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Notations

k and N indicate the index of each vehicle and number of the vehicles in the
vehicle chain, respectively.

ẋ(t) denotes the time-derivative of the corresponding signal x(t). ẋ(t) is
defined as follows

ẋ(t) =
dx(t)

dt
.

The imaginary unit is denoted by j, in which j2 = −1. s and z are fre-
quency parameters in continuous-time and discrete-time se�ings, respec-
tively. Where s = jω. And ω indicates frequency.

| x(jω0) | indicates the magnitude of signal x at specific frequency ω0.

TheH∞ norm of transfer functionC(s) is given by ‖C‖∞ = supω≥0|C(jω)|.
Re and Im respectively denote the real and imaginary parts.

The L2 norm of a time-dependent scalar signal in continuous-time se�ing is
denoted by ‖xk( · )‖. In which ‖xk( · )‖ is defined as follows

‖xk( · )‖ =

√∫ +∞

−∞
|xk(t)|2dt.

For a time-dependent vector e.g. x(t) , a lower index will indicate the discrete
norm used on the vehicle index dimension: the (L2, l2) norm in continuous-
time se�ing is

‖x( · )‖2 =

√√√√ N∑
k=0

∫ +∞

−∞
|xk(t)|2dt

and the (L2, l∞) norm is ‖x( · )‖∞ = maxk (‖xk( · )‖).

The l2 norm of a scalar signal in discrete-time se�ing is denoted by || xk(.) ||
defined as follows
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|| xk( · ) ||=

√√√√ n∑
t=0

| xk(t) |2.

Where n is the number of time-steps.

The (L2, l2) norm of a vector of scalar signals xk(t) is denoted by || x( · ) ||2
defined as follows

|| x( · ) ||2=

√√√√ N∑
k=0

n∑
t=0

| xk(t) |2.

Finally, the symbol � is used to show the end of proofs.

Furthermore, some abbreviations used in this thesis are denoted as follows

LTI : linear time-invariant
CACC : cooperative adaptive cruise control

ITS : intelligent transportation systems
PD : proportional-derivative
PID : proportional-integral-derivative
AV : all vehicles
LV : leading vehicle
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Samenva�ing

Autonome voertuigen zijn vandaag de dag een belo�evolle technologie ge-
worden, en zouden op korte termijn toelaten om intelligente netwerken op
te bouwen die tot vloeiender verkeer leiden. Eerst is er echter nood aan
algoritmes die een dergelijk grootschalig, gedistribueerd systeem e�iciënt en
veilig zouden regelen.

Eén fundamenteel doel zou zijn om autonome voertuigen op eenvoudige we-
gen (bv. snelwegen) dicht opeen te kunnen laten rijden, dankzij een coopera-
tieve regeling van hun besturingsalgoritmes. Bij een dergelijke coöperatieve
sturing meten wagens hun onderlinge afstanden, en wisselen ze mogelijks
onderling informatie uit. Op deze manier kunnen ze op gezamenlijke, gedis-
tribueerde wijze een lager brandstofverbruik, dichter gepakt verkeer bij hoge
snelheden, of verhoogd comfort en veiligheid voor de passagiers bereiken.
In essentie komt het erop neer om een groot peloton, of een lange keten
voertuigen zich te laten voortbewegen als één enkel lichaam, waarbij ieder
deeltje (voertuig) de bewegingen van het leidend voertuig trouw volgt, en
tegelijkertijd de onderlinge afstand tussen buren heel dicht bij een doel-
waarde gestabiliseerd blij�. Een regelsysteem ontwerpen dat tegelijkertijd
aan specificaties van zowel prestatie, robuustheid als stabiliteit voldoet is
duidelijk een hele evenwichtsoefening; zeker voor grootschalige systemen
zoals een heel peloton voertuigen. Wellicht een grotere verrassing is het feit
dat enkel en alleen het garanderen van de begrensdheid van de afwijkingen
op de gewenste afstand tussen voertuigen, onafhankelijk van de lengte van
de keten, op zich al een heus probleem vormt. Deze centrale observatie werd
in de literatuur geformaliseerd als “string (in)stability”, door ons vrij vertaald
als “keten-(in)stabiliteit”, en hee� sindsdien de aandacht genoten van theo-
retische onderzoekers in de regeltechniek voor gedistribueerde systemen

Het hoofddoel van dit proefschri� is om onze kennis van het fenomeen keten-
(in)stabiliteit te vervolledigen: welke aspecten van de probleemstelling beïn-
vloeden precies de mogelijkheid om keten-stabiliteit te garanderen met een
degelijke regelaar, en welke variaties kunnen optreden in de academische
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probleemstelling, die eigenlijk als abstractie wordt gebruikt van praktische
situaties? De bijdragen van deze thesis kunnen worden opgesomd in drie
delen.

