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Abstract 

Relying on monitoring networks to compute or improve noise maps is an increasingly used approach. 

To be able to use this approach to provide adequate temporal treatments, a good understanding of 

the temporal variations within urban sound level time series is required. This paper provides an in-

depth statistical analysis of the temporal characteristics of urban sound environments, on the basis of 

a wide measurement campaign during 8 month, at 23 measurement stations in Paris, which cover a 

large variety of urban sound environments. The time series of sound levels were recorded continuously 

with a 125ms-time resolution, from which LA50,1h values were extracted. In total, 72 time-slots of 

interest are defined (24 1h-periods covering all days of the week). The statistical analysis determines 

for each station the Daily Average Noise Pattern (DANP), and for each of the 72 time-slots the 1h-

Generalized Extreme Values distributions. The Generalized Extreme Values distributions are found to 

outperform the normal distributions to model the LA50,1h distributions. In addition, the average sound 

level differences between these 72 1h-time periods are calculated along with their variability, resulting 

in 72*72 delta matrices that describe the temporal relations between sound levels. This database is 

then used to develop two models, which aim to estimate DANP based on a limited amount of 

measurements. The model M1 relies on the delta matrices, whereas the model M2 consists of a 

weighted average of the DANP that are stored in the database in which the weights are based upon 

measures of similarity between the stations. Both models rely on probability density functions, and 

provide a measure for the reliability of the estimated noise levels. A test of both modelling approaches 

through simulated measurements shows that the model M1 seems to be more robust in case 

measurements are inaccurate. Beyond these two models, the proposed database could serve in the 

development of further models that aim to estimate sound levels based on a limited amount of 

measurements.  
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1. Introduction 

The Directive 2002/49/EC stands as a response to city dwellers preoccupations regarding noise. It 

requires that European cities of more than 100 000 inhabitants elaborate and broadcast strategic noise 

maps [1]. These maps present Lden values, which correspond to the energetic average sound level of 

the environment with a 5 dB and 10 dB penalty for evening and night periods respectively. However, 

the temporal dynamics of the sound levels also plays a role in the emergence of annoyance, which is 

influenced both by the fast dynamics (peaks of noise, rhythm imposed by the traffic lights, etc.) and 

the slow dynamics (city morning awakenings, issues with to high leisure noise levels, etc.) in the sound 

level [2][3][4].  

Simulated maps were historically the preferred method to produce the Lden strategic noise maps. They 

combine source emission and sound propagation calculations, and may be performed through a large 

variety of software dedicated to sound mapping [7][8]. Simulated maps have been progressively 

completed with noise observatories, which record the sound level time series at strategic locations, 

through high-quality sound level meters [9]. Both approaches suffer however from some limitations: 

the former only considers a limited amount of sources, whereas the latter is expensive and limited in 

spatial coverage due to the difficulty to interpolate measured levels [10]. 

New technological solutions arose, which enable collecting plethora of noise data in urban area. They 

rely either on dense low-cost sensor network deployments [11], or on participative data collection via 

smartphone applications [12][13][14][15][16][17]. Such solutions permit a much larger spatial 

coverage as compared to the use of high-quality sound level meters, but face in counterpart some 

methodological and metrological issues [18][19]. 

Beyond relying on simulated maps or measurements, a third approach that merges the two first ones 

within a common modelling framework has been developed, with the perspective to converge towards 

more accurate maps. The objective here is to correct local sound levels based on measurements 

through data fusion techniques [20], or to continuously modify through measurements the modelling 

parameters [21]. However, some questions remain unresolved, concerning the indicators to produce 

[22], or how to efficiently account for the spatial and temporal variability of noise. Sound environments 

are indeed characterized by their very pronounced short-term variations [23], and their daily and 

weekly periodicity [24]. Another difficulty for building such a modelling framework stands in the lack 
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of reference data for validating the constructed models or associating the produced maps with a level 

of confidence or an uncertainty.  

In this paper, the main specificities of urban sound level time series are extracted from a detailed 

analysis of 8 months of measurements collected in 23 points in Paris, France. The constituted database 

gathers the information required to build temporal sound level interpolations. A possible use of the 

database is illustrated through the proposal of a modelling framework that estimates temporal trends 

in daily average sound levels, and sound level probability density functions, based on a limited amount 

of measurements, by using the statistical properties of the sound level times series within the 

database.  

2. Data collection 

2.1. Measurement stations  

Noise data collection was performed at 23 long-term monitoring stations, during 8 months lasting 

approximately from July 2014 to February 2015 (see the measurement periods in Table 1). The 

measurement devices consisted of an ALIX 3D3 single-board computer, an industrial grade 8 GByte 

Compact-Flash card, a Knowles microphone with 3D-printed holder and rain screen, and a windscreen 

with a diameter of 9 cm. Each of the measurement devices was calibrated using a B&K 4231 calibrator, 

and subsequently their accuracy was measured in an anechoic room. The 125ms-sound pressure levels 

LAeq,125ms were collected continuously, from which sound indicators where calculated with a 1h time-

resolution. The choice of this time-resolution is supported by the facts that this period is often 

encountered in the literature to characterize sound environments [25], and that the stability of sound 

environments at this time-scale has been shown in [26]. Shorter time-resolutions are discussed in 

Section 6. The 23 stations are distributed in the 13rd district of Paris, within an area of about 4 km², as 

depicted in Figure 1. The stations cover different road traffic and morphologic configurations, with low 

to high traffic volumes, pedestrian streets, and some points are located near parks. Stations were 

distributed within the 1st and 5th floor. The impact of the positioning of the long-term stations on the 

proposed modelling approach is discussed in section 6.  

