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Abstract—This paper experimentally compares the positioning
accuracy of TDoA-based and RSS-based localization in a public
outdoor LoRa network in the Netherlands. The performance
of different Received Signal Strength (RSS)-based approaches
(proximity, centroid, map matching,...) is compared with Time-
Difference-of-Arrival (TDoA) performance. The number of RSS
and TDoA location updates and the positioning accuracy per
spreading factor (SF) is assessed, allowing to select the optimal
SF choice for the network. A road mapping filter is applied
to the raw location estimates for the best algorithms and SFs.
RSS-based approaches have median and maximal errors that
are limited to 1000 m and 2000 m respectively, using a road
mapping filter. Using the same filter, TDoA-based approaches
deliver median and maximal errors in the order of 150 m and
350 m respectively. However, the number of location updates per
time unit using SF7 is around 10 times higher for RSS algorithms
than for the TDoA algorithm.

I. INTRODUCTION

Internet-of-Things (IoT) systems have tried to connect small
devices to the internet, with the purpose of collecting relevant
sensor data at known locations (e.g., smart electricity meters,
smart parking, forest fire detection...). However, when the
sensor is mobile (e.g., air quality sensor on a postal car),
it is required to also know the approximate location of the
measurement. In other cases, the location is even the only
parameter of interest (e.g., fleet or goods tracking). Location
tracking in outdoor environments is traditionally done via
Global Positioning Systems (GPS), calculating the location
with an accuracy of around 5 m. When this location also
has to be known in a central backend system, the calculated
GPS position is typically transmitted over an IoT network. The
feasibility of using LoRa to transmit information (such as e.g.,
a GPS location) from a mobile node is addressed in [1] and
has been applied and documented in several papers [2]–[6].
However, as GPS requires energy-intensive calculations on the
mobile receiver, this technique puts an additional burden on
energy-constrained devices. In a LoRa network, an alternative
and more energy-efficient solution is to perform localization,
only based on the LoRa messages that are transmitted by
the mobile device, by applying TDoA techniques on the
backend side. However, this approach has expected positioning
accuracies that are worse compared to GPS, and moreover,

it requires time-synchronized LoRa base stations (BS). LoRa
localization, either via TDoA or via RSS techniques, has
been given very limited attention in the research community
so far. In [7], TDoA-based positioning was performed at
three static locations, with an achieved accuracy of around
100 m. The most extensive TDoA performance assessment
so far was presented in [8], where the number of location
updates and positioning accuracy was determined for three
mobility profiles (’walking’, ’cycling’, and ’driving’), and
for all six SFs. In case the BSs are not time-synced, the
backend system can rely on Received Signal Strength (RSS)
techniques to estimate the location of the mobile device,
but expected accuracies are lower than for TDoA. In [9],
LoRa RSS-based localization experiments were presented,
but in a relatively small, controlled, and hence, unrealistic
environment. In [10], RSS localization has been investigated
experimentally for Sigfox, another IoT technology. Table I
provides a comparison of different LoRa-based positioning
approaches. In this paper, we will for the first time assess
the RSS positioning performance in a realistic LoRa network,
for different spreading factors (SFs), and make the comparison
with LoRa TDoA performance. This work will build on the
same data set that was collected in [8]. The feasibility of
applying a road mapping filter to improve the performance
of either of the aforementioned systems will be investigated.
The work will allow assessing to what extent these approaches
are suited for applications where GPS has a too large impact
on the energy lifetime of the tracked node to warrant TDoA
calculations on the mobile node.
The outline of this paper is as follows. Section II describes the
measurement configuration and Section III presents the local-
ization algorithms. In Section IV, the results are discussed and
the main findings of this paper are summarized in Section V.

TABLE I
COMPARISON OF DIFFERENT LORA-BASED APPROACHES TO PERFORM

OUTDOOR LOCALIZATION.

