes 
Whether one software box promoted more conceptual understanding than the 

others is open to debate. The open-box software forced students to try and understand 

the steps or at least make a conjecture on which pivot variable to choose (Section 6.3.2, 

p.190) as was suggested in Section 2.6.3 (p.37). Whilst most higher mathematics 

confidence students persisted in trying to understand and test their conjectures, lower 

mathematics confidence students were more likely to give-up and resort to rule-of-
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thumb or means-end strategies to survive the mechanical task-solving process. In the 

glass-box software, some students initially worked towards understanding the steps, but 

there was a tendency to try and find the answer as quickly as possible; as a 

consequence, they began to use the glass-box software as a black-box software which 

may mean they were not gaining any additional intellectual profit from the steps 

(Section 6.3.1, p.182). However, it was possible that seeing the steps allowed students 

to be familiar with terms as they appeared.  

Therefore, in both the glass-box and the open-box software, it may be better for 

all users but in particular lower mathematics confidence students, if students were either 

prompted for self-explanations or provided with scaffolding questions, since the lower 

mathematics confidence students would more likely adopt a surface processing level 

when using the software boxes with the intention of just getting by. 

6.7.3 The Approaches, Boxes and Mechanical Tasks  
The extent and nature of the explanations that students generated depended on 

the tasks. Students solving the mechanical task in the open-box software were more 

likely to try and explain or conjecture what was occurring. Students in the glass-box 

software did this to a lesser extent whilst for the students using the black-box software 

there was no clear indication whether the students wanted to see the steps or not. The 

black-box software group was the least likely to engage in explanation during the 

solution process. This was due to the nature of the software boxes rather than the nature 

of the students.  

6.7.4 The Approaches, Boxes and Interpretive Tasks 
For the interpretive tasks, there did not seem to be any influence of the software 

boxes except for the glass-box in an indirect manner for Problem 3. The conjecture was 

that for Problem 3, the students using the glass-box software were confused about linear 

programming terms. Thus, when asked about a linear programming term in Problem 3, 



 

 241

they then returned to the instructional materials to clarify their thoughts which led to 

them self-explaining in order to understand the concept of constraints (Section 6.5.3, 

p.214). 

 The most important part of any conceptual task that allowed students to start 

spontaneous self-explaining appeared to be providing appropriate prompts in the written 

task, in particular, the prompt or cue of ‘why?’. Asking students ‘what?’ did not appear 

to encourage self-explaining, whereas the use of ‘why?’ made the students think and 

possibly look for better explanations. 

6.7.5 The Approaches, Boxes and Constructive Tasks 
Students were found to explore more with the black-box software than the glass-

box and open-box software for the constructive tasks (Section 5.6.1, p.147 and Finding 

12 in Annex 6, p.328). This was possibly because the students required less cognitive 

effort when using the black-box software as suggested in Section 2.5.2 (p.29). 

The self-explanations in the constructive tasks were more pronounced when the 

students were prompted with the ‘why?’ part of the task and was noted that this prompt 

also worked in the interpretive tasks (Section 6.5.3, p.214). The only influence that the 

software boxes had was when students used the software box and obtained the correct 

answer. At that point, students were able to self-explain regarding why the answer had 

occurred, but this appeared to be mostly relevant for students who had higher 

mathematics confidence and who used the black-box software. The ‘why?’ prompt also 

allowed students to provide explanations that were broadly based on real-life or 

mathematical explanations. Since the answers to the constructive tasks were mostly 

obtained through the use of mathematical principles, students who latched onto the 

mathematical explanations were more likely to get the constructive tasks correct 

(Finding 29 in Annex 9, p.332).  
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Students tended to use the real-life explanations when they could not connect 

their procedural with conceptual knowledge and, as mentioned previously, tended to 

answer based on their perceptions (Section 6.6.1, p.220). Thus, these students thought 

that a perception-based answer would be one that made sense of the materials within 

their context of knowledge. However, some students saw their context of knowledge as 

being from the social context rather than from the mathematical context. Hence, it may 

be that these students consider mathematical explanations as being un-natural in their 

sense-making mechanism. 

It may be necessary when creating tasks, that task designers provide ‘why?’ cues 

to encourage students to self-explain. Further, whilst the glass-box and the open-box 

software may be useful in understanding the procedural algorithm, providing some kind 

of prompting mechanism to help students self-explain or provide feedback could 

encourage students engaging with the linear programming in a deep way and possibly 

help the students to make connections with the underlying linear programming 

concepts. Further, the black-box software seemed to be mostly appropriate for the 

higher mathematics confidence students. To that extent, it can be recommended for such 

students. 

6.8 Concluding Remarks 
This chapter began with a discussion on the type of qualitative data collected 

from the students (Section 6.2, p.175). Further using the quantitative results from 

Chapter 5, qualitative links between the performance scores (although not for the 

mechanical task), the three approaches and the software boxes were investigated for the 

mechanical (Section 6.3), interpretive (Sections 6.4 and 6.5) and constructive tasks 

(Section 6.6).  

The results from Chapters 5 and 6 have shown that performance is dependent on 

two approaches, the explorations and the explanations. Students who explored with the 
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software boxes in the constructive tasks were more likely to obtain the correct answer 

and, having achieved the correct answer, were better able to explain why there were 

possible relationships between variables and constraints in the linear programming 

problem (Sections  and ). Students who provided mathematical explanations were 

also more likely to have a high performance score. Whilst there was no conclusive 

evidence that students with a deep processing level had higher performance scores, it 

appeared that most students with higher mathematics confidence provided better 

explanations, possibly as a result of their deep processing of the information. 

5.6 6.6
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Chapter 7. Conclusion 
“Doubt, indulged and cherished, is in 

danger of becoming denial; but if honest, 
and bent on thorough investigation, it may 

soon lead to full establishment of the 
truth.” 

- Ambrose Bierce 

 

7.1 Introduction 
Sections 5.9 (p.165) and 6.7 (p.237) discussed how the data from this thesis 

answered the research questions outlined in Section 2.10.1 (p.50). This chapter begins 

with discussing the main contributions of the research (Section 7.2, p.244). This is 

followed by a reflection on the research process with recommendations for research and 

practice (Section 7.3, p.258) with a discussion on the limitations of the research 

(Section 7.4, p.261). The implications of these findings for teachers, software 

developers and students are also discussed (Section 7.5, p.265). The chapter concludes 

with suggestions for future research (Section,7.6 p.268).  

7.2 Main Contributions of the Research 
Four main contributions are identified, namely the characterisation of the 

software boxes, the development of the remote observation process, the development of 

an analytical framework and the findings with respect to the software boxes and tasks. 

7.2.1  The Software Boxes 
Prior to this research, there were limited investigations into how students 

perform and their preferred approaches when using the three software boxes. The 

research by Horton et al. (2004) had only compared two kinds of software box: black-

box and glass-box. At the start of this research, there were no comparisons of the open-

box software with any other of the software-boxes and, so far has been determined, 

there is no current study of this kind except for this one. Prior to this research, all that 

was known when comparing all three of the software boxes was that one showed no 
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steps, one showed steps and one provided interactivity at steps. Now, through this study, 

there is evidence relating to a comparison of the three software boxes in terms of 

student’s performance, the software boxes’ computation capacity and the approaches 

that students used (see Table 46). 

Table 46: Comparison of the three software boxes based on eight characteristics 

Characteristics Black-Box Glass-Open Open-Box 

Feature No Steps Shows Steps Interacts at Steps 

Time for computing 

tasks 

Fast: one click of the 

button (less than 5 

seconds) 

Average: several 

clicks of the button 

(less than 10 seconds) 

Slow: Need to go 

through several 

iterations before 

computing an answer 

(at least 45 seconds) 

Procedural 

Knowledge Learnt  

None Depends on whether 

they are willing to 

look at the steps 

Force to find some 

understanding of 

what to do – even if it 

is just to learn a 

heuristic  

Student Performance Interpretive:  

Constructive:  

Interpretive:  

Constructive:  

Interpretive:  

Constructive:  

Exploration 

(constructive tasks) 

High:  Average:  Low:  

Exploration  High:  

Low:  

High:  

Low:  

High:  

Low:  

Predisposed to 

Explanations 

Real-Life:  

Maths:  

Real-Life:  

Maths:  

Real-Life:  

Maths:  

Deep/Surface 

Processing Levels 

Undetermined/ same Undetermined/ same Undetermined/ same 

Further, the study highlighted the challenges of finding mathematical software 

that was capable of providing all three software modes. The researcher programmed the 

Excel sheets to be representative of the three software boxes, and this helped highlight 
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the particular challenges in deciding how many and which steps should be included in 

both the glass-box and open-box software. 

The main outcome of this research is that there is no clear indication that one 

software box is best for learning in all contexts. For example, as seen in Section 5.6.1 

(p.147), the black-box software seemed to encourage more exploration by students in 

constructive tasks (44% exploration) than in any other of the software boxes. Both the 

glass-box and open-box software appeared to detract this behaviour in students (33% 

and 22% respectively). However, by using the open-box software the students were 

often encouraged to try to develop their own understanding of how to proceed in 

solving mechanical tasks (not necessarily the correct understanding) (Section 6.3.2, 

p.190). Further, the open-box software appears to keep students in a more mathematical 

frame of mind, perhaps because of its high ratio of mathematical to real-life 

explanations (1.71) compared to the other software boxes (Section 5.7.2, p.156). The 

glass-box software appears to be the in-between software: intermediate in terms of 

encouraging exploration and intermediate in terms of allowing students to understand 

the steps involved in solving a mechanical task. 

7.2.2 Remote Observation 
The second contribution of this research was the development of the remote 

observation method for observing students interacting with software. The equipment 

and software requirements for a remote observation study are presented in Table 47 as 

determined in this study.  
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Table 47: Equipment and software required by the researcher and participant for the remote 
observation process 

Remote Observation 

Equipment/Software 

Researcher Participant Example 

Webcam    

Microphone     

Speakers/ headset    

Application sharing software   e.g. Windows 

Messenger, Unyte 

Application Sharing 

Voice/video conversation software   e.g. Windows 

Messenger, Skype 

Broadband (or better) internet 

connection 

   

Screen capture software   e.g. Camtasia Studio 

Audio wave in and out recording 

software 

  e.g. vEmotion 

Large computer RAM    At least 1GB 

Large Hard-drive   At least 1GB available 

per participant 

There are many integrated software packages that are able to application share, 

but this was one of the first studies that used application sharing together with web 

cameras for researching understanding by students. During the development of the 

remote observation method, another colleague was investigating the use of Netviewer, 

an application-sharing integrated package in which web cameras and the think-aloud 

protocol were also used to observe how participants used course materials available on 

the OpenLearn website (see San Diego and McAndrew, 2007). 

A comparison of Netviewer and the two modes of remote observation (with 

Windows Messenger and Skype) used in this study is presented in Table 48. The main 

difference between this study’s remote observation method and using Netviewer, 

besides the cost, is that this study’s remote observation method allowed synchronous 
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conversation whilst in Netviewer, voice-conversation worked in a two-way radio 

transmitter mode. The two-way radio transmitter mode means that when one person 

(either the researcher or participant) wants to talk they have to click a button. A think-

aloud session in Netviewer will thus mean that after prompting students to talk, the 

student will be required to click a button before beginning to talk and thus there is a 

possibility of two problems occurring: 

1. The student may ‘forget’ to click the button to talk and thus their self-

explanations may be lost until reminded to click the button 

2. Clicking the button to talk provides a constant reminder to the 

participants that a researcher is observing them and may increase any 

Hawthorne effect (Section 4.3.3, p.109). 

 The current remote observation method developed does not have these problems to the 

same extent since students are free to spontaneously think-aloud without being 

reminded they have to click a button to talk. 



 

Table 48: Comparison of Windows Messenger, Skype and Netviewer for remote observation 

Property Windows Messenger with Netmeeting Skype with Unyte NetViewer 

Web camera and headphones Yes Yes Yes 

Integrated package No – several windows No – several windows Yes – one window 

No. of computers 1 or 2 1 or 2 1 

Software required for 

observing students 

Windows Messenger and Netmeeting 

(Application Sharing) 

Skype software, Unyte Application 

Sharing and web browser 

Web-browser and Netviewer (for 

researcher) 

Software participants installs Before session: Windows Messenger  Before session: Skype  

During session: Load links into a web-

browser 

During session: Netviewer (for 

participants) which loads onto the web-

browser 
During Session: Netmeeting 

Synchronous voice/video 

conversation 

Yes Yes No: Walkie-Talkie Mode 

Chat facility Yes Yes Yes 

Point and guide No – unless control is undertaken by the 

researcher 

No – unless control is undertaken by the 

researcher 

Yes 

Video synchronisation Difficult if two computers used, with one 

computer simpler 

Difficult if two computers are used, with 

one computer simpler 

Easy – only records one video 

Cost  Cheap Cheap Expensive 
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A protocol for the remote observation study was created for those students who 

were not recruited via a gatekeeper. This protocol is presented in Table 49. 

Table 49: Protocol for remote observation when contacting the participant 

Protocol for Remote Observation How/Why 

1. Make contact with the participants 

and obtain email address 

Use either a web-forum where they can contact you 

via email or have a list of participants’ emails where 

you can contact them directly. Ensure that the 

participant has the equipment/ software required. 

2. Send email detailing the research, a 

web-link for the consent form and 

background questionnaire (if using) 

Set up a web-form in which you can collect the data. 

Ensure web-form has fields such as name and email 

address to identify the participant. 

3. Send email indicating receipt of 

consent form  

To confirm that the participant has agreed to the 

remote observation exercise and not someone else. 

The assumption is that the participants are only able to 

access their email. 

4. Send email which has a) date and 

time for the participant to sign in for 

the remote observation b) researcher’s 

contact number and request a contact 

number and c) any instructions/ 

materials required by the participant 

a) The date and time indicates when the participant 

should enter the session. The researcher should sign 

on a few minutes before the session time to welcome 

the participant. b) In the event of internet/computer 

failure either the participant or the researcher should 

be able to contact each other through the phone. c) 

Any instructional materials that the participants need 

to print or read in advance should also be sent. 

Alternatively, materials can be set up online as in a 

web-page and the participant can be redirected to 

these either before or during the remote-observation 

session through a web-link. 

5. At the beginning of the remote 

observation session, ask for consent of 

audio and video recording, either 

through instant messaging or voice 

conversation  

Asking the participants consent again to audio/video 

record them minimizes the problems for not having 

the signed consent forms. 
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For students recruited through a gatekeeper where a mini-lab is set up, this 

protocol is changed slightly. Step 1 is different as the gatekeeper recruits the students 

and liases with the students to arrive at the appropriate time. The gatekeeper then 

informs the researcher of the session time. Step 2 occurs during the session and Steps 3 

and 4 are omitted completely with the gatekeeper providing the instructional materials 

to the students during the session. 

Through investigation of the web camera angles, the best position of web 

cameras for observing the students during the study was identified (see Figure 37, 

p.252). A web camera angle that provides a good view of the desk and the student 

ensures that the researcher can see when the students are reading, writing, using the 

mouse or typing. However, as some web cameras are integrated into laptops this means 

that the angle is only of the face of the student. From these integrated web cameras, it is 

still possible to get an idea whether the students are reading or paying attention to the 

screen by looking at the students’ head and eye movements (look-up or down) 

combined with their use of mouse or keyboard. In a situation where the web camera 

does not provide a good angle, it is helpful to the researcher if the student talks about 

their actions during the think-aloud session. The think-aloud data stating the students’ 

actions can then be triangulated with the video data to determine what the students are 

doing.  
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Good use of web camera Useable 

  
Able to see the desktop, the 

monitor and can follow when he is 

reading on the screen or looking at 

paper 

No view of the monitor, but able 

to see when picking up papers to 

read or when moving right hand 

with mouse 

Figure 37: The web cameras angles in remote observation 

 

7.2.3 Implications of Remote Observation 
Using the remote observation method for collecting data opens a number of 

avenues. Firstly, researchers are no longer restricted to collecting data from particular 

geographic regions because of the logistics. Through remote observation almost any 

population can be accessed albeit any population on the internet with the required 

computer equipment. Secondly, if gatekeepers can be organised in the locality, then 

they can set up the remote observation mini-laboratories where the necessary computer 

equipment can be provided. This means that participants who have had to travel a long 

distance to a user-laboratory now may only have to travel to their nearest local mini-

laboratory centre. Thirdly, home-bound participants such as the disabled can take part in 

studies without the necessary travel and upheaval required in traditional user-lab 

situations.  

There are some considerations that have to be taken into account about the 

remote observation method presented. This study involved mostly young people who 

were accustomed to the internet; perhaps older participants who are unfamiliar with the 
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Internet may not like the impersonality of a remote observation setting. Also, broadband 

internet is essential for remote observation; otherwise application sharing can become a 

slow and frustrating process for both the researcher and the participant because of slow 

processing speeds. Thus, using participants from regions or countries (particularly 

developing countries) where broadband is not widely available will be almost 

impossible. Finally, unlike in a user-lab situation, the researcher has no control over 

outside influences such as mobile phones ringing, friends interrupting the remote 

observation session or knowing whether the participants are surfing the internet during 

the session. In all cases in this study where there were mobile calls, the participants 

asked permission from the researcher to answer the mobile; they then proceeded to 

indicate that they were in a research session and cut the conversation short. Thus, 

participants can probably police themselves. 

