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Abstract—Steered Mixture-of-Experts (SMoE) is a novel
framework for approximating multidimensional image modali-
ties. Our goal is to provide full Six Degrees-of-Freedom capabil-
ities for camera captured content. Previous research concerned
only limited translational movement for which the 4D light field
representation is sufficient. However, our goal is to arrive at a
representation that allows for unlimited translational-rotational
freedom, i.e. our goal is to approximate the full 5D plenoptic
function. Until now, SMoE was only applied on Euclidean spaces.
However, the plenoptic function contains two spherical coordinate
dimensions. In this paper, we propose a methodology to extend
the SMoE framework to spherical dimensions. Furthermore,
we propose a method to reduce the parameter space to the
same two dimensional Euclidean space as for planar 2D images
by using a projection of the covariance matrices onto tangent
spaces perpendicular to the unit sphere. Finally, we propose
a novel training technique for spherical dimensions based on
these observations. Experiments performed on omnidirectional
360° images show that the introduction of the dimensionality-
reduction projection step results in very low quality loss.

Index Terms—Steered Mixture-of-Experts, 360 images, image
approximation, plenoptic function

I. INTRODUCTION

Our goal is to enable full translational-rotational navigation
freedom in camera captured image content. Currently, only
rotational navigation (e.g. 360° video) is widely available.
This is very limited compared to the navigational freedom in
computer generated image content (e.g. in gaming), in which a
user is allowed the so-called Six Degrees-of-Freedom (6DoF),
i.e. three translational movements (walking around) combined
with three rotational movements (head movements). Having
such freedom without the knowledge of geometrical scene
information is currently a very active field of research.

At the moment, MPEG is conducting standardization efforts
for a 6DoF format [1]. Their envisioned process consists of
two steps: (1) find the most important views on a scene, and
(2) encode these views using well-known difference and trans-
form coding approaches. At decoder side, views are synthe-
sized potentially by using extra transmitted geometrical side-
information. However, we argue that 2D regular sampling grids
are not optimal representations for storing high-dimensional
data. Furthermore, we believe that the view synthesis process
could shift considerable computational complexity towards the
decoder.

The 2D images observed by humans at each angle are
processed versions of the higher-dimensional light information
in the scene. In terms of signal processing, we are presented

with a high-dimensional sampling problem with nonuniform
and nonlinear sample spacing and high-dimensional spatio-
directionally varying sampling kernels [2]. This high dimen-
sional space is parametrized by multiple definitions. In the case
of no occlusions, i.e. the “open space” assumption, the high
dimensional space can be reduced to the 4D light field [3], [4].
This is currently a widely used simplification, however, this
assumption allows only limited movement. In order to allow
for complete navigational freedom without assumptions on the
scene, the 5D plenoptic function is necessary [5].

Steered Mixture-of-Experts (SMoE) is a novel framework
for the approximation of image modalities regardless of their
dimensionality. It has several applications, such as coding,
scale-conversion, and description. It has previously been suc-
cessfully applied to images, videos, light field images and
light field video [6]–[9]. Consequently, SMoE is able to
approximate the 4D light field and to provide a limited 6DoF
experience. However, the “open space” assumption does not
always hold. We would therefore like to approximate the
5D plenoptic function. This function describes the color and
intensity of a light ray arriving in a 3D point in space for
each 2D angle. However, SMoE has only been considered on
Euclidean spaces, and not on spherical dimensions.

Multivariate versions of directional distributions exist in the
field of directional statistics, such as the von Mises-Fisher
(vMF) and Kent distributions [10]. The vMF distribution
is analogous to the symmetric Gaussian distribution, and
thus cannot be steered. It was later generalized towards the
steerable Fisher-Bingham distribution but is mathematically
inelegant and lacks a natural interpretation of the parameters
[11]. Kent suggested an alternative with more interpretable
parameters and which is more flexible than the vMF distribu-
tion [12]. However, the normalization constant is not solvable
in closed-form and the approximation of the constant is not
always applicable [11]. Furthermore, the parameters are still
less flexible and interpretable compared to the multivariate
Gaussian. Fitting mixtures of Kent distributions has been
proposed, but relies on the approximate normalization constant
and remains computationally complex [13].

