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Abstract 20 

Recent developments in uncertainty quantification show that a full inversion of model parameters 21 

is not always necessary to forecast the range of uncertainty of a specific prediction in Earth 22 

Sciences. Instead, Bayesian evidential learning (BEL) uses a set of prior models to derive a direct 23 

relationship between data and prediction. This recent technique has been mostly demonstrated for 24 

synthetic cases. This paper demonstrates the ability of BEL to predict the posterior distribution of 25 

temperature in an alluvial aquifer during a cyclic heat tracer push-pull test. The data set 26 

corresponds to another push-pull experiment with different characteristics (amplitude, duration, 27 

number of cycles). This experiment constitutes the first demonstration of BEL on real data in a 28 

hydrogeological context. It should open the range of future applications of the framework for 29 

both scientists and practitioners.  30 
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1. Introduction  31 

The ability of researchers and decision makers to anticipate the consequences of external events, 32 

or their actions in complex environments, depends on the predictive capacity of science, and in 33 

particular the reliance on models. For future generations this predictive ability will impact the 34 

management of groundwater resources, including climate-change effects (e.g., Aquilina et al., 35 

2015), environmental issues (e.g., MacDonald et al., 2016), and the transition to sustainable 36 

energy (e.g., Kammen and Sunter, 2016).  37 

Researchers and decision makers are grappling with very complex models to enhance these 38 

modelsô predictive abilities. The very nature of the subsurface is so complex that any prediction 39 

is subject to large uncertainties. It is clear that a prediction alone is not sufficient, but an entire 40 

uncertainty quantification, reflecting all possible outcomes, is required for a proper risk analysis 41 

and subsequent decision making (Scheidt et al., 2018).  42 

Recent advances show that predicting the outcomes of subsurface models does not necessarily 43 

require solving an inverse problem and generating model(s) fitting the data (Scheidt et al., 2018). 44 

Instead, Bayesian evidential learning (BEL) proposes to use an ensemble of prior realizations to 45 

learn a direct relationship between data and prediction variables. Those prior models are samples 46 

of the prior distribution of model parameters, reflecting the range of uncertainty before data 47 

acquisition. The derived relationship between data and prediction enables one to directly forecast 48 

the predictions corresponding to the field observed data and their associated uncertainty (Scheidt 49 

et al. 2018; Hermans, 2017). This process does not require a full explicit model inversion, 50 

making it computationally less expensive than standard inversion methods. 51 
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It must be stressed that BEL is fundamentally different from surrogate-based approaches (see 52 

Razavi et al., 2012, for a review). Surrogate approaches are seeking an approximation of the 53 

physical forward model to speed up the simulation process and make Markov chain Monte Carlo 54 

methods more efficient (e.g., Chen et al., 2018). In BEL, the physics of the processes are fully 55 

accounted for. The derivation of a direct relationship between data and prediction, made possible 56 

by the use of dimension reduction techniques, eliminates the need to run any additional forward 57 

simulations. 58 

The initial idea behind BEL was first introduced by Scheidt et al. (2015b) and Satija and Caers 59 

(2015) with synthetic examples for predicting the arrival of a contaminant in a well using 60 

monitoring data collected in three upstream locations. It was then extended by Hermans et al. 61 

(2016) for estimating aquifer properties using time-lapse geophysical data, and by Satija et al. 62 

(2017) for history matching of petroleum reservoirs. Those two studies investigated complex 63 

heterogeneous reservoirs inspired by real conditions, but still with synthetic cases. 64 

Although the number of real field applications is still limited, BEL has recently been illustrated 65 

for real case studies in relation to oil resources, groundwater resources, shallow geothermal 66 

energy and contamination problems (Scheidt et al., 2018). By definition, predictions from 67 

subsurface models generally concern the future behavior of the system with different stress 68 

factors corresponding to alternative management strategies. Therefore, there is almost always a 69 

lack of available data to verify the solution in real case studies. The prior uncertainty in such 70 

contexts is often very large, and a demonstration of the applicability of BEL in a complex field 71 

case is still missing. In a recent study, Hermans et al. (2018) used time-lapse electrical resistivity 72 

tomography data collected during a heat tracing experiment to estimate the heat storage capacity 73 

of an alluvial aquifer. They illustrated the approach for the estimation of spatially distributed 74 
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temperature using time-lapse geophysical data. However, their ground-truth data were limited to 75 

two point measurements. Moreover, the application to geophysical data means that data and 76 

prediction are co-located in time and space, a favorable situation for the prediction. 77 