In deel één verduidelijken we een aantal essentiële elementen gerelateerd tot
de onmogelijkheid tot het ontwerpen van een regelaar die keten-stabiliteit
garandeert. De regelaar moet werken louter op basis van relatieve metingen.
Zo laten we het bv. niet toe om een meting van de absolute snelheid expliciet
te gebruiken in de gedistribueerde regelaar. We beschouwen het systeem
zowel in continue tijd als in discrete tijd. Een continue-tijd benadering is
de meest gangbare bij het theoretisch ontwerpen van regelaars, en keten-
stabiliteit vormt hierop geen uitzondering; deze resultaten knopen dus het
dichtst aan bij de bestaande literatuur. Een discrete-tijd model ligt echter
dichter bij een praktische implementatie via digitale regelaars, en bevat op
een natuurlijke manier de geassocieerde beperkingen. Voor een veilig ont-
werp zouden de twee benaderingen overeenstemmende resultaten moeten
geven.

Voor het model in continue tijd geven we een aantal verduidelijkingen en uit-
breidingen van bestaande resultaten. We beschouwen een algemener model
van communicatie tussen voertuigen, waaronder ook de meest bestudeerde
“Cooperative Adaptive Cruise Control (CACC)” valt, en verduidelijken dat
communicatie op zich ook in de algemenere situatie niet volstaat om keten-
stabiliteit te bekomen op basis van enkel relatieve metingen. Hierna onder-
zoeken we of een gewijzigde dynamica van de sensoren soelaas zou kunnen
brengen. Deze laatste zou immers de symmetrie van relatieve metingen kun-
nen doorbreken, en dus eventueel met uitgebreidere informatie een oplossing
kunnen bieden. De conclusie is echter terug negatief. In al deze gevallen
beschouwen we verschillende definities die werden voorgesteld voor keten-
stabiliteit, en vullen we zo de gaten op wanneer de bestaande literatuur zich
beperkte tot éé of andere bepaalde definitie. Onze resultaten beperken zich
tot een koppeling tussen directe buren, net zoals in het overgrote deel van de
bestaande literatuur.

Voor het model in discrete tijd vestigen we veruit het meest algemene on-
mogelijkheidsresultaat tot nog toe voor keten-stabiliteit, met een oogwenk
naar het feit dat dit verschijnsel veel fundamenteler zou kunnen zijn dan
gesuggereerd werd door zijn studie in de lineaire systeemtheorie. We tonen
namelijk aan dat, bij het toelaten van niet-lineaire regelaars, arbitraire kop-
pelingen met een constant aantal voorliggers en achterliggers in de keten,
én arbitraire (niet-lineaire, digitale, zeg maar) lokale communicatie, het nog
steeds onmogelijk blij� om een regelaar te ontwerpen die keten-stabiliteit
zou garanderen. We bewijzen dit voor de verschillende definities van keten-
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Samenva�ing

stabiliteit, met enkel de volgende beperkingen: (i) de regelaar is homogeen,
i.e. elk voertuig reageert op dezelfde manier op zijn buren; (ii) de tijdstap dt
van de digitale regelaar blij� eindig, ondanks een groeiende ketenlengte; en
(iii) over een tijdstap dt kan elk voertuig enkel een beperkte aantal buren
bereiken, onafhankelijk van de ketenlengte. Dit lijkt het eerste resultaat
te zijn dat keten-instabiliteit vaststelt in een niet-lineaire context, en het
zou dus volledig nieuwe perspectieven kunnen bieden gerelateerd met dit
verschijnsel.

