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Abstract

Recent developments in uncertainty quantificabawthat a full inversion of model parameters

Is not always necessary to forecast the range of uncertainty of a specific prediction in Earth
Sciences. Instead, Bayesiandentiallearning (BEL) uses a set pifior models to derive a direct
relationship between data and prediction. This recent technique has been mostly demonstrated for
synthetic cased.his papedemonstratethe ability of BEL to predict the posterior tlibution of
temperature in an alluvial aquifer during a cyclic heaterpushpull test. The data set

correspondto another pusipull experiment with different characteristics (amplitude, duration,
number of cyclg). This experiment constitutes thestidemonstratiorof BEL on real data in a
hydrogeological context. It should open the range of future applisaifadheframeworkfor

both scientists and practitioners.
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1. Introduction

The ability of researchers and decision makers to anticipate the nenseq of external events,

or their actions in complex environments, depends on the predictive capacity of science, and in
particular the reliance on models. For future generations this predictive ability will impact the
maragement of groundwater resourciesluding climatechange effects (e.g., Aquik et al.,

2015), environmental issues (e.g., MacDonald et al., 2@h6)the transition to sustainable

energy (e.g., Kammen and Sunter, 2016).

Researchers and decision malaes grappling with vergomplex models to enhance these

model s O priesdThecvery natare af tha sbibsurface is so complex that any prediction
IS subject to large uncertainties. It is clear that a prediction alone is not sufficient, but an entire
uncertainty quantificatiorreflecting all possible outcomes, is required for a proper risk analysis

and subsequent decision makisglieidt et al., 2018

Recent advanceshowthat predicting the outcomes of subsurface models does not necessarily
requiresolvingan inverse problerandgenerating model(s) fitting the dgtacheidt et al., 2018)
Instead, Bayesiaevidentiallearning(BEL) proposes to use an ensembl@bdr realizationgo

learn a direct relationship between data and prediction varidifleseprior models are santgs

of the prior distribution of model parameters, reflecting the range of uncertainty before data
acquisition. The derived relationship between data and predaimiobsoneto directly forecast

the predictios corresponding tthe fieldobserved datandtheir associated uncertainf$cheidt

et al. 2018Hermans, 2017)his process does not require a full explicit model inversion,

making it computationally less expensive than standard inversion methods.
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It must be stressdtfiat BEL is fundamentally tferent from surrogatéased approachésee

Razavi et al., 2012or a review) Surrogate approaches are seeking an approximation of the
physical forward model to speed up the simulation process and make Markov chain Monte Carlo
methods more efficier{eg., Chen et al., 2018)n BEL, the physics of the processesfully

accounted for. The derivation of a direct relationship between data and prediction, made possible
by the use of dimension reduction techniques, eliminates the need to run any additearal

simulations.

The initial idea behind BElas first introduced by Scheidt et al. (2061&and Satija and Caers
(2015) with synthetic examples for predicting the arrival of a contaminant in a well using
monitoring data collected in three upstreanmatams. It was then extended by Hermans et al.
(2016)for estimating aquifer properties using tita@se geophysical datand bySatija et al.
(2017)for history matching of petteum reservoirs. Those two studies investigated complex

heterogeneous reseivs inspired by real conditions, but stillth synthetic cases.

Although the number of real field applications is still limitB&L hasrecentlybeenillustrated

for real case studian relation tooil resourcesgroundwater resources, shallow geothermal

energy and contamination problems (Scheidt et al., 2@}8Jefinition, predictions from

subsurface models generally conctiva future behavior of the systemith different stress
factorscorresponding to alteative management strategies. Therefore, there is almost always a
lack of available data teerify the solution in real case studies. The prior uncertainty in such
contexts is often very large, andlemonstration of the applicabiliof BEL in a complex #Id

case is stilmissing In a recent study, Hermans et al. (2018) used-tapse electrical resistivity
tomography data collected during a heat tracing experiment to estimate the heat storage capacity

of an alluvial aquifer. Theylustratedthe approal for the estimation of spatially distributed