In this paper, it is proposed to validate BEL as an accurate prediction framework using two 78 

independent hydrogeological field experiments, namely push-pull tests. Push-pull tests are 79 

informative, single-well experiments that do not require extensive monitoring networks or heavy 80 

field campaigns (Haggerty et al., 1998). They are therefore particularly suited to poorly equipped 81 

sites and in absence of extensive prior information, to derive both flow and transport behaviors 82 

(e.g., Vandenbohede et al., 2009; Paradis et al., 2018). In the following, the second experiment is 83 

considered as the target prediction, and the field observations are used to assess the consistency 84 

of the posterior distribution. Although a validation of the framework in the Bayesian sense would 85 

require more repetitions, which is not possible in the context of this field experiment, it will be 86 

shown that the calculated posterior cannot be falsified by the data. This demonstrates that BEL, 87 

upon a realistic characterization of the prior uncertainty, can be used to realistically forecast the 88 

desired prediction in real field applications. In this contribution, the term validation should thus 89 

be interpreted in that broader sense. 90 

2. Methods 91 

2.1. Bayesian evidential learning  92 

The objective of the paper is the application of BEL in field conditions and the assessment of the 93 

consistency of BEL predictions. Therefore, the framework itself is only shortly described, 94 

following the description provided by Hermans et al. (2018), where an exhaustive description can 95 

be found. Although some technical details and choices (sensitivity analysis, dimension reduction 96 



6 
 

techniques) are highlighted, BEL is a general framework and can be applied using other 97 

techniques (Scheidt et al., 2018). 98 

BEL can be usually divided into 4 main steps (Fig. 1). The first step consists of the definition of 99 

the prior model, i.e. the range of variations of the model parameters (hydraulic conductivity, 100 

porosity), stress factors (boundary conditions, pumping rates) and aquifer structure (geological 101 

scenarios, spatial heterogeneity) based on the current knowledge, before any new data 102 

acquisition. This step is extremely important because ignoring some prior uncertainty component 103 

bears the risk of artificially reducing the uncertainty in the prediction. This prior model is then 104 

sampled to generate a representative set of model realizations or prior samples. The two 105 

experiments corresponding to data and prediction variables are simulated using a forward 106 

groundwater flow and transport model. BEL allows using a relatively limited number of models 107 

even for large prior uncertainty, because it is driven by the complexity (often limited) of the 108 

prediction (Hermans et al., 2018) and not by the model parameterization. In this study, 500 prior 109 

samples are used. 110 

In a second step, BEL proceeds to data-worth assessment. Using a global sensitivity approach 111 

based on the prior samplesô response, it identifies the most sensitive parameters for data and 112 

prediction variables. If both are sensitive to the same parameters, then the data are likely 113 

informative for the prediction. If not, an alternative data set can be proposed. Here, distance-114 

based global sensitivity analysis (DGSA) was used to identify the most sensitive parameters 115 

(Park et al., 2016; Fenwick et al., 2014). It is worth noticing that these 2 first steps in BEL are 116 

field data independent, i.e. they can be performed before data acquisition, for example, for 117 

experimental design (Hermans, 2017).  118 
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The third step is prior falsification. Once field data are collected, it is crucial to verify that the 119 

observed data can be predicted by the prior. Otherwise, a risk exists for the prediction to be 120 

erroneous. Indeed, BEL, as with any Bayesian method, requires the posterior distribution to be 121 

part of the prior span (Hou and Rubin, 2005). If the prior model is falsified (inconsistency with 122 

the data), a revision of the latter is mandatory. As will be seen in section óPrior model 123 

falsificationô, for simple data sets, falsification can be performed by simple visualization of the 124 

prior samplesô response and field data response. For more complex data sets, dimension 125 

reduction techniques might be needed to visually assess the consistency of the prior model (e.g., 126 

Hermans et al., 2018). 127 

Finally, a prediction-focused approach is used to generate the posterior distribution of the 128 

prediction given the observed data. A direct relationship between data and prediction variables is 129 

sought using the responses of the prior samples. Given the generally high dimensionality of data 130 

and prediction variables, this objective is achieved through statistical and/or machine learning 131 

techniques in a reduced dimension space. Once such a relationship is found, it is possible to 132 

forecast the prediction based on field data. Many technical solutions can be implemented (e.g., 133 

Scheidt et al., 2018). Here, a combination of principal component analysis (PCA, see e.g., 134 