This paper proposes a method for SMoE on spherical image
data. Such image data has some specific properties that we
can exploit. Firstly, we have a relatively uniform distribution
of points on the unit sphere. Secondly, we typically work
with mixture models with a high number of kernels that
have small spatial variance. Consequentially, the unit sphere is



approximated by the tangent planes defined by the unit vectors
that defines the sample location, analogous to a circle that is
approximated by a polygon with a high number of edges.

Based on the above observations, we choose to interpret the
spherical data as data with a 3D coordinate laying on the unit
sphere. We model the data using a Gaussian Mixture Model
(GMM) with a 3D Euclidean coordinate space. However, it
is clear that this is a redundant parametrization as all the
data lay on a manifold, i.e. the unit sphere. We show that the
GMM can be projected onto a 2D coordinate space by locally
projecting each kernel’s covariance matrix onto the tangent
plane defined by the kernel center. We implement this idea
for omnidirectional (360°) images, thus having two spherical
coordinate dimensions and three Cartesian color dimensions,
i.e. RGB.

II. STEERED MIXTURE-OF-EXPERTS

A. Introduction

Steered Mixture-of-Experts (SMoE) is a novel framework
for approximating image modalities with many applications,
such as image modality coding, scale conversion (e.g. frame
interpolation), and image description (e.g. depth estimation)
[6]–[8]. Due to the sparse structure in SMoE, it is readily
extendable towards higher dimensional image modalities, such
as 6DoF content. This is in stark contrast to traditional image
coding schemes which rely on dense sample-grid structures.
Moreover, it departs significantly from the conventional coding
methods by operating in the spatial domain and thus not using
any kind of transform coding. Instead of storing exactly the
samples or the transform coefficients that define the image, this
method relies on modeling the underlying generative function
that could have given rise to the samples.

The function approximation of the underlying generative
function is done by identifying coherent, stationary regions in
the image modality. Each segment is modeled using a single
N -dimensional entity, which we call a kernel or component.
SMoE is based on the divide-and-conquer principle that is
present in all Mixture-of-Experts (MoE) approaches [14].
Firstly, the input space is divided in soft-segments using a gat-
ing function. Secondly, local regressors (or experts) are sought
that locally approximate the function optimally. Consequently,
the gating function lets experts collaborate in segments where
they are trustworthy.

SMoE is based on the Bayesian, or “alternative” definition
of the MoE model [14]. The Bayesian MoE approach models
the joint probability of the input space X and the output space
Y using a GMM. Each Gaussian kernel then simultaneously
defines the gating function (soft-segmentation of X) and the
local regressors (through the conditional probability function
Y |X).

In SMoE, where the input space is the coordinate space
(i.e. sample locations) and the output space is the color space
(i.e. sample amplitudes), one such Gaussian then corresponds
to one kernel as mentioned above. The gating function is
thus defined by the probability of a coordinate to belong to a
Gaussian, and each Gaussian simultaneously defines an expert

(a) Original (b) JPEG (c) SMoE

(d) 3D GMM (e) Topview (f) Softmax

Fig. 1. An example of the modeling with 10 components and reconstruction
of a 32x32 pixel crop from Lena (1a). For a grayscale image, the coordinate
space X is 2D and the colorspace Y is 1D. Modeling the joint probability
function of both X and Y using a Gaussian Mixture Model results in 3D
Gaussian kernels (1d). Each kernel thus defines a 2D gradient as the expert
function (X 7→ Y ). The gating function is defined by the soft-segmentation
(1f). Both JPEG (1b) and SMoE (1c) are coded at 0.35 bpp [6].

function, namely the conditional color amplitudes, given a
coordinate. In general, SMoE allows to query the model at
any sub-pixel coordinate to yield the most optimal amplitude
in a Bayesian sense.

