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Abstract—Minimizing item waiting time between stages is a
general focus of operations research, and of particular concern
for certain industries. We propose a two-stage production
system where, to minimize the waiting time before stage 2, we
focus on spreading the completion times of the stage 1 machines
across the available interval. We contrast this objective with a
similar problem defined in a healthcare context, but that has
an assumption of fixed assignment. We obtain insights in the
added value that free assignment can provide, by comparing the
solutions of a local search method for assignment, with those
of a reference case where assignment is fixed. Computational
results show that this added value is highest in cases where task
means differ insufficiently to be ordered effectively, and where
task distributions have low variance. For the discussed instances,
significant reductions in item waiting times can be achieved
while making minimal concessions on expected makespan.

Index Terms—Manufacturing Systems, Uncertain Service
Times, Waiting Time, Local Search

I. INTRODUCTION

Many industrial and information systems can be viewed as
a chain of interlinked subsystems. A chief focus of operations
research is to optimize these links, particularly the process
of transferring items from one stage to the next. Ideally such
a transfer would be seamless and predictable, as variability
in the rate of arrival can lead to problems with scheduling,
inventory and manpower: all of which are likely to lead
to delays and loss of efficiency. In some sectors (notably
the food industry) it is furthermore critical to minimize the
total (waiting) time of items between production stages, for
example because of regulations that limit the exposure time
of food to ambient temperature. In that sense, the queues in
such a production line can be called ‘sensitive’.

We envision a two-stage production system (represented
in Fig. [T) that handles exactly M items. Stage 1 consists
of K parallel machines whose processed items must all be
served by the machine in stage 2 and which has a single
sensitive queue. We assume that all task durations and service
times are independent, although task durations (stage 1) can
have distinct distributions while service times (stage 2) are
identical for all items. In stage 1, the items assigned to any
of the parallel machines are processed contiguously on that
machine: when one item is completed, the processing time
of the next starts immediately. As it is in our interest to
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Fig. 1: The model represented as a queuing system.

minimize the waiting time of items in the sensitive queue,
we should avoid ‘burstiness’ at the entrance of the queue.

We can use various methods to minimize this burstiness,
especially if we are willing to focus on it at the expense of
all other metrics (e.g. we could assign all items to a single
machine, and delay processing until we are sure stage 2 is
free). In practice however, minimizing the waiting time of
items must be done in tandem with other considerations, such
as minimizing makespan and maintaining a good takt time.

Therefore we restrict ourselves to a straightforward strat-
egy to reduce burstiness: within an acceptable makespan, our
objective will be to spread the completion times of stage 1
as uniformly as possible over this makespan. Note that if
we were to also penalize the under-utilization of stage 2, a
better strategy would likely be to let the completion times
resemble the ‘dome-shaped’ pattern common in appointment
scheduling [1]]. Given the complexity of the problem however,
this paper focuses on creating a uniform spread of completion
times as a first approximation.

The resulting objective has strong similarities with the
Break-In-moment (BIM) Problem [2f] in operating room
scheduling. Its motivation is that hospitals must deal with the
unexpected arrivals of urgent emergency patients. Free rooms
are typically not available, and so the earliest possibility
for the emergency to ‘break into’ the schedule is when any
room finishes its surgery. This leads BIM to have a novel
scheduling objective: minimizing the expected maximum
time between these potential ‘break-in-moments’. We have
focused on solving the more general case where surgery
durations are stochastic but emergency arrivals are unknown:
the Stochastic Break-In-Moment (SBIM) Problem [3].



Minimizing this worst-case risk is equivalent to trying
to create a schedule where completion times are uniformly
spread. This means we should be able to re-use our solution
methods [3]] in the context of the sensitive queue process
we outlined above. However there is one major difference:
the standard assumption for SBIM is that tasks are pre-
assigned to machines. In a hospital context this assumption
is defensible, as it is common practice to assign operating
room blocks to various specialities as part of tactical planning
[4]. Yet in many industrial processes this assumption is
unwarranted, and both the assignment .7 of tasks to machines
in stage 1, and their internal order 7 could be changed.