Krzanowski (2000)) to reduce the dimensionality of data and prediction variables, canonical 135 

correlation analysis (CCA, see e.g., Krzanowski (2000)) to linearize the relationship between 136 

both variable types, and kernel density estimation (KDE, e.g., Bowman and Azzalini, (1997)) to 137 

estimate the distribution corresponding to field data, were used. Kernel density requires definition 138 

of the bandwidth of the kernel for estimation. An automatic choice can be implemented based on 139 

the density of samples, but the choice can also be adapted depending on local conditions. (e.g., 140 

Bowman and Azzalini, 1997) 141 
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2.2. Field site 142 

The studied field site is located in Hermalle-sous-Argenteau (Belgium), in the alluvial aquifer of 143 

the Meuse River. The area of interest has already been investigated using hydrogeological and 144 

geophysical experiments (Brouyère, 2001; Wildemeersch et al., 2014; Hermans et al., 2015a, 145 

2015b, 2018; Hermans and Irving, 2017; Klepikova et al., 2016; Lesparre et al., 2019). It consists 146 

of three main layers: a first (top) layer composed of unsaturated loam and loamy to clayey sands, 147 

3 m thick; the first aquifer layer composed of sandy gravel, about 4 m thick; and then a more 148 

hydraulically conductive layer composed of clean coarse gravel, about 3 m thick. Below, the 149 

Carboniferous bedrock (shale) constitutes a low-permeability layer and the base of the alluvial 150 

aquifer. The water level is located at around 3 m depth, coincident with the boundary between the 151 

loam and sandy gravel layer (Fig. 2). 152 

In this paper, two single-well experiments carried out in well Pz15sup are considered. This well is 153 

drilled down to the middle of the sandy gravel layer and screened between 4 and 5 meters below 154 

ground surface (mbgs) (Fig. 2). The interested reader can refer to the above-mentioned references 155 

for details on the Hermalle-sous-Argenteau site and to the H+ database for access to the data 156 

(Réseau National de Sites Hydrogéologiques , 2019). 157 

2.3. Field experiments 158 

The two considered experiments correspond to push-pull tests carried out in October 2016 and 159 

February 2017, respectively. A push-pull test consists of three phases: 1) an injection phase 160 

(push) during which a tracer is injected into a single monitoring well, 2) an optional storage or 161 

resting phase during which the tracer is subjected to natural conditions, and 3) a pumping phase 162 

(pull) during which water is extracted from the aquifer and the tracer recovery curve is analyzed 163 
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(e.g. Haggerty et al., 1998). For both experiments, the tracer was heated water. During the whole 164 

experiment, the temperature in the well was continuously monitored using a CTD diver. The 165 

water used for injection was pumped from a well located downstream at a distance satisfactory 166 

enough to avoid any significant influence on the hydraulic heads, and subsequently heated using 167 

a mobile water heater before use as the tracer water. Recorded drawdowns/rises in both wells 168 

were found to be limited to +/-1 cm; nevertheless, Jamin and Brouyère (2018) have shown that a 169 

limited pumping rate still influences the fluxes in the aquifer. The pumping well is thus explicitly 170 

represented in the hydrogeological model.  171 

During the first experiment, heated water was injected in the well at the rate of 3 m³/h with an 172 

average temperature difference (ȹT) of 28 K during 6 h at the outlet of the water heater. At the 173 

end of the injection period, due to a technical problem with the water heater, cold water (ȹT = 0 174 

K) was injected for 20 minutes. The storage phase lasted for 91 h, after which water was 175 

extracted from the well at the rate of 5 m³/h during 15.5 h. To minimize the influence of the 176 

injection of cold water on the process, the first 36 hours of the storage phase are disregarded from 177 

the dataset (Fig. 3a). Indeed, after the injection of cold water, a rebound is observed (temperature 178 

increases in the well). However, during that phase, the temperature in the well and in the aquifer 179 

are not at equilibrium. Such a discrepancy exists at any moment, but is more significant after the 180 

injection of cold water. For the same reason, the temperatures recorded during the injection phase 181 

are not representative of the temperature in the aquifer and are removed from the dataset. Note 182 

that the injection of cold water is still numerically modeled. More details on this experiment can 183 

be found in Lesparre et al. (2019). 184 

The second experiment is the target prediction of the study. It also consisted of a push-pull test 185 

with a storage phase, but was made of two successive cycles. Each cycle corresponded to an 186 
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injection phase of 5 h at a 3 m³/h rate, a storage phase of 19 h, and a pumping phase at a rate of 5 187 

m³/h for 5 h. The temperature difference was ȹT = 30 K and ȹT = 35 K for the first and second 188 

cycles, respectively. During both cycles, another storage phase of 19 h took place (Fig. 3b).  189 