SMoE thus arrives at a sparse representation. The whole
image modality is represented as a set of Gaussian kernels.
These kernels are defined by their centers and steering pa-
rameters. The coordinate space is 2D, 3D, 4D, or 5D in
the case of respectively images, video, static light fields, and
light field videos [6]–[9]. The color space for color images is
conventionally represented as a 3D space, e.g. RGB or YCbCr.

In this paper, we interpret the spherical data as data laying
on the unit sphere in a 3D coordinate space. We use the
GMM to model the joint probability of the 3D coordinate and
3D color space, we thus arrive at 6D Gaussian kernels. The
parameters of these kernels are typically estimated using com-
putational efficient variations of the Expectation-Maximization
(EM) algorithm [15]. Due to this likelihood optimization, ker-
nels will steer along the dimensions of the highest correlation,
e.g., along spatial or temporal consistencies.

Fig. 1 shows an example of the compression capability of
the SMoE approach for coding a 32x32 pixel crop of Lena
at 0.35 bits/sample in comparison to JPEG at same rate.
Clearly, the edges are reconstructed with convincing quality
and sharpness, using merely 10 components [6].

B. Theory

The goal of regression is to optimally predict a dependent
random vector Y ∈ Rq from a known random vector X ∈ Rp.
In SMoE, X corresponds to pixel coordinates (i.e. the 3D
coordinate space) and Y to the pixel amplitudes (i.e. the 3D
color space). The joint probability function of the coordinate
space X and color space Y is modeled as a multi-modal,
multi-variate GMM. Each Gaussian kernel then defines a soft-
segment in X and a local regressor (X 7→ Y ). The local



regressor is defined by a measure of central tendency (e.g.
the mean, median, mode) of the conditional pdf Y |X . In
this paper, we will limit the case to the mean-estimator, i.e.
E[Y |X = x].

Let us assume D = {xi,yi}Ni=1 to be N pixels to be
modeled with coordinates x and amplitudes y:

pXY (x,y) =

K∑
j=1

πjN (x,y;µj , Rj) (1)

and
K∑
j=1

πj = 1,µj =

[
µXj

µYj

]
, Rj =

[
RXjXj RXjYj

RYjXj RYjYj

]
The parameters of this mixture model with K Gaussian distri-
butions are Θ = [θ1, · · · , θK ], with θj = (πj ,µj , Rj), being
the population densities, centers, and covariances respectively.

The conditional pdf of the mixture model Y |X is used to
derive the regression function [16]:

pY (y|X = x) =

K∑
j=1

wj(x)N (y;mj(x), R̂Yj ,Yj
) (2)

with mixing weights wj(x), regressors mj(x), and conditional
covariance R̂Yj ,Yj

:

wj(x) =
πjN (x;µXj

, RXjXj
)∑K

i=1 πiN (x;µXi
, RXiXi

)
(3)

mj(x) = µYj +RYjXjR
−1
XjXj

(x− µXj ), (4)

R̂Yj ,Yj
= RYjYj

−RYjXj
R−1XjXj

RXjYj
(5)

The regression of the model is defined as the expected value
y given a sample location x through the conditional. From
Eq. 2 and 3 follows the regression function m(x):

ŷ = m(x) = E[Y |X = x] =

K∑
j=1

wj(x)mj(x) (6)

A signal at location x can be predicted by the weighted sum
over all K mixture components (Eq. 6). Every component in
the mixture model is considered as an expert and the experts
collaborate towards the definition of the regression function.

III. SMOE FOR SPHERICAL IMAGE DATA

In order to perform SMoE on samples with two spherical
dimensions, each coordinate is first translated into a 3D unit
vector. Consequently, we then operate in a Cartesian space in
which we can straightforwardly apply SMoE. However, given
that all the data lays onto the unit sphere, this parametrization
is redundant. In this section, we propose a projection method in
order to prove that such a 3D coordinate space can be projected
onto a parameter space of equal size as for planar 2D images.
Fig. 2 illustrates a SMoE model trained on image data laying
on the unit sphere.

