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The Lorentz singular value decomposition and its applications to pure states of 3

qubits.
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All mixed states of two qubits can be brought into normal form by the action of SLOCC operations
of the kind ρ′ = (A⊗B)ρ(A⊗B)†. These normal forms can be obtained by considering a Lorentz
singular value decomposition on a real parameterization of the density matrix. We show that the
Lorentz singular values are variationally defined and give rise to entanglement monotones, with as
a special case the concurrence. Next a necessary and sufficient criterion is conjectured for a mixed
state to be convertible into another specific one with a non-zero probability. Finally the formalism
of the Lorentz singular value decomposition is applied to tripartite pure states of qubits. New proofs
are given for the existence of the GHZ- and W-class of states, and a rigorous proof for the optimal
distillation of a GHZ-state is derived.

03.65.Bz

Local probabilistically reversible operations cannot af-
fect the intrinsic nature of the entanglement present in
a system. It is therefore interesting to look for the most
general local operations that wash out all the local infor-
mation such that only the non-local character remains.
For a pure entangled state of two qubits for example, it
is well-known that it can be locally transformed into a
Bell state, which is indeed the only pure state for which
the local density operators do not contain any informa-
tion. Recently, a similar result was derived in the case
of mixed states [1]. The key ingredient of the analysis
was the existence of a Lorentz singular value decompo-
sition. In this report some new interesting properties
of this Lorentz singular value decomposition are derived
and it is shown how it is related to the existence of entan-
glement monotones. Furthermore it leads to a criterion
for a mixed state to be convertible into another specific
one with a non-zero probability. It also leads to a trans-
parent derivation of all different normal forms for pure
states of three qubits: a pure state of three qubits is
indeed uniquely defined, up to local operations, by the
two qubit density operator obtained by tracing out one
particle. It will be shown how the so-called GHZ- and W-
type states [9] arise. We will also give a rigorous proof
of the optimal way of distilling a GHZ-state, confirming
the results of Acin et al. [10].

I. THE LORENTZ SINGULAR VALUE

DECOMPOSITION

Let us consider a mixed state of two qubits and inves-
tigate the orbit generated by probabilistically reversible

SLOCC operations of the kind

ρ′ = (A⊗B)ρ(A ⊗B)† (1)

where A,B are complex 2x2 matrices of determinant 1
and ρ′ is unnormalized. It will turn out very convenient
to work in the real R-picture defined as

ρ =
1

4

3∑

ij=0

Rijσi ⊗ σj

with {σi} the Pauli spin matrices. As shown in [1], the
determinant 1 SLOCC operations (1) in the ρ-picture be-
come proper orthochronous Lorentz transformations in
the R-picture:

R′ = LARL
T
B

Indeed, it is a well known accident that SL(2, C) ≃
SO(3, 1). Note that local operations are very transparent
in the R-picture: operations by Alice amount to opera-
tions on the row space of R, i.e. left matrix multipli-
cation, while operations by Bob result in column opera-
tions.
Let us now state a more refined version of the central

theorem of [1]:1

Theorem 1 The 4x4 matrix R with elements Rij =
Tr (ρσi ⊗ σj) can be decomposed as

R = L1ΣL
T
2

with L1, L2 finite proper orthochronous Lorentz transfor-

mations, and Σ either of unique real diagonal form

1In comparison with the original theorem we introduced a
more refined classification in the case of non-diagonalizable
R.
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Σ =






s0 . . .
. s1 . .
. . s2 .
. . . s3






with s0 ≥ s1 ≥ s2 ≥ |s3| and s3 positive or negative, or
of the form

Σ =






a . . b
. d . .
. . d .
c . . b+ c− a






with unique a, b, c, d obeying one of the four follow-

ing relations: (b = c = a/2); ((d = 0 = c) ∧ (b = a));
((d = 0 = b) ∧ (c = a)); ((d = 0) ∧ (a = b = c)).

