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Abstract

The increasing importance attributed to soundscape quality in urban design generates a need for a
system for automatic quality assessment that could be used for example in monitoring. In this work,
the possibility for using machine listening techniques for this purpose is explored. The outlined approach
detects the presence of particular sounds in a human-inspired way, and therefore allows to draw conclusions
about how soundscapes are perceived. The system proposed in this paper consists of a partly recurrent
artificial neural network modified to incorporate human attention mechanisms. The network is trained on
sounds recorded in typical urban parks in the city of Antwerp, and thus becomes an auditory object creation
and classification system particularly tuned to this context. The system is used to analyze a continuous
sound level recording in different parks, resulting in a prediction of sounds that will most likely be noticed
by a park visitor. Finally, it is shown that these indicators for noticed sounds allow to construct more
powerful models for soundscape quality as reported in a survey with park visitors than indicators that are
more regularly used in soundscape research.

1 Introduction

Over the past years, soundscape quality has become
an increasingly important factor in urban planning
and design, and substantial research efforts have
been spent on methods that quantify how people
perceive soundscapes [1][2][3][4]. It has been estab-
lished that, even though relationships can be found
between soundscape perception and outdoor energy
equivalent sound pressure levels (Ldn or Lden), these
alone are not sufficient to predict outdoor soundscape
perception [5][6]. Although unnoticed sounds may
influence emotional response to sound, psychological
and neurophysiological findings strongly emphasize
the significance of selective auditory attention pro-
cesses in human analysis of acoustic environments
[7][8]. Indeed, in order for a sound to contribute

to an overall soundscape appraisal it needs to be
paid attention to and attributed a meaning to
[9][10][11][12]. Human attention processes depend
on a range of sound signal properties, not just the
level, but also in no negligible degree on temporal
and spectral content. Furthermore, these processes
are influenced by the state of mind and expectations
of the listener [7].

It is clear that the nature of the noticed sounds,
their recognition by the listener, and the meaning
the listener attributes to them will be of great
importance to the influence they will have on the
general appraisal of the sound environment. In
particular, certain sounds will generally be asso-
ciated with a positive soundscape quality, while
others will be related to a negative quality. More
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concretely, from the viewpoint of a park visitor,
soundscape quality is found to be negatively related
to the presence of mechanical sounds (e.g. road
traffic noise) and positively related to the presence
of nature sounds, while the relation between sounds
from human activity and soundscape quality depends
on context, expectations and personal preferences [6].

Questionnaire studies, in which a significant
number of people need to be interviewed about their
perception of the soundscape, are time consuming
and require considerable human resources. Thus,
a more automated approach to obtain a measure
for the quality of the soundscape would be of
significant interest. One possibility here is the use
of crowdsourcing, i.e. getting the general public
involved in the collection of perceptual soundscape
data. Recent advances in mobile computing offer the
opportunity to allow many people to participate in
such measurement campaigns, and thus make it an
appealing approach [13][14]. Another possibility is
the use of statistical or computational models to find
a relationship between measured acoustical para-
meters and perceived soundscape quality [15][16].
Taking this approach to the furthest extent would
imply to start off from raw sound recordings and use
ab initio machine audition, emulating human sound
processing, to extract meaning and perception from
it. Research efforts in this area have so far mainly
been focused on specific sub-problems in controlled
environments and the establishment of theoretical
frameworks [17][18][19].

This paper presents an ab initio machine learn-
ing model to achieve attention-driven humanlike
auditory environment perception. We incorporate
well-established human attention mechanisms in a
3-layer Artificial Neural Network (ANN), of which
the input layer is fed human-inspired sound features,
simplified to be extractable from common sound level
meters, one timestep at a time. The output layer
contains neurons that represent different sounds,
and of which the activation strength depends on
how clearly the input sound is noticed by the model,
based on the implemented attention mechanisms.
In this context, a sound is defined as an auditory

object, a sequence and combination of acoustic
features that can be observed by the human listener
and that frequently co-occur or occur in the same
sequence in a specific context (in this case parks
in Antwerp). Due to the limited number of output
neurons, similar sounds will be mapped to the same
(set) of neurons.