LoRa backend mobile node expected
complexity energy consumption accuracy

GPS-over-LoRa X
LoRa TDoA X
LoRa RSS X
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Fig. 1. Walking route with indication of LoRa base stations (triangles)

Fig. 2. Cycling route with indication of LoRa base stations (triangles)

II. MEASUREMENT CONFIGURATION
The experiments are executed in a public LoRa network in

and around Eindhoven, a (sub)urban city in the Netherlands.
Six LoRa nodes with respective spreading factors between 7
and 12 were configured and provisioned, with Adaptive Data
Rate (ADR) disabled to maintain a fixed spreading factor.
These six LoRa SFs correspond to orthogonal spread signals at
the same frequency, but with chirp durations that are specific
per SFs: SF7 has the shortest time on air and the highest bit
rate, SF12 has the longest time on air and the lowest bit rate.
Messages are being sent with a size of 2 bytes, allowing trans-
mission of e.g., battery level and sensor data. The application
server recorded the JSON messages from the network server.
For each device, it contains timestamps with the raw TDoA
location estimates (in latitude and longitude degrees) and the
Estimated Signal Power (ESP) values observed at the base
stations for which the mobile device is within coverage range.
Similarly to RSS reports, the ESP value is a measure of the

Fig. 3. Driving route with indication of LoRa base stations (triangles)

received signal power, but excludes the noise power from its
value. Although solely working with ESP values in this paper,
we refer to the algorithms as ’RSS-based’ algorithms, for ease
of understanding.
The six mobile nodes with respective SFs between 7 and 12
were carried along 3 different routes: walking, cycling and
driving: see Figs. 1, 2, 3. The ground truth (with timestamp)
of each trajectory was recorded using a GPS logger with an
update rate of 1 Hz. The characteristics of the three trajectories
such as average speed, maximum speed, travelled distance and
duration are summarized in Table II.

TABLE II
CHARACTERISTICS OF THE THREE ONE-HOUR LONG TRAJECTORIES

Total distance Average speed Maximum speed
Walking 4.4 km 4.4 km/h 6 km/h
Cycling 12.1 km 12.1 km/h 21 km/h
Driving 38.7 km 38.7 km/h 137 km/h

Based on the messages from the network server, the algo-
rithms presented in Section III calculate an estimated position
of the mobile device, for each trajectory and SF. Using the
timestamps of the GPS logger and the server messages, the
positioning errors were calculated for each combination of
node (each SF) and each trajectory.

III. ALGORITHMS

This section will present the set of algorithms that will
be used to estimate the location of the mobile nodes. Fig. 4
shows that in a first step, raw location estimates are calculated
based on an RSS or TDoA approach. In a second step, a road
mapping filter is applied to these estimates to further improve
their accuracy.

A. Raw location estimation algorithms
In the first subsection, five algorithms delivering raw loca-

tion estimates will be described.
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Fig. 4. Overview of how original measurement data is used in the different algorithms and how raw location estimated are used in the road mapping filters.

1) TDoA: TDoA localization (denoted as tdoa hereafter)
is based on measurements of the time difference between
Time-of-Arrival measurements at different BSs. This algorithm
is well-known and is described in e.g., [11]. Due to the
lower bandwidth of the LoRa signal compared to GPS, timing
information is less accurate and positioning accuracies are
worse. A TDoA position calculation requires a measurement
report to be received at three or more time-synced LoRa BSs.
2) RSS proximity: The proximity algorithm is based on

RSS values, by estimating the node location as that of the BS
that receives the strongest signal from the mobile node. This
BS is assumed to be located closest to the node. Unlike for
traditional localization algorithms requiring three BSs within
range of the node, this approach only requires only one BS
within range. However, expected positioning errors are larger.
3) RSS centroid: The centroid localization algorithm maps

the estimated location to the center of the two or three BSs that
receive the strongest signal from the mobile node. In case only
the two strongest received signals are considered, the estimated
location corresponds to the middle of the line segment formed
by the two BSs that receive the signal (denoted as centroid2
hereafter). If three BSs receive the signal, the location is
estimated at the center of the triangle formed by the three BSs
(denoted as centroid3 hereafter). In general, this approach is
more accurate than the one mapping the location to the closest
BS, but it requires two or three BSs within the range of the
mobile node, so fewer location updates are expected.
4) RSS map matching: The RSS map matching approach

is based on finding the location for which the set of measured
RSS values at the BSs form the best fit with the RSS values
that are predicted based on a path loss model. This fitness of
each candidate location L is determined by the following cost
function CL:

CL =

NBS∑

i

(ESPBSi
meas − ESPBSi

est,L)
2, (1)

with ESPBSi
meas the ESP value measured at base station BSi,

ESPBSi
est,L the ESP that is estimated to be received at location

L, and NBS the number of BSs that receive the signal. The

estimated location L’, is the location for which CL is the
lowest, after evaluating all possible locations L. ESPBSi

est,L will
be modeled according to a one-slope log-distance relation [12]:

ESPBSi
est,L = ESP100 − 10n · log(dLBSi/100), (2)

with ESP100 [dB] the ESP value recorded with the node at
100 m from the BS, n [-] the path loss exponent, and dLBSi

[m] the distance between base station BSi and location L (see
Section IV-A).
If NBS=2, only locations along the line formed by the two
BSs that receive the strongest signals are considered here.
If NBS=3, signals from three BSs are considered and the
best match on a 2D-grid is considered. The corresponding
algorithms for NBS=2 and 3 will be respectively denoted
as map match2 and map match3 hereafter. Fig. 5 (left)
illustrates the map matching approach, where BS1 and BS2
are the base stations with the strongest ESP observations.
Themap match2 approach searches the receiver location that
has the lowest cost value (eq. (1)) of all points along the
line formed by BS1 and BS2 (dark points in left figure),
while the map match3 approach accounts for all locations
in the receiver plane (lighter points in left figure). For these
simulations a grid resolution of 10 m is used.

Fig. 5. Candidate node locations according to map match2 (dark dots) and
map match3 (light dots) algorithms (left), and map match cent2 (dark
dots) and map match cent3 (light dots) algorithms (right).

RSS or ESP values (in dB) do not exhibit a linear rela-
tionship with the distance between node and BS, but instead,



they have an exponentially decreasing relationship, so that one-
slope log-distance models are often used. As a consequence,
given that RSS values are traditionally homoscedastically
distributed across all distance values, errors on the distance
estimation become larger for lower RSS values and thus,
for larger distances. As such, RSS-based location accuracy is
typically worse in outdoor environments, due to (i) the large
distances between the mobile nodes and the BSs and (ii) the
relatively large variances of the shadowing fading around the
path loss model in case of Non-Line-of-Sight situations.
5) RSS centroid map matching: The RSS centroid map

matching algorithm follows the same approach as the map
matching algorithm from the previous section. However, while
the map matching algorithm considers all locations along a
(theoretically infinite) line (for NBS=2) or plane (for NBS=3),
the RSS centroid map matching algorithm limits the set of
candidate locations to the line segment between the two BSs
(for NBS=2), and to locations within the triangle formed by
the three BSs (for NBS=3). These algorithms will be denoted
as map match cent2 and map match cent3, respectively.
Fig. 5 (right) illustrates the centroid map matching approach.
For the simulations a grid resolution of 10 m is used.

B. Road mapping filter
All of aforementioned localization algorithms will deliver a

set of raw location estimates (see Fig. 4). By inputting these
estimates to a road mapping filter, the estimation accuracy
of these temporary estimates can be improved by mapping
the estimated position onto a road segment (by assuming the
node is located on a road). Another improvement is possible by
accounting for the maximal node velocity. For example, when
moving at a maximal speed of 2 m/s, we know that after 30
seconds the next update should be within 60 m of the previous
location update. As such, the more raw location estimates per
time unit, and the lower the maximal node velocity, the more
improvement can be expected from the road mapping filter.
By taking into account consecutive raw location estimates, the
road infrastructure layout and the allowed speed limits, we can
improve the prediction by calculating the most likely path in a
certain time span. This additional road mapping filter ensures
realistic and actually possible trajectories.
First, in an offline phase, the road infrastructure layout is
converted to a grid of possible positions by making use of
OpenStreetMap data. All major and minor roads are divided
in pieces of 20 m and all grid points along the road segments
keep a link to their neighboring grid points. In the online
phase, the first raw location estimate serves as starting point,
initialized with a cost of zero. In total, the 1000 points that are
the closest to this starting point and that are located on a route,
are retained as well, using a grid spacing of 50 m. Retaining
these 1000 points for further calculation increaeses robustness
against a bad starting point estimation. Next, when a new
raw location estimate is available, all reachable grid points
seen from these starting points are calculated by recursively
making use of the neighboring grid points, speed limits, and
time passed between this and the last raw estimate update.