4
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temperatureising timelapse geophysical datdowever their groundtruth data werelimited to
two pointmeasurements. Moreover, the application to ggsiphl data means that data and

prediction are cdéocated in time and space, a favorable situatiothf@prediction

In this paperit is propose to validate BEL as an accurate prediction framewsikg two
independenhydrogeologicafield experimentsnamely pustpull tests Pushpull tests are
informative, singlewell experiments that do not require extensive monitoring nesxorkeavy
field campaigns (Haggerty et al., 1998). They are therefore particularly suftedrly equipped
sitesand in absence of extensive prior information, to deritk flow and transport behaviors
(e.g., Vandenbohede et al., 20@@radis et al., 20)8n the following, thesecond experimeris
considered as the targatediction and the fieldbservationsre usedo assess the consistency
of the posteriodistribution Although a validation of the framework in the Bayesian sense would
require more repetitions, which is not possible in the context of this field experimeitit,be
shown that the calculated posterior cannot be falsified by the data. @memkstratethat BEL,
upon a realistic characterization of the prior uncertadg, be usetb realisticallyforecast the
desired predictioin real field applicationdn this contributionthe term validation should thus

be interpreted in that broadsgnse.

2. Methods

2.1. Bayesian evidentialdarning

The objective of the paper is thpplication of BEL irfield conditionsand the assessment of the
consistency of BElpredictiors. Thereforethe frameworktself is only shortly described,
following the description provided by Hermans et al. (20&8)erean exhaustive descriptiaan

be found Althoughsome technical detaiend choiceg¢sensitivity analysis, dimension reduction
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techniquesgare highlightedBEL is a general framework and can be ggaplising other

techniques (Scheidt et al., 2018)

BEL can beusuallydivided irto 4 main step$Fig. 1). Thefirst step consistef the definition of
the prior model, i.e. the range of variations of the model parameters (hydraulic conductivity,
porosity), stress factors (boundary conditions, pumping rates) and aquifer strgetlogjical

scenariosspatial heterogeneitygased orthe current knowledgebefore any new data

acquisition This step is extremely important because ignoring some prior uncertainty component

bears the risk of artificially reducing the uncertainty in the prediclibis prior modelis then
sampledo generat@arepresentative set afiodel realizations or prior sampléhe two
experiments corresponding to data and prediction variables are simulated using a forward
groundwater flonandtransport modeBEL allows using aelatively limited number of models
evenfor large prior uncertainty, because it is driven by the complexity (often limited) of the
prediction (Hermans et al., 201&)d not by the model parameterizatinthis study500 prior

samplesare used

In a second step, BEbroceeds to dataorth asessment. Using a global sensitivity approach
based on thpriorsamplse 6 r esponse, it identifies the
prediction variables. If both are sensitive to the same parameterthéhadaiaarelikely
informative for the préiction. If not, an alternative data set can be propdsere,distance
based global sensitivity analysis (DGS#as usedo identify the most sensitive parameters
(Park et al.2016 Fenwick et al., 20141t is worth noticing that these 2 first stepBEL are
field data independent, i.e. they can be performed before data acquisition, for example, for

experimental design (Hermans, 2017).

mo s t
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The third step iprior falsification. Once field data are collected, it is crucial to verify that the
observed datean be predicted by the prior. Otherwise, a risk exists for the prediction to be
erroneous. Indeed, BElswith anyBayesian methqdequiresthe posteriodistributionto be
part of theprior span (Hou and Rubin, 200%) the priormodelis falsified {nconsistency with
the data), a revision of tHatteris mandatoryAs will be seen in sectiodPrior model

f al s i fforsimpleidatansétsalkification can be performed lsymplevisualization of the
priors a mp | e s 0and fielddataorespoaséor more complex data setsmension
reduction techniquesight be needed to visually assess the consistency of thenwa®i(e.g.,

Hermans et al., 2018).

Finally, a predictioffocused approach is used to generate the posterior distribution of the
prediction given the observed dafadirect relationship between data and prediction variables
soughtusing the responses tbfe prior samplesGiven the generally high dimensionality of data
and prediction variables, thidbjectiveis achievedhrough statistical and/or machine learning
techniques in a reduced dimension space. Once such a relationship is found, it is possible to
forecast the prediction based on field data. Many technical solutions can be imph&jeent,
Scheidt et al., 2018Here a combination oprincipal component analysfPCA, see e.g.,
Krzanowski (2000)to reduce the dimensionality of data and prediction variables, canonical
correlation analysi@CCA, see e.g., Krzanowski (200@d linearize the relationship between
both variable typesandkernel density estimatiofiKkDE, e.g., Bowman and Azzalini, (199D
estimate the distribution corresponding to field datreused Kernel density requires deftion

of the bandwidth of the kernel for estimatidm automatic choice can be implemented based on
the density of samples, but the choice alsobe adapted dependiog local conditions. (e.g.,