 

Table 1. Description of measurement locations and time periods 

Point Address Floor Date begin Date end Description of the sound environment 

P1 69 Boulevard Auguste Blanqui 1st  04/07/2014 
28/02/2015 Boulevard with dense traffic and aerial 

metro 
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P2 3 rue de la Butte aux Cailles 2nd  08/07/2014 
28/02/2015 Small street with leisure activities (bars, 

restaurants) 

P3 138 avenue d’Italie 2nd 01/07/2014 28/02/2015 Street with dense traffic 

P4 45 Rue Croulebarbe 5th  02/07/2014 28/02/2015 Small street, vicinity of a small park 

P5 25 bd Arago 2nd 08/07/2014 28/02/2015 Boulevard with dense traffic 

P6 141 rue du Château des Rentiers 2nd 09/07/2014 28/02/2015 Residential streets 

P7 58 avenue de Choisy 5th  15/07/2014 28/02/2015 Boulevard with dense traffic 

P8 5 rue Wurtz 4th 17/07/2014 28/02/2015 Very small street 

P9 10 passage Barrault 1st  02/07/2014 28/02/2015 Very small street 

P10 185 bd Vincent Auriol - Esc. 34 3rd  17/07/2014 28/02/2015 Boulevard with dense traffic 

P11 5 rue Philibert Lucot 5th  14/07/2014 28/02/2015 Small street, vicinity of a dense street 

P12 180 avenue de Choisy 1st  16/07/2014 
28/02/2015 Boulevard with dense traffic, vicinity of 

a very dense roundabout 

P13 76 rue Barrault 3rd  04/07/2014 20/02/2015 Very small street, residential 

neighbourhood 

P14 78-84 rue Brillat Savarin 5th  26/06/2014 
28/02/2015 Very small street, residential 

neighbourhood 

P15 51 avenue des Gobelins 2nd 03/07/2014 28/02/2015 Street with dense traffic 

P16 29 Place Jeanne d’Arc 4th 02/07/2014 12/02/2015 Street with dense traffic 

P17 26 rue de Rungis 4th 04/07/2014 20/02/2015 Small street 

P18 11bis rue de l’Amiral Mouchez 2nd 07/07/2014 15/02/2015 Small street, vicinity of a large 

intersection  

P19 37 rue Albert 2nd 03/07/2014 
28/02/2015 Very small street, residential 

neighbourhood 

P20 137 avenue de Choisy 3rd  07/07/2014 28/02/2015 Boulevard with dense traffic 

P21 19 rue Godefroy 1st  02/07/2014 28/02/2015 Vicinity of a very dense roundabout 

P22 198 rue de Tolbiac 4th  27/06/2014 28/02/2015 Street with dense traffic 

P23 140 rue Léon Maurice Nordmann 1st  22/05/2014 28/02/2015 Small street 
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Figure 1. Location of the 23 long-term measurement stations. 

 

2.2. Sound indicators  

Among the 1h resolution calculated indicators, the study only focuses on LA50, which is of particular 

interest for estimating sound pleasantness in urban area [27][28]. However, the constituted database 

also includes other indicators, such as LAeq, the statistical indicators LA90, LA50, LA10 and LA1, and advanced 

indicators highlighting the short-term temporal dynamics (Mask Index, number of events [22]).   

A second derived indicator is the DANPi,s at each station s, where i stands for the day-of-the-week, i = 

{mf; sat; sun}. Three typical days-of-the-week are considered: “Monday-to-Friday” (mf), “Saturday” 

(sat) and “Sunday” (sun), which are known to show different temporal trends in the sound level [24] 

[25].  The DANPi,s consists of a series of 24 L஺ହ଴,௛,௜,௦ values, where h stands as the beginning of the 1h 

time-period, h = {0; 1; …; 23}, representative of the temporal period of interest. In this study this period 

is 8 months, but practically it could be one or several years (thus seasonal sound level variations are 

not fully included in this modelling). These L୅ହ଴,௛,௜,௦ values are the averaged value of the Lହ଴,୦,୧,ୱ values 

calculated during i and h over the sampling period (for instance the L୅ହ଴,଼୦,ୱୟ୲,୔ଶ is the average of the 

LA50,1h values calculated at the station P2 on Saturdays in the 1h-period [8-9] h). In the following of the 

paper, to alleviate notations LA50 will correspond to LA50,1h values unless otherwise specified. Thus a 

given LA50,h,i,s value calculated during a random sample at hour h and day-type i can significantly differ 
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from the L୅ହ଴,௛,௜,௦ value, because of the high sound level temporal variability, as will be shown in 

section 3.3. So, in this paper the main interest is not to estimate dynamically the LA50,s time series at a 

given location s, but to estimate the L୅ହ଴,௛,௜,௦ values, because: (i) L୅ହ଴,௛,௜,௦  and the L୅ହ଴,௛,௜,௦  values 

mainly differ by sound level variability that is due to processes that are random by nature (traffic 

variability, presence of very noisy vehicles, etc.), which makes the individual L୅ହ଴,௛,௜,௦ values less 

representative of the sound environment at a given location, (ii) L୅ହ଴,௛,௜,ୱ values correspond more to 

the noise mapping goals recommended in the Environmental Noise Directive (END). 