7.2.4 Development and Extension of the Analytical Framework 
In Chapter 2, an analytical framework was developed to aid in the analysing of 

the data (Figure 3, p.48). A number of educational and learning perspectives could have 

been used to explain the variations in students’ performance with the software boxes 

including Vygotsky’s instrumental method (Vygotsky, 1930/1997), activity theory 

(Leontiev, 1947/1978), distributed cognition (Hutchins, 1995) and instrumental genesis 

(Vérillon and Rabardel, 1995). However, the decision was made to focus on the 

students’ understanding of the tasks rather than their use of the software box (since they 

did not always use the software boxes). Thus these theories that were primarily focused 

on the software tool such as the instrumental method, activity theory, distributed 

cognition and instrumental genesis were not considered. 

 Cognitive load theory (Sweller, 1988; Sweller and Chandler, 1991) for a time 

was a serious contender for explaining students’ understanding. However, when it 

became clear that there were diminished think-aloud data during the tasks, it had to be 
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excluded, even though the initial quantitative analysis had shown that students were 

exploring more with black-box software (the software with the least cognitive load). 

Thus other theories that influenced students’ understanding were considered such as 

those relating to conceptual/procedural knowledge, processing levels, self-explanations 

and self-confidence.  

The literature review had shown that self-confidence, self-explanations and 

processing levels all impacted on performance and were hence incorporated in the 

experimental design. It was only when further investigation of the literature showed that 

processing levels were related to self-confidence that a conceptual map was drawn 

about the possible relationships between the identified approaches and self-efficacy. 

The conceptual map started crudely but was eventually formed into the triangular 

format shown in Figure 3 (p.48). Using the analytical framework, gaps in the literature 

were identified. From these identified gaps, the association between self-confidence and 

processing levels for mathematics students was confirmed through data collected in 

Supporting Study 1.  

The framework incorporated two of the approaches (explanations and processing 

levels) and self-confidence for showing how these may influence performance. 

However, the framework at that time did not incorporate the approach of exploration, as 

the relationship of exploration to performance was uncertain. From Section 6.6 (p.220), 

students who explored the constructive task and obtained an answer were more likely to 

provide the correct explanations as to why a change resulted. This however was 

dependent on two factors: confidence level and the software box. Students with high 

mathematics confidence using the black-box software were more likely to explore the 

constructive tasks (56%) compared to students using the other software boxes whilst 

those with low mathematics confidence were more likely to explore using the glass-box 

software (41%) than with any other of the software boxes (Section 5.6.1, p.147). In 
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either case, when students arrived at a solution through the explorations, this presented 

them with an opportunity to reflect on the reason for that particular solution. Through 

this reflection, students were at times able to provide the correct explanations and hence 

have higher performance scores (see particularly Section 6.6.2, p.226). This relationship 

is presented in Figure 38. Further, in Chapter 6, it was shown qualitatively that students 

who had higher mathematics confidence provided better quality or more detailed 

explanations (not necessarily correct) than those students with lower mathematics 

confidence (see particularly Section 6.4.1, p.198). Thus, a tentative relationship between 

mathematics confidence and quality of explanations is established and is included in the 

updated framework in Figure 38. 

Finally, through Supporting Study 1 (Section 4.2, p.95), the relationship between 

mathematics confidence and deep mathematical processing level was established 

through factor analysis for mathematics students and is updated accordingly in this 

framework. This is the first evidence of a relationship between mathematics confidence 

and the deep processing level. This is consistent with previous suggestions in the 

literature that academic self-confidence is related to the deep processing level (for 

example Duff, 2004). Although this finding does not directly relate to the research 

questions set out in this thesis, it does however add to the approaches to study and self-

efficacy literature in the mathematical domain. 

Whilst a relationship between quality or quantity of explanations and the 

processing levels may exist, there was no clear empirical evidence to show such a 

relationship, and this remains to be ascertained. 



 

 

Figure 38: Updated analytical framework for approaches and performance in mathematical understanding
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7.2.5 Conceptual and Procedural Knowledge with Software Boxes 
The last contribution to be discussed concerns the tasks. All three tasks based on 

Galbraith and Haines (2000a) required differing levels of conceptual and procedural 

knowledge for their solution. Previously, Galbraith and Haines had shown that there 

were differences in scores obtained between the mechanical, interpretive and 

constructive tasks for polynomial functions. The difference in scores was confirmed in 

this study with students scoring higher in the interpretive (0.98) than the constructive 

tasks (0.40) but this time in the linear programming domain (Section 5.5.1, p.139). 

Mechanical tasks were not counted in this study because all calculations were 

completed through the computer. The tasks developed by Galbraith and Haines were not 

used in an environment where students were allowed to choose between using the 

computer or pen-and-paper. Previously Leinbach, Pountney and Etchells (2002) had 

developed all three task types for polynomial and trigonometric functions; however, all 

tasks had to be completed via a computer algebra system (CAS). Leinbach et al. did not 

report on the scores obtained by their students. Thus, this research adds to this literature 

some evidence that students’ conceptual-procedural link (shown through the 

constructive task) is still poor even when there is a software package available to aid in 

the procedural calculations.  

Also, whilst this study did not investigate whether mathematical software 

promoted conceptual knowledge more than not using software, as found by Heid (1988) 

(and to a lesser extent O'Callaghan (1998) and Palmiter (1991), see Section 2.3.3, p.21), 

this research shows no strong evidence that one software box promotes conceptual 

knowledge more than another. However, this research does provide evidence that for 

higher mathematics confidence students the ease of computations can possibly lead to 

better use of their conceptual knowledge. This is evidenced through higher mathematics 
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confidence students doing better on the constructive tasks with the black-box software 

than any of the software boxes (Section 5.5.2, p.144).  

7.3  Reflection on the Research Process 
There were several lessons learnt during this research which are outlined under 

separate headings below. These lessons cover from the start (e.g. gaining permissions 

and approvals) to the end (e.g. data analysis) of the research process.  

7.3.1 Permissions and Approval 
For Supporting Study 1 (Section 4.2, p.95), the permissions for carrying out an 

online survey with Open University students were approved through its Student 

Research Project Panel (SRPP). One of the conditions for the approval was that the 

researcher needed permission from each of the course managers before sending out the 

online surveys. Most online surveys of students from the Open University are carried 

out through the Survey Office. The Survey Office is responsible for inviting the 

students through an email link to log-in and answer the questionnaire, rather than it 

being the responsibility of the course manager, lecturer or the researcher.  

Some course managers readily gave their approval for their students to take part 

in the research, particularly for courses in technology and mathematics. However in the 

psychology courses, the course managers were initially reluctant to provide any 

approval as their main concern was that this research had no relevance to their students. 

After several email negotiations over a few weeks, approval was received. Perhaps the 

more important lesson learnt is that the negotiating process can be a prolonged one 

where initial setbacks can be overcome with persistence through providing the 

necessary arguments and supporting material needed to allay the concerns of the 

interested parties.  
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This experience further highlights the necessity of planning well in advance for 

receiving any type of permissions. The informal communication between the researcher 

and the interested parties was the key to obtaining consent, and may be the wisest initial 

course of action before applying for the approval. 

7.3.2 Testing of Tasks and Software 
The two pilot studies in this thesis involved the testing of the software boxes and 

the three task types by Galbraith and Haines (2000a) concerning expected values and 

linear programming. Pre-testing the tasks was essential. For example, in Pilot Study 2 

(Expected Values) some students chose not to use the software boxes because the tasks 

could be easily solved through pen-and-paper methods. It was from this Pilot Study that 

the methods began to change with respect to the choice of the mathematical domain, as 

it was now apparent that students would use the software boxes only: 

• if the researcher asked them to  

• if the task was too complex to solve by hand or 

• if they saw a need to use it. 

Therefore the lessons learnt from the pilot studies were that one should always 

test the tasks to determine:  

•whether students understood the mathematical domain from the 

instructional materials (both expected values and linear programming) 

•whether the chosen tasks could provide the required data for answering the 

research questions (for example, students engaging with the tasks to 

produce think-aloud data).  

For both pilot studies, the software boxes were programmed by the researcher in 

MS Excel using Visual Basic for Applications (VBA). As mentioned before, this 
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software is provided in the attached CD. It was necessary for the researcher to create 

and program the software boxes as no mathematical software could be identified to 

represent all three software boxes. It was helpful to develop a schema with regard to 

how the software boxes should operate when solving linear programming problems (see 

Figure 13, p.114). This was critical when deciding whether the open-box software 

(represented by OB in the figure) should have two interaction levels (steps 1 to 9) or 

only one (Steps 1 to 4 and 7 to 9).  

It was important to pilot the software boxes to know whether a) students could 

use the software boxes, b) the programmed software modes were representing the black-

box, glass-box and open-box principles and c) there were any errors or glitches in the 

software. Through testing, it was observed that students were able to use the software 

boxes and that there were no obvious user-computer interaction challenges. Although 

the developed software interface was sufficient for the research, making a friendlier 

interface (Holzinger, 2005) might enhance the usage of the software boxes.  

7.3.3 Recruiting Participants via Facebook and Gatekeepers 
As noted in Section 3.6.1, (p.82), students for the Main Study were initially 

recruited via popular social networking sites such as Facebook. Whilst posts were made 

in the Facebook forums as well as paid electronic fliers at this website, the recruitment 

of students was poor (3 students responded from which only 1 participated). 

This suggests that there are limitations of recruiting students via social-

networking websites and perhaps using participants who are enthusiasts may gain a 

higher response rate (Section 3.6.1, p.82). Further, minimising the equipment 

requirements of participants may also increase the response rate.  
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The use of gatekeepers in this research was advantageous in gaining access to 

students especially where the gatekeepers were able to take responsibility for acquiring 

and setting up the equipment. 

7.3.4 Statistical Analysis 
An initial statistical analysis of the Main Study (Chapter 5, p.124) used a 

number of analyses of variance (ANOVAs) and regressions for analysing the different 

approaches. These however proved complex to understand and to follow an argument. 

There were added problems in that the statistical analysis had heterogeneity of variance 

and unequal sample sizes, which all impacted on the robustness of the ANOVAs. 

Changing the statistics to using frequencies and non-parametric statistics (such as chi-

squares) provided not only a different and interesting way of looking of the data but a 

simpler way of presenting it as well.  

7.4 Scope and Limitations 
 This research focused on university students learning linear programming as 

isolated individuals using one software box. The findings about the software boxes 

should extend to other mathematical domains provided that the solving of the task is 

sufficiently complex (unlike that of expected values, as shown in Pilot Study 2). 

Extending these findings is only suitable if any developed software boxes show 

procedural steps and the tasks given to students are either interpretive or constructive. 

Further, students in secondary schools may well exhibit similar behaviour 

(performance and approaches) to university students when using the software boxes, 

especially where they are encouraged to learn more independently such as during GCE 

A-Levels. However, further research should be conducted using secondary-school 

students and in other mathematical domains to show that these findings are 

generalisable.  
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Whilst the research focused on learning at the individual level, it does recognise 

that other types of learning such as collaborative learning may influence how students 

learn with the different modes of software. Also, the sample used in the research was 

mainly from Trinidad and Tobago. A study by Watkins and Biggs (2001) suggested that 

cultural background influenced students’ levels of processing, especially in Chinese 

students. It is however unclear whether the observed influence was due to the culture or 

the learning context as these were confounded with each other in this study. Trinidad 

and Tobago’s secondary-school education and teaching systems are modelled on the 

British system, and their university system is also partly modelled on the British system 

(and uses the same degree awards) (Section 3.6, p.81). Therefore, these results may be 

representative of students in Western educational systems.  

The students’ performance was only measured in two out of the three tasks (the 

interpretive and constructive tasks, not the mechanical task). From Pilot Study 2, the 

students felt that the tasks, particularly the mechanical and interpretive tasks, were all 

the same (Section 4.3.3, p.109). They expressed some sense of frustration in having to 

repeat the same procedures. To circumvent this issue, for Pilot Study 3 and the Main 

Study, all three task types were designed around a problem to minimise a feeling of 

sameness. Through this, the interpretive and constructive tasks were based on students 

calculating the mechanical task correctly. Getting the mechanical task correct was not a 

difficult accomplishment, as the students only had to ensure that they had inputted the 

correct numbers. Some students inputted numbers incorrectly, but, because the 

interpretive and constructive tasks were dependent on the calculated solution, the 

researcher prompted them to ensure that they inputted the numbers correctly. Thus, the 

mechanical task was ignored when investigating performance. Of course, in real 

learning situations, a researcher will not be present to ensure the correction of these 

mistakes, and so performance on the mechanical task will vary because of student error. 
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The university where this research was carried out was responsible for additional 

limitations. The study was conducted at The Open University, which is primarily an 

online and distance-education university. Unlike in other studies where students on a 

campus were recruited, finding participants presented a challenge. However, this gave 

rise to the development of remote observation, a new method for observing students at a 

distance. This meant that students at other campuses or elsewhere were now able to take 

part in the study without the need for long-distance travelling. The sample size of 38 

used in this study was primarily achieved by asking university gatekeepers to recruit 

students in their departments at another university. This sample size provided a trade-off 

between good statistical power and depth of analysis of multiple-stream qualitative data 

(Section 3.6, p.81).  

One of the issues that arose during the statistical analysis of the data was that the 

Mathematics Confidence variable which was used as a covariate was causing a violation 

of one of the underlying assumptions of the Analysis of Covariance (ANCOVA). This 

underlying assumption was the homogeneity of slopes. This violation suggested that 

Mathematics Confidence was influencing the interaction effect of software Boxes and 

Tasks. That is, the performance scores for Box by Tasks were being influenced by 

different levels of Mathematics Confidence (such as an increase or decrease in 

Mathematics Confidence). However, the ANCOVA statistical test could not be used to 

test how the different levels of Mathematics Confidence were influencing performance 

scores as it violated one of the underlying assumptions. Therefore, to circumvent this 

issue, the Mathematics Confidence variable was dichotomised using its median, a 

common practice in the psychology domain. Students were then assigned into lower and 

higher Mathematics Confidence groupings. From this grouping, differences in scores 

between lower and higher Mathematics Confidence group of students could be found.  
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However, one has to note, as with most statistical analysis, the differences in the 

group scores are based on pooled data. Thus, whilst a few students with lower 

mathematics confidence scored highly, on average the lower mathematics confidence 

group scored statistically lower. Taking this into account, the qualitative examples of 

students’ approaches and answers used in this thesis were therefore frequently from an 

average scoring student in these two mathematics confidence groupings. In some 

instances, particularly when discussing students’ answers, both low and high scoring 

answers within both mathematics confidence groupings were used to illustrate how 

students from the two groups differed. 

Further, as the students used in this sample were mainly from natural sciences, 

engineering and medical disciplines, it meant that the mathematics confidence displayed 

by the students were generally quite high. There may be a larger disparity in students’ 

performance and quality of explanations if students from other disciplines such as Arts 

had been considered. The reason for this is because Art students’ mathematics 

confidence might be even lower than the lower mathematics confidence students used in 

this study. Thus, the statistical data which pointed to differences in performance due to 

mathematics confidence may become more apparent when using students with even 

lower mathematics confidence (e.g. Arts students). 

The experiment conducted in this study used one-to-one observations, rather 

than just post-test data. The remote observation method provided a large corpus of data, 

not all of which could be fully analysed. The data collected included over 76 hours in 

video, about 45 pages of hand-written observation notes and over 11,000 words in 

typewritten answers. Of the 38 students, eight students’ sessions were analysed in full, 

which is similar to the number of transcripts used by Chi et al. (1989) in their 

investigation of self-explanations (10). The eight students were chosen as they were 

representative both of the software boxes and of mathematics confidence. Their 
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transcripts were used for illustrating the quantitative data and to investigate further any 

anomalies noted from this data. Thus, these students’ transcripts were not used in 

isolation but instead served as the first port of call to check trends. If a trend was 

observed in this data, then it was cross-checked with the observation notes of all the 

participants and then cross-checked with the video data. For example, this triangulation 

of data was used in testing why low mathematics confidence students using the glass-

box software achieved higher marks in Problem 3’s interpretive task (Section 6.5.3, 

p.214). 

7.5 Implications of Main Study 
This section discusses the implications of the results of the Main Study for 

software designers and educators with particular interest on how this may affect 

students’ understanding of a mathematical topic. 

7.5.1 Implications for Software Designers 
As was noted from Section 7.2.1 (p.244), there was no software box that was 

best for all circumstances. Thus it may mean that software designers should ideally 

allow all mathematical software to have the option to operate in the three software box 

modes. This would make certain that teachers and students can choose the appropriate 

software box for their teaching and learning objectives respectively. Just as Buchberger 

(1990) had recommended (Section 1.3, p.3), students may use the glass-box and open-

box for grasping the procedural knowledge. Through doing this, the students will not 

only become familiar with the terms involved in solving problems (such as was seen 

with the glass-box students who tried to understand the term basic variable) but may 

also be able to think mathematically, that is, with mathematical symbols (as was seen 

with students using mainly the open-box software). When students have become 

accustomed to the terminologies and procedural steps, they probably can then move on 

to using the black-box software for solving problems and applying their conceptual 
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knowledge. However, it is possible that higher mathematics confidence students may be 

able to make this transition quicker.   