This model, together with the data collection used
to train it, is described in the methodology section.
Subsequently, in section 3 it is validated that the
model and training procedure result in the identi-
fication of auditory objects that are meaningful to a
human listener. For this purpose, a human listener
identified a few classes of bird sounds in a recording
made in parallel to the level recording used as an in-
put to the model. By confirming that each class of
birds results systematically in the activation of the
same set of output neurons the hypothesis is valid-
ated. In section 4 the noticing of mechanical sounds,
natural sounds, and human sounds as predicted by
the ANN model, are used as indicators in a statistical
model for soundscape quality reported in an extended
questionnaire survey in 8 urban parks. This section
validates that these indicators obtained by human in-
spired identification of noticed sounds and their clas-
sification outperform classical noise level indicators
for this purpose. Finally, in section 5, conclusions
are formulated.

2 Methodology

2.1 Model

The aim of the proposed model is firstly to combine
acoustic features to sounds, i.e. auditory objects,
and select those that would most probably be
noticed by a human listener due to their saliency
within a continuous sound stream. Secondly, these
sounds are then grouped into meaningful categories
such as mechanical sounds, bird vocalizations, etc.
In humans, the formation of meaningful auditory
objects is aided by mechanisms such as attention,
inhibition of return, adaptation and habituation.
These mechanisms have therefore been an important
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source of inspiration in constructing the tailored
recurrent artificial neural network as explained below.

Initially, the input sound is converted into a series
of features, with a time resolution of 0.125s, inspired
by human peripheral hearing. Multiple descriptor
values are used, calculated in the same way as
in Oldoni et. al. [20]: 4 values describing sound
intensity at different frequency ranges, 6 describing
spectral contrast at different frequency ranges and
6 describing temporal contrast at different time
ranges. A spectral resolution of 0.5 Bark (the scale
reaching from 0 to 24 Bark) is used, thus resulting in
(4+6+6)×24/0.5 = 768 values per timestep. These
features and time resolution are chosen to balance
detailed human-mimicking processing on one hand
and limited measurement hardware and computa-
tional resources on the other, as they can easily
be approximated by 1/3 octave bands measured
using standard sound level recording equipment.
More advanced features typically used in speech
recognition or bird song recognition such as MFCC
would require dedicated sensor nodes or continuous
recording for monitoring and have therefore not been
used. The features are then used as excitation values
to the 768 artificial neurons in the first layer of the
model, after which the 3-layered neural network, the
structure of which is shown in figure 1, processes the
information.

The neural network builds on previous work by
the same authors, and many of its mechanics are the
same as described in detail in [21][22], but for clarity
the essential elements and differences are described in
this paragraph. The network consists of a first layer,
called the input layer of 768 neurons as mentioned
before. This layer has excitatory connections to a
hidden, middle layer, consisting of 1000 neurons,
which in turn has excitatory connections to the
last, output layer with 400 neurons. This number
of neurons is significantly lower than the number of
neurons found in modern deep-learning networks and
obviously only a fraction of the number of neurons
found in biological brains. They were determined by
trial and error as a balance between computational
cost of training and accuracy. The output layer

has excitatory feedback connections to the middle
layer, with a time delay of one timestep, making
the excitation pattern of the middle layer dependent
on both the current input layer activation and the
output layer activation on the previous timestep.
Excitation of a neuron is calculated as the sum of the
exciting inputs weighed by their respective neural
connection weights, after which a normalization and
saturation procedure is applied, as described in [22].
Final activation of the neuron is then calculated
by means of a biologically inspired competitive
selection procedure as will be explained in more
detail below. Note that the inclusion of a difference
of Gaussians filter on the neural activation pattern
in the competitive selection procedure implements a
form of lateral excitation, as seen in self organizing
maps (SOMs) [27].

Learning of the connection weights is done fol-
lowing the Hebb principle: “cells that fire together,
wire together”. In the current implementation,
connection weights are adapted both by learning
(strengthening or weakening specific connections in
order to create patterns) and by forgetting (random
convergence of connection weights towards a set
base level), while a dynamic equilibrium between
these two effects determines final connection weights.
In the untrained network, all connection weights
are initialized at random values in a small interval
around a base level (in this work the interval
[0.7, 0.9] and base level of 0.8 are used). During
training, these weights are then modified by both
the learning and forgetting mechanisms, while
limiting their values to the [0, 1] interval. For
detailed analysis and mathematical details of the
implementation of these mechanisms, we refer to [22].