3. Data analysis  

3.1. Analysis of the daily average noise patterns 

3.1.1. Description of the daily average noise patterns 

A statistical analysis of the 8 months of collected data is presented in this section, with the aim to 

underline the specificities of the urban sound environments that must be taken into account for 

temporal sound level interpolation. The DANPi,s deduced at each location s from the measurements at 

the 23 stations are displayed in Figure 2. The Figure 2 highlights the large amplitude of sound levels in 

the area, which have a 20 dB range between the noisiest point P3 and the quietest one P9. This variety 

of sound environments can also be illustrated by the fact that the L୅ହ଴,௛,௜,௦ values at the loudest points 

at night are higher than that the L୅ହ଴,௛,௜,௦ values at the quietest points during the day. This shows the 

large variety of the encountered urban sound environments even at a small spatial scale. Despite this 

large range in sound levels, the DANP are highly correlated, mainly because of the night and day sound 

levels alternation.   
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Figure 2. LA50 Daily Average Noise Patterns at the 23 stations. The points discussed in 

the text are in bold. 

 

3.1.2. Correlations between the daily average noise patterns 

The correlations between the sound level time series are presented in Figure 3 (each element of the 

matrix represents the Pearson correlation between the 24 L୅ହ଴,௛,௜,௦  values for a given couple of 

stations s1 and s2). The sound level temporal trends are in general highly correlated, with average 

Pearson correlation coefficient ݎ (average of the 23 x 23 coefficients per matrix) of 0.95, 0.93 and 0.90 

for mf, sat, and sun, respectively. This advocates estimating the temporal trends in the sound level at 

a given location based on observations gathered at long-term stations. Figure 3 reveals in addition 

some specificity in the sound level time series at certain points. In particular, the sound level evolution 

at P2 is poorly correlated to the other ones, showing high L୅ହ଴,௛,௜,ୱୀ୔మ
 values in the sat and sun nights 

 These high levels are explained by the particular location of P2, which is .(௦௨௡  = 0.69ݎ ௦௔௧ = 0.58 andݎ)

situated in « la Butte aux Cailles » (see Figure 1), a street with leisure activities such as bars and 

restaurants that generate high noise levels at these evening periods. P3 also shows low 

L୅ହ଴,௛,௜ୀ௦௨௡,௦ୀ௉య
 correlations with the other points of the dataset (ݎ௦௨௡ = 0.75). This is due to the slower 
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Sunday morning noise levels increase, between 10h and 13h, relatively to the rest of the points 

(despite the fact that sound levels are higher).  

Thus the correlation matrix shows that relying on a database that hosts general statistics on temporal 

trends in the sound level proves useful in most of the cases for deducing information at new locations, 

but may be more difficult at locations whose sound environments are potentially untypical. This 

difficulty will be evaluated and discussed in section 5. 

 

Figure 3. Correlations between the DANP at the 23 stations. Up: correlation matrices 
between each couple of stations for mf, sat and sun. Down: average correlation between 

each station and the 22 others . 

 

 

3.1.3. Linear relations between the daily average sound level patterns 

The high correlations between the daily average sound level patterns suggest the possibility to link 

them through the following linear regressions ܰܣܦ ௜ܲ,௦ଵ = ܽ௜,௦ଵ,௦ଶܰܣܦ ௜ܲ,௦ଶ + ܾ௜,௦ଵ,௦ଶ, with s1 and s2 

two monitoring stations. The interest of such modelling is to stretch the DANP through the ai,s1,s2 

parameter, and shift it through the bi,s1,s2 parameter, and thus estimate DANPs1 based on DANPs2. 

Because of these high correlations, and because the sound level amplitude is found to be limited to a 

range of about 20 dB in the area, the domain of the {a, b} values that link two given stations is 

restrained. Figure 4 shows the domain of encountered {a, b} values for each combination of two of the 

23 valid long-term stations, that is 23*22 = 506 combinations. Noticeably, the crosses with a > 2.5 all 

correspond to the point P21 (in magenta in Figure 4), which shows a very low night-to-day sound levels 

amplitude, of 9.6 dB whereas it is on average 14.6 dB for the other stations (see Figure 2). Equations 

are proposed to delimit the expected linear regressions between a couple DANPi,s1 and DANPi,s2 from 
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the database. The domain of {a, b} values, represented in Figure 4 by dotted red lines, can be restrained 

to the following domain: 

൝
ܾ =  80 −  47.5a,
 ܾ =  30 − 62.5a,

 0.1 < a < 4.
 

 

Figure 4.  Domain of {a, b} values obtained when linking the DANP for all 506 
possible combinations of two long-term monitoring stations through linear regression 

(crosses in magenta correspond to point P21).  