These reachable grid points make up the end points of the
new paths and retain a cost and link to the previous point
(i.e., parent grid point). The cost of each path is updated as
the cost of the previous point added with the distance between
this point and the raw location estimate. In the next iteration,
the end points of all paths in memory are updated again with
this technique. To limit memory usage, the filtering algorithm
only retains the 1000 most likely paths at each time instance.
At the end of the time span, all parent grid points from the
path with the current lowest cost are looked up in memory and
form the final predicted trajectory for this user. For more info
about this approach, we refer to [13]. The outcome of the road
mapping filter is a more precise trajectory estimation. All that
is needed for the algorithm is map info and the speed limits
along each road segment, provided by OpenStreetMap data.
Here, we assume that the mobility profile is known a priori:
a maximal speed of 5 km/h and 25 km/h is assumed for the
walking and cycling route, respectively. The maximal speed
for the driving route is limited to the allowed speed on that
road segment.
In this paper, four data sets of raw location outputs will be
inputted into the road mapping filter, as shown in Fig. 4.

• Two data sets used for comparing the effect of the
road mapping filter on different RSS-based raw location
estimates. This filter can be applied to all measured
samples, irrespective of the number of BSs that have
received the signal (NBS= 1, 2, or 3), as even for only one
received sample, a raw location estimate can be calculated
via the proximity algorithm.
– proximity-centroid2-centroid3 (also denoted as

prox − cent): if one BS receives a signal, the
proximity estimate is used as input for the road
mapping filter, the centroid2 algorithm for NBS=2,
and centroid3 for NBS= 3. This raw location set can
be easily obtained without any advanced processing.

– proximity-map match cent2-map match cent3
(also denoted as prox − mmc): if one BS receives
a signal, the proximity estimate is used as input
for the road mapping filter, the map match cent2
algorithm for NBS= 2, and map match cent3
for NBS= 3. This raw location set requires some
processing and knowledge of the propagation in the
environment, but is expected to be more accurate.

• Two data sets for comparing the effect of the road
mapping filter on TDoA and RSS estimates. Since the
tdoa algorithm can only be applied to samples that
are collected at three BSs, we will here only evaluate
the location accuracy for samples where NBS=3, in
order to guarantee a fair comparison between RSS and
TDoA performance. However, all other raw RSS location
outputs (collected at only 1 or 2 BSs) can also be used
as input to the road mapping filter, as these estimates are
available and are a useful input to the road mapping filter.
– proximity-map match cent2-map match cent3
(also denoted as prox − mmc(3)): same dataset as
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defined above, but only evaluated at samples where
NBS= 3.

– tdoa: the location estimates of the tdoa algorithm
are used as input for the road mapping filter.

IV. RESULTS
A. ESP model
Table III shows the characteristics of the one-slope models

that link the estimated signal power ESP for each of the three
scenarios to the distance between mobile node and BS. These
models were obtained by least-square fitting. The table shows
that no large differences are observed between ’walking’,
’cycling’, and ’driving’, with mainly a slightly lower ESP in
the ’driving’ scenario, probably due to the vehicle penetration
loss (n slightly higher for ’driving’). These models will be
used in eq. (1) for the map match and map match cent
algorithms.

TABLE III
ESP ONE-SLOPE MODEL CHARACTERISTICS FOR THE THREE SCENARIOS.

scenario ESP100 (dB) n (-) σ (dB)
walking -90.64 1.96 7.16
cycling -87.06 1.99 7.89
driving -90.78 2.03 7.29

B. Raw location estimates
1) RSS-based algorithms: Measurement samples either

yield measurements from 1, 2, or 3 BSs (NBS= 1, 2, or
3). Certain algorithms are suitable for all sample types (e.g.,
proximity), others require measurements at 3 BSs (e.g.,
centroid3), see Fig. 4. Therefore, the results will differentiate
between measurements that contain 1, 2, and 3 BS reports
respectively, in order to consider the same dataset for each
localization technique and obtain a fair comparison.
Table IV lists the number of samples NS per dataset, and
the median (p50) and maximal (p95) errors per localiza-
tion technique, cumulated over all SFs. For the walking
scenario, the (four) centroid and map match cent algo-
rithms deliver comparable results for samples with 3 BS
observations with a p50 between 2339 m (centroid2) and
2482 m (map match cent2), and a p95 between 5576 m
(centroid3) and 6954 m (centroid2). When considering all
three scenarios, map match cent3 performs slightly better
than these other three algorithms, and map match cent2
outperforms centroid2, at the expense of additional process-
ing. E.g., for NBS= 3, the average of the median errors
over the three scenarios is 1817, 1885, 1902, and 2061 m
for map match cent3, map match cent2, centroid2, and
centroid3, respectively.
Compared to these four algorithms, the proximity algorithm
generally delivers results with a slightly higher error for NBS=
3 (median error of 2356 m on average over the three scenarios
for NBS= 3), mainly due to the larger error in the ’walking’
and ’driving’ scenarios. For NBS = 2 however, proximity
performs well, especially for ’walking’ route (median error