3. Results 190 

3.1. Definition of the prior model 191 

The prior model should be defined based on current knowledge of the site, which is relatively 192 

well documented (see section óField siteô). However, it is rare to have such a large amount of 193 

information and field data for real-world case studies. To avoid any bias in the validation process, 194 

the range of uncertainty of the parameters was broadened to a more realistic situation in terms of 195 

real-world applications, as if the experiments were performed on a largely unknown site.  196 

Spatial heterogeneity in the hydraulic conductivity of the sandy gravel layer is generated by 197 

means of sequential Gaussian simulations (Goovaerts, 1997) using a spherical variogram model. 198 

The range, the mean, the variance, the anisotropy and the orientation of the spatial random field 199 

are all considered uncertain. In particular, the mean hydraulic conductivity and its variance have 200 

large prior ranges, ignoring prior information on the site. Such values can generate high and low 201 

conductive environments, as well as almost homogeneous to highly heterogeneous models. 202 

Similarly, the porosity (indirectly affecting the bulk thermal properties) and the natural gradient 203 

in the aquifer are uncertain. The considered ranges of variation of those parameters in the prior 204 

are shown in Table 1. Each parameter is independently and randomly sampled from a uniform 205 

distribution to generate a unique prior realization. In total, 500 independent realizations are used. 206 
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In each model, the first soil layer is unsaturated and considered as a confining layer, whereas the 207 

third layer (clean gravel) is simulated using an average value of hydraulic conductivity of 0.05 208 

m/s. This is justified because the aquifer response is not very sensitive to those parameters. 209 

Parameter Range of uncertainty 

Mean of log10 K (m/s) U[-4 to -1] 

Variance log10 K (m/s) U[0.05 to 2] 

Range (m) U[1 to 10] 

Anisotropy ratio U[0.1 to 0.5] 

Orientation U[0 to ˊ] 

Porosity U[0.05 to 0.30] 

Gradient (%) U[0.083 to 0.167] 

Table 1. Range of variation of the parameters in the prior. U means that a uniform distribution with 210 

specified range is assumed. 211 

The control volume finite-element code HydroGeoSphere (Therrien et al., 2010) is used to 212 

simulate the field experiments. The model is oriented along the direction of flow identified in 213 

previous studies (Wildemeersch et al., 2014). The saturated part of the aquifer is modeled using 214 

14 layers, 0.5 m thick, with 8 in the sandy layer and 6 in the clean gravel. The grid is centered on 215 

the injection well with an extension of 40 m in the direction perpendicular to flow and 60 m in 216 

the direction of flow. The grid is refined around the well with cell size starting at 2.5 cm and 217 

increasing with a multiplying factor of 1.15 up to a maximum value of 2.5 m. In the direction 218 
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perpendicular to flow, the size of the cells is further limited to 0.25 cm within 3 m around the 219 

well in order to accommodate the presence of other monitoring wells, although they are not used 220 

in this study. 221 

No-flow boundary conditions are used everywhere, except at the boundaries perpendicular to the 222 

direction of flow where the gradient is imposed based on the prior range (Table 1). Boundary 223 

conditions for heat transport assume fixed temperature equal to the initial temperature (T = 224 

10.5°C) during the whole duration of both experiments. 225 

3.2. Sensitivity analysis 226 

A global sensitivity analysis both on data and prediction variables is carried out using DGSA. 227 

DGSA is based on the distance between the responses from pairs of models within the 500 prior 228 

models. The Euclidean distance is used between the time-dependent temperature curves at the 229 

well (Fig. 2). Based on the distance, a map of the models in a reduced dimension space is 230 

produced and classified using clusters. In this case, three clusters are a good compromise between 231 

the number of clusters and the number of models within clusters. It clearly identified curves with 232 

low, intermediate and high temperature (Fig. 3). In DGSA, the sensitivity of a parameter depends 233 

on the distribution of model parameters within those clusters compared to the initial distribution. 234 

A similar approach can be used to analyze interactions between parameters. To analyze the effect 235 

of parameter B on parameter A, the model responses are simply grouped in bins depending on 236 

their parameter B values. Then the sensitivity analysis for parameter A is repeated for each bin. If 237 

the response between bins is different, then a conditional effect or interaction is identified (Park 238 

et al., 2016). 239 
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The result of the sensitivity analysis for the two experiments shows similar sensitivity patterns 240 