Further, as found in Chapter 6, whilst the glass-box and the open-box software 

were useful by some for understanding the procedural algorithm, it was clear that 

students were not engaging thoroughly with the steps to gain any conceptual knowledge 

(for example, lack of trying to understand the slack values). Thus, if the software modes 

of glass-box and open-box software can include a prompting mechanism to help 

students self-explain what the steps mean, it may help students to build their conceptual 

knowledge and encourage students to engage with the mathematical topic in a deep 

way. Through the engagement of the mathematical topic, students will then be able to 

make connections with the underlying mathematical concepts. One has to guard against 

the likelihood that students may make the wrong self-explanations. Thus, it may be 

useful to encourage students to first self-explain via a prompt and then let the software 

box provide an explanation from which the students can build their conceptual 

knowledge. However, one challenge of such a software design is to ensure that students 

do not skip over the prompt and go directly to the explanation as they would lose the 

valuable process of making conceptual connections.  

Perhaps to ensure that students make explanations, teachers should prompt the 

students instead of the software or at least provide some type of scaffolding questions. 

Through the prompts and the scaffolding questions, students can engage with the steps 

in a deeper way from which they can understand the reasoning behind the calculations 

rather than just the arithmetic or algorithmic process. 

7.5.2 Implications for Educators 
Based on the results of how students used the software boxes, lecturers or 

teachers should not use only one software box but a mixture of the software boxes to 

teach any topic, depending on the objectives of the class. If the objective is to learn 
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procedural knowledge, then the open-box software may be more appropriate. Perhaps, 

as Winston (1996) suggested, learning the procedural steps may occur more often in the 

mathematical disciplines and hence these students may be able to make more use of the 

open-box software (see Section 1.3, p.3). 

With guided learning, the glass-box software may help students to understand 

the steps before proceeding to solving the task on their own, such as by using the open-

box software. If the objective of the class is to explore different solutions, then using 

black-box software may be more appropriate as it allows students to quickly acquire 

answers and perhaps see connections between procedural and conceptual knowledge (as 

evidenced in students being able to explain why changes were occurring in the 

constructive tasks).  

As noted in Chapter 6, students were able to self-explain more when the tasks 

were provided with ‘why’ prompts rather than ‘what’ prompts. Thus teachers may want 

to consider creating tasks that ask students ‘why’ in order that students are encouraged 

to make self-explanations and tap into their conceptual knowledge. Teachers may 

consider using real-life application problems, as students seemed to engage with these 

problems more. These problems should however be realistic representations of the 

world as was the case with the linear programming problems. However, this raises an 

issue as realistic problems may cause students to use real-life heuristics and thus 

provide answers based on what their perception of the case should be rather than using 

any mathematical grounded knowledge.  

Whilst in some problem types, students may be able to perform well regardless 

of their mathematics confidence level, it appears for other problems that some students 

with low mathematics confidence may be at a disadvantage. Building the mathematics 

confidence of a student is thus necessary as mathematics confidence impacts on the 
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quality of self-explanations that the students make and hence the conceptual knowledge 

they are able to create.  

Building mathematics confidence may not be an easy undertaking, as students’ 

mathematics confidence may be deep-rooted such as being unable to perform correctly 

simple mathematical tasks such as algebra. As was observed in this study, even at the 

tertiary level, students still have poor algebra skills and may be a reflection on how 

algebra is taught at the secondary school level. These poor algebra skills generally point 

to poor conceptual knowledge (for example, some students were unable to distinguish 

between  a variable and a coefficient). Teaching algebra which promotes both 

conceptual and procedural knowledge is thus needed if students are to apply these skills 

with confidence and appropriateness. The results from Chapter 6 showed that students 

using the glass-box and the open-box software with lower mathematics confidence were 

more likely to understand the concept of variables unlike those lower mathematics 

confidence students using the black-box, and it may mean the use of the glass-box and 

open-box software may help these weaker students build their conceptual knowledge 

whilst solving problems in a procedural manner. 

7.6 Future Work  
There are several areas that prompt additional research: 

1. This current research involved students who assessed themselves as 

generally having a high mathematics confidence (Section 5.3.2, p.134). It 

would be useful to compare formally the differences in performance and 

approaches between equal group sizes of students with low and with high 

mathematics confidence 

2. Remote observation was used mostly with young students, for whom a 

protocol was developed. Using remote observation with older 
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populations or people with disabilities could lead to remote observation 

protocols tailored to these populations 

3. A more extensive investigation is needed to determine whether there is a 

relationship between self-explanations and the processing levels. Perhaps 

assessing students’ explanations and processing levels as they proceed 

from one task to another could aid in this illumination.  

4. This study only looked at students using the software boxes on their own. 

Perhaps investigating situations where students are collaborating can 

highlight any different approaches that groups of students adopt when 

using the software boxes.  

5. At the time of the study, the remote observation method used MSN 

messenger and Skype because of its ability to have synchronous voice 

conversation and a separate video recording device. With recent software 

such as Elluminate which allows both synchronous voice conversation 

and ability to record sessions, the remote observation protocol should be 

investigated into how it can be modified to take advantage of this new 

technology.  

6. Finally, this research concentrated on investigating software boxes in one 

mathematical domain. This research should be extended to see whether 

students undertake similar approaches and have similar performance in 

other mathematical domains when using the software boxes. Further this 

research could also be extended to cognate mathematical domains such 

as Physics or Engineering.  
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7.7 Concluding Remarks 
This chapter outlined a number of achievements of this research. What started 

off as an investigation into whether students perform better in black-box, glass-box and 

open-box software has also provided a number of other interesting research outcomes, 

in particular the development of the remote observation method and the analytical 

framework.  

Section 7.2 (p.244) discussed the main contributions of this research. In 

particular, this study has now addressed the questions of how students perform on the 

three task types for all three software boxes and how the software boxes influenced the 

approaches undertaken by the students. The implications of the use of the software 

boxes for teachers and software programmes were highlighted, particularly that all 

software modes are useful (the black-box software for exploring and the glass and open-

box software for understanding steps). This section also provided a remote observation 

protocol that could apply in future studies. Finally, the analytical framework, which was 

developed in Section 2.9 (p.46), was modified to include all empirical contributions 

from this research, namely the links between self-confidence, explorations and self-

explanations. 

Section 7.3 (p. 258) provided a reflective piece on the research process in 

particular it highlighted  the challenges of gaining permissions and approvals. Further 

this section reiterates the challenges associated with recruiting participants via the 

internet and the boons of access to appropriate gatekeepers. 

The limitations of the research were also addressed (Section 7.4, p.261). Whilst 

the limitations in some cases were unavoidable such as the unavailability of 

undergraduate volunteers, this yielded new opportunities such as the development and 

testing of the remote observation method.  
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The implications of the Main Study for both educators and software designers 

were discussed in Section 7.5 (p.265), where recommendations for designing 

mathematical software were made as well as suggestions for when lecturers should use 

the software boxes. 

To round off this chapter, other contexts for using the software boxes were 

suggested for future research, as well as other avenues where the remote observation 

method could be used, such as in developing countries or people with disabilities.  

 



 

 272 

References 
Albritton, M. D., McMullen, P. R. and Gardiner, L. R. (2003), "OR/MS content and 

visibility in AACSB-accredited US business programs", Interfaces, 33(5), pp. 
83-89 

Aleven, V. A. W. M. M. and Koedinger, K. R. (2002), "An effective metacognitive 
strategy: learning by doing and explaining with a computer-based cognitive 
tutor", Cognitive Science, 26(2), pp. 147-179 

Anderson, J. R. (1995), Cognitive Psychology and Its Implications, 4th Ed., W.H. 
Freeman and Company, New York 

Anstey, K. J., Salim, A., Lord, S. R., Hennessy, M., Mitchell, P., Mill, K. and Von 
Sanden, C. (2007), "Our correct use of ANCOVA yields acceptable results", 
Journal of the International Neuropsychological Society, 13(2), pp. 371 

Association of Commonwealth Universities (2008), Commonwealth universities 
yearbook, 82nd Ed., Association of Commonwealth Universities, London 

Atkinson, R. K., Renkl, A. and Merrill, M. M. (2003), "Transitioning from studying 
examples to solving problems: effects of self-explanation prompts and fading 
worked-out steps", Journal of Educational Psychology, 95(4), pp. 774-783 

Bache, R. and Mullerberg, M. (1990), "Measures of testability as a basis for quality 
assurance", Software Engineering Journal, 5(2), pp. 86-92 

Bandura, A. (1977), "Self-efficacy: toward a unifying theory of behavioral change", 
Psychological Review, 84(2), pp. 191-215 

Bandura, A. (1986), Social Foundations of Thought and Action, Prentice-Hall, Inc., 
New Jersey 

Biggs, J., Kember, D. and Leung, D. Y. P. (2001), "The revised two-factor study 
process questionnaire: R-SPQ-2F", British Journal of Educational Psychology, 
71(1), pp. 133-149 

Biggs, J. B. (1987), Student Approaches to Learning and Studying, Australian Council 
for Educational Research, Hawthorn, Victoria 

Bloom, B. S. (1956), Taxonomy of Educational Objectives, Handbook I: The Cognitive 
Domain, David McKay Co Inc., New York 

Bloom, B. S., Hastings, J. T. and Madaus, G. F. (1971), Handbook on the Formative 
and Summative Evaluation of Student Learning, McGraw Hill, New York 

Boaler, J. (1993), "The role of contexts in the mathematics classroom: Do they make 
mathematics more "real”?" For The Learning of Mathematics, 13(2), pp. 12-17, 
In Hennessy, 1993 

Buchberger, B. (1990), "Should students learn integration rules?" ACM SIGSAM 
Bulletin, 24(1), pp. 10-17 

Buchberger, B. (2002), "Computer algebra: the end of mathematics?" ACM SIGSAM 
Bulletin, 36(1), pp. 16-19, Translated by C. Schutzky 

Campbell, D. T. and Stanley, J. C. (1963),"Experimental and quasi-experimental 
designs for research and teaching", In: N. L. Gage (Ed.), Handbook of Research 
on Teaching, Rand McNally, Chicago, IL, pp. 171-246 



 

 273

Chi, M. T. H. (2000),"Self-explaining expository texts: The dual processes of 
generating inferences and repairing mental models", In: R. Glaser (Ed.), 
Advances in Instructional Psychology, Lawrence Erlbaum Associates, Mahwah, 
NJ, pp. 161-238 

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P. and Glaser, R. (1989), "Self-
explanations: how students study and use examples in learning to solve 
problems", Cognitive Science, 13(2), pp. 145-182 

Chi, M. T. H., De Leeuw, N., Chiu, M.-H. and Lavancher, C. (1994), "Eliciting self-
explanations improves understanding", Cognitive Science, 18(3), pp. 439-477 

Clough, G. M. (2005), Mobile Devices in Informal Learning, MSc Dissertation, Institute 
of Educational Technology, Open University, Milton Keynes, UK 

Cohen, J. (1983), "The cost of dichotimization", Applied Psychological Measurement, 
7(3), pp. 249-253 

Cohen, J. (1988), Statistical Power Analysis for the Behavioral Sciences, Erlbaum, 
Hillsdale, NJ 

Coupland, M. (2004), Learning with New Tools, PhD Thesis, Department of 
Information Science, University of Wollongong, Wollongong 

Crawford, K., Gordon, S., Nicholas, J. and Prosser, M. (1998a), "Qualitatively different 
experiences of learning mathematics at university", Learning and Instruction, 
8(5), pp. 455–468 

Crawford, K., Gordon, S., Nicholas, J. and Prosser, M. (1998b), "University 
mathematics students' conceptions of mathematics", Studies in Higher 
Education, 23(1), pp. 87-94 

Creswell, J. W. (2003), Research Design - Quantitative, Qualitative and Mixed Methods 
Approaches, Sage Publications, Thousand Oaks, CA 

Cretchley, P., Harman, C., Ellerton, N. and Fogarty, G. (2000), "MATLAB in early 
undergraduate mathematics: an investigation into the effects of scientific 
software on learning", Mathematics Education Research Journal, 12(3), pp. 
219-233 

Cretchley, P. C. and Galbraith, P. (2002), "Mathematics or computers? Confidence or 
motivation? How do these relate to achievement?" Proceedings of the 2nd 
International Conference on the Teaching of Mathematics at the Undergraduate 
Level, Hersonissos, Crete, John Wiley and Sons Inc., 
http://www.math.uoc.gr/~ictm2/Proceedings/pap318.pdf

Crowe, D. and Zand, H. (2000), "Computers and undergraduate mathematics 1: setting 
the scene", Computers and Education, 35(2), pp. 95-121 

Crowe, D. and Zand, H. (2001), "Computers and undergraduate mathematics 2: on the 
desktop", Computers and Education, 37(3-4), pp. 317-344 

D’Alonzo, K. T. (2004), "The Johnson-Neyman procedure as an alternative to 
ANCOVA", Western Journal of Nursing Research, 26(7), pp. 804-812 

Dana-Picard, T. and Steiner, J. (2004), "The importance of 'low-level' CAS commands 
in teaching engineering mathematics", European Journal of Engineering 
Education, 29(1), pp. 139-146 

de Jong, T. and Ferguson-Hessler, M. G. M. (1996), "Types and qualities of 
knowledge", Educational Psychologist, 31(2), pp. 105-113 

http://www.math.uoc.gr/%7Eictm2/Proceedings/pap318.pdf


 

 274 

Delaney, H. D. and Maxwell, S. E. (1983), "ANCOVA and repeated measures: dealing 
with heterogeneity of regression", 67th Annual Meeting of the American 
Educational Research Association, Monteal, Quebec 

Dreyfus, T. (1994),"The role of cognitive tools in mathematics education", In: R. 
Biehler, Scholz, R. W., Sträßer, R. and Winkelmann, B. (Eds.), Didactics of 
Mathematics as a Scientific Discipline, Kluwer, Dordrecht, pp. 117-120 

Drijvers, P. (2000), "Students encountering obstacles using CAS", International Journal 
of Computers for Mathematical Learning, 5(3), pp. 189-209 

Duff, A. (2004), "The revised approaches to studying inventory (RASI) and its use in 
management education", Active Learning in Higher Education, 5(1), pp. 56-72 

Dwyer, C., Hiltz, S. R. and Passerini, K. (2007), "Trust and privacy concern within 
social networking sites: A comparison of Facebook and MySpace", Proceedings 
of the Thirteenth Americas Conference on Information Systems, Keystone, 
Colorado, http://csis.pace.edu/~dwyer/research/DwyerAMCIS2007.pdf

Edmunds, R. and Richardson, J. T. E. (2009), "Conceptions of learning, approaches to 
studying and personal development in UK higher education", British Journal of 
Educational Psychology, 79(2), pp. 295-309 

Encyclopædia Britannica (2009),"Linear programming", In: Encyclopædia Britannica 
Online, Last accessed: 27th April, 2009: 
http://www.britannica.com/EBchecked/topic/342203/linear-programming

Ericsson, K. A. and Simon, H. A. (1984), Protocol Analysis: Verbal Reports as Data, 
MIT Press, Cambridge, MA 

Ericsson, K. A. and Simon, H. A. (1998), "How to study thinking in everyday life: 
contrasting think-aloud protocols with descriptions and explanations of 
thinking", Mind, Culture and Activity, 5(3), pp. 178-186 

Fennema, E. and Sherman, J. A. (1976), "Fennema-Sherman mathematics attitudes 
scales: instruments designed to measure attitudes toward the learning of 
mathematics by females and males", Journal for Research in Mathematics 
Education, 7(5), pp. 324-326 

Field, A. (2000), Discovering Statistics Using SPSS for Windows, Sage Publications 
Inc., London, UK 

Flavell, J. H. (1976),"Metacognitive aspects of problem solving", In: L. B. Resnick 
(Ed.), The Nature of Intelligence, Erlbaum, Hillsdale, NJ,  

Galbraith, P. and Haines, C. (2000a), "Conceptual mis(understandings) of beginning 
undergraduates", International Journal of Mathematical Education in Science 
and Technology, 31(5), pp. 651-678 

Galbraith, P. and Haines, C. (2000b), Mathematics-Computing Attitude Scales, 
Monographs in Continuing Education, City University, London 

Gass, S. I., Hirshfeld, D. S. and Wasil, E. A. (2000), "Model world: the spreadsheeting 
of OR/MS", Interfaces, 30(5), pp. 72-81 

Gentner, D. R. (1988),"Expertise in typewriting", In: M. T. H. Chi, Glaser, R. and Farr, 
M. J. (Eds.), The Nature of Expertise, Lawrence Erlbaum Associates Inc., 
Hillsdale, NJ, pp. 1-21 

Gibbs, G., Habeshaw, S. and Habeshaw, T. (1988), 53 Interesting Ways to Appraise 
Your Teaching, Technical and Educational Services, Bristol 

http://csis.pace.edu/%7Edwyer/research/DwyerAMCIS2007.pdf
http://www.britannica.com/EBchecked/topic/342203/linear-programming


 

 275

Gilmore, G. C. (2007), "Inappropriate use of covariate analysis renders meaningless 
results", Journal of the International Neuropsychological Society, 13(2), pp. 370 

Gist, M. E. and Mitchell, T. R. (1992), "Self-efficacy: a theoretical analysis of its 
determinants and malleability", Academy of Management Review, 17(2), pp. 
183-211 