of 1670 m). This inconsistency is explained by the fact that
the ’walking’ and ’cycling’ results are very dependent on
the specific route. E.g., the ’walking’ route covers a smaller
area (874 x 707 m) and is located very close to a specific
BS. As such, a large set of proximity estimates can be
exceptionally good. This is best seen for the samples with
only one observation, where the median error is only 734 m.
As the ’driving’ route covers a much larger area (12631 x
9543 m), the obtained results are more averaged with respect
to node vs. BS location, and are therefore more generally valid
in the authors’ opinion.
A clear trend is that predictions for the ’driving’ route are
better than for the other scenarios, for all algorithms. The
reason is not that the predictive power of the ESP model
is better for the ’driving’ route (σ around 7 dB for all
scenarios in Table III), but that the median distance between
the measurement locations and the observing BS is lower for
the ’driving’ route (2218 m and 2439 m for NBS = 2 and
NBS = 3 respectively) than for the ’walking’ (2954 m and
3424 m for NBS = 2 and NBS = 3 respectively) and ’cycling’
(2624 m and 3033 m for NBS = 2 and NBS = 3 respectively)
routes. Since also the number of recorded samples is lower for
’driving’, the reason for this lower median distance is probably
that, because of vehicle attenuation, mainly the samples are
retained where the BSs are relatively close to the mobile node
and packet reception is still possible. This effect of this lower
node-to-BS distance is not only reflected in the performance of
the proximity and centroid algorithms, but also in that of the
map match and map match cent algorithms: a one-slope
model prediction error of e.g., 7 dB (vs. the measurement)
leads to smaller estimation errors at smaller distances than
at larger distances, due to the ESP (in dB) being linearly
dependent on the logarithm of the distance.
Another clear trend is the performance of the (traditional)
map match algorithms. Although they are more advanced
than the proximity and centroid algorithms, their median
error is similar or larger than these algorithms in all three
scenarios (’walking’, ’cycling’, ’driving’), and the maximal
error is larger in each case. This can again be explained
by the fact that a measured ESP value that is lower than
is expected based on the model, can significantly pull away
the location estimate from the real location. This behaviour
is particularly noticed in the high maximal errors for the
map match algorithms. E.g., if for a location at 2500 m
from a BS in the walking scenario, the measured ESP is 5 dB
lower than estimated by the model (e.g., due to shadowing),
the estimated distance is 4504 m, corresponding to an error of
2004 m. As shown earlier, the map match cent approaches
efficiently tackle these problems, with a significantly improved
performance.
It should be noted that themap match andmap match cent
algorithms in their current form use ESP models that are a best
one-slope fit to the collected measurements. Besides requiring
a training phase prior to deployment, this model is also the
best possible (one-slope) model for this data set. A slightly
worse behavior is expected when a more generic propagation



TABLE IV
MEDIAN (p50) AND MAXIMAL (p95) POSITIONING ERROR OF RAW LOCATION ESTIMATES FOR ’WALKING’, ’CYCLING’, AND ’DRIVING’, ACCORDING TO
THE ALGORITHMS DESCRIBED IN SECTION III-A, WITH A DISTINCTION BETWEEN SAMPLES BEING OBSERVED BY A DIFFERENT NUMBER OF BSS (NBS

= 1, 2, 3). NS IS THE NUMBER OF COLLECTED SAMPLES PER CASE. THE CONSIDERED DATA SET COMPRISES ALL SIX SFS (SF7-SF12).