It is interesting to note that the Lorentz singular val-
ues are the only invariants of a state under the SLOCC
operations (1).
The diagonalizable case is generic, and a diagonal R

corresponds to a Bell-diagonal state. The existence of
the non-diagonal normal forms is a consequence of the
fact that the Lorentz group is not compact: these non-
diagonal normal forms can only be brought into diagonal
form by infinite Lorentz transformations. Nevertheless,
even in those cases the Lorentz singular values are well
defined and given by:

[s0, s1, s2, s3] = [
√

(a− b)(a− c),
√

(a− b)(a− c), d,−d]

The corresponding normal form of the non-diagonalizable
case in the ρ-picture is given by:

ρ =
1

2






b+ c . . .
. a− b d .
. d a− c .
. . . .






The four distinct non-diagonal normal forms correspond
to the following states:

• (b = c = a/2): these are rank 3 states (rank 2 iff
(d = b = c)) with the strange property that their
entanglement cannot be increased by any global
unitary operation [2].

• ((d = 0 = c) ∧ (b = a)); ((d = 0 = b) ∧ (c = a)): ρ
is separable and a tensor product of the projector
diag[1; 0] and the identity.

• ((d = 0) ∧ (a = b = c)): ρ is the separable pure
state diag[1; 0; 0; 0].

Let us now consider the case of a generic pure state for
which we always have the relation s0 = s1 = s2 = −s3.
This implies that R itself is a Lorentz transformation,
up to a constant factor that will turn out to be the con-
currence; the singlet state for example is represented in
the R-picture by R = diag[1; 1; 1;−1]. This clarifies why

filtering operations by one party is enough to distill a sin-
glet out of an non-maximally entangled pure state: Alice
or Bob can apply the filter corresponding to the Lorentz
transformation given by the inverse of R.
The success of the ordinary singular value decompo-

sition is to a large extent the consequence of the nice
variational properties of the singular values: the sum of
the n largest singular values is equal to the maximal in-
ner product of the matrix with whatever n orthonormal
vectors. Interestingly, a similar property holds for the
Lorentz singular values:

Theorem 2 The Lorentz singular values s0 ≥ s1 ≥ s2 ≥
|s3| of a density operator R are variationally defined as:

s0 = min
L1,L2

Tr




L1RL

T
2






1 . . .
. . . .
. . . .
. . . .











s0 − s1 = min
L1,L2

Tr




L1RL

T
2






1 . . .
. 1 . .
. . . .
. . . .











s0 − s1 − s2 = min
L1,L2

Tr




L1RL

T
2






1 . . .
. 1 . .
. . 1 .
. . . .











s0 − s1 − s2 + s3 = min
L1,L2

Tr
(
L1RL

T
2

)

where L1, L2 are proper orthochronous Lorentz transfor-

mations.

Proof: We will give a proof for the fourth identity and
the other proofs follow in a completely analogous way.
An arbitrary Lorentz transformation can be written as

L =

(
1 .
. V

)






cosh(α) sinh(α) . .
sinh(α) cosh(α) . .

. . 1 .

. . . 1






(
1 .
. W

)

,

where V and W are orthogonal 3x3 matrices of determi-
nant 1. There is no restriction in letting R be in normal
diagonal form, and therefore we have to find the mini-
mum of

Tr











cosh(α) sinh(α) . .
sinh(α) cosh(α) . .

. . 1 .

. . . 1






(
1 .
. W

)

Σ

(
1 .
. V

)






over all V,W, α. Using the variational properties of
the ordinary singular value decomposition and the fact
that the Lorentz singular values are ordered, it is im-
mediately clear that an optimal solution will consist in
choosing W = I3, V = diag[−1;−1; 1] and α = 0 as
cosh(α) > sinh(α) and s0 ≥ s1. This ends the proof. ✷
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II. LOCAL INVARIANTS VERSUS

ENTANGLEMENT

Let us now investigate how the local invariant Lorentz
singular values are related to the concept of entangle-
ment. Inspired by theorem 2, we define the quanti-
ties M1(ρ) = max(0,−(s0 − s1 − s2)) and M2(ρ) =
max(0,−(s0 − s1 − s2 + s3)). As they are solely a func-
tion of the non-local invariants of the density operator,
we suspect them to be related to the amount of entan-
glement present in the considered state:

Theorem 3 M1(ρ) = max(0,−(s0 − s1 − s2)) and

M2(ρ) = max(0,−(s0 − s1 − s2 + s3)) are entanglement
monotones.