In deel twee beschouwen we keten-stabiliteit onder de voorwaarde dat sto-
ringen enkel op het leidend voertuig voorkomen. Dit sluit een groot aantal
“gevaarlijke” storingen vanuit het eerste deel uit, met name de storing die
tot het algemene onmogelijkheidsresultaat leidt in discrete tijd. Het beper-
ken van storingen tot een paar leidende voertuigen wordt om verschillende
redenen als relevant beschouwd in de literatuur: dit modelleert bijvoorbeeld
de reactie van het leidend voertuig op obstakels, terwijl de andere voertuigen
gewoon zouden volgen; of, wanneer subsystemen verdiepingen van een ge-
bouw voorstellen in plaats van voertuigen, kan men hiermee de respons van
een groot gebouw op aardbevingen bestuderen. De literatuur hee� inderdaad
de twee gevallen beschouwd – met storingen enkel op het leidend voertuig
én met storingen mogelijks op elk voertuig – maar de rol van dit verschil
werd niet altijd verduidelijkt. In dit opzicht verduidelijken wij hoe sommige
verschillen tussen de respectievelijke conclusies direct kunnen worden toege-
wijd aan het feit dat storingen beperkt zouden zijn tot het leidend voertuig.
We bewijzen inderdaad dat, met storingen enkel op het leidend voertuig, een
eenvoudige PD-regelaar die asymmetrisch reageert op zijn voorganger en zijn
opvolger voldoet om keten-stabiliteit te bereiken. Dit wordt bewezen zowel
in continue tijd alsook in discrete tijd.

In deel drie beschouwen we een aanpak met “time-headway”, waar niet lan-
ger uitsluitend relatieve waarden worden gebruikt in de regelaar, maar ook
de absolute snelheid, die namelijk de gewenste afstand tussen voertuigen
bepaalt. Het was al geweten dat deze wijziging toelaat om te voorkomen dat
een enkele storing langs de voertuigketen versterkt wordt, wanneer voertui-
gen enkel naar hun voorgangers kijken. Dit alles gebeurt ten (lichte) koste
van het overlaten van de uiteindelijke afstand tussen voertuigen aan de in-
dividuele snelheidsregelaars. Het gaat ook uit van een bijkomende sensor,
die betrouwbaar de snelheid zou opmeten ten opzichte van een gezamenlijke
absolute referentie voor alle voertuigen.

Onze bijdrage in dit derde deel bestaat erin de eigenschappen van “time
headway” uit te breiden naar de sterkere varianten van keten-stabiliteit. We
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geven eerst een negatief resultaat, waarbij een regelaar met eindige DC res-
pons - dus bijvoorbeeld zonder integrerende actie - ondanks time-headway
niet kan voldoen aan een sterkere definitie van keten-stabiliteit. Daarna
geven we echter een reeks positieve resultaten, waarbij onder meer met een
PID-regelaar aan alle definities wordt voldaan. We passen ook een expliciete
formule aan voor de minimaal nodige time headway, voor het geval waarbij er
ook communicatie is tussen de voertuigen (typisch CACC). Daarmee kunnen
we meteen aantonen dat, zoals eerder al in simulaties gezien, het toevoegen
van communicatie toelaat om de afstand tussen voertuigen minder afhan-
kelijk te maken van hun snelheid (zonder deze afhankelijkheid volledig te
kunnen verwijderen).
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Abstract

Nothing is as simple as it seems at first.
Or as hopeless as it seems in the middle.
Or as finished as it seems in the end.

Nowadays, autonomous cars are an important and promising technology for
intelligent transportation systems towards improving the tra�ic flow and de-
creasing network congestions. However, di�erent advanced control systems
methods must still be investigated to take full advantage of these possibilities
and ensure safe operation of this inherently distributed system.

One fundamental objective is to allow autonomous vehicles to drive on sim-
ple road segments (e.g. highways) with tight inter-vehicle distances, thanks
to cooperative driving systems. In such cooperative driving, vehicles mea-
sure their relative distances and possibly share information with neighboring
vehicles; a proper distributed control system should then enable to achieve
some important practical targets, such as optimizing fuel consumption, re-
ducing air pollution, allowing more dense tra�ic at high speeds, and increas-
ing comfort and safety for the passengers. In essence, the main objective
of such platooning or chaining of vehicles is to allow a large set of vehicles
to travel as a single rigid body, faithfully following the movements of the
leading vehicle while precisely maintaining desired inter-vehicle distances.