The free assignment of tasks adds a significant factor of
complexity, but the added freedom should allow us to reach
better objective values than were possible in the SBIM case.
We are interested in quantifying this improvement (the ‘value
of free assignment’), and particularly under what conditions
this improvement justifies the extra computational cost.

II. LITERATURE

Scheduling problems, i.e. the general goal of scheduling
M jobs on K machines in a way that optimizes an objective
function, was one of the first Operations Research topics to
be studied and remains an active research area to this day.
The classification scheme of [5]] identifies three major classes
based on the characteristics of the machine environment and
the jobs: dedicated machines, parallel machines, and the
various ‘shop’ problems (open shop, flow shop, job shop).
The problem we study falls under parallel machines, as each
task needs to be processed only once by any of the machines.

Within scheduling, various objective functions have been
researched; with the most common one (across various classi-
fications) being makespan minimization [6]. Problems related
to makespan minimization can also be integrated with various
extensions such as maintenance [7|], availability constraints
[8]], deteriorating jobs [9].

Our particular objective function is rather unique, as the
waiting time of individual items in the production system is
mainly a concern for specific applications (such as the food
industry). The objective of ‘total weighted tardiness’ is re-
lated, but this refers to the delay of items versus a predefined
due date (set by management or the customer). Indeed the
literature focused on reducing item waiting times (and more
generally placing demands on each of the completion times)
is comparatively more limited. One major exception is the
goal of minimizing completion time variance (CTV), which
was first discussed by [[10] and has received much attention.
For instance, [[11] seeks to minimize the CTV of items in
both a single-machine and parallel machine system. The
authors use a genetic algorithm to establish an upper bound,
and then analyze the performance of various heuristics. In
most applications however, CTV is focused on minimizing
the variance of each task’s average expected completion

time (whatever that might be); it does not try to spread the
completion times in a particular way. Finally, the closest
analogue to our objective is the very relevant contribution by
[12] , who also focus on creating uniformity of output across
a given interval (by reducing CTV). However, the authors
focus on flow shop scheduling, where each item must be
processed by several stages of a single machine each.

Our model also considers stochasticity. [13]] summarizes
the recent objectives in the literature for job shop scheduling
under uncertainty, the majority of which are again related to
either makespan or tardiness. Three broad strategies exist for
incorporating stochasticity. First, one can seek to protect the
schedule by minimizing the probability that certain (large)
deviations occur; commonly referred to as ‘robustness’.
Second, if specific assumptions can be about the type of
stochasticity, this can allow for analytically calculating the
effect of a particular schedule change.

We will be using a third approach, known as Sample
Average Approximation (SAA), and studied in detail by
[14]. SAA consists of creating and optimizing across a large
amount of scenarios based on the input distributions. The
advantage of this approach is that it is quite general, and can
be extended to a variety of input distributions. In the context
of unrelated parallel machines, [|15]] creates artificial scenarios
to analyze the maximal regret (in terms of makespan) any
solution can result in. [[16] proposes two exact algorithms and
several heuristics for a very similar makespan minimization
objective, but for identical parallel machines.

The rest of this paper is organized as follows: section 3
formally defines the SBIM problem with assignment, as well
as its objective function. Section 4 discusses the solution
methods used, and the reference method by which to compare
the SBIM problem with free assignment to the version with
fixed assignment. In section 5 we analyze the computational
results, and section 6 concludes the paper.

ITII. THE ASSIGNMENT OBJECTIVE

Formally, the SBIM problem with free assignment con-
sists of M tasks with independent stochastic durations P =
(Py,...,Py) which must be scheduled on K machines. An
assignment matrix </ = (A!,...,AX) € A determines which
tasks are assigned to which machines, and a global schedule
n = (n',...,7%) € IT determines their sequence on each
machine. Any combination of assignment </ and schedule &
will lead to a set of completion times C;, i€ . ={1,...,M}.
We now define the BIM sequence B; as the completion times
C; in ascending order. The intervals between the BIMs form
the Break-In-Intervals (BIIs) S; = B;—B;_1, Bp =0, i€ .Z.
The objective is to find a schedule 7 that minimizes the
expected value of the largest BII length:

v =ming(«/,m), with g(«/,n) =E[maxS;(«/,n,P)] (1)
# <



Stage 1 schedule

Machine number
-
L

NI

50 100 150 200
Time (min)

Overview of BIIs

0 50 100 150 200
Time (min)

Fig. 2: Empirical densities of all BIMs for an instance K =3 and M = 12
(all lognormal distributions). Task durations and associated BIMs represent
one particular scenario, with the largest BII in blue.

and where the expectation is taken over the joint distri-
bution of P. The optimal value v* in is the maximum
difference between adjacent completion times. Given this
objective, the best strategy was to spread the break-in-
moments as uniformly as possible across the session interval.
Fig. ] provides a visual example of the SBIM problem.