 

In addition, Figure 4d presents the Root Mean Square Errors (RMSE) of the LA50 estimates that are 

associated to these linear regressions. The errors are remarkably low, with average RMSE values of 2.6 

dB, 1.9 dB and 2.2 dB for mf, sat and sun, respectively, and 73%, 91% and 80% of RMSE values below 

3 dB for mf, sat and sun, respectively. This proves the interest to link DANP though linear regressions. 

The fact that the RMSE values are slightly higher for mf despite higher correlations between the DANP 

can be explained by the higher sound level amplitude for mf, compared with sat and sun. Finally, Figure 

4d highlights the small proportion of high errors relative to the sat regressions, with 5.5% of the RMSE 

values exceeding 10 dB; these errors correspond to the point P2, whose low correlations with the other 

stations due to leisure activities have been discussed in section 3.1.2. 
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3.2. Relations between sound levels during different time periods  

The repeatability of the daily average sound level patterns suggests the possibility to estimate the 

DANPi,s based on samplings of a few LA50,s values at s, assuming that a measurement achieved for 

instance on a Tuesday at 11:00 informs about the sound levels that can be expected on a Saturday at 

16:00. Therefore, nine matrices δi1,i2 are determined, with i1 and i2 = {mf, sat, sun}, each of the 9 

matrices being of size 24 x 24, and each of its elements δi1,i2 (h1, h2) containing the estimated delta 

value δ௜ଵ,௜ଶ (ℎଵ, ℎଶ) = LA50,h1,i1 - LA50,h2,i2. 

 

Figure 5. δi1,i2 (h1, h2) and υi1,i2 (h1, h2) values. 

In addition, these delta matrices are associated with a given standard deviation, expecting that a LA50,h,i 

value collected for instance on a Tuesday at 11:00 tells more about the sound levels on a Tuesday at 

10:00 than on a Sunday at 05:00. To account for this standard deviation, each of the nine matrices δi1,i2 

is associated with a matrix υi1,i2 that gathers the standard deviation associated to the delta value. For 

example, δmf,mf (10h,11h) = -0.3 dB and υmf,mf (10h,11h) = 3.2 dB, whereas δmf,sun (10h,05h) = -11.2 dB 

and υmf,sun (10h,05h) = 4.1 dB. In practice, these δi1,i2 and υi1,i2 matrices are determined from the LA50,h,i,s 

values collected over the 34 weeks at the 23 valid stations. At each station, for a given couple {i1, h1} 

and {i2, h2} during the same month (in order to avoid seasonal noise level variations), one obtains 4*4 

= 16 (LA50,h1,i1 - LA50,h2,i2) values per month if i1 and i2 = sat or sun (supposing there is exactly four weeks 
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in the month), 16 * 5 = 80 values if i1 or i2 equals sat or sun and the other equals mf (5 days from 

Monday to Friday), and 16 * 25 = 400 values if i1 and i2 = mf. Over the 8 months of measurements and 

the 23 stations, this corresponds to a maximum number of values of 2944 if i1 and i2 = sat or sun, 14720 

if i1 = mf and i2 = sat or sun or the opposite, and 73600 if i1 and i2 = mf.  Figure 5 illustrates some typical 

δi1,i2 (h1,h2) profiles. The profiles follow unsurprisingly the DANP shapes, with δ values ranging between 

-15 and +15 dB according to the {h1, h2} couples. The diagonal of the δi1,i2 matrix is null, but the diagonal 

of the υi1,i2 matrix is not: for instance, υmf,mf (10h,10h) = 3.2 dB. This is due to the inter-day LA50 

variability. In addition, Figure 5 shows the increased standard deviation for couples of time-of-the-day 

values that are distant, or when the couple is composed of different days-of-the-week. These standard 

deviations are depicted in Figure 6, which represents a matrix of all the υ values, which evolve between 

1.9 and 5.2 dB. The Figure 6 highlights the lack of representativeness of measurements achieved during 

night time periods for estimating day sound levels, and vice versa. It also underlines the stability of 

sound level variations on Sunday, which are the time periods associated with the lowest standard 

deviations. This advocates for measurement strategies that include samplings during both day and 

night periods, and more generally a large variety of periods. 
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Figure 6. Matrix of υi1,i2 (h1, h2) values. 

 

3.3. Sound level distributions during different periods 

This section aims to describe the sound level variability at each period. This will help to understand the 

shape of the temporal distributions of sound levels, and to associate a standard deviation to 

measurements. The distributions of the LA50 values are calculated at each of the 23 valid stations for 

each 1h-time period for mf, sat, and sun (72 distributions per point). Generalized Extreme Value (GEV) 

distributions and normal distributions were compared for estimating the LA50 distributions. GEV 

distributions encompass the normal distributions but allow asymmetrical distributions, and are 

described by the following formula:  

y   =  f(x|κ, ,ߤ (ߪ = ଵ

ఙ
exp ቆ− ቀ1 + κ

௫ିఓ

ఙ
ቁ

షభ
κ ቇ ቀ1 + κ

௫ିఓ

ఙ
ቁ

ିଵିభ
κ,     (1) 

where µ is the location parameter, σ is the scale parameter, and κ is the shape parameter.  