NBS (-) Algorithm walking cycling driving
NS (-) p50 (m) p95 (m) NS (-) p50 (m) p95 (m) NS (-) p50 (m) p95 (m)

1 proximity 900 734 5186 748 1262 3687 704 1455 3317

2

proximity

218

1670 7320

166

2017 6265

188

1708 4778
centroid2 2657 4879 1867 5724 1420 4153
map match2 2403 11964 2874 11864 1569 8331
map match cent2 1346 4820 1664 4656 1137 3335

3

proximity

414

3202 6233

425

2145 5985

202

1722 3733
centroid2 2339 6954 1931 5609 1437 4207
centroid3 2392 5576 2270 5265 1522 3922
map match2 3674 8708 2269 8551 1334 5817
map match cent2 2482 6499 1888 5051 1284 3454
map match3 3681 7320 2507 7399 1589 6788
map match cent3 2347 6018 1864 5174 1239 3453

3 tdoa 341 207 578 348 222 592 77 145 506

TABLE V
MEDIAN (p50) AND MAXIMAL (p95) POSITIONING ERROR FOR THE DIFFERENT ALGORITHMS, FOR DIFFERENT SFS, WITH A DISTINCTION BETWEEN

SAMPLES BEING OBSERVED BY A DIFFERENT NUMBER OF BSS (NBS = 1, 2, 3). NS IS THE NUMBER OF COLLECTED SAMPLES PER CASE.
(prox = proximity, centi = centroidi ,mmci = map match centi).

’driving’
NBS = 1 NBS = 2 NBS = 3

prox prox cent2 mmc2 prox cent2 cent3 mmc2 mmc3 tdoa

NS (-) 355 84 67 18
SF7 p50 (m) 1393 1459 1267 1070 1535 1399 1510 1262 1222 108

p95 (m) 3217 3363 3142 3016 3715 3337 3380 3018 2758 391
NS (-) 156 50 63 21

SF8 p50 (m) 1455 1819 1488 1285 1617 1252 1489 1198 1186 117
p95 (m) 3592 4741 4588 3335 3450 4097 4119 3515 3520 421
NS (-) 102 26 28 13

SF9 p50 (m) 1498 1574 1904 1176 1722 1222 1410 1234 1239 192
p95 (m) 3132 5359 4638 3510 6720 4786 4131 4730 3543 432
NS (-) 53 14 20 9

SF10 p50 (m) 1472 2403 1809 1580 1846 2125 1979 1878 1487 233
p95 (m) 4081 5612 4638 4306 3156 6362 4221 4200 4331 547
NS (-) 27 8 16 12

SF11 p50 (m) 1930 1651 1619 1188 1585 1705 1129 1401 1196 240
p95 (m) 4425 3101 5278 2082 3421 3130 3015 2856 3732 691
NS (-) 11 6 8 4

SF12 p50 (m) 2100 1757 1060 887 2184 2294 1868 979 1077 109
p95 (m) 5545 10274 3379 4159 6049 3981 5362 3981 3532 195

model would be used.
2) TDoA-based algorithm: The tdoa algorithm perfor-

mance is significantly better than the RSS-based algorithms,
with median errors p50 between 145 m (’driving’) and 222 m
(’cycling’), and maximal errors p95 between 506 m (’driving’)
and 592 m (’cycling’). Although the positioning accuracy
clearly outperforms that of any RSS-based algorithm (see
previous section), location updates are much less frequent.
For the walking and cycling scenarios, the ratio of TDoA
samples and RSS samples (i.e., all samples) is 22% and
26%, respectively, meaning that for approximately each four
RSS-based location estimates, only one TDoA-based location
estimate is obtained (cumulated over all SFs). For the ’driving’
scenario, this ratio drops to only 7%. In practice, one should
expect that the number of location updates for tdoa (e.g., 341
for ’walking’) would be equal to the number of RSS updates
when NBS = 3 (e.g., 414 for ’walking’). However, some of

the BS were not equipped with GPS and could therefore not
be used for a TDoA calculation. In the city centre, where
the ’walking’ and ’cycling’ routes were traveled, relatively
more BS were GPS-equipped, leading to a better match of
the NS values compared to the ’driving’ scenario. It also has
to be noted that this number of samples is cumulated over all
SFs, while in reality only one SF will be used. It was shown
in [8] that there was no consistent trend in TDoA localisation
accuracy with respect to the SF, so the SF providing the largest
amount of updates could be considered as the optimal SF. In
the next section, the impact of the SF on RSS- and TDoA-
based localisation will be further detailed.
3) Impact of spreading factor: In [8], it was shown that