In most theories on human attention (visual as
well as auditory), the interplay between bottom-up,
saliency-based and top-down, voluntary mechanisms,
combined with a competitive selection process plays
a central role [23][24]. On the one hand, the bottom-
up mechanism enhances the response to conspicu-
ous and salient sounds, whereas on the other hand,
the top-down mechanism introduces a bias towards
sounds that are most relevant for the listener’s cur-
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Figure 1: An overview of the structure and connectiv-
ity of the neural network model. The dashed red ar-
rows represent excitatory connections between layers.

rent goal-directed behavior. Taking into account the
effects of both mechanisms, competitive selection will
decide which sounds will finally be consciously no-
ticed by the listener. In addition, often, the concept
of inhibition-of-return is introduced, which explains
why people do not direct their attention permanently
to a single sound [8]. In previous work of the same au-
thors [25], these mechanisms have been implemented
explicitly in a functional model of auditory attention.
However, in the model proposed here, these mechan-
isms emerge naturally from the biologically inspired
implementation of the 3-layered artificial neural net-
work:

• Bottom-up, saliency-driven attention is imple-
mented by the choice of input features to the
model, encoding intensity, spectral and temporal
contrast similarly to the features for sound sali-
ency calculation [20][26]. The intra-layer nor-
malization and saturation (implemented exactly
as in [22]), combined with the competitive se-
lection procedure (more details provided below)
are mathematically very similar to the method
used in these references, and thus the activation
in the input layer reflects saliency values as cal-
culated there. As connection weights to further
layers are initially all around their base levels,
activation in these layers will also reflect sali-

ency. As learning proceeds, as described in the
third paragraph of this section, however, differ-
entiation between the different neurons grows,
and activation will reflect not only saliency but
also the degree of pattern recognition that has
been learned based on frequent co-occurrence or
sequential occurrence of these features. Because
connection weights are limited to the [0, 1] in-
terval though, increasing saliency will still result
in increasing neural activation. Thus, a more
subtle measure for saliency which is not a single
number saliency descriptor is achieved.

• Voluntary attention to sounds that are most rel-
evant for the listener’s goal directed behavior can
obviously not be included in this model. How-
ever, top-down mechanisms are also responsible
for sustained attention. Once the onset of an
auditory object is detected, the probability that
this object wins the competitive selection in-
creases. This sustained attention also surpasses
short periods of silence such as those present in
bird song. The delayed feedback excitation from
the third to the second layer of the model assure
that this form of top-down, sustained attention
emerges.

• Competitive selection is incorporated as an
intra-layer excitation-inhibition mechanism
making a biologically plausible selection
amongst the neurons within each layer. This
is implemented by an iterative procedure in
which the neural activation pattern of the layer
is transformed by self-excitation and inhibition
by neighbors (implemented by convoluting the
activation pattern with a difference of Gaussi-
ans filter) in addition to a default inhibition,
similarly to the implementation in [8] and
[26]. Formally, this transformation is given by
p ← max(0, p + αp ∗ DoG − β), in which p
is the neural layer activation pattern, DoG is
the difference of Gaussians filter and α and β
describe the relative strengths of each of the
contributions. This method results in only the
most strongly activated neurons retaining pos-
itive values, and thus implements competitive
selection between the neurons, in a way which
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is in line with the way saliency is calculated in
[20][26]. The values of α and β determine the
selectivity of the model, and can be adapted to
the desired amounts of selected sounds (default
values of α = 1.0 and β = 0.5 were used in this
work).

• Inhibition-of-return is also included, represented
by a neural excitation reducing mechanism as
a consequence of continuous stimulation of the
neuron, mimicking the gradual depletion of neur-
otransmitters in real neurons. The concentra-
tion of neurotransmitters over time is modelled
as c(t + ∆t) = min [1, c(t) + ∆t (ρ− c(t)A(t))],
in which c(t) is the concentration at time t, ∆t
is the model’s time step, ρ is the concentration
regeneration rate and A(t) is the neuron activa-
tion strength. In order to calculate the effective
activation of the neuron, it is first multiplied by
its respective neurotransmitter concentration c.
When the neuron is persistently activated, c will
decrease over time, and consequently the effect-
ive activation of the neuron will decrease, thus
effectively implementing inhibition-of-return.