In order to estimate the value of a particular combination
of assignment and schedule (7,.27), we use the most general
method of creating a large set of N scenarios, each of
which contains a sampled value for each of the task duration
distributions. The associated sample average approximation
(SAA) objective across N scenarios will then be:

1 N
en( ) = 5 Y maxSi(«,7,P,,), )

n=1 IS

As this objective must be evaluated across N scenarios,
and cannot be decomposed by machine, it is fairly expensive.
Nonetheless, it allows for the use of various heuristics.

IV. SBIM SOLUTION METHODS

A. Value of the Assignment Solution

To quantify the potential improvement for the SBIM
objective that can be achieved by allowing free assignment
of tasks to machines, it is clear that for any instance, we
will seek to obtain the assignment (and internal ordering) that
minimizes the objective value. However when contrasting this
value to a reference case where assignment is fixed (and only
internal ordering is possible), an important decision is which
fixed assignment should be used to create a valid comparison.

As covered in section a majority of the literature on
production scheduling problems is preoccupied with mini-
mizing the expected makespan. We thus assume that when
not optimizing the assignment for the purposes of the SBIM
objective, a likely assignment to be used in factory settings
would be one that minimizes the expected makespan. The
internal ordering of this fixed assignment would not impact
the makespan however, and so it could still be optimized with
the SBIM objective in mind. This would yield the reference
value for the SBIM with fixed assignment. Our goal is to
show the further improvement in item waiting times that can
be achieved by also optimizing the assignment; but we will
do so while not exceeding the minimized expected makespan
by a measure of a. This ensures that expected makespan
remains a chief consideration.

While it is not within the scope of this paper to provide
solution methods that solve the SBIM with free assignment
to optimality, we nonetheless need solution methods that can
make a good estimate of the objective value. In the remainder
of this section we specify the main solution methods we
chose, and their scheduling operators.

B. Scheduling operators

Local search methods are iterative algorithms; in each
iteration j, they restrict themselves to searching a specific
neighborhood of the current solution (.<,m)"/), and select
the most promising neighbor as the next iteration’s start
(«/,m)UtD), Each iteration’s search is driven by one of
three scheduling operators: OpOrder, OpSwap, or Op2forl.
OpSwap swaps two tasks on different machines, and OpOrder
swaps tasks on the same machine (internal ordering). For the
former, the neighborhood is defined as the combination of all
schedules that could be reached by swapping any two tasks in
the current solution, provided they are on different machines.
Neighborhood for the latter works identically, except it swaps
any two tasks on the same machine.

As for Op2forl, its purpose is to change the number of
tasks assigned to each machine. It finds sets of tasks {4, B,C}
where A and B are scheduled on the same machine, and where
the sum of their means (u4 + Up), is close to the mean of
C;ie. (1—=y)uc < ua+us < (1+7y)uc. It then moves tasks
A and B to the machine on which C is scheduled; and vice
versa. Its neighborhood contains as many neighbors as there
are sets of tasks {A,B,C} for which this holds. The value for
Y used in our experiments is ¥ = 0.20.

C. Tabu Search with assignment and ordering operators

Tabu Search [17]] is a well-known local search method that
iteratively explores the neighborhood of promising solutions.
To avoid getting stuck in local optima, it uses a mechanism
known as a tabu list: the algorithm keeps a list of previous
solutions (or at least a property of them) and does not return
to them. The algorithm stops after a certain number of total



iterations, or after a smaller number of iterations wherein no
improvements on the objective value were found.