(Fig. 4a and 4b). The most sensitive parameters are the mean and variance of the hydraulic 241 

conductivity distribution. Hydraulic conductivity influences the flow patterns in the aquifer and 242 

the advection velocity in particular. The variance is an indication of the heterogeneity of the 243 

medium (high variance means high heterogeneity), so that spatial heterogeneity also plays a role 244 

in the range of observed responses. The gradient, the range, and the anisotropy are also sensitive 245 

parameters but to a lesser extent. The influence of the gradient is expected to also influence 246 

advective fluxes. The gradient is not highly sensitive, probably because the prior range is 247 

relatively narrow compared to the range of variation of hydraulic conductivity (several orders of 248 

magnitude). The ranges of the variogram and the anisotropy ratio are parameters related to the 249 

spatial distribution of hydraulic conductivity. In combination with the variance, they control the 250 

degree of heterogeneity around the well and significantly influence the temperature curves. The 251 

porosity is not a sensitive parameter in the response of the aquifer to the two tests, although it has 252 

some direct influence on the bulk thermal parameters and advection velocity. Note that the results 253 

of the sensitivity are dominated by the mean hydraulic conductivity and its variance, which have 254 

the larger prior range of uncertainty. It is thus expected that they dominate the aquifer response in 255 

terms of sensitivity. Narrowing the range of prior uncertainty (see section óDiscussionô) would 256 

slightly reduce the observed difference between the parameters. However, the relative position of 257 

the parameters would remain the same and the same conclusions could be drawn (not shown in 258 

Fig 4). 259 

The interaction between the parameters is related to the distance of their respective bubble in the 260 

interaction plot. Since the distances are relative, there is no unit on those plots. Fig. 4c and 4d 261 

show that the interaction between parameters is limited, except between the mean value of 262 
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hydraulic conductivity and its variance. This probably indicates that the heterogeneity in the 263 

hydraulic conductivity distribution has a significant effect on the response of the aquifer to the 264 

push-pull tests. The result of this sensitivity analysis confirms that the standard experiment is 265 

somewhat informative in predicting the cyclic experiment, as the same sensitivity patterns are 266 

observed for both variables. In this case, the patterns are almost exactly the same, which is a 267 

favorable factor. However, it is not a requirement to apply BEL; only some overlapping is 268 

required (see Hermans et al., 2018). The global sensitivity analysis can also be used at an early 269 

stage to identify which parameters must be accounted for, and therefore reduce the complexity of 270 

the prior model by dropping insensitive parameters (Scheidt et al., 2018). 271 

3.3. Prior model falsification 272 

In BEL, prior model falsification is a crucial step. Indeed, the two first steps are field data 273 

independent. One can draw first conclusions about the usefulness of a specific experiment for a 274 

given prior model without the acquisition of any field data. However, the pre-conclusions are 275 

only valid if the prior model can be considered as consistent with the data. If the prior model is 276 

falsified, then the whole process might be influenced and the results of the sensitivity analysis 277 

might not hold for another prior model. 278 

The prior model consistency is verified for both the data and the prediction. In most studies, only 279 

the data can be used because the prediction is not available yet. Both consist of temperature 280 

distribution through time at the injection well. Therefore, it is relatively easy to verify that the 281 

responseôs ensemble encompasses the observed data in terms of amplitude (maximum/minimum 282 

temperature changes) and temporal behavior (global trend, location of maximum/minimum, etc.).  283 
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Fig. 3 shows the data and prediction variables for the 500 prior samples and the field data. In the 284 

first experiment, the storage phase shows slowly decreasing temperature as heat diffuses and 285 

moves away from the injection well. The decrease in temperature speeds up once pumping begins 286 

and heat is recovered from the aquifer. At the end of the pumping phase, temperature stabilizes 287 

with residual heat stored in the medium matrix (Fig. 3a). The same phases are repeated twice in 288 

the cyclic experiment (Fig. 3b). 289 

In this specific case, the prior model cannot be falsified based on data or prediction (Fig. 3). The 290 

prior model covers a wide range of possible outputs, with rapid or slow decrease of temperature 291 

during the pumping and storage phases of both experiments. The field data and predictions are 292 

located within the range observed in the prior samplesô responses and have similar temporal 293 

behavior to most of the prior samples. For the first experiment, the effect of cold-water injection 294 

is still visible for models displaying temperature changes above 15°C, 2 days after the beginning 295 

of injection (the inflection point in the breakthrough curve after the rebound has not been reached 296 

yet).  297 

For more complex data/prediction, a direct visualization of the prior span might not be easy. In 298 

such a case, it is useful to apply a dimension reduction technique to visualize the position of 299 

observed data compared to prior models in a 2D or 3D space (e.g., Hermans et al., 2015a). In this 300 

case, PCA is applied, as it will be later used in the prediction-focused step of the framework (Fig. 301 