The artificial neural network is trained unsuper-
visedly: there is no teacher that assigns for example
a label to the sounds. This results in the neural
connection weights being trained in order to group
sounds based on only feature co-occurrence and
temporal consistency, or, in other words, feature
sequential occurrence. Training on co-occurence
resulting in clustering is a direct extension of the
self organizing map (SOM) [27] that has been used
in our previous work [20]. The temporal consistency
is introduced by the feedback loop between the
middle and output layer, while grouping based on
feature co-occurrence happens mainly between the
first two layers. It should be noted that the time
constants implemented by this feedback are of the
order of 125 msec or longer. Differentiation between
sounds based on faster amplitude modulations are
captured by the temporal contrast features. The
neural activation in the output layer can then
be interpreted as a clustering of the input sound,
in which each neuron represents a category of sounds.

During the analysis phase, the activation of the
output neurons can be interpreted as the degree to
which the corresponding sound is likely to be noticed
by a park visitor. It does not give any label to this
sound and only states that this sound has been ob-
served before and is now present again. In case no
neurons in the output layer are activated (which in
a typical urban park environment happens most of
the time), this signifies that the sound is not being
noticed. Note that the categories that are represen-
ted by the different output neurons are not prede-
termined or manually chosen, but determined in an
unsupervised way during the learning phase.

2.2 Measurements

In order to train and test the model proposed above,
a dataset of sound level recordings and perceptual
assesments, obtained in 8 different urban parks in
Antwerp, was used. Figure 2 shows the location
of the 8 parks: Rivierenhof, Stadspark, Nachte-
galenpark, Te Boelaerpark, Bisschoppenhof, Park
Sorghvliedt, Park Den Brandt and Domein Hertoghe.
The soundscape study was performed during 22 days
in August and September 2013. Continuous, mobile
sound level recordings were made by three sound
level recording devices carried by three different
researchers performing random walks through the
parks, in order to obtain a sufficient coverage of the
soundscape of the entire park. More than 380 hours
of sound level recordings were collected, thus about
48 hours per park, divided over the three mobile
recording devices. For one of the parks, Rivierenhof,
sound recordings conducted simultaneously with the
level recordings will be used for recognizing bird
songs in section 3.

Concurrently with these sound level recordings,
a face-to-face questionnaire study was conducted
amongst the park visitors in order to obtain their
opinion about the overall park environment and
more specifically their assessment of its soundscape.
The questionnaire contained 22 questions, including
a number of personal background questions (gender,
age, roads used to get to the park, reasons to visit
the park, etc.) and a number of questions asking for
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the visitor’s perception of the park on an auditory,
visual and general level. As this work focuses on the
auditory perception, a selection of relevant questions
was made: “How did you experience the sound en-
vironment today?”, with possible replies on a 9-point
bipolar scale between “pleasant” and “unpleasant”,
“To what degree did you hear these sounds during
your current park visit?”, with possible replies on a
5-point unipolar scale between “not at all” and “very
often” for the sound categories of “human sounds”,
“natural sounds” and “mechanical sounds”. A total
of 660 questionnaires was filled in, divided over the
8 parks resulting in approximately 80 questionnaires
per park.

To compare the results derived from the sound re-
cordings with those from the questionnaires, the res-
ults are grouped per day and per park, as some parks
did not have enough visitors and thus not enough
filled in questionnaires in order to get meaningful in-
formation on intra-day patterns. It was also decided
not to follow individual park visitors with the sound
measurement equipment, even though this could en-
able analysis on a visitor by visitor basis, because this
approach would likely introduce a bias in the results
as the park visitor would be more attentive to sound
when being aware of the presence of sound measure-
ment equipment.