It is clear that simultaneously satisfying di�erent performance, robustness
and stability objectives on such large scale system would not be a trivial task
for control design. What might be more surprising is: just guaranteeing that
deviations of inter-vehicle distances from their target value remain bounded,
independently of the length of the vehicle chain, appears to be a very chal-
lenging task. This observation has been formalized in the literature as “string
(in)stability”, and it has since a�racted specific a�ention from researchers in
control theory for distributed systems.
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The main objective of this thesis is to complete the state of knowledge about
satisfying string stability: which ingredients of the se�ing are truly essen-
tial to make this possible or impossible, which variations can appear in the
academic se�ing used as a proxy for practical applications. The thesis con-
tributions can be subdivided into three parts.

In a first part, we clarify the essential elements that make it impossible to
achieve string stability. We work only with relative state measurements be-
tween neighboring subsystems, e.g. we do not allow additional absolute ve-
locity sensors. We consider discrete-time and continuous time se�ings. Con-
tinuous time is the most common theoretical framework for controller design,
in the string stability literature as well, and thus relates most directly to
existing results. The discrete-time se�ing is closer to digital controller im-
plementations and incorporating related constraints in a direct way. For a
robust practical model, the conclusions should be similar in the continuous-
time and discrete-time se�ings.

For the continuous-time se�ing, we complete the existing results in several
ways. We generalize the model of communication between vehicles, while
previous papers have focused on a particular model of Cooperative Adaptive
Cruise control (CACC) and mostly in conjunction with time-headway spac-
ing instead of constant spacing policy. We investigate the impact of sensor
dynamics which might break the symmetry of only relative-position informa-
tion, and conclude that amplifying such e�ects to possibly build controllers
on the basis of richer information would still not help. In all these cases, we
explicitly address all the definitions of string stability, filling the occasional
holes in the existing literature. Our study is restricted to nearest-neighbor
coupling, as in most of the literature.

For the discrete-time se�ing, we establish the most general impossibility
result so far, pointing to the fact that string instability is a much more fun-
damental issue than suggested so far by linear systems studies. Namely,
we show that enabling nonlinear controllers, any couplings to a few vehi-
cles in front and behind, any (nonlinear, quantized,...) local communication,
and controller dependence on the chain length, all together do not allow
to design a controller which would achieve string stability. We prove this
for the di�erent versions of the string stability definition, and with as only
main constraints: (i) the controller is homogeneous and discrete-time, i.e.
each vehicle in the chain reacts in the same way to its neighbors; (ii) the
controller discretization step dt remains bounded away from zero despite
increasing chain length; and (iii) over a time step dt, each vehicle can only
reach a finite number of neighbors that is independent of the chain length. To
our knowledge, this is the first result about string instability in a nonlinear
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context, thus allowing more general controllers or e.g. quantized or event-
based communication. This could open completely new perspectives related
to this problem.

In a second part, we consider string stability with respect to a disturbance
acting on the leading vehicle only. This excludes some of the constructions
of “bad disturbances” in the first part, in particular the ones used for the
very general impossibility result in discrete-time. Restricting disturbances
to the leader has been considered relevant for various reasons in the lit-
erature: modeling the reaction of a leading vehicle to obstacles, while the
others just follow; or modeling the behavior of buildings to earthquakes,
with subsystems denoting the levels of the building. Anyways, both the case
with disturbance on all vehicles, and with disturbance on the leading vehicle
only, have been considered in the string stability literature. In this respect,
we clarify that some di�erences in their conclusions can be traced back just
to this di�erence in disturbance location, which may have been somewhat
overlooked. We show indeed that with disturbance acting only on the leader,
it is possible to guarantee the di�erent definitions of string stability using just
a PD controller with properly tuned gains, reacting in an asymmetric way to
the directly preceding vehicle and to the directly following vehicle. We prove
these results in both the discrete-time and the continuous-time se�ings.

In a third and last part, we consider the time-headway spacing policy, where
the target value for the relative positions depends on the vehicles’ absolute
speed. This modification in the se�ing has been known to enable recovering
the most basic version of string stability, i.e. avoiding to unboundedly amplify
a disturbance that would act on the leading vehicle of a unidirectionally
coupled chain. This happens at the (moderate) expense of delegating the
true control on inter-vehicular distances to some exogenous system which
would fix the absolute speed. It also introduces in the se�ing a new sensor
element, i.e. sensing the absolute speed with respect to some absolute and
thus global reference, in addition to relative values between vehicles.