Glass, G. V., Peckham, P. D. and Sanders, J. R. (1972), "Consequences of failure to 
meet assumptions underlying the fixed effects analyses of variance and 
covariance", Review of Educational Research, 42(3), pp. 237-288 

Große, C. S. and Renkl, A. (2006), "Effects of multiple solution methods in 
mathematics learning", Learning and Instruction, 16(2), pp. 122-138 

Hammersley, M. and Atkinson, P. (1995), Ethnography - Principles in Practice, 2nd 
Edition, Routledge, London 

Hausmann, R. G. M. and Chi, M. T. H. (2002), "Can a computer interface support self-
explaining?" International Journal of Cognitive Technology, 7(1), pp. 4-14 

Heid, M. K. (1988), "Resequencing skills and concepts in applied calculus using the 
computer as a tool", Journal for Research in Mathematics Education, 19(1), pp. 
3-25 

Heid, M. K. and Edwards, M. T. (2001), "Computer algebra systems: revolution or 
retrofit for today's mathematics classrooms?" Theory Into Practice, 40(2), pp. 
128-136 

Hennessy, S. (1999), "The potential of portable technologies for supporting graphing 
investigations (Abstract)", British Journal of Educational Technology, 30(1), pp. 
57-60, Last Accessed: 26th Jan, 2009: 
http://www.educ.cam.ac.uk/people/staff/hennessy/BJET_Lit_review.pdf (Full 
document) 

Hiebert, J. and Lefevre, P. (1986),"Conceptual and procedural knowledge in 
mathematics: an introductory analysis", In: J. Hiebert (Ed.), Conceptual and 
Procedural Knowledge: The Case of Mathematics, Lawrence Erlbaum 
Associates Inc., Hillside, NJ, pp. 1-27 

Holzinger, A. (2005), "Usability engineering methods for software developers", 
Communications of the ACM, 48(1), pp. 71-74 

Horton, R. M., Storm, J. and Leonard, W. H. (2004), "The graphing calculator as an aid 
to teaching algebra", Contemporary Issues in Technology and Teacher 
Education, 4(2), pp. 152-162 

Hosein, A. (2005), Teaching of Linear Programming: Variation Across Disciplines and 
Countries, MSc Dissertation, Institute of Educational Technology, Open 
University, Milton Keynes 

Howell, D. C. (2002), Statistical Methods for Psychology, 5th Edition, Duxbury 
Thomson Learning, Pacific Grove, CA 

Howell, J., Miller, P., Park, H. H., Sattler, D., Schack, T., Spery, E., Widhalm, S. and 
Palmquist, M. (2005), Reliability and Validity, Writing@CSU, 
http://writing.colostate.edu/guides/research/relval/ [Retrieved 15th Nov, 2008] 

Hutchins, E. (1995), Cognition in the Wild, MIT Press, Cambridge, MA 

http://www.educ.cam.ac.uk/people/staff/hennessy/BJET_Lit_review.pdf
http://writing.colostate.edu/guides/research/relval/


 

 276 

Jones, R. M. and Fleischman, E. S. (2001), "Cascade explains and informs the utility of 
fading examples to problems", 23rd Annual Conference of the Cognitive Science 
Society, Edinburgh, Scotland 

Kadijevic, Ð. and Krnjaic, Z. (2003), "Is cognitive style related to link between 
procedural and conceptual mathematical knowledge?" The Teaching of 
Mathematics, 6(2), pp. 91-95 

Kadijevich, D. and Haapasalo, L. (2001), "Linking procedural and conceptual 
mathematical knowledge through CAL", Journal of Computer Assisted 
Learning, 17(2), pp. 156-165 

Kember, D. (1997), "A reconceptualisation of the research into university academics' 
conceptions of teaching", Learning and Instruction, 7(3), pp. 255-275 

Kendal, M. and Stacey, K. (1999), "CAS, calculus and classrooms", O. Zaslavsky (Ed.), 
23rd Conference of the International Group for the Psychology of Mathematics 
Education, 3, Haifa, Israel pp. 129-136 

Kendal, M. and Stacey, K. (2001), "The impact of teacher privileging on learning 
differentiation with technology", International Journal of Computers for 
Mathematical Learning, 6(2), pp. 143-165 

Landsberger, H. (1958), Hawthorne Revisited, Cornell University Press, Ithaca, NY 

Laurillard, D. (1979), "The processes of student learning", Higher Education, 8(4), pp. 
395-409 

Leinbach, C., Pountney, D. C. and Etchells, T. (2002), "Appropriate use of a CAS in the 
teaching and learning of mathematics", International Journal of Mathematical 
Education in Science and Technology, 33(1), pp. 1-14 

Lenth, R. V. (2006), "Java Applets for Power and Sample Size [Computer software]", 
http://www.cs.uiowa.edu/~rlenth/Power/, Last Retrieved 4th March, 2008. 

Leontiev, A. N. (1947/1978), Activity, Consciousness, and Personality, Prentice Hall, 
Inc., Englewood Cliffs, NJ 

Lindsley, D. H., Brass, D. J. and Thomas, J. B. (1995), "Efficacy-performance spirals: a 
multilevel perspective", Academy of Management Review, 20(3), pp. 645-678 

Marton, F. (1975), "On non-verbatim learning: 1. Level of processing and level of 
outcome", Scandinavian Journal of Psychology, 16(1), pp. 273-279 

Marton, F. and Säljö, R. (1976), "On qualitative differences in learning I. Outcome and 
process", British Journal of Educational Psychology, 46(1), pp. 4-11 

Maxwell, S. E. and Delaney, H. D. (1993), "Bivariate median splits and spurious 
statistical significance", Psychological Bulletin, 113(1), pp. 181-190 

Meagher, M. (2000), Curriculum and assessment in an age of computer algebra 
systems, Digest, Report No.: EDO-SE-00-04, ERIC Clearinghouse for Science, 
Mathematics, and Environmental Education 

Myers, G. J. (1979), The Art of Software Testing, John Wiley & Sons,  

O'Callaghan, B. R. (1998), "Computer-intensive algebra and students' conceptual 
knowledge of functions", Journal for Research in Mathematics Education, 
29(1), pp. 21-40 

http://www.cs.uiowa.edu/%7Erlenth/Power/


 

 277

Olejnik, S. and Algina, J. (2003), "Generalized eta and omega squared statistics: 
measures of effect size for some common research designs", Psychological 
Methods, 8(4), pp. 434-447 

Owen, S. V. and Froman, R. D. (2005), "Why carve up your continuous data?" 
Research in Nursing & Health, 28(6), pp. 496-503 

Pajares, F. and Miller, M. D. (1994), "Role of self-efficacy and self-concept beliefs in 
mathematical problem solving: a path analysis", Journal of Educational 
Psychology, 86(2), pp. 193-203 

Palmiter, J. R. (1991), "Effects of computer algebra systems on concept and skill 
acquisition in calculus", Journal for Research in Mathematics Education, 22(2), 
pp. 151-156 

Piaget, J. (1972), The Principles of Genetic Epistemology, Routledge, London 

Pierce, R. and Stacey, K. (2001), "Observations on students' responses to learning in a 
CAS environment", Mathematics Education Research Journal, 13(1), pp. 28-46 

Pierce, R., Stacey, K. and Barkatsas, A. (2005), "A scale for monitoring students' 
attitudes to learning mathematics with technology", Computers and Education, 
48(2), pp. 285-300 

Plake, B. S., Ansorge, C. J., Parker, C. S. and Lowry, S. R. (1982), "Effects of item 
arrangement, knowledge of arrangement test anxiety and sex on test 
performance", Journal of Educational Measurement, 19(1), pp. 49-57 

Prosser, M. and Trigwell, K. (1999), Understanding Learning and Teaching, Open 
University Press, Buckingham 

Ramanau, R. (2007), Perceptions of Transactional Distance: A Comparative Study of 
Distance Learning in the UK and Russia, PhD, Institute of Educational 
Technology, The Open University, Milton Keynes 

Ramsden, P. and Entwistle, N. (1981), "Effects of academic departments on students' 
approaches to studying", British Journal of Educational Psychology, 51, pp. 
368-383 

Renkl, A. (1997), "Learning from worked-out examples: A study on individual 
differences", Cognitive Science, 21(1), pp. 1-29 

Renkl, A. and Atkinson, R. K. (2003), "Structuring the transition from example study to 
problem solving in cognitive skill acquisition: a cognitive load perspective", 
Educational Psychologist, 38(1), pp. 15-22 

Renkl, A., Atkinson, R. K. and Große, C. S. (2004), "How fading worked solution steps 
works – a cognitive load perspective", Instructional Science, 32(1-2), pp. 59-82 

Richardson, J. T. E. (2000), Researching Student Learning: Approaches to Studying in 
Campus-Based and Distance Education, Open University Press, Buckingham 

Richardson, J. T. E. (2005), "Students’ perceptions of academic quality and approaches 
to studying in distance education", British Educational Research Journal, 31(1), 
pp. 7-27 

Richardson, J. T. E. and Edmunds, R. (2007), A Cognitive-Developmental Model of 
University Learning, SOMUL Working Paper, Report No.: 4, The Open 
University 



 

 278 

Rittle-Johnson, B. and Alibali, M. W. (1999), "Conceptual and procedural knowledge of 
mathematics: does one lead to the other?" Journal of Educational Psychology, 
91(1), pp. 175-189 

Rittle-Johnson, B., Siegler, R. S. and Alibali, M. W. (2001), "Developing conceptual 
understanding and procedural skill in mathematics: an iterative process." 
Journal of Educational Psychology, 93(2), pp. 346-362 

Roy, M. and Chi, M. T. H. (2005),"The self-explanation principle in multimedia 
learning", In: R. E. Mayer (Ed.), The Cambridge Handbook of Multimedia 
Learning, Cambridge University Press, New York, pp. 271-286 

Ruthven, K., Hennessy, S. and Brindley, S. (2004), "Teacher representations of the 
successful use of computer-based tools and resources in secondary-school 
English, mathematics and science", Teaching and Teacher Education, 20(3), pp. 
259-275 

San Diego, J. P. and McAndrew, P. (2007), "Learning from ‘OpenLearner-interactions’ 
using digital research techniques", OpenLearn 2007, Milton Keynes pp. 95-98 

Sapsford, R. (1999), Survey Research, Sage Publications Inc., London 

Savenye, W. C. and Robinson, R. S. (1996),"Qualitative research issues and methods: 
an introduction for educational technologists", In: D. H. Jonassen (Ed.), 
Handbook of Research for Educational Communications and Technology, 
Simon and Schuster Macmillan, New York, NY, pp. 1171-1195 

Schultz, B. B. (1985), "Levene's test for relative variation", Systematic Zoology, 34(4), 
pp. 449-456 

Schunk, D. H. (1991), "Self-efficacy and academic motivation", Educational 
Psychologist, 26(3&4), pp. 207-231 

Schworm, S. and Renkl, A. (2006), "Computer-supported example-based learning: 
when instructional explanations reduce self-explanations", Computers and 
Education, 46(4), pp. 426-445 

Shrout, P. E. and Fleiss, J. L. (1979), "Intraclass correlations: uses in assessing rater 
reliability", Psychological Bulletin, 86(2), pp. 420-428 

Skemp, R. R. (1976), "Relational understanding and instrumental understanding", 
Mathematics Teaching, 77(1), pp. 20-26 

Smagorinsky, P. (1998), "Thinking and speech and protocol analysis", Mind, Culture 
and Activity, 5(3), pp. 157-177 

Smith, G. H., Wood, L. N., Crawford, K., Coupland, M., Ball, G. and Stephenson, B. 
(1996), "Constructing mathematical examinations to assess a range of 
knowledge and skills", International Journal of Mathematical Education in 
Science and Technology, 27(1), pp. 65-77 

Smith, K. B. (1994), "Studying different methods of technology integration for teaching 
problem solving with systems of equations and inequalities and linear 
programming", Journal of Computers in Mathematics and Science Teaching, 
13(4), pp. 465-479 

SPSS-Knowledgebase (2008), Resolution 22133: Repeated Measures with Constant 
Covariates in GLM, http://support.spss.com/Student/Studentdefault.asp

Star, J. R. and Seifert, C. (2006), "The development of flexibility in equation solving", 
Contemporary Educational Psychology, 31(3), pp. 280-300 

http://support.spss.com/Student/Studentdefault.asp


 

 279

Strickland, P. and Al-Jumeily, D. (1999), "A computer algebra system for improving 
student’s manipulation skills in algebra", International Journal of Computer 
Algebra in Mathematics Education, 6(1), pp. 17-24 

Sweller, J. (1988), "Cognitive load during problem solving: effects on learning", 
Cognitive Science, 12(2), pp. 257-285 

Sweller, J. and Chandler, P. (1991), "Evidence for cognitive load", Cognition and 
Instruction, 8(4), pp. 351-362 

Tabachnick, B. G. and Fidell, L. S. (2007), Using Multivariate Statistics, 5th Edition, 
Pearson Education Inc., Boston 

Tall, D. (1994),"Computer environments for the learning of mathematics", In: R. 
Biehler, Scholz, R. W., Strasser, R. and Winkelmann, B. (Eds.), Didactics of 
Mathematics as a Scientific Discipline, Kluwer, Dordrecht, pp. 189-199, Google 
Books 

Tall, D., Gray, E., Bin Ali, M., Crowley, L., DeMarois, P., McGowen, M., Pitta, D., 
Pinto, M., Thomas, M. and Yusof, Y. (2001), "Symbols and the bifurcation 
between procedural and conceptual thinking", Canadian Journal of Science, 
Mathematics, & Technology Education, 1(1), pp. 81-104 

Towle, N. J. and Merrill, P. F. (1975), "Effects of anxiety type and item-difficulty 
sequencing on mathematics test performance", Journal of Educational 
Measurement, 12(4), pp. 241-249 

Trejo, L. J., Knuth, K., Prado, R., Rosipal, R., Kubitz, K., Kochavi, R., Matthews, B. 
and Zhang, Y. (2007),"EEG-based estimation of mental fatigue: convergent 
evidence for a three-state model", In: Foundations of Augmented Cognition, 
Springer, Berlin, pp. 201-211 

Trouche, L. (2000), "La parabole du gaucher et de la casserole à bec verseur: ètude des 
processus d'apprentissage dans un environnement de calculatrices symboliques", 
Educational Studies in Mathematics, 41(3), pp. 239-264 

Tudge, J. R. H. and Winterhoff, P. A. (1999),"Vygotsky, Piaget, and Bandura: 
perspectives on the relations between the social world and cognitive 
development", In: P. Lloyd and Fernyhough, C. (Eds.), Lev Vygotsky: Critical 
Assessments, Routledge, London, pp. 311-338 

Vale, C. M. and Leder, G. C. (2004), "Student views of computer-based mathematics in 
the middle years: does gender make a difference?" Educational Studies in 
Mathematics, 56(2-3), pp. 287-312 

Van Breukelen, G. J. P. and Van Dijk, K. R. A. (2007), "Use of covariates in 
randomized controlled trials", Journal of the International Neuropsychological 
Society, 13(5), pp. 903-904 

Vérillon, P. and Rabardel, P. (1995), "Cognition and artifacts: A contribution to the 
study of thought in relation to instrumented activity", European Journal of 
Psychology of Educational Psychologist, 10(1), pp. 77-101 

Vygotsky, L. S. (1930/1997),"The instrumental method in psychology", In: R. W. 
Rieber and Wollock, J. (Eds.), The Collected Works of L.S. Vygotsky - Problems 
of the Theory and History of Psychology, Plenum Press, New York, pp. 85-89 

Vygotsky, L. S. (1931/1997),"The development of mnemonic and mnemotechnical 
functions", In: R. W. Rieber (Ed.), The History of the Development of Higher 
Mental Functions, Plenum Press, New York, pp. 179-190 



 

 280 

Watkins, D. A. and Biggs, J. B. (2001),"The paradox of the Chinese learner and 
beyond", In: D. A. Watkins and Biggs, J. B. (Eds.), Teaching the Chinese 
Learner: Psychological and Pedagogical Perspectives, Comparative Education 
Research Centre, Hong Kong, pp. 3-23 

Whiteman, W. E. C. and Nygren, K. P. C. (2000), "Achieving the right balance: 
properly integrating mathematical software into engineering education", Journal 
of Engineering Education, 89(3), pp. 331-336 

Winer, B. J., Brown, D. R. and Michels, K. M. (1991),"Chapter 9: Latin squares and 
related designs", In: Statistical Principles in Experimental Design, McGraw-hill, 
Inc., New York,  

Winston, W. L. (1994), Operations Research - Applications and Algorithms, Duxbury 
Press, Belmont, CA 

Winston, W. L. (1996), "Issue in education: software decisions", OR/MS Today, 23(5), 
http://lionhrtpub.com/ORMS/ORMS-10-96/education.html

 

 

http://lionhrtpub.com/ORMS/ORMS-10-96/education.html


 

 281

Appendices 



 

 282 

Appendix 1: Research Studies relating to conceptual tasks and CAS 

 

Heid (1988) 

Heid (1988)'s study compared three classes who were taking a first-year 

university calculus. Heid taught two of the classes using the black-box software, CAS. 