Bowman and Azzalini, 1997)
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2.2. Field site

The studiedield site is located in HermaHlsousArgenteauBelgium), in the alluvial aquifer of

the Meuse River. Tharea of intereshas already been investigated using hydrogeological and
geophysicalexperiments(Brouyére, 2001 Wildemeersch et al., 2014; Hermans et al., 2015a,
2015b,2018;Hermans and Irving, 201 Klepikova et al., 201,68 esparre et al., 2@). It consists

of three main layers: a firgtop) layer composed ainsaturatedbam and damy to clayey sands,

3 m thick the first aquifer layer composed of sandy graablout 4 m thickand thena more
hydraulically conductive layer composed of cleaoarsegravel, about 3 m thick. Below, the
Carboniferous bedrock (shale) constitutes a-pmsmeability layerand he base of the alluvial
aquifer The water leveis locatedat around3 m depth coincidentwith theboundarybetween the

loam and sandy gravel laygtig. 2).

In this papertwo singlewell experiments carried out mell Pz15supare consideredrhis well is
drilled down to the nadle of the sandy gravel layand screened between 4 anthétersbelow
ground surfacenibgs) (Fig. 2). The interested reader can refer to the aboeationed references
for details on the HermalsousArgenteau site and to the"Hlatabase fomccess tdhe data

(Réseau National de Sites Hydrogéologiguas19.

2.3.Field experiments

The two considered experiments correspond to4pudiitests carried out in October 2016 and
February 2017, respectivel.pushpull testconsistof three phase 1) an injection phase
(push) during which a tracer is injected into aggrmonitoring well2) an optional storage or
resting phasduring which the tracer is subjected to natural conditiand 3) a pumping phase

(pull) during which water is extracted from the aquifer andréeerrecovery curve is analyzed
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(e.g. Haggertet al.,1998. For both experimenighe tracer was heated watBuring the whole
experiment, the temperature in the well was continuously monitored using a CTDrtieer.

water used for injection was pumpkedm a well located downstream at a distasag@sfactory
enoughto avoid any significant influence on the hydraulic heaasl subsequently heated using

a mobile water heatdrefore use as the tracer wateecorded drawdowns/rises in both wells
werefound to bdimited to+/-1 crm nevertheless, Jamand Brouyeére (2018) have shown that a
limited pumping rate still influences the fluxes in the aquifer. The pumping well is thus explicitly

represented ithe hydrogeological model.

During the first experimentheatedvaterwasinjected in the well atie rate of 3 m3/h withra
averagdemperaturalifference(qar) of 28 K during 6h at the outlet of the water heatéit the

end of the injection period, due to a technical problem with the water heater, cold vipte®d

K) was injectedor 20 minutesThe storage phase lasted for 91 h, after which water was
extracted from the well at the rate®m3/h during 15.5 h. To minimize the influence of the
injection of cold water on the process, the f@8hours of the storage phaseedisregardedrom
thedatasetFig. 3). Indeed, after the injection of cold water, a rebound is observed (temperature
increases in the well). However, duritigtphase, the temperature in the well and in the aquifer
are not at equilibrium. Such a discrepancy exists atranyent, but is more significant after the
injection of cold water. For the same reagbe,temperatuserecordedduring the injection phase
arenot representative of the temperature in the agaifidareremoved from the dasat.Note

that the injectiorof cold wateriis still numerically modeledviore details on this experiment can

be found in Lesparre et §2019).

The second experiment is the target prediction of the study. Itamsistedf a pushpull test

with a storage phase, bwmasmade of twasuccessive cycles. Each cycle corresgottd an
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injection phase of 5 h @3 m3/hrate a storage phase of 19 h, and a pumping phasetg of5
m3/hfor 5 h. Thetemperaturelifference waspl = 30K andqdl = 35K for the first and second

cycles, respectively. Duringpothcycles, another storage phase of 19 h took fleice ).