In our implementation, each iteration j consists of se-
lecting one of the three scheduling operators (according to
predefined probabilities) and constructing a neighborhood
around (<7, m)\/). We then search the entire neighborhood,
and choose the neighbor with the best objective value, but
excluding (i) solutions already in the tabu list and (ii)
solutions that increase the expected makespan by more than
a. The best neighbor will be the starting point for iteration
j+1, and is added to the tabu list. Whenever we find a new
best objective value, we clear the tabu list.

For the instances discussed in section [V] we use opera-
tor probabilities {POpOrder = 0-70>POpSWap = 0.25,P0p2f0r1 =
0.05,}. As a stop condition, we terminate the algorithm after
500 iterations have occurred without an improvement to the
current best solution, or after 2000 iterations in total.

D. Reference assignment: makespan Tabu Search

To benchmark the case of SBIM with fixed assignment,
we first find an assignment of tasks to machines that mini-
mizes the expected makespan. We then look for the internal
ordering that would still minimize the SBIM objective.

The initial makespan optimization is solved with a
Tabu Search, using the two assignment operators (OpSwap
and Op2forl) with probabilities {PoPSwap = 0.80, Popafor1 =
0.20,}. The subsequent internal ordering also consists of
a Tabu Search, but using only the OpOrder operator. Both
stages terminate based on the same criteria: after 1000 itera-
tions in total, or after 500 iterations wherein no improvement
on the current best solution was found.

An important note is that since the Tabu Search for internal
ordering has a much smaller solution space to traverse (see
section [[TI), giving it the same amount of iterations in total
gives it a significant advantage. Therefore our results are very
unlikely to overstate the value of the assignment method.

V. COMPUTATIONAL RESULTS

To identify situations in which optimizing the assignment
of tasks to machines will have a significant impact, we
constructed various datasets. Each is characterized by a
combination of ‘Range’ (the range covered by the means u
of the task distributions) and ‘Var’ (the size of the standard
deviation ©). Table [I] details the nine resulting datasets.

We first compare the solution methods outlined above
across each of the datasets. For the sake of readability we
employ shorthand phrases for the solution methods: ‘Only
order (Tabu)’ refers to the reference solution method (see
section [IV-D), where assignment is fixed. ‘Tabu Assign &
Tabu Order’ refers to the Tabu Search with multiple operators
(see section [[V=C).

Table [II] lists the average maximum BII that results from
each method’s final solution, for each of the datasets. We

TABLE I: Datasets employed for experiments

K | M | Parameters of normal distributions (min)
Rangel Varl 6 | 38 | u=70...110; 6 =2...6
RangelVar2 | 6 | 38 | u=70...110; 0=3...12
RangelVar3 | 6 | 38 | u=70...110; 0=5...25
Range2Varl 6 | 38 | ©u=65...140;06=2...6
Range2Var2 | 6 | 38 | ©u=65...140;0=3...12
Range2Var3 6 381| u=65...140;0=5...30
Range3Varl 6 38| ©u=50...180;0=2...6
Range3Var2 | 6 | 38 | ©=50...180; 0=3...12
Range3Var3 6 38 | ©=50...180;0=5...30

TABLE II: Performance results for o = 0.10 across datasets.

Only order (Tabu) galizbuAsg)lrgézr
Avg. Conf. Int. Avg. Conf. Int.
max BII max BII
Rangel Varl 47.52 36.98 - 57.28 31.46 25.515 - 39.055
Rangel Var2 42.66 31.52 - 56.58 32.263 27.74 - 44.40
Rangel Var3 42.25 32.44 - 54.49 40.25 31.15 - 52.00
Range2Varl 43.49 32.67 - 53.87 28.55 23.51 - 35.26
Range2Var2 38.63 29.61 - 49.96 33.40 26.48 - 42.53
Range2Var3 42.01 31.88 - 54.76 40.42 30.98 - 52.52
Range3Varl 31.97 26.18 - 38.74 28.96 23.96 - 35.52
Range3Var2 37.22 29.93 - 46.75 32451 26.47 - 40.37
Range3Var3 40.92 32.19 - 51.74 38.55 30.39 - 48.74

also provide a 95% confidence interval, which we emphasize
is for the maximum BII, not for the average maximum BII.