Proof: A quantity M(ρ) is an entanglement monotone
[4] iff its expected value decreases under the action of
every local operation. Due to the variational characteri-
zation of the quantities (s0−s1−s2) and (s0−s1−s2+s3),
it is immediately clear that bothM1 andM2 are decreas-
ing under the action of mixing. It is therefore sufficient

to show that for every A ≤ I2, Ā =
√

I2 −A†A, it holds
that

Mi(ρ) ≥

Tr
(
(A⊗ I)ρ(A⊗ I)†

)
Mi

(
(A⊗ I)ρ(A⊗ I)†

Tr ((A⊗ I)ρ(A⊗ I)†)

)

+Tr
(
(Ā⊗ I)ρ(Ā⊗ I)†

)
Mi

(

(Ā⊗ I)ρ(Ā⊗ I)†

Tr
(
(Ā⊗ I)ρ(Ā⊗ I)†

)

)

It should be clear from the previous discussion that the
following identity holds:

Mi

(
(A⊗ I)ρ(A⊗ I)†

Tr ((A⊗ I)ρ(A ⊗ I)†)

)

=
det(A)Mi(ρ)

Tr ((A⊗ I)ρ(A ⊗ I)†)

Indeed, A/
√

det(A) corresponds to a Lorentz transfor-
mations which cannot change the Lorentz singular values.
We therefore only have to prove that 1 ≥ det(A)+det(Ā).
Given the singular values σ1, σ2 of A, this inequality is
1 ≥ σ1σ2 + (1− σ1)(1− σ2) which is trivially fulfilled. ✷
Both M1 and M2, linear functions of the Lorentz sin-

gular values, are therefore entanglement monotones that
are analytically calculable for mixed states: we did not
use the concept of convex roof formalism. It turns out
that M2 is equivalent to the concurrence of a state as
introduced by Wootters [3,1]:

C(ρ) = max

(

0,−1

2
(s0 − |s1| − |s2|+ s3)

)

=
1

2
M2(ρ)

There is indeed a strong relation between the Lorentz
singular values and the eigenvalues {λi} of the operator
√

(σy ⊗ σy)ρT (σy ⊗ σy)ρ introduced by Wootters [3]:






s0
s1
s2
s3




 =






1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 1 −1











λ1
λ2
λ3
λ4




 .

Together with the negativity [5,1], the above entangle-
ment monotones are the only ones for which an analytical
expression exists for whatever mixed two-qubit state.
The existence of entanglement monotones is interest-

ing as it gives necessary conditions for one state to be
convertible into another one by LOCC operations with
probability 1. It is still an open problem to find the suffi-
cient conditions for the convertibility of one mixed state
into another one, although this was solved for pure states
[6–8]. If we relax the constraints that the conversion has
to succeed with unit probability, the above formalism
can give us some answers in the case of mixed states.
We have indeed shown that a generic state can always
be brought into Bell-diagonal form by the SLOCC oper-
ations (1). The problem of one state to be convertible
into another one with a non-zero probability is therefore
reduced to the question whether one Bell diagonal state
can be transformed into another one. A Bell-diagonal
state is uniquely defined under the SLOCC operations
(1), and therefore the only local tool remaining is mix-
ing. Numerical and theoretical investigations indicate
that a given Bell diagonal state can only be converted
into another one iff this last one is a mixture of the origi-
nal Bell-diagonal state with a separable state, although a
general proof has not been found. We conjecture however
that this is always true:

Conjecture 1 A two-qubit state ρ1 can probabilistically
be converted into the state ρ2 iff the Bell-diagonal normal
form of ρ2 is a convex sum of a separable state and the

Bell-diagonal normal form of ρ1.