GEV have been successfully used in the past in the field of environmental researches, to estimate air 

pollution [29][30] or precipitation [31] extreme episodes. It is expected that its ability to reproduce 

asymmetry or long tails in the distributions responds to noise requirements, whose LA50 values are 

bounded approximately between 40 and 70 dB(A) (see Figure 2) and in which extreme episodes are 

also expected to occur.   

Normal distributions and GEV distributions have been fitted on the LA50,1h distributions (23*72 

distributions of LA50,1h values in total). The relevance of both distributions is tested through a Two-

sample Kolmogorov-Smirnov test (ktest2 fuction in Matlab), which tests the null hypothesis that data 

in vectors x1 and x2 comes from populations with the same distribution. The GEV distribution 

outperformed the normal distribution to model the 23*72 LA50,1h distributions over the 8 months of 

collected data. Indeed, the Two-sample Kolmogorov-Smirnov test rejected the null-hypothesis that the 

23*72 LA50 distributions follow a normal distribution in 15.6 % of the cases at a 5% significance level 

(averaged p-value > 0.05), and for only 8.2 % of the cases for the GEV distribution (5% significance 

level, averaged p-value > 0.05). Indeed, GEV distributions reproduce better both the sound level 

distributions that are often asymmetric, and the very high sound levels that can be assimilated to rare 

events.  

As shown in Figure 7 for the station P1, the GEV distribution is sensible to the shape of the distribution 

through the k parameter, showing generally a longer tail on the right for low noise levels, and a longer 
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tail on the left for high noise levels. Sound level distributions depend on the day of the week, showing 

a clear distinction between Monday-to-Friday, Saturday and Sunday periods, as already shown in [25]: 

sound levels are higher from Monday to Friday during the day periods, but become higher during the 

week-end during the night periods. The GEV distribution parameters µh,i,s , σh,i,s and κh,i,s are stored for 

each time-of-the-day h, each day-of-the-week i and each long-term station s, resulting in 72 values per 

station and parameter. They will serve for estimating sound levels, especially in the model M2 

presented in section 4.3.  

  

Figure 7. Generalized Extreme Value distributions for i = {mf, sat, sun} at P1 for the 
time periods h = 4h, h = 10h, h = 16h, and h = 20h.  

 

4. Modelling frameworks  

Two modelling frameworks are proposed and compared, which rely on the information acquired from 

the long-term stations that are stored in the database, in order to estimate sound level patterns and 

probability density functions (pdf) at a new location with a limited amount of measures. The approach 
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consists of considering the sound level time series to be unknown at one monitoring station S among 

the 23 stations, and of using the data of the 22 remaining stations. One then tries to reconstruct the 

DANPi,S at S, knowing its actual reference value. 

4.1. Simulated measurements 

K virtual measurements are performed at S, which form a set of K LA50,h(k),i(k),S values, with k = {1; ...; K}, 

where h(k) is the time-of-the-day of the measure k. H(K) = {h(1)…∩…h(k)…∩…h(K)} is the set of the K 

time-of-the-day values. The duration of each measurement, which can be much shorter than 1h, is not 

a parameter of this study. Instead, each LA50,1h value is associated to a standard deviation σk. This 

standard deviation is the sum of the deviations due to the measurement protocol, the device, and the 

measurement duration. Information about the deviations due to measurement durations and to 

devices can be found in [26], and [11][18], respectively. In practice, the simulated measures are 

performed by taking randomly K measures among the 8-months database, and by adding a random 

value according to the standard deviation σk, which is a parameter of the study, to the known actual 

value. Measurement moments are not chosen completely randomly, but vary instead according to the 

time of the day: the probability to perform a measurement during night time periods is fixed to be 10 

times lower than during day time periods. In addition, each of the K measures is associated to a 

probability density function (pdf), ݌௞(ܮହ଴), which follows a normal distribution centred around 

LA50,h(k),i(k),S with a standard deviation of  ߪ௞,௛,௜,ௌ = ට൫ߪ௞ + ௛,௜,ௌ൯ߪ
ଶ

. 

4.2. Presentation of the Model M1 

The model M1 relies both on the K LA50,h(k),i(k),S measurements at S and the delta matrices δi1,i2(h1, h2), in 

order to estimate the DANPM1,i. First, each of the K LA50,h(k),i(k),S estimated values is extended to 72 

probability density functions ݌ெଵ,௞,௛,௜(L୅ହ଴), with h = {1; …; 24} and i = {mf, sat, sun}, centred at 

LA50,h(k),i(k),S + δi,i(k)(h, h(k)), and with the standard deviation ߪ௞,௛,௜ = ටߪ௞² + ߭௜,௜(௞)(ℎ, ℎ(݇))². Then, at 

each 1h-time frame {h, i}, the K ݌ெଵ,௞,௛,௜(L୅ହ଴), are averaged to constitute the ݌ெଵ,௛,௜(L୅ହ଴). The 

estimated DANPM1,h,i value is finally the centre of gravity of the pdf ݌ெଵ,௛,௜(L୅ହ଴). Thus, the model M1 

gives by construction more weight to accurate measurements, which result in distributions with a 

smaller dispersion. In addition, the model M1 results theoretically in an estimated DANPM1,i that is more 

accurate at the time frames with many measurements, since the σi1,i2(h1, h2) value is minimum when 

h1 = h2. 
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4.3. Presentation of the Model M2  