3 Sound extraction validation

A main hypothesis underlying the approach for
soundscape assessment is that the proposed ANN,
trained in an unsupervised way, will select and
cluster auditory objects in a meaningful way. That
is, the sounds as defined by the network on the
basis of co-occurrence and sequential occurrence of
(salient) features, correspond to ’sounds’ in common
understanding of people. To validate this hypothesis,
the model is applied to a selected period of the sound
recordings, and the outcome from its analysis is
compared to the labeling of bird sounds by an
attentive listener in the same data. As the presence
of bird sounds is generally seen as a strongly positive
element in a park soundscape [6], it is an interesting

Figure 2: A map of the city of Antwerp with the
investigated parks.

and valuable benchmark. In order to achieve this,
one attentive listener listened to two full days of
recordings (twice 8 hours on 3 microphones, so a
total of 48 hours) in Rivierenhof park. A user in-
terface was created in which the listener could press
one key at the start of a bird sound, and another
one at the end, with the additional possibility to
relisten and correct if necessary. Afterwards, the
same listener went through all selected bird sound
recordings and labeled them according to bird family
(geese, pigeons, gulls, jackdaws, ducks, crows and
songbirds). This way, 2129 bird sounds were selected
and labeled, the duration of which ranged from
around half a second (short shouts) to as long as five
seconds (full songs).

The ANN on the other hand was trained in an
unsupervised way on the full measurement dataset
of 380 hours as described previously. The input
sound is fed into the network consecutively, in the
same way as a human listener would listen to the
recordings. The implemented attention mechanisms
and SOM-like lateral excitation result in attention-
fuelled competitive learning, in which a certain
degree of plasticity remains, thanks to the inclusion
of the “forgetting” mechanism as mentioned before.
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As the input sounds in the context of this work are
all of a similar nature (park sounds), an equilibrium
in the connection weights is reached eventually when
no completely new sounds are presented to the ANN
anymore. In the ANN used in this work, 95% of the
connection weight change compared to their initial
values happened within the first 100 hours of train-
ing. After training, the model was run on the level
recordings of the two days in Rivierenhof park for
which the synchronised sound recordings had been
analyzed by the human listener. The attentive reader
will notice that this validation is done on a subset
of the training data. In a classical machine learning
context, validation checks whether a complex model
is applicable in different contexts or it over-fits the
data it is presented with, and thus, validation should
be done on a set independent of the training set in
place and in time. Yet, the goal here is to validate
that the automatic construction of auditory objects
matches the sounds that a human listener would
identify. The model will specialize on park sounds in
a specific region where the training set is collected
obviously, but so would a human listener living
in one particular continent or area with a certain
degree of organization. By means of the attention
and gating mechanisms implemented in the model
described above, the artificial neurons in the output
layer are not activated continuously, but rather
in well delimited short timeframes, thus selecting
noticed sound events that are likely to be noticed,
and at the same time classifying them, depending
on which neuron in the output layer is activated.
Note that this is achieved without any supervision
or any interaction with the model, and not only
bird sounds are selected, but a whole range of sounds.

In order to quantify the perfomance of the model,
these two, completely independent selections and
categorizations of sounds from the same pool need to
be compared. Two important factors were evaluated,
the first being the attentiveness, i.e. the amount of
bird sounds the model actually selects. The second
factor is the correctness, or the accuracy of the
model’s ability to categorize all the sound events
it detects. Since the first factor is not a property
that can simply be described in terms of ‘correct’ or

‘incorrect’, as attentiveness varies between different
listeners and their mood and activity at the time
of listening, it is represented by the percentage of
bird sounds that are paid attention to. In order to
obtain this percentage, a bird sound is considered
selected by the model if the overlap between the
bird sound time interval as determined by the
human listener and a neural network selected sound
interval is sufficiently high (in this case an overlap
of 50% was used). The second factor is an exact
property that can be quantified by its false/true
positives/negatives, and in this work it is represented
by a Receiver Operating Characteristic (ROC) or
ROC curve. This curve shows the True Positive Rate
(TPR), the number of true positives divided by the
total number of positives, of a binary classifier as a
function of the False Positive Rate (FPR), the num-
ber of false positives divided by the total number of
negatives, for a range of threshold values θ. In order
to determine which neurons of the network represent
positives, i.e. “birds”, the fraction of selected sounds
for each of the neurons that correspond to a human
selected bird sound (correspondence is defined as
above with a minimum time interval overlap of 50%)
is compared to the threshold value θ. In case it
exceeds the threshold, this neuron is considered to
represent bird sounds, and thus a positive, and vice
versa. This selection of bird sound neurons is done
with the use of the data of the first measurement
day. Next, the TPR and FPR are calculated on the
data of the second measurement day, calculating
the TPR as the total number of selected sounds
that correspond to human selected bird sounds that
are categorized in bird sound neurons, divided by
the total number of selected sounds attributed to
these neurons, and calculating the FPR as the total
number of selected sounds that correspond to human
selected bird sounds that are categorized in non-bird
sounds neurons, divided by the total number of
selected sounds attributed to these neurons. Thus,
the ideal point on the ROC curve is clearly at a TPR
of 1 and a FPR of 0, while a random classifier would
result in points on the diagonal where TPR=FPR.