no consistent relation was observed between the SF and the
positioning accuracy for the tdoa algorithm. Therefore, the SF
delivering the most location updates per unit of time could
be considered as optimal. For this test, SF8 delivered the



best tradeoff between a small transmission interval (preferring
a low SF) and a sufficient range to reach 3 BS and be
able to perform a TDoA location estimate (preferring a high
SF). Table V, showing the median (p50) and maximal (p95)
positioning errors for the ’driving’ scenario for the different
algorithms, confirms this: the most location updates for TDoA
(21 updates) are obtained for SF8. Similar conclusions were
obtained for the ’walking’ and ’cycling’ scenarios in [8].
In the following, the impact of the spreading factor on RSS-
based location estimates will be assessed for the ’driving’
scenario, as this scenario is the least trajectory-dependent,
thanks to the larger area that is considered.

a) Number of RSS location updates per SF: Table V
shows NS , the number of measurement samples per NBS and
per SF. For the driving scenario, the number of RSS updates
(e.g., 355 + 84 + 67 = 506 for SF7) is much larger than
the number of TDoA updates (e.g., 18 for SF7). A similar
observation is made for the other SFs. As can be expected,
the number of updates is much higher for lower SFs, as the
minimal transmission interval is shorter [8]: the total number
of RSS updates drops from 506 for SF7 to 269 for SF8 and
to 25 for SF12. Unless the positioning accuracy is better
for higher SFs, this shows that the lowest SF (i.e., SF7) is
preferable to perform RSS-based location tracking.

b) RSS positioning accuracy per SF: It was observed that
for higher SF, the fraction of measurement samples containing
3 BS observations (NBS = 3) increases, while the number of
samples containing only one observation (NBS = 1) increases.
E.g., for the ’walking’ scenario, 71% of the samples are
NBS = 1 and 18% are NBS = 3, while for SF12, 18% are
NBS = 1 and 55% are NBS = 3. Indeed, because of the larger
range for SF12, the fraction of reports with 3 BS observations
increases with the SF. However, as was shown in Table IV, no
overall significant positioning improvement was noticed when
more BSs observe a signal (i.e., NBS = 3 vs. NBS = 1).
This is confirmed in Table V: no consistent trend is noticed
when the SF changes. As the accuracy conclusions for each
algorithm are also applicable per SF, only a limited subset
of RSS algorithms is considered in Table V. The proximity
algorithm seems to be an exception: the performance of this
algorithm slightly decreases with SF (for all NBS values).
Since larger SFs have a larger range, there is an increased
chance that a more distant BS will record the strongest ESP,
while no measurement report might have been obtained in the
same case for a lower SF, meaning that lower SFs have a
larger chance of recording an observation of a more nearby
BS. This increasing error is also noticed in the p95 values.
It can be concluded that no significant difference in accuracy
is observed between SFs, neither for TDoA or for (the best
performing) RSS-based algorithms. Hence, the optimal choice
is the SF yielding the largest number of location updates per
time unit, i.e., SF7.

C. Effect of road mapping filter on raw location estimates
This section will assess the effect of applying a road

mapping filter (see Section III-B) to the raw location estimates.

It was shown that SF8 was the best choice for TDoA, whereas
for RSS-based positioning, SF7 is preferred. SFs higher than
8 will therefore not be investigated here, since (1) less benefit
is obtained from the road mapping filter when a lower number
of location updates per time unit is provided and (2) the
previous section did not indicate that raw location updates are
more accurate when the SFs increases. Table VI shows the
positioning accuracies after applying a road mapping filter to
the raw RSS and TDoA estimates, for SF7 and SF8. For RSS,
the datasets described in Section III-B and shown in Fig. 4
are used (prox− cent and prox−mmc).

1) Performance of road mapping filter for SF7: Table VI
shows that the road mapping filter successfully decreases the
median positioning errors. For ’walking’, the already low
median errors (around 830 m) are further decreased to around
650 m. The algorithm particularly succeeds in limiting the
maximal errors (from more than 4000 m for SF7, to less than
1000 m). For the ’driving’ scenario, median errors decrease by
around 50%, from around 1400 m to around 700 m. Maximal
errors decrease from around 3000 m to around 2000 m.