The Model M2 relies both on the K LA50,h(k),i(k),S measurements at S and the DANPs of the stations s stored 

in the database to estimate the DANPM2,i. First, The K LA50,h(k),i(k),S values are used to estimate the 

similarity ws,S within S and each monitoring station s from the database. The similarity ws,S is expressed 

as the inverse of the averaged Euclidean distance between the K LA50,h(k),i(k),S values and the 

corresponding LA50,h(k),i(k),s  values at s :  

௦,ௌݓ = ට
௄

∑ ൫୐ఽఱబ,೓(ೖ),೔(ೖ),ೄି୐ఽఱబ,೓(ೖ),೔(ೖ),ೞ൯
మ

ೖ 
. 

These similarities then serve to estimate DANPM2,i as a linear combination of the DANPs values, 

weighted by the ws,S values, such as DANP௪,௜ =  
∑ ௪ೞ,ೄೞ ୈ୅୒୔ೞ,೔

∑ ௪ೞ,ೄೞ
. Probability density functions 

 ௪,௛,௜(L୅ହ଴)   for each h and i are similarly expressed as the average of the GEV distributions at each݌

station s, weighted by the ws,S values. Thus, the formed DANPw,i is mostly influenced by the stations 

whose sound level evolution is the most similar to S.  

Then, the coefficients a and b of the linear regression that links the DANPw,i to the K measured values 

LA50,h(k),i(k),S are determined. This linear regression aims to correct for the difference between the DANP 

at S and the DANPs that are stored in the database, both in terms of sound level mean values and 

amplitude (day levels minus night levels). In practice, the parameters a and b are calculated based on 

the measurements collected during H(K) and the DANPw,i (H(K)) values at the same time periods. The 

domain of research for {a, b} is limited by the functions given in section 3.1.3.  

The parameters a and b are used to shift the centre of gravity of the ݌௪,௛,௜(L୅ହ଴) probability density 

functions, to constitute the new pdf, ݌௥,௛,௜(L୅ହ଴), which hopefully better reflects the sound level at S. 

Finally, the ݌ெమ,௛,௜(L୅ହ଴) is at each {h, i} the average between the ݌௥,௛,௜(L୅ହ଴) and the measurements 

  .௞,௛(௞)ୀ௛,௜(௞)ୀ௜(L୅ହ଴), which are achieved at {h, i}݌

Thus, the model M2 gives by construction an important weight to measurements at the time frames 

where numerous measurements are collected, since the measures only impact in M2 estimates at their 

precise time frame, contrarily to the model M1. In addition, when the number of measurements is very 

limited, the use of the linear regression guarantees in theory coherent estimated sound level 

evolutions. 

4.4. Illustration of the modelling frameworks  

Case 1: σk = 1 dB 
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In Case 1, measurements are achieved at P1 with a class-1 sound level meter and a professional 

operator that follows rigorously the measurement protocol, resulting in a very low measurement 

standard deviation σk = 1 dB. The pdf functions and the DANP estimated with M1 and M2 are illustrated 

in Figure 8, for K = 5 measurements (left) and K = 20 measurements (right), along with the real DANP 

value at P1 DANPreal, and the DANPzone, which is the average of the 22 DANP.  

First, this very low standard deviation of σk = 1 dB does not guarantee that measurements estimate 

the L୅ହ଴തതതതതത values with the same accuracy of 1 dB. In this example, the 5 LA50 values derived from 

measurements stand within a range of about 3 dB around the actual L୅ହ଴തതതതതത  values, which result from 

the LA50 variability at a given time-of-the-day that was described in section 3.3. This advocates for 

sampling strategies that cover a high number of time frames. Nevertheless, both models M1 and M2 

succeed, even with K = 5, in estimating precisely the DANP. The shape of the noise level temporal 

evolution is reproduced with a good reliability even in the case when no measurements during the 

night periods are available, thanks to the high temporal correlation of the urban sound levels that was 

explained in section 3.1.2, on which both models are based. In addition, the sound levels are estimated 

with a good accuracy: they are higher in P1 than in the average of the other monitoring stations by 

about 5 dB. Sound levels are however slightly under-estimated, because simulated measurements 

were achieved during periods when sound levels were below the usual values (compare in Figure 8 the 

black crosses and the black curve). The increase in the number of measurements solves this default as 

it increases the representativeness of the sampling; as a result, sound levels are estimated with a good 

accuracy by both models when K = 20.  

Moreover, the case with K = 20 in this example underlines the specificities of both models. In the mf 

period, the model M2 seems to improve the noise level estimation during the night period, perhaps 

because the measurements help estimating the sound levels in M2 through linear regression. Inversely, 

the measurements taken during Sundays lead to sound levels that are too much amplified by the linear 

regression, resulting in underestimated sound levels at night. In counterpart, the model M2 better 

describes the high sound levels at P1 during Sundays around 12:00, which are a particularity of the 

sound level evolution at P1. This can be explained by the fact that sound level values at their time-

period are specifically taken into account by the model. 
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Figure 8. DANPM1 and DANPM2 estimates at P1, with σk = 1 dB. Left: K = 5 
measurements. Right: K = 20 measurements. The colorbar represents the probability 

density function.   