It is clear that a trivial procedure exists to implement
this conversion with unit efficiency: mix the state with
one that can be locally made. Let us for example inves-
tigate whether the Bell-diagonal ρ1 with ordered eigen-
values {λi} can be transformed into the Bell-diagonal ρ2
with ordered eigenvalues {µi}. We can restrict ourselves
to mixing with separable Bell diagonal states lying on
the boundary of the entangled and separable states, and
these have their largest eigenvalue equal to 1/2. Un-
der the assumption of our conjecture, conversion is pos-
sible iff the following constrained system of equations in
x, y, z, t, P has a solution:

(
1 0
0 P3

)






µ1

µ2

µ3

µ4




 = (1 − x)






λ1
λ2
λ3
λ4




+ x






1/2
y
z
t






(0 ≤ x ≤ 1) (y, z, t ≥ 0) (y + z + t = 1/2)

where P3 is a 3×3 permutation matrix. This system can
readily be solved. Not surprisingly, there is a close rela-
tion between majorization and the above set of equations.
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Note also that a pure entangled state can be converted
probabilistically into whatever mixed state.

III. PURE STATES OF THREE QUBITS

Let us now apply the Lorentz singular value decom-
position on the problem of determining the different
classes under SLOCC operations of pure three qubit
states. We will not consider the states that have a ten-
sor product structure, as these are not truly tripartite.
Therefore we know that taking the partial trace over
whatever party will result in a rank 2 density opera-
tor of two qubits. Due to theorem 1, we know that
this density operator can be brought into one of two
normal forms by SLOCC operations of two parties: a
Bell diagonal ρ1 = p|ψ+〉〈ψ+| + (1 − p)|ψ−〉〈ψ−| with
|ψ+〉 = (|00〉 + |11〉)/

√

(2); |ψ−〉 = (|00〉 − |11〉)/
√

(2);
or a quasi distillable ρ2 = |φ+〉〈φ+| + |00〉〈00| with

|φ+〉 = (|01〉 + |10〉)/
√

(2), but this last case is clearly
not generic.
Purification of this second normal form directly leads

to the normal form |100〉+ |010〉+ |001〉, called the W-
state [9]. As shown in [9], this state has maximal two-
partite entanglement distributed over all parties.
Purification of the Bell diagonal state results in

|ψ〉 = a(|000〉+ |110〉) + b(|001〉 − |111〉).

If the third party now applies the local operation A =
(
a b
b −a

)−1

, the GHZ state |000〉+ |111〉 with maximal

true tripartite entanglement is obtained.
Therefore we have given an alternative proof of the

following theorem by Dür, Vidal and Cirac [9]:

Theorem 4 Every pure tripartite entangled state can
be transformed to either the GHZ, or the W-state, by

SLOCC operations.

Note that the SLOCC operations bringing a generic
pure state to the GHZ form are not unique but con-
sist of a four-parameter family. This happens because
a pure tripartite state has 14 degrees of freedom and the
three Lorentz transformations have 18 independent pa-
rameters. Indeed, if A⊗B ⊗ C|ψ〉 = |GHZ〉, then also

(
a 0
0 1/a

)

A⊗
(
b 0
0 1/b

)

B ⊗
(

1/ab 0
0 ab

)

C|ψ〉 = |GHZ〉

(2)

with a and b complex numbers. The single-copy distilla-
tion of a GHZ state is therefore not unique. The prob-
ability by which an SLOCC operation (1) produces the
desired result can therefore be optimized such as to yield
the optimal single-copy distillation protocol. This opti-
mal procedure was previously found by Acin et al. [10];

a rigorous proof of the same result is presented in the
appendix .
A similar non-uniqueness exists in the case of distilling

a state of the class of W-states to the W-state. Indeed,
if A⊗B⊗C|ψ〉 = |W 〉, then the most general symmetry
operations are given by

A′ ⊗B′ ⊗ C′|ψ〉 = |W 〉

A′ =

(
x y
0 1/x

)

A

B′ =

(
x z
0 1/x

)

B

C′ =

(
x −x(y + z)
0 1/x

)