2) Comparison of RSS algorithms after application of road
mapping filter for SF7: Although the prox−mmc approach
requires a prior characterization of the propagation environ-
ment and a more advanced processing than prox − cent, its
performance is not significantly better (e.g., p50 of 706 m
vs. 724 m for ’driving’). In some cases, the prox − cent
approach even performs better (e.g., maximal errors are lower
for ’walking’ and ’cycling’).

3) Comparison of RSS and TDoA for SF7: It is observed
that the road mapping filter only succeeds in improving
performance for tdoa for the lowest mobility profile (’walk-
ing’). tdoa median and maximal errors are in the order of
100-200 m and 300-400 m respectively. Although the road
mapping filter significantly improves RSS-based localization
(prox−mmc(3)), the performance is still not comparable to
the tdoa performance, although median errors below 400 m
are obtained for the ’driving’ scenario. Maximal errors vary
between 1075 m (’walking’) and 1980 m (’cycling’). However,
the number of location updates per time unit using SF7 is
around 10 times higher for RSS algorithms than for the TDoA
algorithm (partly due to the fact that not all LoRa BS are GPS-
equipped, see Section IV-B2).

4) Impact of spreading factor - SF8 vs. SF7: Although it
was expected that the performance of the RSS algorithms at
SF7 after applying the filter would outperform the performance
at SF8, the difference is very limited. E.g., for prox − mcc
and for both SFs, median accuracies are around 600-700 m
for the ’walking’ scenario, and around 900 m and 700 m for
the ’cycling’ and ’driving’ scenarios, respectively. It appears
that the number of updates at SF8 is still sufficient to benefit
from the mapping algorithm. It can be noticed that, unlike for
SF7, the road mapping filter better succeeds in improving the
accuracy for tdoa, with a median error of only 86 m for the
driving scenario.



TABLE VI
MEDIAN (p50) AND MAXIMAL (p95) POSITIONING ERROR FOR THE DATASET DESCRIBED IN SECTION III-B FOR SF7 AN SF8, WITH AND WITHOUT ROAD

MAPPING FILTER DESCRIBED IN SECTION III-B.

SF7 SF8

’walking’
without filter with filter without filter with filter

p50 (m) p95 (m) p50 (m) p95 (m) p50 (m) p95 (m) p50 (m) p95 (m)
prox− cent 830 4105 631 916 1587 5580 660 1334
prox−mmc 837 4268 669 928 960 5601 598 933

prox−mmc(3) 2189 5843 716 1075 2388 5244 584 990
tdoa 221 566 118 309 194 696 98 351

’cycling’
without filter with filter without filter with filter
p50 p95 p50 p95 p50 p95 p50 p95

prox− cent 1392 4588 943 1595 1840 5432 1009 2439
prox−mmc 1323 3812 879 1821 1646 5462 917 2051

prox−mmc(3) 1891 4246 918 1980 1911 5786 875 1981
tdoa 192 583 192 407 249 681 183 416

’driving’
without filter with filter without filter with filter
p50 p95 p50 p95 p50 p95 p50 p95

prox− cent 1403 3253 724 2039 1462 4012 701 1851
prox−mmc 1305 3067 706 2039 1382 3528 704 1925

prox−mmc(3) 1267 2941 371 1402 1176 3591 495 1302
tdoa 108 391 109 429 117 421 86 342

V. CONCLUSION

This paper presented a performance comparison of RSS-
based and TDoA-based localisation approaches in a public
outdoor LoRa network. For the considered network in the
Netherlands, raw location estimates of TDoA approaches out-
perform all investigated RSS approaches, with median errors
in the order of 200 m vs. median errors in the order of
1250-2500 m. Except for the simple proximity algorithm,
no significant difference in positioning accuracy is observed
for different spreading factors. For RSS-based algorithms, the
largest number of location updates per time unit is possible for
SF7, whereas for the TDoA algorithm, the optimal spreading
factor is SF8. Application of a road mapping filter on raw RSS-
based location estimates yields a median error of around 700 m
for a car trajectory, an improvement of 50%. Maximal errors
can be limited to around 2 km. It is shown that simple RSS
approaches using proximity and centroid techniques achieve
comparable accuracies as more advanced RSS algorithms,
mainly due to quite large shadowing fading values. Future
work consists of investigating more routes to obtain more
representative results and make general conclusions. Also
combined TDoA and Angle-of-Arrival-approaches will be
investigated.
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