 

Case 2: σk = 10 dB 

In Case 2, measurements are obtained at P1 with a standard deviation of σk = 10 dB. This corresponds 

to very inaccurate measurements, such as provided by participative measurements, because of very 

short sampling durations, protocol issues or apparatus malfunctions. As a consequence, the estimated 

probability density functions are much wider, revealing the unreliability of estimates. None of models 

M1 and M2 converge towards accurate DANP when K = 5 dB. In this example, the 5 measured LA50 values 

highly underestimate the actual ones, resulting in an underestimated DANP with both M1 and M2. 

However, the shape of the DANP is accurately reproduced by the models despite the low number of 

measurements and their inaccuracy, showing the interest of the modelling approaches. 

The DANP at P1 is better approached with K = 20, as the increased number of measurements makes 

the average of the measured sound levels converge towards their actual value despite the individual 

measurements errors, assuming that there are no systematic biases in the measurements, or that they 

are known and taken in to account. The case with σk = 10 dB shows the limitation of the model M2 

when individual measurements are imprecise. Indeed, some periods are associated to a very high 

error, because the model M2 gives an important weight to each individual measurement. It can be 

helpful to highlight the sound level specificities at a point for a given time period (for example when a 

period shows abnormally high sound levels because of human activities), but this approach is risky 

when the individual measurements on which it relies are imprecise. Section 5 will compare the benefits 

of both models over the total set of points through a leave-one-out approach. 
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Figure 9. DANPM1 and DANPM2 estimations at P1, with σk = 10 dB. Left: K = 5 
measurements. Right: K = 20 measurements.    

5. Results 

The models M1 and M2 are run successively at the 23 points, excluding each time the station of interest 

from the database. Models M1 and M2 are tested on their ability to reconstruct the weekly average 

noise pattern WANPs at each point s, which is made of the concatenation of 5 DANPmf, one DANPsat 

and one DANPsun, thus representing the one-week average noise pattern. Two indicators-of-quality are 

defined to evaluate the models: 

- The RMSEWANP measures the difference between the estimated and the actual 

WANP. It consists of the RMSE between the 168 L୅ହ଴,௛,ప,௦തതതതതതതതതതത values that form the 

estimated and the actual WANP ;  

- the ߜௐ஺ே௉തതതതതതതതത, which is difference between the estimated and the actual WANPതതതതതതതതത, 

which are the arithmetical averages of the 168 L୅ହ଴,௛,ప,௦തതതതതതതതതതത values that form the 

estimated and the actual WANP.  

These indicators are averaged over these 23 runs and depicted in Figure 10, along with their standard 

deviation, for the three different measurement standard deviation values σk = 1, 5 and 10 dB, according 

to the number of measurements.  

In the case of very accurate individual measurements, when σk = 1 dB, a very low number of measures 

guarantees accurate WANP estimates, with RMSEWANP and ߜௐ஺ே௉തതതതതതതതത values below 3 dB even with one 

measure. This is due to the strong temporal repeatability of the sound level patterns, 3 dB 

corresponding approximately to the dispersion of the LA50 values during the experiment.   
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If the results of the two models are almost similar for the WANPതതതതതതതതത estimates, the WANP are reproduced 

with a better accuracy by the model M1, especially when the standard deviation associated to the 

individual measurements σk increases, confirming the conclusions from the analysis presented in 

section 4.4. The lower incidence of modelling choices on the ߜௐ஺ே௉തതതതതതതതത is certainly due to the 

compensations between the errors committed over the LA50 values that constitute the WANP. In any 

case, the model M1 should be privileged when no information on the quality of measurements is 

available.  As it captures efficiently the temporal structure of sound levels, the model M1 permits a very 

precise estimation of both the noise levels and their temporal evolution, even with inaccurate 

measurements. As an example, with the model M1 and with σk = 10 dB, K = 10 measurements are 

sufficient to estimate WANPതതതതതതതതത with an error of about 3 dB (ߜௐ஺ே௉തതതതതതതതത from 1 to 5 dB according to the 

points), and 15 measurements are sufficient to estimate the WANP with a RMSEWANP of 3 dB.    

 

Figure 10. Comparison of models M1 and M2 according to the number of 
measurements. Left: σk = 1 dB. Centre:  σk = 5 dB. Right: σk = 10 dB.   

 

6. Discussion 

This paper provided an in-depth statistical analysis of the temporal characteristics of the sound level 

in urban environments, on the basis of a wide measurement campaign at 23 locations in Paris during 

8 month. The time series of sound levels were recorded continuously with a 125ms-time resolution, 

from which LA50,1h values were extracted. The statistical analysis resulted in the determination, for each 

of the 23 point and each “Monday-to-Friday”, “Saturday” and “Sunday” 1h-time periods (that is 72 

time periods), of the LA50 distributions, through the form of Generalized Extreme Values distributions. 

In addition, the average LA50 differences between these 72 1h-time periods are calculated along with 
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their variability, resulting in 72*72 delta matrices that describe the temporal relations between LA50,1h 

values. The results from this wide statistical analysis was then used to build two models that estimate 

Daily Average Noise Patterns at a given location, relying on measurements at other locations and the 

information stored in a database.    