(a) Equirectangular projection (P10)

(b) Pixels on the sphere (c) Approximated by GMM

Fig. 2. Example of a SMoE model on the unit sphere without projection. Only
the coordinate space is visible on the axes. The color space is visualized by
the color of the ellipsoids.

(a) Original (b) Projected onto the tangent plane

Fig. 3. Illustration of the projection of a single covariance matrix (a) onto the
tangent plane P⊥ (green plane). A small eigenvalue ε is added corresponding
to the eigenvector that is defined by the coordinate center µX (red vector).

A. Projection of the covariance matrix

As mentioned in Sec. II, a kernel is defined by its prior π,
center µ = [µX ;µY ] and covariance matrix R. The coordinate
center µX ∈ R3 can be seen as a vector radiating out
from the center of the unit sphere. The sub-space orthogonal
to this vector, at the surface of this sphere, is necessarily
tangential to the sphere and is given by P⊥ = I − P ,
where P = µXµ

T
X/(µ

T
XµX) [17]. We approximate RXX by

projecting the covariance matrix onto P⊥ as follows

RXX ≈ P⊥RXXP⊥ + PRXXP, (7)

where the first term is a projection of the coordinate covariance
matrix onto the 2D tangent plane and the second term is the
contribution along µX . We note that although Eq. 7 is an
approximation, it will be demonstrated in Sec. V that it is
sufficiently accurate for our purpose.

Also note that the unit sphere is infinitely thin. Therefore,
when K is sufficiently large, the contribution along µX will
become infinitely small. In this case, the covariance matrix
RXX is completely defined by the two eigenvectors (and
corresponding eigenvalues), that lay in the 2D plane P⊥ and
the third eigenvector is along the µX direction with a small
eigenvalue. This small eigenvalue can be fixed to a small scalar
ε. The second term in Eq. 7 is thus approximated by εP .



Fig. 4. Illustration of the local updating on the sphere. In this step, the
likelihood of the samples (red) are only being calculated by the kernels
(colored) that lay in the vicinity of these samples. The relevance window
is a cube (green) surrounding the samples.

Let us define the projected covariance matrix R̃ as being
constructed by four submatrices analogously to Eq. 1:

R̃XX = P⊥RXXP⊥ (8)

R̃XY = R̃T
Y X = RXY P⊥ (9)

R̃Y Y = RY Y (10)

with R̃XX and R̃XY now being of rank-2.

B. Dimensionality reduction

In this section, we illustrate that it is possible to parametrize
the two spherical dimensions with the same number of param-
eters as two Cartesian dimensions (planar images), i.e. having
a µ̇X ∈ R2, ṘXX ∈ R2×2 and thus µ̇ ∈ R5, Ṙ ∈ R5×5.

The coordinate center µX approximates a unit vector when
K goes to infinity as it is the mean of an ever decreasing
amount of data laying on a small segment of the sphere. It
can therefore be parametrized by two coefficients as the norm
is one, i.e. µ̇X ∈ R2. Using the eigenvalue decomposition, we
can show the following

R̃XX = UDUT = [u1,u2,u3]

d1 d2
0

uT
1

uT
2

uT
3

 (11)

= d1u1u
T
1 + d2u2u

T
2 (12)

Let ṘXX be the desired 2x2 covariance that defines the
covariance in the 2D P⊥ plane. We choose to construct ṘXX

by taking the top-left four elements of R̃XX :

R̃XX =

 ṘXX

[
a
b

]
[
a b

]
c

 . (13)

At decoder side, we can find a, b, and c by solving PR̃XX =
0 using linear operations. Finally, in order to have a small
positive eigenvalue ε along µX , we add εP to R̃XX .