First, the model is evaluated with its default para-
meters, resulting in 21.5 percent of the labeled bird
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Figure 3: ROC curves for the bird sounds selected by
the ANN.

sounds being selected by the model. The resulting
ROC curve can be seen in figure 3, calculated for
bird sounds in general (left) as well as for each of the
different bird families separately (right). Because the
majority of birds in most of the parks are songbirds,
the ROC curve for bird sounds in general is very
similar to the one for just songbirds, as can be
seen in figure 3. It can also be seen that songbird
recognition performs worse than the other kinds
of birds. Closer inspection and listening to false
positives reveals that this is mainly due to a certain
degree of confusion by the model between songbirds
and playing children. The other bird families have
more distinct sounds and are not as easily confused
with other sound sources present in the park, which
is reflected in their ROC curves.

By adapting the value of β in the competitive
selection as described in 2, the model can be set to
be more or less selective to sound input, just like
the attention human listeners attribute to sound
can change depending on the environment and the
current occupation of the listener. Changing β
to 0.1 compared to the default value of 0.5 and
thus making the model more attentive to sounds in
general, a percentage of 47.9 of noticed bird sounds
is reached. The ROC curve in this case moves to the
situation as shown in figure 4. It can be seen that
the categorization quality of the model is slightly

reduced in this case, as also less salient and thus
more difficult to categorize sounds are selected by
the model, which results in more mistakes in the
categorization.

Literature values for bird sound detection rates in
background vary widely, depending on the method
used to quantify the quality of the detection, the ex-
perimental setup, the relative strength and type of
background sound, the species of the birds, etcetera,
thus making a comparison very difficult. To give an
idea, Papadopoulos et. al. [28] report AUCs (Area
Under Curve, the total area under the ROC curve)
of over 0.9 for 10 out of 15 species, but as low as
0.56 for some. Potamitis et. al. [29] on the other
hand focus on just two species of birds, and evalu-
ates by means of a precision and a recall percentage,
instead of a ROC curve. They report precision values
between 71% and 88% and recall values between 77%
and 92%. Even though these values are not directly
comparable to the values obtained in this work, be-
cause of the aforementioned reasons, it can be stated
that the quality of the current model is roughly com-
parable, even though it is not explicitly designed for
the purpose of detecting and classifying bird sounds
only, unlike the other techniques.
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Figure 4: ROC curves for the bird sounds selected
by the ANN, with β = 0.1 in the ANN competitive
selection.
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4 Application in soundscape
appraisal

Several studies have shown that the frequency of
hearing mechanical, natural, and human sounds is
a strong predictor of soundscape quality [5][6]. The
proposed ANN allows to identify the sounds that
a park visitor would most likely notice. Hence, in
this section it is investigated whether the calculated
percentage of the time that these sounds are noticed
are good indicators for soundscape quality. For
this, the sound events selected and categorized by
the ANN model into the different output neurons
need to be labeled. From the complete 380 hours of
recordings, 7292 sounds were automatically selected,
with an average duration of 0.86s (thus amounting
to less than 0.5% of the time), divided over the
400 output neurons of the ANN. For each neuron,
a small random sample was taken from the sounds
selected by the ANN, and based on these sounds a
human listener could assign to each of these neurons
one of the three classes as used by Nilsson et. al. [6]:
natural sounds (mainly birds, but also the flow of
water and wind), mechanical sounds (mainly traffic
around the park, but also some construction sounds)
and human sounds (people talking, restaurant
sounds). In case of doubt (sounds belonging to
different classes in one neuron), no category was
assigned, but this was only the case for a small
minority of neurons (< 5%). In this work, a fourth
class was added, containing all the sounds related to
the execution of the measurements, such as sounds
caused by the movement of the backpacks containing
the mobile measurement devices or occasional voices
of the researchers executing the measurements.
Although all reasonable efforts were made to stay
quiet during the measurements, the proximity of
these sound sources to the microphones caused these
sounds to be relatively salient, and thus causes the
model to detect them fairly easily. As these sounds
are also very distinct and different from most other
sounds heard in a city park, the model is well tuned
to these sounds because it learned them very well
in the training phase by virtue of their saliency,
they are effectively categorized apart from other