3. Results

3.1. Definition of the prior model

The priormodelshould be defineased on current knowledge of the sitdichis relatively

well documentedsee sectiod- i e | §. Haveverg i@ rareto havesuch dargeamount of
information and field data for reatorld casestudies To avoid any bias ithevalidation process,
the range of uncertainty of the parameteas broadenetb a more realistic situatian terms of

realworld applicationsas if the experimentgereperformed on a largely unknown site

Spatial heterogeneity in the hydraulic conductivity of $a@d/ gravellayer is generated by

means of sequential Gaussian simulations (Goovdé&¥®¥) using a spherical variogram model.
The rangethe meanthe variance the anisotropy and the orientation of the spatial random field
are all considered wertain In particular, the mean hydraulic conductivity and its variance have
large prior rangs, ignoring prior information on the site. Such values can generate high and low
conductive environments, as well as almost homogeneous to highly heterogandeis

Similarly, the porosity (indirectly affecting thmilk thermal properties) and the neglgradient

in the aquifer are uncertain. Thensideredanges of variation of thosg@arametere the prior

are shown in Table Each parametas independently and randomly sampled from a uniform

distribution to generate a unigpgor realization In total, 500independentealizationsare used.

10
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In each model hte firstsoil layer is unsaturated and considered as a confining layer, whereas the
third layer(clean gravel)s simulated using an average value of hydraulic conductivigyQs

m/s. This is justified because the aquifer responsetigerysensitive to those parameters.

Parameter Range of uncertainty

Mean of logo K (m/s) U[-4to-1]

Variance logo K (m/s) U[0.05t0 2]

Range (m) U[1 to 10]
Anisotropy ratio U[0.1t0 0.5]
Orientation UOto" ]
Porosity U[0.05t0 0.30]
Gradient (%) U[0.083t0 0.167]

Table 1. Range of variation of the parameters in the prior. U means that a uniform distributiorwith

specified rangeis assumed.

The controlvolume finiteelement codélydroGeoSpheréTherrien et al., 2010} usedto

simulate the field experimenthe model is oriented along the direction of flow identified in
previous studies (Wildemeersch et al., 20T4e saturated part of the aquifemsdeled using

14 layers0.5 m thick,with 8 in the sandy layer and 6 in the clean gralkeé gridis centeren

the injection well with an extension of 40 m in the direction perpendicular to flow and 60 m in
the direction of flow. The grits refined aound the well with cell size starting at 2.5 cm and

increasing with a multiplying factor of 1.15 up to a maximum value of 2.5 m. In the direction

11
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perpendicular to flow, the size of the caedigurther limited to 0.25 crwithin 3 m around the
well in orderto accommodate the presence of othenitoringwells, although they are not use

in this study.

No-flow boundary conditions are usederywhere, except at the bouridaperpendicular to the
direction of flow where the gradient is imposed based on tbenange(Table 1). Boundary
conditions for heat transport assufixed temperature equal to the initial tempera{re

10.5°Q during thewhole duration ofbothexperimens.

3.2. Sensitivity analysis

A global sensitivity analysis botmalata angbrediction variables isarried out using DGSA.
DGSA is based on the distance between the responses from pairs of modelghes@tprior
models.The Euclidean distands usedbetween the timelependent temperature curves at the
well (Fig. 2). Basedon the distance, a map of the models in a reduced dimension space is
produced and classified usiolystersin this case, three clusteasea good compromise between
the number of clusters and the number of models within clusters. It clearly identified evith
low, intermediate and high temperature (Fig.I8)DGSA, te sensitivity of a parameter depends
on the distribution of model parameters witthoseclusters compared to the initial distribution.
A similar approach can be used to analyze icteyas between parameterso analyze the effect
of parameter B on parameter A, the model respoargesimply grouped in bins depending on
their parameter Balues Then the sensitivity analysier parameter As repeated for each bin. If
the response b&een bins is different, then a conditional effect or interaction is iden{fiack

et al., 2016).