The main aim of this last part is to extend this capability of the time-headway
se�ing to stronger versions of string stability. We first obtain a negative re-
sult, showing that with controllers having bounded DC gain – thus excluding
for instance integral action – the time-headway se�ing does not allow to
satisfy a stronger version of string stability. We then obtain several positive
results, showing that with a PID controller and time-headway se�ing, all the
definitions of string stability can be satisfied. We also extend an explicit tun-
ing rule for the value of the time-headway to the case when adding commu-
nication capabilities (typically CACC). This allows us to explicitly quantify a
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point which was previously observed in simulations only, namely that adding
communication allows to decrease the minimal value of the time-headway
constant, i.e. the dependence of inter-vehicular distances on velocity.
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Chapter 1

Introduction

Nowadays, autonomous cars are an important and promising technology for
intelligent transportation systems towards improving the tra�ic flow and de-
creasing network congestions. From a longstanding dream, such intelligent
transportation has started to move truly closer to reality since the 1990’s, [1].

Improved transportation systems have also become an urgent need during
the last decades. As reported in [2], according to the European Union Road
Federation 2010, the tonne-kilometer on the EU-27 road network has grown
by 45.5% over the period 1995-2008, at a rate of 2 percent per year. It is clear
that such increase leads to tra�ic flow problems with all the related problems
of wasted time, increased fuel consumption and pollution, and safety issues.

The development of intelligent transportation systems (ITS) relies on three
technological elements. More e�icient sensors or whole sensing infrastruc-
tures (like GPS and smartphone networks) provide a more complete and
more reliable picture of the situation to automated systems. Vehicles can
communicate information with each other and with the infrastructure in
ever cheaper and more versatile ways. And the decision-taking computers
are becoming more and more powerful, both at hardware and at so�ware
levels. This allows to address a whole range of objectives, from the most local
concerns of passenger safety and comfort in individual vehicles, to network-
wide optimization of real-time tra�ic routes.

1.1 Platooning of Vehicles

Cooperative driving systems are one of the important topics in Intelligent
Transportation Systems. In cooperative driving systems vehicles cooperate,
organize, and adapt their behavior to neighboring vehicles. This can be on the
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basis of sensor measurements, and of information communicated between
the vehicles via local networks. A study made by TNO [4] estimates that
within the next 10 to 15 years, cooperative driving systems can reduce vehicle
hour loss by 50%, tra�ic death rate by 25%, CO2 emission by 10% and air
pollution by 20%.

Especially for tra�ic congestion, platoons of cooperatively driving automated
vehicles are a promising solution. The vision is indeed that e�icient con-
trollers should allow them to travel with minimum inter-vehicular distances
at high speeds, at least on simple roads like highways. The resulting bene-
fits would include not only increased tra�ic capacity, but also reduced fuel
consumption, air pollution, comfort, and to some extent safety as everything
runs more smoothly. See [2] for more details and numbers about these points.
The idea of platooning of vehicles has thus been developed concretely by
di�erent researchers during the recent years, [17, 18, 21–25]. A particularly
interesting case is the vehicle chain, in which vehicles are aligned one a�er
the other on a path. A scheme of platooning of vehicles is shown in Figure
1.2, [3].

Figure 1.1: Platooning of vehicles.
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1.2 The challenge of controlling platoons of vehi-
cles

Successful platoons of vehicles will have to rely on accurate and powerful
distributed control strategies to stabilize inter-vehicle distances close to their
target value. Various design options can be followed at this stage. The control
system may be homogeneous or heterogeneous (i.e. each vehicle reacting
in the same way to its neighbors or not). It may be essentially linear or
nonlinear. Interaction between the vehicles may involve communication, or
measurements only. Furthermore, the interconnection between the vehicles
may follow a unidirectional chain (only reacting to predecessors) or it can be
bidirectional (i.e. each vehicle also reacting to the behavior of its followers).

The controller should be able to guarantee safety and comfort of the passen-
gers, and other important objectives while complying to the actual system
limitations like actuator limits, unavoidable noises, uncertainties and distur-
bances. When controlling a large interconnected distributed system, like the
vehicle chain, a major issue is that subsystems influence each other through-
out the chain, and approaches that guarantee stability for each individual
vehicle are not applicable to design controllers achieving satisfactory perfor-
mance of the interconnected system. For instance, while sudden acceleration
or braking might be well under control at the single vehicle level, the e�ect
of this sudden event on the other vehicles throughout the chain may cause
serious problems. In fact, it has been observed that under certain general
circumstances, such disturbances unavoidably get amplified throughout the
chain such that inter-vehicle distances deviate more and more from their
nominal values in longer chains, eventually leading to unavoidable collisions
between vehicles, [17, 18]. This undesired issue in platoon of vehicles is called
string instability in literature, [17, 18].