5). 500 temperature curves from the prior model and the field curve are simultaneously 302 

considered, and these are analyzed to determine whether the latter is encompassed in the prior 303 

span in the PCA-score space. For the standard test, almost 99% of the variance is explained by 304 

the first dimension. For the cyclic test, the two first dimensions explain 87.2 and 9.2% of the 305 

variance respectively. It is interesting to observe that the cyclic experiment seems to convey more 306 
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variability than the standard test. Therefore, the standard test might not be sufficient to predict all 307 

the variability observed in the cyclic. Again, the prior model cannot be falsified on this basis 308 

(Fig. 5).  309 

Interestingly, the field observation for the standard data set lies in the middle of the distribution 310 

while most models are concentrated at the borders. Those ñextremeò models correspond to rapid 311 

or slow temperature decrease during the storage and pumping phases, while the field data show a 312 

rather intermediate behavior. Also relatively similar, the two maps for data and prediction are not 313 

the same, showing that the two responses share some components but also have differences. At 314 

this step, one could assess prior assumptions and update the prior model according to the 315 

falsification procedure (see section óDiscussionô). A thorough analysis of the mapping in Fig. 5 316 

can reveal which range of parameters is more likely to generate data responses close to the 317 

observed one (e.g., Scheidt et al., 2015a).  318 

3.4. Prediction 319 

Following the logical path of BEL, it is shown that the data are likely informative for the 320 

prediction and that the prior is consistent with the data. Therefore, one can seek a direct 321 

relationship between the data and the prediction. This is done using the reduced dimensions after 322 

PCA. Three dimensions are kept for the data (more than 99.5% of the variance) and two 323 

dimensions for the prediction (96 % of the variance). The choice of two dimensions is guided by 324 

a compromise: it is desirable to keep as much variance as possible while reducing the 325 

dimensionality of the problem at maximum. Attempts to predict more dimensions in the 326 

prediction showed that the data are not informative on the higher dimensions of the prediction. 327 

Trying to explain more variance in the prediction is thus useless. CCA is then applied to the 328 
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reduced data and prediction sets to generate independent linear relationships between reduced 329 

data and prediction (Fig. 6). Note that CCA is reversible if more dimensions are used for the data 330 

than for the prediction.  331 

The direct relationship obtained after CCA is not simple. For the first dimension, the obtained 332 

relationship is not strictly linear (Fig. 6a). For the second dimension, CCA fails to find a unique 333 

linear relationship, but two different trends exist (Fig. 6b). The models aligned along Ὠ π (Ὠ 334 

refers to the data variable in the low dimensional CCA space; ς refers to its second dimension) 335 

correspond to models with very rapid temperature decrease during storage and do not follow the 336 

same trend as the others. Those models also correspond to the cluster around Ὠ ς in the first 337 

dimension of the CCA space. This behavior is further analyzed in the óDiscussionô section.  338 

The conditions to estimate the posterior distribution by linear regression are not met (linearity 339 

and Gaussianity). Therefore, one cannot estimate the posterior distribution analytically; it is 340 

instead estimated using KDE with a Gaussian kernel (Bowman and Azzalini, 1997). The latter is 341 

simply based on the distribution of prior samples in the CCA space. Note that it is still useful to 342 

apply CCA to derive the most linear relationship between data and prediction variables. Working 343 

in the PCA space would not ensure any relationship. The posterior distribution of the prediction 344 

in the CCA space is computed given the observed data (Fig. 6c and 6d). In this case, a reduced 345 

kernel bandwidth was used to avoid too much effect of the samples aligned along Ὠ π, 346 

explaining the peaks observed in the posterior (Fig. 6d). This parameter can be easily adapted 347 

based on the density of points in the CCA space. 348 

Once the posterior distribution of the prediction in the reduced dimension space is known (Fig. 6c 349 

and 6d), it can be easily sampled and back transformed in the original space where the posterior 350 
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distribution of the prediction can be displayed (Fig. 7). The predicted samples encompass the real 351 

observation, showing that BEL is successful in forecasting the desired prediction. However, the 352 

behavior during the storage and pulling phase is clearly different. During the pull ing phase, BEL 353 

is able to predict with a very narrow range of uncertainty (~1°C) the temperature decrease of the 354 

extracted water. This is very satisfactory as this would be a typical prediction in applications such 355 

as aquifer thermal energy storage systems (Hermans et al., 2018). For the storage phase however, 356 

the uncertainty is wider. BEL tends to predict a relatively linear decrease of temperature as 357 

observed for the prior models with the highest temperature, while the real observation has an 358 

exponential decrease. Only a few predictions reproduce this trend, but the real prediction is still 359 

within the span of the posterior and therefore coherent with the uncertainty quantification. 360 