The model M1 relies on the measurements along with the delta matrices, which help estimating DANP 

although not all time-periods are covered by measurements. The model M2 relies instead on the DANP 

stored in the database, which are deformed thanks to the measurements through linear regressions, 

adding a posteriori the realized measurements to finally estimate the DANP. Both models rely on 

probability density functions, thus accounting for the reliability of the estimated sound levels. A test 

of both modelling approaches through simulated measurements shows that the model M1 seems to 

be more robust in case measurements are inaccurate, which is typical for participative measurement 

schemes. 

The study has some limitations: 

 This study is the limited set of 23 observed sound environments. The domain of validity of the 

proposed models is restrained to the variety of the observed sound environments. However, 

the similarities between the sound levels temporal trends are probably high from one city to 

the other, making it a priori possible to use the dataset for other cities. Comparisons between 

measurement campaigns in various cities are nevertheless required to test this hypothesis. In 

addition, the constituted database is meant to be enriched in the future with any new long-

term measurement associated with the proposed statistical analysis, including measurements 

collected in various cities. One expects that monitoring stations at locations with similar 

morphologies or traffic situations but from different cities, will prove useful to apply the 

proposed methodology at new locations.  

 The difference in configurations between the monitoring stations is not handled in the study. 

Differences in measurement heights are for instance likely to affect sound levels dynamics. 

Researches are required to decide how different measurement configurations can be 

integrated within a common noise monitoring network, for instance through transfer 

functions. However, these differences do not compromise the proposed approach, as the 

correlations between the daily average noise patterns are high; the robustness of the approach 

to these different measurement configurations has however to be verified for other indicators, 

such as LA10.  
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 The approach relies on 1h-time periods. The estimation of LA50 values with shorter time-

resolutions could imply higher errors. However, the stability of noise levels at the 1h-scale 

limits the range of errors: statistics calculated from the DANP presented in Figure 2 show that 

the average difference between two consecutive LA50,1h values of the DANP is 1.3 dB(A), and its 

maximum value 5 dB(A). This however suggests the possible higher errors with short time-

periods in the morning (periods from 6h to 8h), when the sound level variations are high.   

Other models could be proposed based on the same database. The measure of similarity included in 

model M2, which simply relies on a calculation of RMSE, could be based on similarity evaluations that 

call for both relevance and redundancy metrics. Furthermore, specific outlier detection algorithms 

could be designed, to exclude the abnormal measured LA50 values, such as proposed in [19]. The 

difficulty then stands in the need to exclude default measures but still capturing the specificities in 

noise level evolution (periods with atypical sound levels).  

Beyond the two proposed models, the database of noise level characteristics used in this paper could 

serve to build new modelling frameworks dedicated to the evaluation of time series of sound levels 

based on sparse measurements. This research will then contribute to an increased understanding and 

characterization of urban sound environments through monitoring networks.   
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9. List of abbreviations and variables 

 

DANPi,s: Daily Average Mean Pattern at location s, which consists on 24 ܮହ଴,௛,௜,௦ values 

GEV : Generalized Extreme Value distribution 

h : time-of-the-day, with h = {0; 1; … ; 23}  

H(K) : set of the  K time-of-the-day values 

i = {mf, sat,sun} : days of the week, where “mf” stands for one of the five days from Monday to 
Friday,  “sat” stands for Saturday, and “sun” stands for Sunday. 

LA50,1h : median of the LAeq,1s values among a 1h period  

L୅ହ଴,௛,௜,௦  : average of the LA50,1h values collected at s during the time-of-the-day h, and the day-of-
the-week i.  

Mm : model Mm, with m = {1,2} 

pdf: probability density function 
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௅ܲಲఱబ,భ೓
 : Probability density function associated to an estimated LA50,1h value 

RMSEDANP: difference between the estimated and the actual DANP 

s = {1; …; 23}: 23 monitoring stations. 

δi1,i2 : matrix of size 24*24 that contains the estimated delta value δ௜ଵ,௜ଶ (ℎ1, ℎ2) =  h2,i2,50ܮ – h1,i1,50ܮ 

 ௐ஺ே௉തതതതതതതതത: difference between the estimated and the actual WANPതതതതതതതതത, which are the arithmeticalߜ
averages of the 168 L୅ହ଴,௛,ప,௦തതതതതതതതതതത values that form the estimated and the actual WANP. 

κh,i,s :  GEV distribution shape parameter at station s, day-of-the-week i, and  time-of-the-day h. 

μ h,i,s : GEV distribution location parameter at station s, day-of-the-week i, and  time-of-the-day h. 

υi1,i2 : matrix of size 24*24 that contains the standard deviation of the differences δ௜ଵ,௜ଶ (ℎ1, ℎ2) 

σh,i,s : GEV distribution scale parameter at station s, day-of-the-week i, and  time-of-the-day h.  

σk : standard deviation associated to measurements 

ws,S : similarity (or weight) estimated between two stations s and S  

WANP: concatenation of 5 DANPmf, one DANPsat and one DANPsun, thus representing the one-week 
average noise pattern. 