Improving the understanding of this issue of string stability/instability, from a
control systems theory point of view, is the main focus of the present thesis.
In this sense, in agreement with other authors working on this subject, we
will consider a simplified abstract model of vehicles as double-integrators of
the acceleration input, and we will neglect issues like measurement noise,
or uncertainties in dynamical (actuation) models. We then just focus on the
e�ect of disturbance inputs on the distributed system as its size keeps grow-
ing, with the aim to keep inter-vehicle distance within bounded deviations
from their nominal values. From a practical viewpoint, our motivation for
this is that the challenges appearing in this se�ing must of course be solved
convincingly, before more accurate models can be claimed to be robustly and
confidently under control. From an academic viewpoint, this situation ap-
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pears like a particularly clean se�ing to investigate fundamental limitations
on the capabilities of distributed control systems.

1.3 Thesis contributions

The main objective of this thesis is to provide new, definite answers about the
question of satisfying string stability. The starting point is the early observa-
tion [17, 18] that under certain se�ings, there exists no linear controller which
would allow to satisfy string stability. Follow-up work, as detailed later, has
considered specific variants of this problem mostly on a case-by-case basis.

A first general objective of this thesis is to give a more comprehensive picture
about the impossibility to satisfy string stability. In particular, this is the first
place identifying that linearity is not a main ingredient in such impossibility, as
we provide an impossibility result when allowing nonlinear controllers.

A second general objective is to provide stronger positive results, where string
stability can be achieved. For these contributions, we give a proof by exam-
ple, providing simple PD or PID controllers which do satisfy the academic
objective.

The thesis is organized as follows.

• Chapter 2: Problem definition

In this chapter, the interconnected vehicle chain model that will be
used in the rest of the thesis is introduced. We explain the main restric-
tions on controller design and distinguish several important features in
the problem se�ing. A major distinction is the use of constant inter-
vehicle distance as a target reference, or of a time-headway space pol-
icy in which the target distance between the vehicles depends on their
absolute velocity. In the la�er case, the controller is thus allowed to de-
pend on absolute velocity; in contrast, in the former more constraining
se�ings, only the relative behavior of the vehicles is allowed to have an
impact on their dynamics. Another distinction is unidirectional cou-
pling, where vehicles only react to their predecessors, or bidirectional
coupling in which each vehicle reacts to both following and preceding
vehicles. A model for possible communication between the vehicles is
given. We then introduce the di�erent definitions of string stability
which will be the focus of this work. Finally, we translate all these
elements to the less standard discrete-time se�ing, for which we were
able to obtain the most telling results.
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• Chapter 3: Comprehensive impossibility results for string stability

The aim of this chapter is to obtain a more precise understanding of
string stability and clarifying the related controller design options, by
narrowing down the essential elements that make it impossible to achieve
string stability. We work only with relative state measurements be-
tween neighboring subsystems, e.g. we do not allow additional abso-
lute velocity sensors. This also means, we suppose constant spacing
policy in the controllers. We consider discrete-time and continuous-
time se�ings. Continuous-time is the most common theoretical frame-
work for controller design, in the string stability literature as well, and
thus relates most directly to existing results. The discrete-time se�ing
is closer to digital controller implementations and of incorporating re-
lated “natural” constraints in a direct way. Maybe surprisingly, the
discrete-time framework is where we can get the most extensive impos-
sibility results, pushing much further than the existing literature; the
conclusions should be similar in practice to the continuous-time se�ing
as long as numerical discretization schemes allow a faithful modeling
of the system.

For the continuous-time se�ing, we complete the existing results in
several ways. We generalize the model of communication between
vehicles, while previous papers have focused on a particular model
of Cooperative Adaptive Cruise control (CACC) and mostly in con-
junction with time-headway spacing instead of constant spacing pol-
icy. We investigate the impact of sensor dynamics which might break
the symmetry of only relative-position information, and conclude that
amplifying such e�ects to possibly build controllers on the basis of
richer information would still not help. In all these cases, we explicitly
address all the definitions of string stability, filling the occasional holes
in the existing literature. Our study is restricted to nearest-neighbor
coupling, as in most of the literature.