sound sources. This allows to easily eliminate these
non-relevant and contaminating sounds from the
measurements.

The applied method allows for the calculation of
the number of sound events per hour noticed by
the model in each of these classes per park and
measurement day, denoted by HANN , NANN and
MANN for human, natural and mechanical sounds
respectively. These can then be related to the
responses given by the park visitors in the question-
naire to the question “To what degree did you hear
these sounds during your current park visit?” and
“How did you experience the sound environment
today?”. The mean of the responses of the park
visitors is calculated per park and measurement
day, denoted by HQ, NQ, MQ and QQ for human
sounds, natural sounds, mechanical sounds and
soundscape quality respectively. Regressions were
created for each of the four questionnaire results
using an ordinary least-square method [30], in which
all three ANN results were included in forward selec-
tion, with the model selecting by the highest F -value.

The regression coefficients and adjusted R2 and
F -statistics are given in table 1 (p-values for all in-
dependent variables are < 0.05 and the F -values are
well above their critical value for 5% significance, as
this is 3.522 in the case of 2 used variables, and 4.351
in the case of 3 used variables), while the regression
is visualized by plotting the actual questionnaire
values as a function of the predicted values by the
model for the different parameters (human sounds,
natural sounds, mechanical sounds and soundscape
quality) in figure 5. For the prevalence of human
sounds as reported by the questionnaire respondents,
the only significant predictor was found to be the
prevalence of human sounds resulting from the ANN,
with a positive regression coefficient, as expected.
For both the reported natural and mechanical sound
prevalence, the ANN predicted natural and mechan-
ical sound prevalences were both found to be relevant
predictors, with calculated mechanical sound pre-
valence having a negative regression coefficient for
percieved natural sound prevalence and vice versa.
Lastly, also for the reported soundscape quality, only
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the ANN predicted natural and mechanical sound
prevalences were found to be significant predictors,
with a positive regression coefficient for the natural
sound prevalence and a negative one for mechanical
sound prevalence, which is in line with the results
found by Nilsson et. al. [6].

For comparison, the same method was applied
to correlate the questionnaire answers per park
and measurement day to classic acoustic indicators
per park and measurement day. The indicators
that were used are A-weighted percentile levels
(LA10, LA50, LA90), the A-weighted equivalent level
(LAeq), the difference between A-weighted and
C-weighted equivalent levels (LCeq − LAeq), the
50-percentile Zwicker’s loudness (N50) [31], the
50-percentile Von Bismarck’s sharpness (S50) [32],
the spectral center of gravity (COG), the music-
likeness (ML) [33] and the number of sound events
(NCN) [33]. The resulting regression coefficents
and adjusted R2 and F -statistics are given in table
2 (p-values for all independent variables are < 0.05),
while the visualization of the regression is given in
figure 6. For mechanical sounds the only significant
predictor was found to be sharpness. Furthermore,
center of gravity was found to be representative of
natural sounds perception demonstrating that the
spectral information was a relevant predictor for
these types of sounds as well. The extracted model
for human sounds, on the other hand, includes mul-
tiple indicators showing that the perception of these
sounds was difficult to characterize with a single
indicator. Finally the only significant predictor for
soundscape quality is found to be sharpness, with
a regression coefficient which has an opposite sign
than the one for mechanical sounds, implying that
less mechanical sounds result in better soundscape
quality.