12



240 The result of the sensitivity analysis thetwo experiments shows similar sensitivity patterns

241  (Fig.4aand4b). The most sensitive parameters arerttean and variance of the hydraulic

242  conductivitydistribution Hydraulic conductivity influencgthe flow patternsn the aquiferand

243 the advection velocity in particularhe variances an indication of the heterogeneitytbé

244  medium(high variance meartsgh heterogeneityso that spatial heterogeneity also plays a role
245 in the range of observed respongée gradient, the rangand the anisotropy are also sensitive

246 parameters but to a lesser extent. The influence of the gradient is expedsadirfluence

247  advective fluxesThegradient isnot highly sensitive, probably because the prior range is

248 relatively narroncompared to the range of variation of hydraulic conductivity (severalswter

249 magnitude) The rangsof the variogranand the anisotropy ratio are parameters related to the

250 spatial distribution of hydraulic conductivity. In combination with the variance, they comgrol

251 degree of heterogeneity around the well sigghificantlyinfluence the temperature curva@$e

252  porosty is not a sensitive parameter in the response of the aquifer tavd tests, although it has

253 somedirectinfluence on the bulk thermal parametaensl advection velocityNote that the results

254  of the sensitivity are dominated by the mean hydraulic ectndty and its variance, whichave

255 the larger prior range of uncertainty. It is thus expected that they dominate the aquifer response in
256 terms of sensitivity. Narrowing the range of prior uncertainty (see seflisoussiod would

257  slightly reduce thebserved difference between the parameters. However, the relative position of
258 the parameters would remain the same and the same conclusions could be drawn (not shown

259  Fig 4).

260 The interaction between the parameters is related to the distance oé$pertive bubble in the
261 interaction plot. Since the distarsaae relative, there isonunit on those plots:ig. 4cand4d

262 show that the interaction between parameters is limited, except between the mean value of

13
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hydraulic conductivity and its variancehis probably indicates that the heterogeneity in the
hydraulic conductivity distribution has a significant effectthe response of the aquifer to the
pushpull tests. The result of thgensitivity analysis confirms that te&andardcexperiment is
somewhatinformativein predicing thecyclic experimentas the same sensitivity patteare
observed for botlkariables. In this case, the patterns are almost exaetlyamewhich is a
favorable factor. However, it is not a requirement to apply BEL; soiflge overlapping is
required (see Hermans et al., 2018). The glebasitivity analysis can also be used at an early
stage to identify which parameters must be accountedridrtherefore reduce the complexity of

the priormodelby dropping insensitivegrzameters (Scheidt et al., 2018).

3.3. Prior modelfalsification

In BEL, priormodelfalsification is a crucial step. Indeed, the two first steps are field data
independentOnecan draw first conclusions about the usefulness of a specific experiment for a
given priormodelwithout the acquisition of any field datdowever the preconclusions are

only valid if the priormodelcan be considered as consistent with @ua.df the priormodelis
falsified, then the whole processight be influenced and the results of the sensitivity analysis

might not hold for another prionodel

The priormodelconsistencys verified for both the data and the prediction. In most studies, only
the data can be used because the prediction is not availalB®yetonsisof temperature
distribution through time at the injection wellherefore, iis relatively easy to verify that the
respons e descompassahendnderwed data in terms of amplitude (maximum/minimum

temperature changes) and temporal behavior (global trend, location of maximum/minimum, etc.).

14



284  Fig. 3 shows the data and prediction variables for the 500 prior samples and the field data. In the
285 first experiment, the storage phatewsslowly decreasingemperatures heat diffuses and

286 moves away from the injection well. The decrease in temperature speeds up once pumping begins
287 and heat is recovered from the aquifer. At the entiexpumpingphasetemperature stabilizes

288  with residual heat stored in tiheediummatrix (Fig. 38). The same phases are repeated twice in

289 the cyclic experimentHg. 3b).

290 Inthisspecific case, the prianodelcannot be falsified basexh data or predictiorHg. 3). The

291 prior modelcovers a wide range of possible outputs, with rapid or slow decrease of temperature
292 during the pumping and storage phases of both experinfidmgfield data and predictions are

293 located within the range observed in the psict mp | e s 6 and e gimilarsesnporal

294  behaviorto mostof the priorsample. For the first experiment, the effectaniid-waterinjection

295 s still visible for models displaying temperature charajgove 15°C2 days after the beginning

296 of injection(the inflection point in the breakthrough curve after the rebound has not been reached

297  yet).

298 For more complex data/prediction, a direct visualization of the ppanmight not be easy. In
299 such a case, it is useful to apply a dimension reduction teahtogvisualize the position of
300 observed dataompared to prior modgin a 2D or 3D space (e.g., Hermans et al., 2D15 this
301 casePCAisapplied,as it will be later used in the predictibocused step of the framewo(kig.
302 5).500 temperature curves from the prior model and the field @re/eimultaneously

303 consideredandtheseareanalyzel to determine whethehe latter is encompassed in the prior
304 spanin the PCAscore spacd-or the standard test, almost8®f the variane is explained by
305 thefirst dimensionFor the cyclic test, the two first dimensgexplaind7.2 and 9.2%f the

306 variancerespectivelylt is interesting tmbserve thathe cyclicexperimentseems to convey more

15
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variability than the standard te$herebre the standard teshight not be sufficient to predict all

the variability observed in the cyclidgain, the priormodelcannot be falsified on this basis

(Fig. 5).