4. Discussion 361 

The larger uncertainty observed during the storage phase can probably be related to the design of 362 

the experiment. The standard test suffered from a technical problem of the mobile water flow 363 

heater resulting in the injection of cold water. It affected the whole storage phase, weakening the 364 

ability to predict the same phase for the cyclic test. In contrast to the pull ing phase, during which 365 

water is extracted from the aquifer, the storage phase might suffer from a discrepancy in 366 

temperature between the water of the aquifer and in the well (loss of energy towards the 367 

atmosphere).  368 

A few posterior models (blue lines in Fig. 7) display an unexpected behavior during the storage 369 

phase: after a rapid decrease in temperature, a rebound is generated followed by an almost 370 

constant temperature. This behavior is not physically plausible and constitutes one of the 371 

limitations of BEL. Indeed, since the prediction is generated on a statistical basis, it is never 372 
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ensured that the sampled values are actually observed within the prior. In some cases, it can yield 373 

unrealistic solutions as observed here. Those solutions can be easily filtered out if needed. In this 374 

case, they seem to originate from the influence of the series of prior samplesô response displaying 375 

a sharp temperature decrease during the beginning of the storage phase as shown by their low 376 

predicted temperature at the end of injection. This study investigates their influence on the results 377 

by removing them from the prior.  378 

The results of the global sensitivity analysis are used and the 300 models corresponding to the 379 

most distant cluster (models at the extreme right in Fig. 5a) are removed from the prior 380 

realizations. Fig. 8 shows the distribution of model parameters in the removed samples and in the 381 

reduced prior model. Those samples generally correspond to a large average value of the 382 

hydraulic conductivity with large variance. For other parameters, the difference in the distribution 383 

is smaller. Those results are thus in agreement with the sensitivity analysis, showing that the 384 

hydraulic conductivity distribution is the main factor affecting the model response. It also 385 

indicates that the prior range is too large in terms of hydraulic conductivity. Values greater than 386 

10-2 m/s are not realistic for the sandy gravel, but are characteristic of the underlying clean gravel 387 

layer. Similarly, extremely heterogeneous models with very large variance are not consistent with 388 

the data. Remember that the prior model was purposely enlarged compared to the actual 389 

knowledge of the site. 390 

As shown by Fig. 9, removing those prior samples improves the capacity of CCA to derive a 391 

linear relationship between data and prediction. However, the conditions to calculate an 392 

analytical solution by linear regression are still not met. Therefore, KDE was also used. The 393 

effect on the posterior distribution however is limited (Fig. 10a). The posterior samples with 394 

unrealistic behaviors are successfully removed, confirming that their occurrence was correctly 395 
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identified. The uncertainty during injection phases is also strongly reduced. However, the ñnew 396 

prior modelò barely has an effect on the range of generated predictions during the storage phase. 397 

The real observation is still at the extreme limit of the posterior.  398 

The reason for the slight overestimation of the temperature during the storage phase can be 399 

elucidated in the CCA space (Fig. 9). The black square indicates the real value of the prediction 400 

in the low dimension space. Generally, this value is unknown, but this study case has access to 401 

the reduced dimension of the prediction. For the second dimension, the real model lies in a 402 

densely populated zone of the space. However, for the first dimension, it lies at the extreme limit 403 

of the distribution. One of the prior samples is in the close vicinity of the real observation, but 404 

they both lie outside the main trend. Therefore, the prior model is able to produce data-prediction 405 

pairs similar to the observed one. However, the sampling of the cumulative distribution function 406 

will logically generate more samples in the denser area around Ὤ υ, leading to higher 407 

temperature predictions. In short, given the observed data, the probability to get higher 408 

temperatures than observed, in reality, is high. 409 

The predicted probability density function (pdf) of the first dimension has a mean value of ï 5.11 410 