The two classes were called ‘Experimental 1’ and ‘Experimental 2’ and had 17 and 18 

students, respectively. In Experimental 1, students were shown basic algorithms and 

computations whilst learning with the CAS, whilst in Experimental 2 the algorithms and 

computations were taught to the students at the end of the semester. The third class 

called the ‘Comparison’ had 122 students and was taught by another teacher using 

traditional teaching methods. This last class focussed on algorithms, that is,procedural 

knowledge. Heid taught with the CAS and made use of multiple representations by 

showing both algebraic and graphical representations. The quizzes and mid-term tests 

were constructed by Heid to include tasks that required the use of conceptual 

knowledge. Students using CAS were found to do better on these tasks (although she 

did not perform any statistical tests). The final examination was not created by Heid, 

and the questions were related to procedural knowledge. The students performed at a 

similar level in the examination across all three groups.  

O'Callaghan (1998) 

O'Callaghan (1998) conducted a study similar to Heid in which three university 

algebra classes took part. The first class had 42 students and was taught using the black-

box software, CAS. The second and third classes were taught by traditional methods, 

and each had 32 students. The first and second classes were taught by O'Callaghan  and 

the third class by another teacher. The students who used the CAS were taught in a 

manner that was expected to improve conceptual knowledge, such as the use of multiple 
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representations. O’Callaghan found that the CAS students performed significantly better 

in tasks requiring conceptual knowledge (F = 5.77, p ≤ 0.01) compared with the other 

classes who were taught procedural knowledge (algorithmic procedures). However, the 

traditional classes did significantly better in a pen-and-paper final examination 

containing mostly procedural tasks. O’Callaghan suggested that, as the students using 

the CAS had been significantly poorer in mathematics at the beginning of the semester, 

there was not sufficient evidence to suggest that the CAS students made less progress. 

Palmiter (1991) 

The study by Palmiter (1991) is quite similar to that of Heid, in that students in a 

university calculus course were assigned to two groups, one taught with the black-box 

software, CAS, the other taught by traditional methods (emphasising procedural 

knowledge). The classes were taught by different teachers. In the CAS group, students 

completed the course in 5 weeks whilst those in the traditional group completed the 

course in 10 weeks. Those in the CAS group dispensed with learning the computational 

aspect of calculus (as this was performed on the CAS) and concentrated on tackling 

conceptual tasks. Both groups at the end of their course were given identical tests with 

procedural and conceptual tasks. The students in the CAS group were allowed to use the 

CAS during the test. A significant difference was found between the classes for the 

conceptual and procedural tasks, with the CAS class performing better in both sets of 

tasks. As the CAS group computed their answers, they were not subject to algorithmic 

or arithmetic errors, which is probably why they scored higher in the procedural tasks. 

Palmiter was cautious over the interpretation of these results, since the traditional group 

took the test after a ten-week period and were required to perform procedural tasks by 

hand.  
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Kendal and Stacey (1999) 

Kendal and Stacey (1999) observed three teachers teaching a calculus class at 

secondary school using CAS. The aim of the course was to use CAS to enhance 

conceptual understanding. However, the teachers used different methods to teach 

mathematics, something that Kendal and Stacey called ‘teacher privileging’. They found 

that students who had been taught by teachers who privileged the use of conceptual 

knowledge performed better on the conceptual parts. All the students performed at a 

similar level on the procedural tasks, regardless of the teacher, even though some 

students solved the tasks using pen-and-paper whereas others used a CAS. One teacher 

privileged far less use of CAS (Teacher B) than another (Teacher C) but both of these 

teachers’ students performed at a similar level on the conceptual tasks.  

This result implied that it is how the students are taught with CAS rather than 

simply the use of CAS alone that can encourage conceptual thinking, This can be seen 

in Teacher A, who privileged CAS highly but whose students were still unable to do 

well on the conceptual tasks. This was perhaps because the students with Teacher A had 

directed teaching which favoured only one mathematical representation (algebraic). 

According to Prosser and Trigwell (1999) (p.158), directed teaching (or information 

transmission) is linked to surface learning by students. Teacher B used a guided 

discovery style (where leading questions were asked in the context of the task) which 

favoured deep learning, but this teacher also only favoured one representation 

(algebraic). Teacher C also used guided discovery (deep learning) but favoured all three 

representations (algebraic, graphical and linking algebraic and graphical). Thus, it 

seemed that a combination of multiple representations and guided discovery promoted 

the best conceptual knowledge. 
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Appendix 2: Print version of the Mathematics-Computing Attitudes 
and ALMQ Inventory 

 

Students’ attitudes towards mathematics, computers and 
studying 

This questionnaire is intended to find out the attitudes of students towards 
studying mathematics with software in various courses and their approach to studying 
these courses. This survey forms part of my doctoral research on students learning 
mathematics with software.  

Your answers are CONFIDENTIAL, and will not be divulged to anyone 
teaching this course. Thank you for your co-operation. 

If you have any further questions or queries, you can contact me (Anesa Hosein) 
via email: A.Hosein@open.ac.uk or telephone 01908 659866. 

Instructions: This questionnaire is divided into two parts. The first part you 
have to answer questions related to your attitudes towards the mathematics and 
computers for the course we emailed you about (check email for details). The second 
part looks at your studying approach for the mathematics component in this course.  

Before you begin these two parts, we would like you to answer which of the 
following you consider to be your main discipline or area of study (tick only one): 

( ) Mathematics/ Statistics 

( ) Physical Sciences (e.g. Physics, Chemistry) 

( ) Computer Science 

( ) Engineering/ Technology 

( ) Life Sciences (e.g. Biology, Agriculture, Environmental Science) 

( ) Arts (e.g. Languages, History) 

( ) Business Studies 

( ) Economics 

( ) Education 

( ) Social Sciences 

( ) Other (Please State): _____________ 

( ) Not Sure 

mailto:A.Hosein@open.ac.uk
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Part 1: 
Mathematics-Computing Attitude Inventory 

 

Instructions: This questionnaire has a number of questions which seeks to find your 
attitudes towards software and mathematics. This questionnaire should be answered with 
respect to the software (check email for details) used in your course and the mathematics 
component. 

For each item there is a row of numbers (1 – 5) corresponding to a five point scale. 
Please circle one of the five numbers. The numbers stand for the following responses:  

1: I strongly agree with this statement 

2: I agree with this statement 

3: I neither agree/ disagree to this statement  

4: I disagree with this statement 

5: I strongly disagree with this statement.  

Circle the appropriate number for each of the statements that you think that best applies 
to you. There is no right answer. The most important thing is to answer the question as honestly 
as possibly and give the answer that best describes you. 

 

1. I prefer to work on my own than in a group. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

2. If I can avoid using a computer I will. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

3. I don’t understand how some people can get so involved with computers. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

4. The challenge of understanding mathematics does not appeal to me. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

5. I rarely review the material soon after a computer session is finished. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

6. If a computer procedure I am using goes wrong, I panic. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

7. I find it helpful to test understanding by attempting exercises and problems. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 
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8. I feel more confidence of my answers with a computer to help me. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

9. I find it helpful to make notes in addition to copying material from the computer screen, or 
obtaining a printout. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

10. Using a computer makes learning more enjoyable. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

11. By looking after messy calculations, computers make it easier to learn essential ideas. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

12. Having to spend a lot of time on mathematics problems frustrates me. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

13. I will work at a computer for long periods of time to successfully complete a task. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

14. I like to stick at a mathematics problem until I get it out. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

15. The way computers force you to follow a procedure annoys me. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

16. Having to learn difficult topics in mathematics does not worry me. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

17. When studying mathematics I try to link new ideas to knowledge I already have. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

18. I don’t understand how some people can get so enthusiastic about doing mathematics. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 
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19. I have a lot of confidence when it comes to mathematics. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

20. I find working through examples less effective than memorising given material. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

21. Computers help me to link knowledge e.g. the shapes of graphs and their equations. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

22. I find it difficult to transfer understanding from a computer screen to my head. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

23. I feel nervous when I have to learn new procedures on a computer. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

24. I don’t usually make time to check my own working to find to correct errors. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

25. When learning new mathematics material I make notes to help me understand and 
remember. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

26. Using computers makes me mentally lazy. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

27. I like to revise topics all at once rather than space out my study. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

28. I prefer to work with symbols (algebra) than with pictures (diagrams and graphs). 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

29. I don’t trust myself to get the right answers using a computer. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 
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30. I can get good results in mathematics. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

31. I have a lot of self-confidence in using computers. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

32. If something about mathematics puzzles me, I find myself thinking about it afterwards. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

33. I am more worried about mathematics than any other subject. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

34. Mathematics is a subject I enjoy doing. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

35. Following keyboard instructions takes my attention away from the mathematics. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

36. I am not naturally good at mathematics. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

37. Mathematics is a subject in which I get value for effort. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

38. As a male/female (cross out that which does not apply) I feel disadvantaged in having to use 
computers. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

39. I like the freedom to experiment that is provided by a computer. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

40. The prospect of having to learn new mathematics makes me nervous. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 
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41. I enjoy thinking up new ideas and examples to try out on a computer. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

42. If I make a mistake when using a computer I am usually able to work out what to do for 
myself. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

43. I am confident that I can master any computer procedure that needed for my course. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

44. I can become completely absorbed doing mathematics problems. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

45. When I read a computer screen, I tend to gloss over the details of the mathematics. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

46. If something about mathematics puzzles me, I would rather someone gives me the answer 
than have to work it out myself. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

47. No matter how much I study, mathematics is always difficult to me. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 

 

48. Computers help me to learn better by providing many examples to work through. 
Strongly Agree  Neutral  Strongly Disagree 
1 2 3 4 5 
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Part 2: 
Approaches to Learning Mathematics Questionnaire 

On the following pages are a number of questions about your ways of studying 
the mathematics component in your course.  

For each item there is a row of numbers (1 – 5) corresponding to a five point 
scale. Please circle one of the five numbers. The numbers stand for the following 
responses:  

1: this statement was only rarely true of me  

2: this statement was sometimes true of me  

3: this statement was true of me about half the time  

4: this statement was frequently true of me  

5: this statement was always or almost always true of me  

Please answer each item. Do not spend a long time on each item; your first 
reaction is probably the best one. Do not worry about projecting a good image.  

 

 only 

rarely 

   almost 

always 

1. I am concentrating on studying mathematics largely 

with a view to the job situation when I graduate rather 

than because of how much it interests me. 

1  2  3  4  5  

2. I find that studying mathematics gives me a feeling 

of deep personal satisfaction.  

1  2  3  4  5  

3. I think browsing around is a waste of time, so I only 

study seriously the mathematics that’s given out in 

class or in the course outline. 

1  2  3  4  5  

4. While studying mathematics I think of real life 

situation in which the material that I am learning 

would be useful. 

1  2  3  4  5  

5. I am worried about how my performance in 

mathematics will affect my overall assessment.  

1  2  3  4  5  

6. While realising that mathematical ideas are forever 

changing and knowledge is increasing, I need to 

discover what is meaningful for me. 

1  2  3  4  5  

7. I learn some things in mathematics by rote, going 

over and over them until I know them by heart.  

1  2  3  4  5  

8. In reading new material in mathematics I find that 1  2  3  4  5  
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 only 

rarely 

   almost 

always 

I’m continually reminded of material I already know, 

and see the latter in new light. 

9. Whether I like it or not, I can see that doing well in 

mathematics is a way for me to get a good result in 

first year. 

1  2  3  4  5  

10. I feel that mathematics becomes interesting once I 

become involved in studying it. 

1  2  3  4  5  

11. In studying mathematics I am focusing more on the 

examples than the theoretical material.  

1  2  3  4  5  

12. Before I am satisfied, I find that I have to do 

enough work on mathematics until I personally 

understand the material. 

 1  2  3  4  5  

13. I worry that even if I work hard in mathematics the 

assessment might not reflect this. 

1  2  3  4  5  

14. I find that studying mathematics is as interesting as 

a good novel or movie. 

1  2  3  4  5  

15. I restrict my study of mathematics to what is 

specifically set, as I think it is unnecessary to do 

anything extra. 

 1  2  3  4  5  

16. I try to relate what I have learned in mathematics 

to material in other subjects. 

1  2  3  4  5  

17. I think it’s only worth studying the mathematics 

that I know will be examined. 

1  2  3  4  5  

18. I become increasingly absorbed in mathematics the 

more I do. 

1  2  3  4  5  

19. I learn mathematics best from materials/tutors 

which have carefully prepared notes and outline the 

major points neatly. 

1  2  3  4  5  

20. I find most aspects of mathematics interesting and 

spend extra time trying to obtain more information 

about them. 

 1  2  3  4  5  

21. I almost resent having to study mathematics but 

feel that the end result will make it all worthwhile. 

1  2  3  4  5  
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 only 

rarely 

   almost 

always 

22. I spend a lot of my free time finding out more 

about interesting aspects of mathematics. 

1  2  3  4  5  

23. I find it best to accept the mathematical statements 

and ideas of my teacher(s) and question them only 

under special circumstances. 

 1  2  3  4  5  

24. I believe strongly that my aim in studying 

mathematics is to understand it for my own 

satisfaction. 

1  2  3  4  5  

25. I am prepared to work hard in mathematics, 

because I feel it will contribute to my employment 

prospects. 

1  2  3  4  5  

26. Studying mathematics challenges my views on 

how the world works. 

1  2  3  4  5  

27. I am very aware that tutors know a lot more 

mathematics than I do, so I concentrate on what they 

say, rather than rely on my own judgement. 

1  2  3  4  5  

28. I try to relate new mathematics material, as I am 

reading it, to what I already know. 

 1  2  3  4  5  

 

Would you like to provide any comments on your learning of mathematics with 
the software in your course in the box below? This could include any complaints, 
problems, things you find easy etc. 

 

 

 



 

 294 

 

Appendix 3: Print version of the background questionnaire, 
instructional materials, pre-test, post-test for expected-values pilot 
study 

Demographic Questionnaire 
1. Age Category 

18 <25 [ ]25<35 [ ]35 to <45 [ ]45 to <55 [ ] 

55 to <65 [ ]≥ 65 [] 

 

2. Highest category attained in maths 

GCSE or less [ ]A-Levels [ ]University [ ] 

 

3. Gender 

Female [ ]Male [ ] 

 

4. Maths Confidence (Indicate on the scale of 1 to 10, where your maths 
confidence lies, where 1 = Poor and 10= Excellent) 

Poor  

 
Poor         Excellent 
1 2 3 4 5 6 7 8 9 10 

 

5. Computer Confidence (Indicate on the scale of 1 to 10, where your 
computer confidence lies, where 1 = Poor and 10= Excellent) 

Poor         Excellent 
1 2 3 4 5 6 7 8 9 10 

 

6. How confident are you in using Microsoft Excel? (Indicate on the scale of 
1 to 10, where your Excel confidence lies, where 1 = Poor and 10= Excellent) 

Poor         Excellent 
1 2 3 4 5 6 7 8 9 10 

 

7. Have you heard of the term ‘expected value’? 

Yes [ ]No [ ]  

 

8. Have you ever calculated/ used ‘expected value’? 

Yes [ ]No [ ]  
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Pre-Test Materials 
 

Pre-test  
Simple Probability and maximization and minimization questions (pre-test: 10 

mins and suggested marking scheme) 

 

1. What is the probability that a card drawn at random from a deck of cards will be 
an ace? (simple probability)  [1] 

2. If a dice is rolled, what is the probability that the dice will have a value of four 
or more? (simple probability)  [1] 

3. What is the probability that when a pair of six-sided dice are thrown, the sum of 
the numbers equals 5?[2] 

4. What is the probability that when a pair of six-sided dice are thrown, the sum of 
the numbers equals 12?[2] 

5. If a coin is tossed twice, what is the probability that on the first toss the coin 
lands heads and on the second toss the coin lands tails?[2] 

6. If a coin is tossed twice what is the probability that it will land either heads both 
times or tails both times?[2] 

7. A box contains red marbles and blue marbles. One marble is drawn at random 
from the box (each marble in the box has an equal chance of being drawn). If it 
is red, you win $1. If it is blue, you win nothing. You can choose between 2 
boxes. Box A contains 3 red marbles and 2 blue ones. Box B contains 30 red 
marbles and 20 blue ones. Which box gives you a better chance of winning?[1] 

 

 

Introductory Materials 
Games/ Lotteries 

When I buy a game ticket for example the Lotto, there is usually a very low 
probability I could win the jackpot (£1,000,000) but I may have a higher probability of 
winning one of the smaller prizes (£5).  

 

We can have a simpler game than the lotto, where in this game everyone can 
acquire a prize if they have a ticket. The probability of winning any prize in this game 
lies between 0% and 100%. 

 

Let’s say in this simple game, there are only two prizes (I’ll call it Prize 1 and 
Prize 2). Prize 1 has a value of £40 but there is a 12% chance of winning it. Prize 2 has 
a value of £5 with an 88% chance of winning it.  
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I can find something called the expected value, which tells me what my 
‘average’ prize could be, if I played this game often (let’s say more than 100 times). The 
expected value of this game is calculated as follows: 

(0.12 × £40) + (0.88 × £5) = £9.20 

 

 

Practice Materials  
(time recorded) 

Application Sharing 

Sign in into either MSN or Windows messenger using username: 
remoteobservation@hotmail.co.uk and password: Observation. I would contact you 
through this using the voiceconv@hotmail.co.uk user account, where we would be able 
to have a voice and video conversation. 