Interestingly, the field observatidar the standard data degs in the middle of the distribution

while most models are concentrated at the bordelso s e fiextremeo model s
or slow temperature decrease during the storage and pumping phases, while the field data show a
rather intermediatbehavor. Also relatively similar, the two maps for data and prediction are not

the same, showing that the two responses share some components but also have differences.

this step, one could assess prior assumptions and update the prior model according to the
falsification procedur¢see sectiod Di s ¢ ) A tharough @nalysis of the m@ipgin Fig. 5

can reveal which range of parameters is more likely to generate data responses close to the

observed one (e.g., Scheidt et al., 215

3.4. Prediction

Following the logical path of BEL is shown that the datrelikely informative for the

prediction and that the prior is consistent with the data. Therefoeean seek a direct

relationship between the data and the prediction. This is done using the reduced dimensions after
PCA. Threedimensionsare kept fothe datgmore than 99.5% of the variana@dtwo

dimensions for the predictid®6 % of the varianceYhe choice of two dimensions is guided by

a compromiseit is desirablg¢o keep as much variance as possible while reducing the
dimensionality of the problem at maximuAttempts to predict more dimensions in the

prediction showed thdhe dataarenot informative on the higher dimensions of the prediction.

Trying to explain more variance in the predictisthus useles<CCA is then appliedo the
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reduced data and prediction sets to generate independent linear relasibashkgen reduced
data and predtion (Fig. 6). Note that CCA is reversibié more dimensions are used for the data

than for the prediction.

The direct relationship obtained after CCA is not simpt# the first dimension, the obtained
relationship is not strictly linedFig. 63. For the second dimension, CCA fails to find a unique
linear relationshipbut two different tremslexist(Fig. 60. The models aligned alorf 11(Q

refers to the data variable in the low dimensional CCA spaisfers to its second dimension)
correspond to models with very rapid temperature decrease during storage and do not follow the
same trend as the otBelhose modslalso correspond to the cluster arodd ¢ in the first

dimensionof the CCA spaceThis behaviois further analyzeth theé Di s ¢ wsecton.o n 6

The conditions to estimate the postedatributionby linear regression are not met (linearity
and Gaussianity)lherefore one cannoestimate the posterior distribution analyticaityis
insteadestimatedisingKD E with a Gaussian kernel (Bowmand Azzalini, 199Y. The latter is
simply based on the distributiorf prior samplesn the CCA spaceNote that itis still useful to
apply CCA to derive the most linear relationship between data and prediction vakiébtksg
in the PCA spaceould not ensure any relationshifhe posterior distribution of the prediction
in the CCA space computedjiven the observed datgig. 6¢c and6d). In this case, a reduced
kernelbandwidth was used to avoid too much effect efsamples aligned aloffyy T,
explaining the peaksbserved in the posterior (Figd)e This parameter can be easily adapted

based on the density of points in the CCA space.

Once the posterior distribution of the prediction in the reduced dimesgame is knowKFig. 6¢

and6d), it can be easily sampled and back transformed in the original space where the posterior
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distribution of the prediction can be display&ty( 7). The predicted samples encompass the real
observation, showing that BEL is sssful in forecasting the desired prediction. However, the
behavior durig the storage anglulling phases clearly different. During the fling phase, BEL

is able to predict with a very narrow range of uncertainty (~1°C) the tempedatreasef the
extractedvater. This is very satisfactory as this would be a typical prediction in applications such
as aquifer thermal energy storage syst@demans et al., 2018fror the storage phase however,
the uncertainty is wider. BEL tends to predict a reldyiliaear decrease of temperature as
observed for the prior models with the highest temperature, while the real obsenmaatam
exponential decrease. Only a few predictions reproduce this traetttie real prediction is still

within the span of the sterior and therefore coherent witte uncertainty quantification.