C

with x, y, z arbitrary complex numbers. As every ma-
trix can be written as the product of a unitary matrix
and an upper triangular matrix (this is the so-called QR-
decomposition), there are enough degrees of freedom to
make whatever one out of A′,B′ or C′ equal to a unitary
matrix. Numerical investigations reveal that one of these
three possibilities is also the optimal choice in the sense
that it will yield a distillation protocol that produces the
W-state with the highest possible probability. Therefore
the optimal distillation protocol of a W-state consists of
two parties applying a local filtering operation, while one
party performs a local unitary operation.
Finally, a natural question arises as how the previous

results generalize to the case of mixed states. Due to the
fact that the rank of a density matrix corresponding to
a mixed state is higher then 1, it is immediately clear
that no SLOCC operations can exist that yield a rank 1
GHZ-state. In [12] it is shown that the optimal SLOCC
operations in the case of mixed states are those that pro-
duce a unique state from a given state such that all its
local density matrices are equal to the identity. Note that
the GHZ state is the only pure state with this property
in the 3-qubit case.
A second question concerns the generalization of the

class of pure W-states to mixed states: is the W-class of
mixed states of measure zero? This question was solved
in [13] (see also [14] for a simple derivation and general-
izations), where it was shown that the W-class of mixed
state is not of measure zero.

APPENDIX A: OPTIMAL DISTILLATION OF

THE GHZ STATE

The most general local procedure of distilling a GHZ-
state out of a single copy of a pure state consists of a
multi-branch protocol in which different branches con-
sist of different SLOCC operations connected through
equation (2). There is no restriction in taking all
{Ai}, {Bi}, {Ci} to have determinant 1, and the SLOCC
operations corresponding to each branch are of the form

4



qiAi ⊗Bi ⊗ Ci|ψ〉 = qiτ
1/4|GHZ〉

Ai = Da
i A0 Da

i =

(
ai 0
0 1/ai

)

Bi = Db
iB0 Db

i =

(
bi 0
0 1/bi

)

Ci = Dc
iC0 Dc

i =

(
1/aibi 0

0 aibi

)

.

Here τ is the 3-tangle [11,12] of ψ and qi is a real pro-
portionality factor such as to assure that all the branches
together are implementable as a part of a POVM. This
leads to a necessary (but generally not sufficient) condi-
tion:

∑

i

q2iA
†
iAi ⊗B†

iBi ⊗ C†
iCi ≤ I8 (A1)

Each branch yields the GHZ-state with probability q2i
√
τ ,

and therefore the total probability is given by
√
τ
∑

i q
2
i ,

which has to be maximized. Due to the condition (A1),
an upper bound on this probability can readily be de-
rived. It will turn out that this upper bound is achiev-
able by a 1-branch protocol. Defining pi = q2i /(

∑

i q
2
i ),

it holds that the total probability is bounded by

max
{Ai},{Bi},{Ci}

√
τ

λmax(
∑

i piA
†
iAi ⊗ B†

iBi ⊗ C†
iCi)

(A2)

where λmax(X) denotes the largest eigenvalue of opera-
tor X . An upper bound is therefore obtained by mini-
mizing this largest eigenvalue. Therefore the standard
techniques for differentiating the eigenvalues of a ma-
trix have to be used [15]: given a Hermitian matrix X ,
its eigenvalue decomposition X = UEU † and its varia-
tion Ẋ , then the variation on its eigenvalues is given by
Ė = diag{U †ẊU}. Here we take

X = Z†
0

∑

i

piDi

︸ ︷︷ ︸

D

Z0

Z0 = A0 ⊗B0 ⊗ C0

Di = |Da
i |2 ⊗ |Db

i |2 ⊗ |Dc
i |2

Note that varying the free parameters {ai, bi, pi} only
affects D and not Z0. In the case of an extremal max-

imal eigenvalue all variations λ̇max = Tr
(

ĖP11

)

with

P11 = diag[1; 0; 0; 0; 0; 0; 0; 0] have to be equal to zero:

Tr
(

(δD)Z0UP11U
†Z†

0

)

= 0

The following identities are easily verified:

δD

δai
=

2

ai
diag[0, 1, 0, 1,−1, 0,−1, 0]Di

δD

δbi
=

2

bi
diag[0, 1,−1, 0, 0, 1,−1, 0]Di

δD

δ
√
pi

= 2
√
piDi

Therefore only the (real and positive) diagonal ele-

ments of Z0UP11U
†Z†

0 are of importance and let us
write them in the vector z0. Similarly, we write
the diagonal elements of Di in the vector di =
[1; |aibi|2; 1/|bi|2; |ai|2; 1/|ai|2; |bi|2; 1/|aibi|2; 1], and the
extremal relations become:

∀i : 0 = dTi diag[0, 1, 0, 1,−1, 0,−1, 0]z0

0 = dTi diag[0, 1,−1, 0, 0, 1,−1, 0]z0

µ = dTi z0 (A3)

where µ is the Lagrange multiplier corresponding to the
condition

∑

i(
√
pi)

2 = 1. This forms sets of each time 3
equations for 2 unknowns ai, bi, which can be shown to
have exactly one solution. Indeed, the first and second
equation lead to

|ai|4 =
z0(5) + z0(7)/|bi|2
z0(4) + z0(2)|bi|2

|bi|4 =
z0(3) + z0(7)/|ai|2
z0(6) + z0(2)|ai|2

. (A4)

Let us analyze how these equations behave. When
bi → 0 then the solution of the first equation goes like
|ai| ∼ 1/

√

|bi| and when ai → 0 then |bi| ∼ 1/|ai|2. Ex-
actly the opposite happens in the case of the second equa-
tion, and due to this different asymptotic behaviour it is
assured that both curves cross and therefore at least one
solution exists for all (real positive) values of z0. More-
over there is always at most one solution. To prove this,
we first note that |ai| and |bi| can be scaled such that
both curves cross at the value (1, 1), and we call these
rescaled variables (x, y) and z̄0. The hyperbola xy = 1
crosses both rescaled curves (A4) at (1, 1). Moreover it
is trivial to check that the hyperbola does not cross any
of the rescaled curves anymore in the first quadrant (this
amounts to solving a quadratic equation), and due to the
asymptotic behaviour one curve lies below and the other
one above the hyperbola (except in (1, 1)). Therefore
both rescaled curves have exactly one crossing. There-
fore for all (real positive) values in z0, there is always
exactly one real solution for |ai|, |bi|, and as z0 is inde-
pendent of the index i, all |ai| are equal to each other and
the same applies to the |bi|. Therefore at most the phase
of the constants {ai, bi} varies in different branches, and
as this amounts to local unitary operations we conclude
that all branches are equivalent and can be implemented
by a one-branch protocol. This implies that the upper
bound (A2) can be reached.

In the case of a one branch protocol, the eigenvectors of
X can be calculated analytically as X becomes a tensor
product of 2× 2 matrices. Given particular determinant
1 transformations A,B,C and taking a, b to be real, the
eigenvector v corresponding to the largest eigenvalue of

5



the matrix Y Y † with Y =

(
a 0
0 1/a

)

A⊗
(
b 0
0 1/b

)

B⊗
(

1/ab 0
0 ab

)

C happens to be v = v1 ⊗ v2 ⊗ v3 with

vi =

(
αi

−βi +
√

α2
i + β2

i

)

α1 = 2
√

A11A22 − 1 β1 = A11a
2 −A22/a

2

α2 = 2
√

B11B22 − 1 β2 = B11b
2 −B22/b

2

α3 = 2
√

C11C22 − 1 β3 = C11/(ab)
2 − C22(ab)

2

The conditions (A3) then imply that βi/αi is a constant
for all i = 1..3:

A11a
2 −A22/a

2

√
A11A22 − 1

=
B11b

2 −B22/b
2

√
B11B22 − 1

=
C11/(ab)

2 − C22(ab)
2

√
C11C22 − 1

These two equations have to be solved in the unknowns
a and b. b can readily be written in function of a through
one of those, and then a sixth order equation in the re-
maining unknown a2 results. As shown above, only one
solution corresponding to a physical solution for a and
b exists, and this solution can easily be solved numer-
ically. The optimal local filtering operations and the
maximal probability of making a GHZ-state (an entan-
glement monotone [4]) can then easily be calculated.
The solution obtained is completely equivalent to the one
of Acin et al. [10], although their proof did not include
the uniqueness of the solution and needed exhaustive nu-
merical calculations.
Note that the procedure outlined here is equally applica-
ble to the problem of distilling a GHZ-state in a higher
dimensional system.
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