Using the appsharing@hotmail.co.uk user account through which you will be 
able to look and use the software. When I contact you for application sharing and you 
click accept, you might be asked to install a piece of software or not, which is the 
Windows Application Sharing software, Netmeeting, called conf.exe. Click OK to 
install and Run the software. You can install this beforehand by going into Start>Run> 
and typing C:\Program Files\NetMeeting\conf.exe 

Once we’ve started application sharing, you will see a screen pop up within 
which the excel spreadsheet is embedded and shown. You can maximize this screen 
holding the excel sheet if you want, but do not move the excel spreadsheet inside the 
embedded window (this for video recording purposes). 

Once the session has started, I would ask you to click ‘Control’ which is located 
at the top of the window, and to ask for control by clicking ‘Take Control’, once you’ve 
been granted control you’ll be able to use the Excel spreadsheet. When you’re finished 
go back to the ‘Control’ button and click ‘Release Control’.  

 

Software 

In the Excel spreadsheet provided, there is a worksheet to help you find the 
expected values for each game and then find the best game. In the ‘Home’ sheet, this is 
the sheet you see when you enter the programme and this is where you enter the data 
you have received: you have to enter the probabilities and the prizes for each of the 
game in the pink cells. 

There are six buttons labelled on top: ‘Black’, ‘White’, ‘Grey’, ‘Clear All’, 
‘Scrap’ and ‘Answer’. The ‘Black’, ‘White’ and ‘Grey’ button carries you to the sheet 
that will aid you in finding the best game. The ‘Clear All’ button clears all the cells 
where you’ve entered data in that sheet and in the ‘Black’, ‘White’ and ‘Grey’ sheets. 
When you click either ‘Black’, ‘White’ and ‘Grey’ buttons, the data previously stored on 
that page is automatically erased. The ‘Scrap’ sheet is a sheet where you can do any 
calculations or typing that you wish to do, whilst in the ‘Answer’ sheet you enter the 
answers for the problems you would do in the post-test.  

There is also an area in the ‘Home’ sheet which says current answers, this is the 
current answers that are calculated when using the ‘Black’, ‘White’ and ‘Grey’ sheets.  

 

mailto:remoteobservation@hotmail.co.uk
mailto:voiceconv@hotmail.co.uk
mailto:appsharing@hotmail.co.uk
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When using: 

Black-Box sheet: In this sheet, there are six buttons: ‘Game 1’, ‘Game 2’, 
‘Game 3’, ‘Best’, ‘Clear All’ and ‘Home’. The Game 1-3 buttons calculates the 
expected values of each game, whilst ‘Best’ is used for finding the best game. The 
‘Clear All’ button clears the cells where a value has been calculated and the ‘Home’ 
button carries you back to the ‘Home’ page. 

When using: 

Grey-Box sheet: In this sheet, there are six buttons: ‘Game 1’, ‘Game 2’, ‘Game 
3’, ‘Best’, ‘Clear All’ and ‘Home’. The Game 1-3 buttons calculates the expected values 
of each game, whilst ‘Best’ is used for finding the best game. The ‘Clear All’ button 
clears the cells where a value has been calculated and the ‘Home’ button carries you 
back to the ‘Home’ page. 

When using: 

White-Box Sheet: In this sheet, there are three areas in grey, where you have to 
calculate the expected value for each game. Each of these grey areas, have four buttons: 
‘Clear’, ‘1st Prize’, ‘2nd Prize’, ‘Expected Value’. The ‘Clear’ button is used to clear the 
data enter in those cells in that grey area. The ‘1st Prize’ (or ‘2nd Prize’) button is used to 
calculate the average money I would win of prize 1 (prize 2) if I played numerous times. 
The ‘Expected Value’ button helps calculate the expected value of the game.  

Outside of the grey region, there are three buttons: ‘Clear All’, ‘Best’ and 
‘Home’. The ‘Clear All’ button is used for clearing all data entered in that sheet. The 
‘Best’ button helps in finding the best game, whilst the ‘Home’ button carried you back 
to the ‘Home’ sheet. 

When using: 

Scrap sheet: This sheet is only linked to the Home page by the ‘Home’ button. 
In this sheet you can do any calculations you want only within the boxed region. 

When using: 

Answer sheet: This sheet is only linked to the Home page by the ‘Home’ button. 
Here you would input the answers for each of the questions in the post-test. For the 
practice Question, and Questions 1-7 there is a drop down menu to choose the answer. 
You can add any other comments you want next to this box particularly for Questions 4 
and 6 which requires a comment. 

 

Practice question for software: 
For each excel sheet, practice doing the following problem and talk aloud and 

tell me what you are doing. 

Which of the following games would I get the best expected value for?  

 

Game 1: 

1st prize: 20% probability of winning £90 

2nd prize: 80% probability of winning £46 

 

Game 2: 
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1st prize: 30% probability of winning £60 

2nd prize: 70% probability of winning £40 

 

Game 3: 

1st prize: 10% probability of winning £100 

2nd prize: 90% probability of winning £10 

 

 

Post-Test Questions  
 

Mechanical problem: 

 

1. Which of the following games would I get the best expected value for?  

 

Game 1: 

1st prize: 29% probability of winning £93 

2nd prize: 71% probability of winning £33 

 

Game 2: 

1st prize: Expected prize of £129 

2nd prize: 86% probability of winning £33 

 

Game 3: 

1st prize: 9% probability of winning £159 

2nd prize: 91% probability of winning £16[3] 

 

2. Which of the following games would I get the best expected value for?  

Game 1: 

1st prize: 32% probability of winning £87 

2nd prize: Expected prize of winning £36 

 

Game 2: 

1st prize: Expected prize £55 

2nd prize: 37% probability of winning £75 

 

Game 3: 
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1st prize: 46% probability of winning £68 

2nd prize: 54% probability of winning £45[3] 

 

3. Which of the following games would I get the best expected value for?  

Game 1: 

1st prize: 47% probability of winning £105 

2nd prize: Expected prize of winning £58 

 

Game 2: 

1st prize: Expected prize £98 

2nd prize: 37% probability of winning £129 

 

Game 3: 

1st prize: 78% probability of winning £68 

2nd prize: Expected prize of winning £135[3] 

 

Interpretive problem: 

1. Which of the following games would I get the best expected value? r is an 
arbitrary probability. Give your reasoning. 

 

Game 1: 

1st prize: (r-30%) probability of winning £56 

2nd prize: Expected prize of £25 

 

Game 2: 

1st prize: r probability of winning £55 

2nd prize: Expected prize of £25 

 

Game 3: 

1st prize: (r + 10%) probability of winning £25 

2nd prize: Expected prize £21[3] 

 

2. Which of the following games would I get the best expected value if r takes 
on its highest possible value? r is an arbitrary probability. 

 

Game 1: 

1st prize: r probability of winning £100 
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2nd prize: Expected prize of £1000 

 

Game 2: 

1st prize: (r+ 10%) probability of winning £100 

2nd prize: Expected prize of £500 

 

Game 3: 

1st prize: (r - 40%) probability of winning £1000 

2nd prize: Expected prize £10[3] 

 

3. Which of the following games would I get the lowest expected value? r is an 
arbitrary probability. Give your reasoning. 

 

Game 1: 

1st prize: (r) probability of winning £100 

2nd prize: Expected prize of £50 

 

Game 2: 

1st prize: (r+20%) probability of winning £200 

2nd prize: Expected prize of £100 

 

Game 3: 

1st prize: (r + 20%) probability of winning £100 

2nd prize: Expected prize £50[3] 

 

Constructive problem: 

1. Which of the following games would I get the best expected value? 

 

Game 1 

Prize 1: 19% probability of winning £159 

Prize 2: Expected prize of £33 

 

Game 2 

Prize 1: Expected prize of £28 

Prize 2: 12% probability of winning another game which has a 61% 
probability of winning £50 for prize 1 or I can expect to win £170 for prize 2. 
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Game 3 

Prize 1: 89% probability of winning £59 

Prize 2: Expected prize of £185 [4] 

 

2. Joan’s assets consist of £10,000 in cash and a £90,000 home. During a given 
year, there is a 0.001 chance that Joan’s home will be destroyed by fire or other causes. 
How much would Joan be willing to pay for an insurance policy that would replace her 
home if it was destroyed?[3] 

 

3. My current income is £40,000. I believe that I owe £8,000 in taxes. For £500, 
I can hire a CPA to review my tax return; there is a 20% chance that she will save me 
£4000 in taxes. Should I hire the CPA?[3] 
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Appendix 4: Participants’ profiles 

Partici Box Seq. Gender Maths Level
Maths 

Conf. 

Task 

Scores2  Degree 

1 Black 1 Female University High (8) 1 0.8 Phys. Sciences 

2 Black 1 Male A-level High (8) 0.7 Phys. Sciences 

3 Black 1 Male A-level High (9) 0.8 Life Sciences 

4 Black 1 Female A-level High (8) 0.4 Life Sciences 

5 Black 2 Male University High (8) 0.9 Phys. Sciences 

6 Black 2 Male GCSE Low (5) 0.3 Life Sciences 

7 Black 2 Male A-level High (7) 1.1 Life Sciences 

8 Black 2 Female A-level High (8) 0.6 Life Sciences 

9 Black 3 Female A-level High (7) 1.8 Life Sciences 

10 Black 3 Female University Low (5) 0.4 Life Sciences 

11 Black 3 Female A-level High (7) 0.8 Life Sciences 

12 Black 3 Female GCSE Low (2) 0.8 Life Sciences 

13 Glass 1 Male University High (8) 1.3 Phys. Sciences 

14 Glass 1 Female A-level Low (6) 0.2 Other 

15 Glass 1 Male GCSE Low (5) 0.8 Life Sciences 

16 Glass 1 Male A-level High (7) 0.6 Phys. Sciences 

17 Glass 2 Male University Low (6) 0.8 Phys. Sciences 

18 Glass 2 Female University High (8) 0.8 Life Sciences 

19 Glass 2 Female A-level Low (6) 0.7 Life Sciences 

20 Glass 2 Female University Low (5) 0.3 Life Sciences 

21 Glass 3 Female A-level Low (4) 0.7 Life Sciences 

22 Glass 3 Male GCSE Low (5) 0.4 Life Sciences 

24 Glass 3 Female GCSE Low (3) 0.7 Life Sciences 

25 Open 1 Male A-level High (8) 0.8 Phys. Sciences 

26 Open 1 Female A-level Low (5) 0.8 Life Sciences 

27 Open 1 Female A-level High (8) 0.3 Life Sciences 

28 Open 1 Male A-level High (7) 1.2 Life Sciences 

29 Open 2 Female University High (7) 0.5 Phys. Sciences 

30 Open 2 Male GCSE High (8) 1.0 Life Sciences 

31 Open 2 Female University Low (5) 0.2 Other 
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Partici Box Seq. Gender Maths Level
Maths 

Conf. 

Task 

Scores2   Degree 

32 Open 2 Female  University Low (5) 0.6 Other 

33 Open 3 Male A-level Low (6) 1.0 Phys. Sciences 

34 Open 3 Male A-level High (7) 0.6 Life Sciences 

35 Open 3 Female GCSE Low (3) 0.3 Life Sciences 

36 Open 3 Male A-level Low (5) 0.8 Life Sciences 

37 Black 2 Male University Low (6) 0.6 Phys. Sciences 

38 Glass 3 Female A-level Low (5) 0.9 Phys. Sciences 

39 Glass 2 Male University High (8) 0.4 Phys. Sciences 

1 Mathematics Confidence scores  
2 Mean performance scores for the interpretive and constructive tasks (out of 2) 
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Appendix 5: Consent form, pre-test, instructional materials, post-test 
and ASI for main linear programming study 

Remote Observation Study Consent Form 
I am asking for your consent for me to observe you and record both video and 

voice of you and the actions you undertake whilst on the computer as part of my remote 
observation. This data will form part of my doctoral research at the Open University’s 
Institute of Educational Technology, under the supervision of Dr James Aczel, Dr. 
Doug Clow, and Prof. John Richardson. 

If you tell me of any aspect of our session which you wish to remain private, I 
will not divulge it to anyone else; and if you wish me to destroy any of the data that you 
provide, I will do so. Otherwise, in reporting my research I may also describe our 
session and use short quotations from your words, video and voice clips for academic 
purposes such as reports, presentations at seminars and conferences. Every effort will be 
made to conceal your identity if it can be done without diminishing the academic 
illustration. 

My notes of the session, the full audio, video and software recordings will be 
held securely and accessed only by myself and a transcriber trusted to handle 
confidential material.  

If you accept these conditions, can you type your name in full below and click 
the 'Submit' button. 

Anesa Hosein 
(A.Hosein@open.ac.uk)  

 

 

Pre-Test (print version) 
1. Find the value of x in: x + 5 = 8? 

2. Find the value of y in: 2y + 4 = 16 

3. If t = 2, find the value of x: 3x + 2t = 13 

4. Solve for the value of y: 4y + 2 > 12 

5. If x = 5, solve for the value of y: 3x + 5y <10 

6. Find the values of x and y in the following 2 equations: 2x + y = 10 and 2x + 3y = 22 

7. Find the values of t and y in the following 2 equations: 2t + 3y = 8 and t + y = 3 

mailto:A.Hosein@open.ac.uk
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Instructional Materials 
 

Linear Programming 
Background to Linear Programming 
Linear programming (LP) is a mathematics topic and has no relation to 

computer programming. It is often used in agriculture, business and engineering for 
finding the best profit of producing products (often called maximizing profit) or finding 
the least cost of producing the products (often called minimizing the cost). 

Linear programming is related to algebra and to simultaneous equations. In 
simultaneous equations we may have the following two equations: 

2x + 3y = 13 

x + y = 5 

and are then asked to solve for x and y. Here we have two equations and two 
variables (2 variables: x and y). We note, there are equal number of equations and 
variables (two each) and we can solve this to show that x =2 and y=3. 

In linear programming, there may be several variables; let’s say 6 variables, and 
only 3 equations. Mathematical theory says in order for us to solve for the 6 variables 
we must have 6 equations, but this is impossible in this situation. What we thus do in 
linear programming, is that we make 3 variables equal to 0, and that allows us to solve 
the other 3 variables with the 3 equations. 

Also in linear programming, some of the equations may be linear inequalities 
such as: 

2x + 3y ≤ 13 

x + y ≤ 5 

If we solved these two equations using simultaneous equations, this will mean 
that x ≤ 2 and y ≤ 3. That is, x can take any value from -∞ to 2 and similarly y lies 
between -∞ to 3. Often, in linear programming, the variables represent products 
produced, thus a proviso is made that the variables must be ≥ 0, as we cannot produce 
negative products.  

This means that in this case, the x variables can range from 0 to 2 or can be 
written as 0 ≤ x ≤ 2 and similarly for y, we can write 0≤ y ≤ 3. This provides us with 
some leeway when we are trying to solve the problems. 

 The linear programming problem  
To understand a linear programming problem in context of agriculture, business 

and engineering, let’s take a simple problem of a farmer how many acres she must plant 
in wheat or corn to maximize her profit.  

Problem: Farmer Jane wants to plant her land with wheat or corn. Each acre of 
land planted with wheat yields £200 profit; each with corn yields £300 profit. The 
labour and fertilizer used for each acre are given in the table below. One hundred 
workers and 120 tons of fertilizer are available. Farmer Jane wants to know how many 
acres of each crop she has to grow in order to have the best profit. 
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 Wheat Corn 

Labour/acre 3 workers 2 workers 

Fertilizer/acre 2 tons 4 tons 

 

To start with in a linear programming problem, there is always a clear objective 
such as maximizing profit or minimizing cost. In this case, Farmer Jane wants to 
maximize her profit. Therefore, we can say: 

Let  w = no. of acres of wheat to grow 

c = no. of acres of corn to grow 

z = Farmer Jane’s profit 

We can then set up an overall equation to represent Farmer Jane’s objective 

Max z = 200w + 300c (eq. 1) 

where ‘Max z’ represents that we want to maximize her profit (z). This equation 
just says for every acre of wheat Jane plants she will get £200 and for every acre of corn 
she plants she will get £300.  

This equation representing her cost or profit is often called the objective 
function. Therefore, as we want to maximize Farmer Jane’s profit we must find the 
highest values that w and c can take. However, we only have limited amount of labour 
and fertilizer, that is, we are constrained. 

We can write the equation of the labour required in terms of acres of corn and 
wheat as follows: 

3w + 2c ≤ 100 (no. of labourers)(eq. 2) 

This equation means that every acre of wheat we grow requires 3 workers, every 
acre of corn we grow, we require 2 workers and that our total number of workers cannot 
exceed 100 (as there is only 100 labourers available). This type of inequality is called a 
constraint, and we can refer to this as our labourer constraint. 

Our second limiting factor or constraint, is that of the fertilizer. We can write 
this as: 

2w + 4c ≤ 120 (Fertilizer constraint)(eq. 3) 

The fertilizer constraint says that for every acre of wheat we plant we need 2 
tons of fertilizer, for every acre of corn we need 4 tons of fertilizer and we only have 
120 tons available.  

We can put all three equations (eq. 1 to 3) together, to formulate the whole linear 
programming problem: 

Max  z = 200w + 300c 

Subject to (s.t.) 