Note that the dimension reduction is analogous for R̃XY .
However, we do not change the eigenvalues for R̃XY , this
means that there is no color gradient along µX . This is the
information that is lost using this projection, however this is
not critical since it is a color gradient along the line of sight.

IV. PROPOSED MODELING

We propose an iterative training method based on the covari-
ance projection technique described above. A straightforward
method would be to use batch Expectation-Maximization (EM)
which globally fits the entire GMM onto the sample data [15].
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Fig. 5. Experiment results comparing the modeling with and without the
projection in terms of PSNR and Multi-Scale SSIM.

However, this is computationally infeasible. The proposed
training method is based on the progressive modeling approach
used for training SMoE models for light field videos [9]. In
this approach, global modeling is simulated by a local fitting
strategy in which a local group of samples is processed by only
the set of relevant kernels in its vicinity. This simulates global
modeling while minimizing the computational complexity. For
360° images, the relevance window that selects the kernels
becomes 3D as shown in Fig. 4. Only a minibatch of these
samples is selected in each iteration in order to increase the
robustness of the kernel updates and to heavily decrease the
computational complexity. This also allows us to uniformly
sample the sphere.

Models are initialized with Kstart kernels spread out uni-
formly over the sphere and are further trained until con-
vergence. After convergence, a portion of the top uncertain
kernels are split into four smaller kernels which serves as
a new initialization for the next meta-iteration. The split is
performed on the tangent plane and the uncertainty is defined
by the weighted conditional variance of the color space,
i.e. πj Tr(R̂YjYj

). The new kernels are then projected back
onto the unit sphere. This model is then further trained until
convergence. The process stops when a predetermined Kmax
is exceeded. Finally, all the covariance matrices are projected
onto the tangent planes and the centers are projected onto the
unit sphere. Note that the projection step does not introduce
considerable computational overhead.

V. APPROXIMATION EXPERIMENTS

A. Setup

For the experiments, five images were selected from the
Salient360! dataset: P2, P5, P6, P10, and P12 [18], [19]. These
images were stored in equirectangular format. After remapping
the pixels onto the unit sphere, these images are progressively
modeled using minibatches of size 10,000 and local updates
per 18°-by-18° segments. Models are initialized uniformly
on the sphere with Kmax = 212 kernels. After each meta-
iteration, 40% of the kernels are split based on their weighted
conditional variance. The modeling stops when Kmax = 218 is
reached.



B. Results

Fig. 5 shows the objective quality results for the indicated
images in terms of PSNR and Multi-Scale Structural Similarity
(MS-SSIM) [20]. The x-axis is expressed in kernels-per-pixel
(kpp), as the original resolutions of the images span from
2000x4000 (P10) to 5000x10000 (P12). Note that we have a
fixed Kmax, each image thus spans a different kpp range. The
plots are shown up to 0.02kpp, which indicates that on average
one kernel spans 50 pixels in the original equirectangle image.
For P10 (Fig. 2) a 0.9 on the MS-SSIM scale is achieved at
0.001kpp, which is an average of 1 kernel per 1000 pixels.

The average loss over all images is 0.1 dB PSNR and
0.002 MS-SSIM. We can conclude that the projection step
introduces a relatively small quality loss, which indicates
that the assumptions made are valid. Note that kernels can
become insignificant during the modeling. These kernels are
consequently removed, which influences the shape of the plots.

VI. CONCLUSION

We have presented a methodology for applying SMoE to
spherical dimensions by operating on the unit sphere in the
Euclidean R3 space. A computationally cheap technique to
reduce the parameter space to the same space as for planar 2D
images is introduced. This is done by projecting the covariance
matrices onto the 2D tangent space defined by the kernel’s
center. Finally, a computationally efficient modeling scheme
that utilizes this projection step is presented. Experiments
validate that the parameter space reduction introduces nearly
no quality loss for the tested 360° dataset. As such, we
have shown that SMoE can be applied efficiently to spherical
dimensions as needed for approximating the 5D plenoptic
function in the future.
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