4. Discussion

The larger uncertainty observed during the storage phase can probably be related to the design of
the experiment. The standard test suffered from a technical problemnobkiie waterflow

heater resulting in the injection of cold watkraffected the whole storage phaseakening the

ability to predict the same phase for the cyclic testontrast to the pling phaseduring which

water is extracted from the aquiféine storage phase might suffer from a discrepancy in
temperature between the water of the aquifer and in the well (loss of energy towards the

atmosphere).

A few posteriormodels(blue lines inFig. 7) displayan unexpectetdehavior during the storage
phase:after a rapid decrease in temperature, a rebound is generated followed by an almost
constant temperature. This behavior is not physically plausible and cossiitatef the

limitations of BEL. Indeed, since the prediction is generated on a statistical basis, it is never
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ensured that the sampled values are actually obsesitleid the prior.In some cases, dan yield
unrealisticsolutions as observed hefédose solutions can be eadilyered outif neededIn this

case, they seem to originate from the influence of the serpesaof or s a mpdisplayidg r es p o
a sharp temperature decrease during the beginning of the gpbiasgas shown by thelow

predicted temperature at thedeof injection.This studyinvestigatesheir influence on the results

by removing them from the prior.

The results of the global sensitivity analyais usedand the300 modelsorresponding tthe

most distant cluster (models at the extreme rigiign5a) are removed from the prior
realizationsFig. 8 shows the distribution of modphrameters in the removed samead in the
reduced priomodel Thosesamplegyenerallycorrespond t@large average value of the

hydraulic conductivitywith largevariance. For other parameters, the difference in the distribution
is smaller. Those results are thus in agreement with the sensitivity analysis, showing that the
hydraulic conductivity distribution is the main factor affecting the model resphtiraso

indicates thathe prior rangeis too large in terms of hydraulic conductivity. Valggsater than

102 m/s are not realistic for the sandy gravel, but are characteristic of the underlying clean gravel
layer.Similarly, extremely heterogeneous models with very large variance are not consistent with
the dataRemember that the prionodelwas purposely enlargasbmpared tahe actual

knowledge of the site.

As shown byFig. 9, removing thosgrior samplsimproves the capacity of CCA to derive a
linear relationship between data and predictidowever, the conditions to calculate an
analytical solution by linear regression are still not met. Therefore, W&¥also used’ he
effect on the posterior distributiomWwever is Imited (Fig. 10a). The posterior samplewith

unrealistic behaviors are successfully removed, confirming that their occurrence was correctly
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396 identified.The uncertainty during injection phases is also strongly redttmgever the inew
397 prior modelo barely has an effect on the range of generated predidctioimg the storage phase

398 The real observation is still at the extreme limit of the posterior.

399 The reason for the slight overestimation of the temperature during the storage phase can be
400 elucdated in the CCA spac€if. 9). The black square indicathe real value of the prediction
401 in the low dimension space. Generally, tédueis unknown, buthis studycasehas access to

402 the reduced dimension of the prediction. For the second diomerise real model lies in a

403 densely populated zone of the space. However, for the first dimensionatit thesextreme limit
404  of the distributionOne of the priosamplais in the close izinity of the real observatigiut

405 theybothlie outside themain trend. Thereforeéhe prior modelis able to produce datarediction
406 pairssimilar to the observed one. Howewvitre sampling of the cumulativéstributionfunction

407  will logically generatanore samples in the denser aaeaundQ v, leading tahigher

408 temperature predictianin short, given the observed data, the probability to get higher

409 temperatures than obseryaureality, is high.

410 The predictegrobability density functioifpdf) of the first dimension has a mean valué &f11

411  (Fig. 9c) while the real prediction i 16.65. If the pdf was corrected to have a mean value equal
412 to the observedalug onewould obtain the posterior distribution Big. 10b. On the latter, the

413 posterior distribution is more centered on the real predictigecesly during the first cycle.

414  This observation is further illustrated by the distribution of the scores in the CCA space (Fig. 11).
415 It shows that the true prediction is located at the edge of the prior distribution, which makes it a
416 difficult target forprediction (Satija and Caers, 2015; Hermans et al., 2016). In consequence, it is

417 also in the edge of the posterior distribution.
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The latter analysis indicag¢éhat BELperforms relatively well although presentsa challenging
situation. The posterior stribution of the temperature curve is correctly estimated during both
the puling and the storage phases. During the storage phase, the real observation is within the

posterior, although it lies at iesxtremity.