3w + 2c ≤ 100 (Labourer Constraint) 

2w + 4c ≤ 120 (Fertilizer Constraint) 

Two more inequalities can be included to indicate that both w and c are ≥ 0, but 
this is often understood to be true.  
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Setting up a Linear Programming Problem to Solve It 
To solve the linear programming problem, we often employ a method called the 

simplex method. In order to do the simplex method, we must change all the inequalities 
(such as eq. 2 and 3) to equalities (that is,have an equal sign). 

The objective function (eq. 1) is already an equality, but we can rewrite it to 
have all the variables on one side: 

z – 200w – 300c = 0(eq. 4) 

Let’s now look at the labourer constraint (eq. 2),  

   3w + 2c ≤ 100 (Labourer Constraint) 

We can rewrite this as  

3w + 2c + s1 = 100 (Labourer Constraint)(eq. 5) 

where s1 is called the slack variable. s1 is added to ensure that the equations 
always add up to 100. For example, if w = 10 acres of wheat and c = 20 acres of corn, 
then for the labourer constraint (eq. 5): 

3(10) + 2(20) + s1 = 100  

30 + 40 + s1 = 100 

s1 = 30  

Therefore, s1 means there are 30 remaining labourers. Thus s1, takes up the 
remaining labourers or the slack which is unaccounted for. 

We can write a similar equation for the fertilizer constraint (eq. 3) 

2w + 4c ≤ 120 (Fertilizer Constraint) 

We can rewrite this with a slack variable, s2: 

2w + 4c + s2 = 120(eq. 6) 

Therefore we can rewrite the three equations (eq. 4 to 6) to include all the 
variables as a list of equations to solve similarly to simultaneous equations: 

Sequence 0 : z – 200w – 300c + 0s1 + 0s2 = 0 

s.t. 

Sequence 1:0z + 3w + 2c + s1 + 0s2 = 100 

Sequence 2:0z + 2w + 4c + + 0s1 + s2 = 120 (eq. 7) 

Sequence 0, Sequence 1 and Sequence 2, are used to identify which equation we 
are referring to in the linear programming problem. Note that we have 5 variables but 
only 3 equations. 

 

Solving a Linear Programming Problem 
Now as we only have 5 variables and 3 equations, we must set (or make) two 

variables equal to 0. Now since we want to find the profit (represented by z), we should 
never set z = 0. However, we note that the simplest solution to these three equations, is 
if we set w = 0 and c = 0. Therefore, a solution to the problem can be found: 

If we make 

w = 0 and c = 0 
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then we can calculate z, s1 and s2 as 

z = 0 from Sequence 0; s1 = 100 from Sequence 1; s2 = 120 from Sequence 2 

 As we were able to calculate the values of z, s1 and s2, these are termed the 
basic variables (BV) and they were easily calculated because they only occur once in 
all of the three rows. This solution means that we don’t plant any corn or wheat, hence 
our profit, z = 0, and we have 100 labourers and 120 tons of fertilizer remaining. But, 
Farmer Jane needs to grow either some wheat and/or corn to receive a profit.  

This is where we begin to employ the simplex method. The simplex method is 
basically a method where we try out different values of the variables to increase the 
value of z (the profit) but at the same time ensuring that we keep within the limits of the 
constraints. In the simplex method, we only try one variable at a time, the variable that 
we are trying is called the pivot variable (PV). For example, if we look at the objective 
function (eq. 1 or eq. 4), we’ll see that the profit (z) will increase the most if we planted 
more acres of corn, since corn has the largest profit. Thus, we would try increasing the 
variable c (acres of corn) first, and thus c will be our first pivot variable. Currently, c = 
0 and w = 0. 

If we only look at number of labourers we have (eq.5), according to this 
equation, the largest no. of acres of corn we can grow has to be 50 (every acre of corn 
requires 2 labourers and we only have 100 labourers). Similarly according to the 
fertilizer constraint (eq. 6), we can only grow 30 acres of corn (every acre of corn 
requires 4 tons of fertilizer and we only have 120 tons of fertilizer). Thus, if we have to 
choose a value of c to satisfy both the fertilizer and labourer constraint, this has to be 
c=30 (if c=50, then we would have required 200 tons of fertilizer which we don’t 
have!). Since the fertilizer constraint limited the value of c, this constraint is called the 
pivot row and corresponds to Sequence 2 of the linear programming problem (eq. 7). 

As we are making c =30, we thus have to set one of our basic variables: z, s1 or 
s2 to equal to 0, since we can only calculate the values of three variables. Since, it is 
Sequence 2 (the pivot row) that constrained the value of c, and it was this row that s2, 
was calculated in, we can make s2= 0 and then be able to calculate c in this row. 

Thus if we use c = 30 and have set w = 0 and s2 = 0, 

We have    

z = 9000 from Sequence 0 and s1 = 40 from Sequence 1.  

 As noted before, the reason why the basic variables values were able to be 
calculated easily was because they occurred only once in all the rows. If we did not 
know the value of c and would like to easily calculate it we would have to make it a 
basic variable. As at present, c occurs in three rows (Sequence 0, Sequence 1 and 
Sequence 2 of eq. 7), we would like it only to appear in one row, the pivot row. To 
remove it from the other rows, we perform something called elementary row operations 
(eros) which essentially means you multiply the pivot row by a number and then add it 
to another row, which by addition makes the value of c equal to zero in the other row. 
After doing this, we then restart the process again (called an iteration), with the new 
rows of equations created to determine which variable must increase in order for the 
profit to increase.  

The best solution would be to plant 20 acres of corn and 20 acres of wheat 
which will give a profit of £10,000.  
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Software Instructions 
There are 4 spreadsheets in the Excel Spreadsheet you’ll be working with. Each 

spreadsheet is related to the question, i.e. the 1st spreadsheet is the practice question, the 
2nd the 1st problem, the 3rd spreadsheet is the 2nd problem etc. For each problem in the 
post-test you will use the corresponding spreadsheet.  

On each spreadsheet there are 5 buttons.  

Input Problem: Click this button to enter the problem that you wish to solve. 
You can change the values/coefficients of the variables here. If you’ve change the 
variables, the problem starts back at the beginning. You may want to click Reset to 
remove any previous solution. 

Iteration: Click this button to solve the problem, until a pop-up tells you the 
problem has been solved 

Reset: Click this button to remove the solution found, i.e. to start all over again. 

Answer Form: Click this button when you want to enter your answer for the 
problem 

Clear All: Click this button when you want to start afresh. It erases everything 
in the sheet (Be careful!!) 

 

Practice Question 
You would use the following question to practice with the software. 

Max  z = 200w + 300c 

s.t. 

3w + 2c ≤ 100 (Labourer Constraint) 

2w + 4c ≤ 120 (Fertilizer Constraint) 

 

Post-Test 
Problem 1 
a) Solve  

Max z = 2x + y 

s.t. 

 2x + y ≤ 100   (constraint A) 

  x + y ≤ 80 (constraint B) 

  x ≤ 40(constraint C) 

 

b) Now, x refers to the no. of toy trains manufactured and y refers to the no. of 
toy soldiers manufactured whilst constraint A refers to painting hours and constraint B 
to carpentry hours. Interpret what this solution means to the toy company who wants to 
maximize their profit by producing toy trains and toy soldiers. Provide as detailed an 
answer as possible.  
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c) If the profit per train has increased by £1, how would this affect the number of 
toy trains and toy soldiers being sold and why? Provide as detailed an answer as 
possible. 

Problem 2 
a) Solve 

        Max z = 30x + 15y + 10t 

s.t. 

8x + 6y + 2t  ≤ 48 (Constraint A) 

8x + 4y +     3t  ≤ 40(Constraint B) 

4x +    3y + t  ≤ 16  (Constraint C) 

  y  ≤5(Constraint D) 

b) Let x= no. of desks manufactured, y = number of chairs manufactured and t 
= number of stools produced. Let also Constraint A = number of hours 
available for carpentry/day (i.e. building the product), Constraint B = feet of 
lumber available, Constraint C = the number of hours/day available for 
finishing (i.e. painting and polishing the product) and D is the demand for 
the number of chairs. Which product(s) was not produced and give the 
possible reason(s) why? Give as detailed an answer as possible. 

c) If the number of hours available for carpentry/day is increased from 48 to 60 
hours, how would this change what the Furniture Company manufactured 
and why? Give as detailed an answer as possible.  

Problem 3 
a) Solve  

Max z = 6x +8y +   13t –   u 

s.t.  

3x +4y +6t –   u ≤ 0 (Constraint A) 

2x +     2y +    5t  ≤ 100(Constraint B) 

         u ≤ 90(Constraint C) 

b) Why do we allow linear programming to have ≤ constraints rather than just < 
constraints? Which variable will we not want to have a high value for? Give 
as detailed an answer(s) as possible. 

c) If u can be made greater than 90, what is the largest value that it can be? And 
why that value? Give as detailed an answer as possible.  
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Approaches to Study Inventory (Text Version) 
 

This questionnaire intends to find the way your approach to studying for this 
exercise. There are 10 statements. For each statement, please select on the scale, the one 
that best describes your approach to studying during this exercise. There are no right 
answers, so, answer what best described your attitude. 

 

5 - means that you definitely agree 

4 - means that you agree, but with reservations 

3 - means that you really find it impossible to give a definite answer 

2 - means that you disagree, but with reservations 

1 - means that you definitely disagree 

 

1) I often had trouble making sense of the things I had to learn. 
Definitely Agree 5 4 3 2 1Definitely Disagree  
 

2) I set out to understand for myself the meaning of what I had to learn.  
Definitely Agree 5 4 3 2 1Definitely Disagree  
 

3) Much of what I learned seemed no more than lots of unrelated bits and pieces 
in my mind. 
Definitely Agree 5 4 3 2 1Definitely Disagree  
 

4) In making sense of the new ideas, I often related them to practical or real-life 
contexts. 
Definitely Agree 5 4 3 2 1Definitely Disagree  
 

5) Ideas I came across in the exercise often set me off on long chains of thought. 
Definitely Agree 5 4 3 2 1Definitely Disagree  
 

6) I looked at the evidence carefully to reach my own conclusion about what I 
was learning. 
Definitely Agree 5 4 3 2 1Definitely Disagree  
 

7) It was important for me to follow the argument or to see the reasons behind 
things. 
Definitely Agree 5 4 3 2 1Definitely Disagree  
 

8) I tended to take what I had been given at face value in the exercise without 
questioning it much. 
Definitely Agree 5 4 3 2 1Definitely Disagree  
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9) In reading the instructional materials, I tried to find out for myself exactly 
what the author meant. 
Definitely Agree 5 4 3 2 1Definitely Disagree  
 

10) I just went through the motions of the exercise without any interest where it 
would lead. 
Definitely Agree 5 4 3 2 1Definitely Disagree  
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Appendix 6: Marking scheme 

Problem 1 

 

Mechanical: z=100, x =40 and y =20 [1 mrk] 

For Open-Box students: There is an alternative solution: z=100, x=20 and y=60 [1 mrk] 

 

Interpretive: The company has to produce 40 trains and 20 soldiers to get a maximum 

profit of £100 [1 mrk].  

As constraints 1 and 3 are binding, it means that the painting hours will be used up and 

as well the company would meet the demand of 40 trains. There are 20 hrs of carpentry 

hours remaining [1 mrk]. 

 

For Open-Box students: The company has to produce 20 trains and 60 toy soldiers to 

get a maximum of £100 [1 mrk]. 

As constraints 1 and 2 are binding it means that the painting and carpentry hours will be 

used up and the company falls short of 20 toy trains for the demand [1 mrk] 

 

Constructive: The profit increase should not affect the number of x and y produced as x 

is constrained by the demand; however, the overall profit would increase by £40, thus 

profit would be £140 [2 mrk] ( 1mrk for the number of toys would not increase and 1 

mrk for the reason) 

 

For OB students: 

The profit increase may affect the number of x produced, since although the painting 

and carpentry are binding, y can be decreased and x can be increased, since there are 

still 20 toy trains in demand. If x increases to 40, this would be possible since from 

Constraints 1 and 2, this would mean the maximum that y can be is 20, if x is a 

maximum of 40. This would mean the profit would be £140. [1 mrk for x would 

increase and 1 mrk for the profit]. 

 

Problem 2 

Mechanical: z =140, x =2, y=0 and t=8 [1 mrk] 
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Interpretive: y was not produced because it was not profitable. [1 mrk] y is not as 

profitable as t because more resources is needed to produce y that is about 3 times the 

resources needed by t and only produces $5 more profit [ 1mrk]. 

 

Constructive: It would not make a difference as we already have enough carpentry 

hours. [2 mrk] (1 mrk that the production wouldn’t increase and 1 mrk for that there 

weren’t enough carpentry hours) 

 

Problem 3 

Mechanical: z=105, x=0, y=0, t=15, u=90 [1 mrk] 

 

Interpretive: If we let it be < then the values can approach let’s say 90 but could never 

reach 90. However, with ≤ this allows the constraint to have any leeway from 0 to 90. [ 

1mrk] 

We should not want a high value of u, since it is negative and hence reduces the profit. 

[1 mrk] … ½ marks is allowed if only u is answered. 

 

Constructive: u can be made as high as 200, as this would make y to be mostly 

manufactured and it needs 200 u to make it equal (constraint A). [2 mrk] (1 mrk that u 

can be made for 200 and 1 mrk as to why it can only be made as high as 200) 
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Annex 1: ANOVA assumptions and violations 

Normality, Homogeneity of Variance and Effect Sizes 

In some of the within-subjects variables of Problems and Tasks, heterogeneous 

variance was found based on Levene’s test of homogeneity. Howell (2002) indicates 

that if the largest variance is ‘no more than four times the smallest’ then the ANOVA 

should be valid (p.340-341). However, he also cautioned that unequal variances and 

unequal sample sizes should not be mixed since it made the ANOVA less robust. 

Alternatively, Howell (2002) (p. 342) suggested using the Welch Procedure. Welch’s 

procedure required using the statistic: 

2
k

k
k s

n
w =  

where wk was the calculated Welch statistic, nk was the sample number in the kth 

treatment and sk was the standard deviation within the kth treatment. However, 

examining each within-subjects variable in this study, when they were sub-divided into 

their Boxes and Mathematics Confidence groups, showed that for those variables in 

which Levene’s test indicated that there were a significant difference in variation, that 

these variables had a group which had a variance (or standard deviation) of zero. This 

usually resulted because the mean was zero (that is,everyone within that group failed to 

score). This meant that if the Welch Procedure was used that often wk would not have a 

value since it will be dividing by zero and hence not a viable option.  

Glass et al. (1972) alternatively provided guidelines when performing an 

ANOVA with heterogeneity of variance and unequal sample sizes. They indicated that: 

• “Actual α exceeds nominal α when smaller samples are drawn from more 

variable populations” 
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• “Actual α is less than nominal α when smaller samples are drawn from 

less variable populations” (p.273). 

The nominal alpha, α, they referred to is the level of probability that the null 

hypothesis is rejected at, normally 0.05. As small samples were used in the present 

study from a variable population, then perhaps the first condition applied to this study.  

 Further, Schultz (1985) indicated that the Levene’s test tended to be “unduly 

conservative for small, odd sample sizes (n ≤ 7)” (p.456). The group sizes used in this 

study were quite small as noted previously in Table 22. Therefore, it was likely that 

Levene’s test was conservative when the variance for some groups was zero which 

resulted in the test being significant, but this was perhaps expected as this thesis 

investigated how students perform depending on which software they were using and 

how this was affected by Mathematics Confidence. Thus, the ANOVA seemed 

reasonably robust for the analysis used in this study and the results of the ANOVAs 

were accepted.  

 Further, when effects and interaction were found to be significant, this did not 

necessarily mean that the differences between the groups were large. To measure this 

difference, a measure of effect size was used. According to Olejnik and Algina (2003), 

effect size is defined as: 

a standardized index and estimates a parameter that is independent of sample size and 

quantifies the magnitude of the difference between populations or the relationship 

between explanatory and response variables. (p.434) 

Cohen (1988) suggested criteria for ‘small’, ‘medium’ and ‘large’ effects for 

different measures of effect size. In ANOVAs, effect sizes can be measured using either 

f2 or η2 (eta squared) which are related by the following formula: 

 2

2
2

1 f
f

+
=η . 



 

 318 

The effect sizes for ANOVAs are presented in Table 50

Table 50: Effect sizes for η2 for ANOVAs  

 ANOVAs 

 f2 η2

Small 0.01 0.01 

Medium 0.06 0.06 

Large 0.16 0.14 

The effect size that was used in this study was the partial eta squared (ηp
2). 

There are no set criteria for ηp
2. Olejnik and Algina (2003) indicated that ηp

2 provided 

estimates of effect size that might be larger that the actual effect size if a blocking 

variable (for example gender and perhaps in this study mathematics confidence) was 

used when compared with a study where there were no blocking variable used. Olejnik 

and Algina (2003) noted that one may argue that the blocking variable provides a 

stronger research design and hence a larger effect size.  

However, according to Tabachnick and Fidell (2007) η2 is flawed when there are 

a number of other independent variables, as in a one-way design η2 will be larger if a 

two-way design was used with two independent variables (including the previous 

variable). They further explained that the reason for this is that the interaction increases 

the size of the total variance particularly if one of the effects is large. Thus they 

indicated that ηp
2 will be better since it is a proportion of the “variance attributable to 

the effect of interest plus error” (p.55).  