When comparing these regression models, based
on classic acoustic indicators, to the ones based on
the ANN output, it is clear that the adjusted R2 is
higher for the ANN based models, thus indicating
that a larger proportion of the variance in the ques-
tionnaire responses is predicted by the ANN based
models than by the classic indicators based models,

HQ NQ MQ QQ

C 1.0976 3.0154 2.5396 6.6500
HANN 0.1761
NANN 0.1786 -0.1685 0.2739
MANN -0.1693 0.1913 -0.1726
Adj. R2 0.662 0.621 0.774 0.598
F -value 42.18 18.19 36.88 16.63

Table 1: Linear regression models for human, nat-
ural and mechanical sounds and soundscape quality
as reported by park visitors in the questionnaire as
a function of human, natural and mechanical sounds
as detected by the ANN (C denotes the intercept).
Only regression coefficients for relevant contributors,
as determined by forward selection based on F -value,
are shown. In addition, adjusted R2 and F -statistics
are given for each model.

HQ NQ MQ QQ

C -3.7768 1.3182 9.8262 -0.8368
LA90 0.1000
ML 2.6954
COG 0.0039
S50 -5.3652 6.1567
Adj. R2 0.486 0.341 0.645 0.493
F -value 10.91 11.88 39.22 21.38

Table 2: Linear regression models for human, nat-
ural and mechanical sounds and soundscape quality
as reported by park visitors in the questionnaire as
a function of classic acoustic indicators (C denotes
the intercept). Only regression coefficients for relev-
ant contributors, as determined by forward selection
based on F -value, are shown. In addition, adjusted
R2 and F -statistics are given for each model.
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Figure 5: Actual values as a function of predicted values by the regression models based on ANN results
given in table 1
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Figure 6: Actual values as a function of predicted values by the regression models based on acoustic indicators
given in table 2
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while F -values are comparable in magnitude (higher
for the ANN based models for human and natural
sounds, the other way around for mechanical sounds
and soundscape quality). Thus, the ANN provides
an improvement on classical acoustic methods.

Note that the broader applicability of the derived
models is limited by two factors. Firstly, the average
expectation pattern of the listeners determines which
sounds will be more often noticed, and whether they
will be percieved more positively or negatively [34].
Thus adaptation of the regressions will be required in
case this is different, as the questionnaire results on
which these are based will not be generally valid any
more. In case of urban parks in the same city, it can
be assumed that the expectation patterns are sim-
ilar, but in order to assess urban soundscapes outside
of parks, for instance, the average expectations will
clearly be different. Secondly, the corpus of sounds
that are present in the environment also needs to be
similar to the corpus of sounds in the training set in
order for the ANN output to be reliable. Again, in
the case of urban parks with similar sound sources,
the corpus of occurring sounds will be similar, but
in order to assess office soundscapes, or park sound-
scapes with completely different fauna for instance,
the ANN would need to be retrained on an appro-
priate training set of sounds, in order to be able to
select and classify these. Thus, even though these
two factors limit the general applicability of the de-
rived models, the method to obtain them should re-
main valid. Therefore, benchmarking its accuracy in
completely different environments forms an interest-
ing topic of further research.

5 Conclusions

It was illustrated that machine listening techniques
could be used to predict the categories of sounds that
park visitors are likely to notice and that these indic-
ators could be used to construct a model for sound-
scape quality. It was shown that the prediction of
noticebility of different classes of sounds and sound-
scape quality appraisal by users of 8 parks in Antwerp
was better or at least as good as a prediction based on

classical sound level indicators. Yet the model has the
advantage of explicitly including the mechanisms un-
derlying perception of the sound environment. The
machine listening system proposed in this work to
achieve these results is a 3-layered artificial neural
network adapted to take human attention mechan-
isms and inhibition-of-return into account, thus en-
abling the network to only process the information
that receives attention. In addition to the compar-
ison to a soundscape questionnaire filled in by park
visitors, the ability of this model to select and classify
auditory objects is validated by a comparison to an
attentive human listener’s labeling of different bird
species’ sounds in continuous park sound recordings.
The machine listening model used in this work uses
1/2 Bark or 1/3 octave band average levels sampled
at a 125 msec interval as raw input. Although this
allows to use standard sound level meters to collect
data, models relying on more detailed features ex-
tracted from continuous sound streaming or dedic-
ated sensor nodes, will most likely outperform the
model presented here. Likewise combining the innov-
ations presented in this work with new ANN archi-
tectures and extreme learning such as deep networks
could advance the application of machine listening in
soundscape research.
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