Theseobservatios can be related to theaxiability of the priomode| considering the large
uncertainty in this cas@here are not many models in the vicinity of the prediction, which is not

a favorable condition to make a prediction. One possibility coetd generate more samples in

this vicinity by identifying model parameters responsible for similar preditibims can be

done, br example, through advanced falsification approaches (Hermans et al., 2015a; Scheidt et

al., 2015a, 2018).

However,onecamot disregard a possible discrepancy linked to the difference between field
conditions and numerical simulations. As an example, the temperature measured in the well is
likely not quite atequilibrium with the aquifer as simulated thye numerical modellt wasalso
consideredhatthe porosityis constant within the aquifewhich might be an oversimplification.

However, those limitations are not inherent to BEL, but related to numerical tools.

5. Conclusion

This papedemonstratethat Bayesiarevidentiallearning(BEL) is a successful framework for
prediction and uncertainty quantificationsnbsurface reservoir§he ability of BEL to predict a
cyclic pushpull test using another singleell experiment with different signal amplitudes and
durationss illustrated The whole process is decomposed in 4 stepetively simple to
implement: definition and sampling of the priapde| global sensitivity analysis, prionodel

falsification and prediction. Every step is illustrated ushegreportedield experiment.
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Although the framework is stochastic, it does not require heavy computations. Indeed, BEL is
based on the analysis miodelresponses (data and prediction) using a limited numbaniaf
realizations Data and prediction being relativelymple, the number of models is limited3060

in this case. This signifies that orlg00 forward groundwater flow artteattransport runs are
necessary to successfully assess the posterior distribution. All the models are independent,
avoiding anytime-corsumingprocedureas encountered in deterministic calibration or stochastic

inversion, but allowing for parallelization.

The key for a successful application of BEL is the definition of the praatel It should
encompass all information available on thedy site to derive realistic ranges of uncertainty for
each sensitivparameterOn one handgnoring components of uncertainty might yield
unrealistic uncertainty estimatio®n the other handn unrealistic large uncertainty range might
complicate thelataprediction relationship and reduce its accurddye priormodelfalsification
and the prediction stepsse tools allowingneto easily diagnose such kind of problems, as

illustrated bythis case study.

Those characteristics make BEL an idesmididate for the introduction of uncertainty
quantification in realife applications and within practitioners. The demonstration of the ability
of the framework to work in real field conditions should open a new range of perspectives and

applications othe method.
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563 Figure

Step 1 : Prior model definition
- Definition of prior uncertainty ranges of model
parameters and structure, stress factors, etc.
- Generation of prior model samples through
Monte Carlo
- Forward simulation of the data and the
prediction variables for each sample

Step 2 : Data-worth assessment
- Global sensitivity analysis on both data and
prediction variables
- Identification of sensitive parameters and
interactions
- Validation of the proposed data set

A 4

Step 3 : Prior model falsification
- Comparison of field data with prior data
distributions
- Field data must be in the span of the prior model,
otherwise the prior model is falsified (go back to

step 1)

Step 4 : Direct prediction from the data
- Reduce the dimensions of data and prediction
variables (e.g., PCA)

- Seek a direct relationship between data and
prediction in the low dimensional space

(e.g., CCA)

- Sample the posterior distribution in the low
dimensional space given observed data

(e.g., linear regression, kernel density)

- Backtransform in the original high-dimensional
space

564

565 Figurel. Flowchart ofBayesiarevidentiallearning(BEL) framework as applied in this case

566  study.
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568 Figure2. Hydrostratigraphic description of the study site located in the alluvial aquifer of the

569 Meuse River in HermallsousArgenteau, Belgium.
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571 Figure 3. Priomodelfalsification for(a) the dataand(b) the prediction. The observed curves are

572  within the span of the prior, meaning that the prior is not falsified by the data.
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Figure 4. Sensitivity analysis. The standardized sensitivity is similar f¢ajhetandard an¢b)

cyclic experiment. The mosensitive parameters are the mean and variance of the hydraulic
conductivity. The respective interaction platsadd) also show similar patterns with an
interaction between mean and variance of the hydraulic conductivity. The ttlesetividual
bubbks are, the larger their interaction. The size of the bubble corresponds to the tota effect (
andb). Ontheinteractions plot, red and blue colors correspond to globally sensitive and

insensitive parameters, respectively.
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