However, Ramanau (2007) reported from his personal communication with 

Richardson that in Cohen's book effect sizes are applied to one-way analysis of 

covariance (ANCOVA). In this case, Cohen partialled out (i.e. removed) the effects due 

to the covariates, but then used the same criteria of small, medium and large effects. 

Richardson continued that on the same basis the partial effect sizes obtained in 

ANOVAs with multiple variables could be taken to represent effect sizes. He explained 
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the reason why this is because “the effects of other independent variables and the 

interactions with those variables are partialled out before computing the proportion of 

variance explained” (p.166) which is an analogous procedure to the one-way 

ANCOVA. Thus the guidelines used for ηp
2 are the same as those shown for η2 above 

(i.e. small, medium and large effects are 0.01, 0.06 and 0.14, respectively). Thus, in this 

research the guidance for effect size used was that for η2 but with the caution that the 

value of ηp
2 might in principle be larger than that value of η2, and that the values of ηp

2 

across all the effects and interactions in a research design will not add up to 1.   

Further, when an interaction was significant, Fisher’s Least Significant 

Difference (LSD) was used for post-hoc analysis. The LSD takes into account the 

confidence limits to determine where there were any differences. When using LSD, 

there should be an overall significant F as this protected the overall family-wise error 

rate from being greater than 0.05 (Howell, 2002: p. 391). Howell (2002), however, 

cautioned that the LSD should be used only if there were three means involved since 

this ensured that the family-wise error rate stayed at 0.05. Since there were three or 

fewer means being compared at any time (i.e. Boxes, Tasks and Mathematics 

Confidence), the LSD procedure can be used. 
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Annex 2: Reason for using mathematics confidence as a split variable. 

As Mathematics Confidence could influence how students perform, this was 

included as a covariate in the original ANOVA and an Analysis of Covariance 

(ANCOVA) had to be performed. However, the deviation scores for mathematics 

confidence were used in the ANCOVA since Van Breukelen and Van Dijk (2007) 

indicated that in SPSS, the covariate adjusts the grand mean and to ensure that the grand 

mean is not influenced then the covariates must have a mean of zero. As Sequence did 

not influence the scores, this variable was dropped from the repeated measures 

ANCOVA. By adding the Mathematics Confidence as a covariate (see Table 51), it was 

found that the Task × Box interaction was now significant (F(2,34) = 5.09, p = 0.01).  
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Table 51: ANCOVA for software Box, Mathematics Confidence, Problem and Task 

 SS df MS F p ηp
2

Between Subjects       

MathsConf 0.94 1 0.94 1.41 0.24 0.04 

Box 0.28 2 0.14 0.21 0.81 0.01 

SS within 22.77 34 0.67    

       

Within Subjects       

Problem 12.91 2 6.46 28.15 0.00 0.45 

Problem × MathsConf 0.93 2 0.47 2.03 0.14 0.06 

Problem × Box 1.04 4 0.26 1.14 0.35 0.06 

Problem × SS within 15.60 68 0.23    

       

Task 17.88 1 17.88 75.28 0.00 0.69 

Task × MathsConf 1.10 1 1.10 4.64 0.04 0.12 

Task × Box 2.42 2 1.21 5.09 0.01 0.23 

Task × SS within 8.08 34 0.24    

       

Problem × Task 4.34 2 2.17 7.59 0.00 0.18 

Problem × Task × MathsConf 0.64 2 0.32 1.12 0.33 0.03 

Problem × Task × Box 1.48 4 0.37 1.29 0.28 0.07 

Problem × Task × SS within 19.45 68 0.29    

According to Winer, Brown and Michels (1991), a covariate can only adjust the 

between subjects effect but not a within-subject effects. In this case, the adding of the 

Mathematics Confidence covariate adjusted the significance of the Task × Box 

interaction, where Task is a within-subject. Gilmore (2007) indicated that this was a 

problem that SPSS had in that it did not present Winer et al. (1991)’s ANCOVA. 

Further, to acquire Winer’s ANCOVA, two ANCOVAs had to be done on SPSS one 

with and without the covariates. This matter was handled in SPSS Resolution No. 22133 

(SPSS-Knowledgebase, 2008). However, Anstey et al. (2007) explained that the 
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ANCOVA presented by SPSS was better than Winer et al. (1991)’s original ANCOVA, 

since Winer et al. (1991)’s was incomplete. They explained that the simplest case using 

Winer’s model would be to have one within-subject effect (T) and one between-subject 

effect (G). Thus, they continued that the Winer’s ANCOVA model in notational form 

would be: 

( ) ijijjiiij TGTGxy εγτβαμ +×++++=  

where yij referred to the outcome for individual i measured for factor Tj , Gi was 

the treatment received by individual i, μ was the grand mean, εij was the error and xi was 

the covariate value of individual i and which was constant across the within-subject 

effect, T. The letters α, β, τ and γ are the coefficients of the variables. Further, they 

indicated that since G and x shared the same subscript, then the covariate would only 

adjust the between-subject effect but not the within-subjects effect.  

However, Anstey et al. (2007) indicated that another type of ANCOVAs can be 

made by including the covariate in the within-subject effect which they explained is the 

default ANCOVA that SPSS produces. Their equation for this ANCOVA was as 

follows: 

( ) ( ) ijijijjiiij TGTxTGxy εγλτβαμ +×+×++++=  

They indicated that the interaction term (x × T) did not adjust the within-subject 

effect of T, but it did adjust the interaction term (G × T) since they both shared the same 

subscript. This was perhaps why in this study the ANCOVA indicated that the Box × 

Task interaction had become significant. Anstey et al. (2007) further explained that if 

there was a significant λ (the coefficient representing the gradient of the x × T scores), 

this implied there was a violation of the assumption of homogeneity of slopes which 

was usually tested beforehand when carrying out a Winer’s ANCOVA. In this case, the 
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Task × MathsConf interaction was significant (F(1,34) = 4.64, p = 0.04), where 

MathsConf variable represented Mathematics Confidence.  

D’Alonzo (2004) explained that when there is heterogeneity of the regression in 

an ANCOVA, there were generally two methods to deal with this assumption within a 

repeated measures design. The first method required using lengthy calculations such as 

the method proposed by Delaney and Maxwell (1983) which involved picking points 

and doing simultaneous inferential procedures to determine exactly the effect of the 

covariate. Alternatively, the covariate can be split into a low or high category and be 

used as a between subject effect (D’Alonzo, 2004; Owen and Froman, 2005). Although 

Owen and Froman (2005) thought that reducing the covariate into two categories should 

be avoided, they however felt that within a repeated measures ANCOVA design this 

was perhaps the most legitimate case for doing this. The advantage of having the 

mathematics confidence split into two categories was that an ANOVA can be performed 

and this meant that any variance due to the interaction of the Box and Mathematics 

Confidence can now be determined. 
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Annex 3: ANOVA for determining Sequence and Question effects 

Factors/ Effects SS df MS F p 

Between Subjects      

Sequence 0.60 2 0.30 0.40 0.67 

Box 0.85 2 0.42 0.57 0.57 

Sequence × Box 1.17 4 0.29 0.39 0.81 

SS within groups 21.72 29 0.75   

      

Within Subjects      

Problem 12.43 2 6.22 24.40 0.00 

Question 0.69 2 0.35 1.31 0.28 

Question × Box 0.15 4 0.04 0.14 0.96 

Problem × Box 0.70 4 0.18 0.69 0.60 

(Question × Problem)' 0.21 2 0.10 0.39 0.68 

(Question × Problem × Box)' 1.09 4 0.27 1.04 0.40 

Question × SS within groups 15.28 58 0.26   

      

Task 17.27 1 17.27 60.75 0.00 

Task × Sequence 0.03 2 0.01 0.05 0.95 

Task × Box 1.54 2 0.77 2.71 0.08 

Task × Sequence × Box 1.24 4 0.31 1.09 0.38 

Task× SS within groups 8.24 29 0.28   

      

Question × Task 0.71 2 0.36 1.20 0.31 

Problem × Task 4.24 2 2.12 7.29 0.00 

Question × Task × Box 1.43 4 0.36 1.20 0.32 

Problem × Task × Box 1.61 4 0.40 1.38 0.25 

(Question × Problem × Task)' 0.02 2 0.01 0.03 0.97 

(Question×Problem×Task×Box)' 0.46 4 0.12 0.39 0.82 

Question×Task×SS within groups 17.30 58 0.30   
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Annex 4: ANOVA for the difference between interpretive and constructive scores for each problem 

 SS df MS F P ηp
2

Between Subjects       

Box 5.68 2 2.84 6.51 0.00 0.29 

MathConfRec 3.99 1 3.99 9.15 0.01 0.22 

Box × MathConfRec 0.46 2 0.23 0.53 0.60 0.03 

SS within 13.96 32 0.44       

       

Within Subjects       

ProbDiff       

ProbDiff × Box 7.17 2 3.58 6.70 0.00 0.17 

ProbDiff × MathConfRec 3.17 4 0.79 1.48 0.22 0.09 

ProbDiff × Box × MathConfRec 2.65 2 1.33 2.48 0.09 0.07 

ProbDiff × SS within 3.38 4 0.85 1.58 0.19 0.09 
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Annex 5: Detailed quantitative findings for performance scores 

Test Performance Scores p –value 

   

1.Problem Problem 2 (1.04) > Problem 1 (0.48)  

Problem 2 (1.04) > Problem 3 (0.55) 

Problem 1 (0.48) ≈ Problem 3 (0.55) 

p < 0.01 

   

2.Tasks Interpretive (0.98) > Constructive (0.40) p < 0.01 

   

3.Maths Confidence Higher MC (0.79) > Lower MC (0.58) p = 0.07 

   

Problem and Tasks  p < 0.01 

4.Interpretive Problem 2 (1.23) ≈ Problem 3 (1.03) 

Problem 2 (1.23) > Problem 1 (0.68) 

Problem 3 (1.03) ≈ Problem 1 (0.68) 

 

5.Constructive Problem 2 (0.84) > Problem 1 (0.29) 

Problem 2 (0.84) > Problem 3 (0.07) 

Problem 1 (0.29) > Problem 3 (0.07) 

 

   

Problem and Maths 

Confidence 

 p < 0.01 

6. Problem 1: Higher MC (0.64) > Lower MC 

(0.32) 

Problem 2: Higher MC (1.00) ≈ Lower MC 

(1.08) 

Problem 3: Higher MC (0.75) > Lower MC 

(0.35) 

 

   

Tasks and Maths 

Confidence 

 p < 0.01 

7. Interpretive: Higher MC (1.18) > Lower MC 

(0.70) 

Constructive: Higher MC (0.41) ≈ Lower MC 
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(0.40) 

   

Boxes and Tasks  p < 0.01 

8. Interpretive: 

 Glass-Box (1.09) ≳ Black-Box (0.83) 

 Open-Box (1.01) ≈ Glass-Box (1.09) 

 Open-Box (1.01) ≈ Black-Box (0.83) 

 

Constructive:  

Black-Box (0.58) ≈ Glass-Box (0.30) ≈ Open-

Box (0.32) 

 

Difference between Interpretive and 

Constructive performance scores:  

Black-Box (0.25) < Glass-Box (0.79) 

Glass-Box (0.79) ≈ Open-Box (0.69) 

Black-Box (0.25) < Open-Box (0.69)  
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Annex 6: Detailed quantitative findings for frequency of exploration 

Exploration Frequency of Exploration p -value 

9.Tasks Constructive (33%) > Mechanical (5%) 

Constructive (33%) > Interpretive (2%) 

p < 0.01 

   

Constructive 

Task Exploration 

  

   

10.Problems Problem 2 (61%) > Problem 1 (18%)  

Problem 2 (61%) > Problem 3 (21%) 

p < 0.01 

   

Problems and 

Maths Confidence 

  

11. Problem 1: Higher MC (6 students) vs Lower MC 

(1 student) 

Problem 2 and Problem 3: Similar 

p = 0.09 

   

12.Boxes Black-Box (44%) > Glass-Box (33%) > Open-Box 

(22%)  

p < 0.01 

   

13.Boxes and 

Maths Confidence 

Higher MC: Black-Box (56%) > Glass-Box (17%) 

≈ Open-Box (17%) 

 

Lower MC: Black-Box (17%) ≈ Glass-Box (41%) 

≈ Open-Box (28%) 

p < 0.01 
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Annex 7: Detailed quantitative findings for constructive exploration and performance scores 

Constructive 

Exploration and 

Performance 

Frequency of Scoring when Exploring Constructive 

Tasks 

p -value 

14.Scored Explored (82%) > Not-Explored (9%) p < 0.01 

   

15.Problems Problem 1: Explored (71%) > Not-Explored (13%) 

Problem 2: Explored (100%) > Not-Explored (20%) 

Problem 3: Explored (38%) > Not-Explored (0%) 

p < 0.01 

   

16.Boxes Black-Box: Explored (88%) > Not-Explored (18%) 

Glass-Box: Explored (69%) > Not-Explored (4%) 

Open-Box: Explored (88%) > Not-Explored (7%) 

p < 0.01 

   

17.Maths 

Confidence 

Explored: Higher MC (90%) ≈ Lower MC (72%) p > 0.1 
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Annex 8: Detailed quantitative results for frequency of explanations 

Explanations Frequency of Explanations p -value 

18.Sequence Sequence 2 (45%) > Sequence 1 (27%) 

Sequence 3 (39%) > Sequence 1 (27%) 

Sequence 2 (45%) ≈ Sequence 3 (39%) 

p = 0.05 

   

19.Problems Problem 2 (42%) ≳ Problem 1 (30%) ≈ 

Problem 3 (33%) 

p = 0.08 

   

20.Problem and 

Explanation Type 

Real-Life: 

Problem 1 (39%) > Problem 3 (8%) 

Problem 2 (50%) > Problem 3 (8%)  

 

Mathematical:  

Problem 3 (58%) > Problem 1 (21%) 

Problem 3 (58%) > Problem 2 (34%)  

p < 0.01 

   

21.Tasks Constructive (41%) > Interpretive (29%) p < 0.01 

   

22.Tasks and 

Explanation Type 

Real-Life:  

Interpretive (31%) ≈ Constructive (34%) 

 

Mathematical:  

Constructive (47%) > Interpretive (28%)  

p < 0.01 

   

23.Problems, 

Interpretive Task and 

Explanation Type 

Real-Life:  

Problem 1 (66%) > Problem 2 (13%) ≈ 

Problem 3 (11%) 

 

Mathematical:  

Problem 3 (50%) > Problem 2 (21%) ≈ 

Problem 1 (13%) 

p < 0.01 
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24.Problems, 

Constructive Task and 

Explanation Type 

Real-Life:  

Problem 1 (68%) > Problem 2 (32%) > 

Problem 3 (5%) 

 

Mathematical:  

Problem 3 (66%) > Problem 2 (47%) > 

Problem 1 (29%) 

p < 0.01 

   

25.Boxes and 

Explanation Types 

Real-Life:  

Glass-Box (41%) > Open-Box (24%) ≈ 

Black-Box (32%) 

 

Mathematical:  

Black-Box (42%) ≈ Glass-Box (31%) ≈ 

Open-Box (40%) 

p = 0.07 

   

26.Boxes, Real-Life 

Explanations and Maths 

Confidence 

Lower MC:  

Black-Box (38%) ≈ Glass-Box (37%) ≈ 

Open-Box (31%) 

 

Higher MC:  

Glass-Box (50%) > Open-Box (17%) ≈ 

Black-Box (30%)  

p = 0.02 

   

 Ratio of Explanations  

27.Mathematical: Real-

Life Explanations for 

Boxes 

Black-Box: 1.32 

Glass- Box: 0.75 

Open-Box: 1.71 
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Annex 9: Detailed quantitative findings for explanations and performance 

Explanations and 

Performance 

Frequency of Scoring depending on Explanation p -value 

   

28.Problems and 

Explanations 

Real-Life: 

Problem 1: Scored (17%) > Not-Scored (60%) 

Problem 2: Scored (49%) ≈ Not-Scored (54%) 

Problem 3: Scored (11%) ≈ Not-Scored (5%) 

 

Mathematical: 

Problem 1: Scored (25%) ≈ Not-Scored (18%) 

Problem 2: Scored (41%) > Not-Scored (0%) 

Problem 3: Scored (53%) ≈ Not-Scored (62%) 

p < 0.01 

   

29.Tasks and 

Explanations 

Real-Life 

Interpretive: Scored (33%) ≈ Not-Scored (21%) 

Constructive: Scored (26%) ≈ Not-Scored (28%) 

 

Mathematical 

Interpretive: Scored (28%) ≈ Not-Scored (26%) 

Constructive: Scored (68%) > Not-Scored (37%)

p < 0.01 

   

Annex 10: Detailed quantitative findings for processing level scores 

Processing Levels Processing Level Scores p-value 

30.Sequence Surface Processing Level 

Sequence 2 (10.9) > Sequence 1 (6.5) 

Sequence 3 (8.9) ≈ Sequence 1 (6.5) 

Sequence 2 (10.9) ≈ Sequence 3 (8.9) 

 

Deep Processing Level 

Sequence 1 (23.7) ≈ Sequence 2 (24.8) ≈ 

Sequence 3 (24.6) 

p < 0.01 
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