As expected, our results show that the SBIM with free
assignment is able to find significantly better solutions than
the version with fixed assignment. The Tabu Search for both
assignment and ordering outperforms its counterpart
on every instance.

The extent of the improvement varies however. Most
notably, an increase in the variance of the task distributions
reduces the added value of free assignment. This has an
intuitive explanation: greater task uncertainty reduces the
impact that even a good assignment can have. Consequently,
high-variance instances improve their objective by only about
5%; low-variance instances increase by 10-30%.

The range of distribution means present in the dataset,
also has an impact. For equal levels of variance, datasets
with a larger range are able to obtain lower objective values.
However the added value of optimizing assignment for these
datasets, versus only optimizing internal order, is smaller. If
there is a wide range of distribution means in the dataset, a
search for the best internal order (within a fixed assignment)
can already create very good schedules. On the other hand,
when the range of distribution means is small, it becomes
more critical to assign tasks to machines wisely; doing so
can significantly decrease the average maximum BII.

We were also interested in how compatible our objective
(focused on item waiting times) is with respect to that of
makespan minimization. As the fixed assignment used in
comparisons is one that minimizes expected makespan, we
can surmise that other (free) assignments will have a worse



TABLE III: Performance results for the method ‘Tabu Assign and Tabu
Order’, for various values of «.

Avg. max BII for values of o
o =0.20 o =0.10 o =0.05 a=0.01
RangelVarl 31.75 31.46 31.51 33.41
RangelVar2 35.11 35.24 35.42 36.30
RangelVar3 40.19 40.25 40.30 40.57
Range2Varl 29.00 28.55 29.76 30.44
Range2Var2 32.88 33.40 34.01 34.46
Range2Var3 40.58 40.42 40.55 40.35
Range3Varl 28.18 28.96 28.51 28.81
Range3Var2 32.37 32.45 33.03 3391
Range3Var3 38.51 38.55 39.12 39.06

makespan. The factor o limits this however; e.g. & = 0.10
means that new assignments can increase makespan by at
most 10%. To this end a further experiment is shown in Table
[} where we applied the solution method with assignment
(Tabu-assign and Tabu-order) to all datasets for various
values of «.

As we can see, a more restrictive value for o does
worsen the SBIM objective. The effect is not very significant
however, and does not meaningfully change the conclusions
resulting from Table |lI} After all, the definition of the SBIM
objective function punishes large BIIs in general. This means
it is generally not in the interest of solution methods to
deviate too far from the best makespan, as a larger makespan
means a larger interval across which to spread completion
times. In this sense the two objective functions are aligned.

Even when setting a constraint that limits makespan in-
crease to a = 0.01, we still find solutions that retain 75%
of the gains over the fixed assignment results in Table
(a =0.10). We conclude that for the instances we analyzed,
optimizing the SBIM objective function can be done in
addition to finding an excellent makespan, and does not
significantly interfere with it.

VI. CONCLUSION

We outlined a two-stage production system composed of
a set of parallel machines as stage 1, and a sensitive queue
as stage 2. If reducing the waiting times of items exiting
stage 1 is a concern, a possible strategy is to uniformly
spread completion times. This creates the same objective
function as used in the Stochastic Break-In-Moment problem,
but without the assumption that the assignment of tasks to
machines is already fixed.

To assess the possible improvement in objective value, we
proposed two local search methods to find good solutions. We
then tested them on datasets whose task distributions varied in
two ways: the range of the various distribution means present,
as well as the variance of each distribution. Results show
that allowing for free assignment of tasks to machines has
the greatest impact in instances where the variance of the
input distributions is relatively low, and where there is not

much variety in tasks means. In all but the highest-variance
instances we analyzed, the objective value improvement was
at least 10%. Furthermore, it could be obtained even when
making minimal changes to the expected makespan.

To our knowledge this is the first work that applies
the SBIM objective function in an environment where free
assignment is possible. In this application, we have however
restricted ourselves to the goal of spreading completion times
as uniformly as possible, as we were only concerned with
reducing the waiting times of items themselves. If we extend
our concern to the under-utilization of the sensitive queue as
well, this trade-off will demand a more sophisticated spread
of the completion times, which will in turn require new
algorithms. Further work is possible in this area.
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