(Fig. 9c) while the real prediction is ï 16.65. If the pdf was corrected to have a mean value equal 411 

to the observed value, one would obtain the posterior distribution of Fig. 10b. On the latter, the 412 

posterior distribution is more centered on the real prediction, especially during the first cycle. 413 

This observation is further illustrated by the distribution of the scores in the CCA space (Fig. 11). 414 

It shows that the true prediction is located at the edge of the prior distribution, which makes it a 415 

difficult target for prediction (Satija and Caers, 2015; Hermans et al., 2016). In consequence, it is 416 

also in the edge of the posterior distribution. 417 
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The latter analysis indicates that BEL performs relatively well although it presents a challenging 418 

situation. The posterior distribution of the temperature curve is correctly estimated during both 419 

the pull ing and the storage phases. During the storage phase, the real observation is within the 420 

posterior, although it lies at its extremity. 421 

These observations can be related to the variability of the prior model, considering the large 422 

uncertainty in this case. There are not many models in the vicinity of the prediction, which is not 423 

a favorable condition to make a prediction. One possibility could be to generate more samples in 424 

this vicinity by identifying model parameters responsible for similar predictions. This can be 425 

done, for example, through advanced falsification approaches (Hermans et al., 2015a; Scheidt et 426 

al., 2015a, 2018).  427 

However, one cannot disregard a possible discrepancy linked to the difference between field 428 

conditions and numerical simulations. As an example, the temperature measured in the well is 429 

likely not quite at equilibrium with the aquifer as simulated by the numerical model. It was also 430 

considered that the porosity is constant within the aquifer, which might be an oversimplification. 431 

However, those limitations are not inherent to BEL, but related to numerical tools.  432 

5. Conclusion 433 

This paper demonstrates that Bayesian evidential learning (BEL) is a successful framework for 434 

prediction and uncertainty quantification in subsurface reservoirs. The ability of BEL to predict a 435 

cyclic push-pull test using another single-well experiment with different signal amplitudes and 436 

durations is illustrated. The whole process is decomposed in 4 steps, relatively simple to 437 

implement: definition and sampling of the prior model, global sensitivity analysis, prior model 438 

falsification and prediction. Every step is illustrated using the reported field experiment. 439 
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Although the framework is stochastic, it does not require heavy computations. Indeed, BEL is 440 

based on the analysis of model responses (data and prediction) using a limited number of prior 441 

realizations. Data and prediction being relatively simple, the number of models is limited to 500 442 

in this case. This signifies that only 1000 forward groundwater flow and heat transport runs are 443 

necessary to successfully assess the posterior distribution. All the models are independent, 444 

avoiding any time-consuming procedure as encountered in deterministic calibration or stochastic 445 

inversion, but allowing for parallelization. 446 

The key for a successful application of BEL is the definition of the prior model. It should 447 

encompass all information available on the study site to derive realistic ranges of uncertainty for 448 

each sensitive parameter. On one hand, ignoring components of uncertainty might yield 449 

unrealistic uncertainty estimation. On the other hand, an unrealistic large uncertainty range might 450 

complicate the data-prediction relationship and reduce its accuracy. The prior model falsification 451 

and the prediction steps use tools allowing one to easily diagnose such kind of problems, as 452 

illustrated by this case study.  453 

Those characteristics make BEL an ideal candidate for the introduction of uncertainty 454 

quantification in real-life applications and within practitioners. The demonstration of the ability 455 

of the framework to work in real field conditions should open a new range of perspectives and 456 

applications of the method. 457 
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Figure  563 

 564 

Figure 1. Flowchart of Bayesian evidential learning (BEL) framework as applied in this case 565 

study. 566 
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 567 

Figure 2. Hydrostratigraphic description of the study site located in the alluvial aquifer of the 568 

Meuse River in Hermalle-sous-Argenteau, Belgium. 569 

 570 

Figure 3. Prior model falsification for (a) the data and (b) the prediction. The observed curves are 571 

within the span of the prior, meaning that the prior is not falsified by the data.  572 
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 573 

Figure 4. Sensitivity analysis. The standardized sensitivity is similar for the (a)  standard and (b) 574 

cyclic experiment. The most sensitive parameters are the mean and variance of the hydraulic 575 

conductivity. The respective interaction plots (c and d) also show similar patterns with an 576 

interaction between mean and variance of the hydraulic conductivity. The closer the individual 577 

bubbles are, the larger their interaction. The size of the bubble corresponds to the total effect (a 578 

and b). On the interactions plot, red and blue colors correspond to globally sensitive and 579 

insensitive parameters, respectively.  580 