For the discrete-time se�ing, we establish the most general impos-
sibility result so far, pointing to the fact that string instability is a
much more fundamental issue than suggested so far by linear sys-
tems studies. Namely, we show that enabling nonlinear controllers,
any couplings to a few vehicles in front and behind, any (nonlinear,
quantized,...) local communication, and controller dependence on the
chain length, all together do not allow to design a controller which
would achieve string stability. We prove this for the di�erent versions
of the string stability definition, and with as only main constraints:
(i) the controller is homogeneous and discrete-time, i.e. each vehicle in
the chain reacts in the same way to its neighbors; (ii) the controller dis-
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cretization step dt remains bounded away from zero despite increasing
chain length; and (iii) over a time step dt, each vehicle can only reach
a finite number of neighbors that is independent of the chain length.
To our knowledge, this is the first result about string instability in a
nonlinear context, thus allowing more general controllers or e.g. quan-
tized or event-based communication. This could open completely new
perspectives related to this problem.

• Chapter 4: Possibility results for string stability, using constant space
policy between the vehicles but with disturbance restricted to the lead-
ing vehicle

In this chapter, we consider string stability with respect to a distur-
bance acting on the leading vehicle only. This excludes some of the
constructions of “bad disturbances” in Chapter 3, in particular the ones
used for the very general impossibility result in discrete-time. Restrict-
ing disturbances to the leader has been considered relevant for various
reasons in the literature: modeling the reaction of a leading vehicle
to obstacles, while the others just follow; or modeling the behavior of
buildings to earthquakes, with subsystems denoting the levels of the
building (see e.g. [19] and related papers). Anyways, both the case with
disturbance on all vehicles (AV), and with disturbance on the leading
vehicle only (LV), have been considered in the string stability litera-
ture, [19, 20]. In this respect, we clarify that some di�erences in their
conclusions can be traced back just to this di�erence in disturbance
location. For instance, in [19] an advanced linear controller with inerter
has been proposed to satisfy some definition of string stability with
symmetric bidirectional coupling. We highlight that compared to the
results of Chapter 3, the main ingredient for this possibility are not
some special controllers or variants on the string stability definition.
Instead, a central but maybe somewhat overlooked point is just that
disturbance in [19] is restricted to the leading subsystem. We show
that in this case indeed, it is possible to guarantee the di�erent defini-
tions of string stability using just a PD controller with properly tuned
gains, reacting in an asymmetric way to the directly preceding vehicle
and to the directly following vehicle. We prove these results in both
the discrete-time and the continuous-time se�ings.

• Chapter 5: About string stability with unidirectional controller using
time-headway space policy

In this chapter, we consider the time-headway spacing policy, where
the target value for the relative positions depends on the vehicles’ ab-
solute speed. This modification in the se�ing has been known to enable
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recovering the most basic version of string stability [24], i.e. avoiding to
unboundedly amplify a disturbance that would act on the leading vehi-
cle of a unidirectionally coupled chain. This happens at the (moderate)
expense of delegating the true control on inter-vehicular distances to
some exogenous system which would fix the absolute speed. It also
introduces in the se�ing a new sensor element, i.e. sensing the absolute
speed with respect to some absolute and thus global reference, in addition
to relative values between vehicles.

The main aim of this chapter is to extend this capability of the time-
headway se�ing to stronger versions of string stability. We first obtain
a negative result, showing that with controllers having bounded DC
gain – thus excluding for instance integral action – the time-headway
se�ing does not allow to satisfy a stronger version of string stabil-
ity. We then obtain several positive results, showing that with a PID
controller and time-headway se�ing, all the definitions of string sta-
bility given in Chapter 2 can be satisfied. We also extend an explicit
tuning rule for the value of the time-headway [43] to the case when
adding communication capabilities (typically CACC). This allows us to
explicitly quantify a point which was previously observed in simula-
tions only, namely that adding communication allows to decrease the
minimal value of the time-headway constant, i.e. the dependence of
inter-vehicular distances on velocity.

• Chapter 6: Conclusions

In this chapter, we conclude the thesis with a recap of the results and
a brief outlook on perspectives. Chapter 3 in particular raises several
fundamental questions. A first point is how to address the control of
long vehicle chains with other assumptions than the ones which allow
to circumvent string instability in Chapters 4 and 5. A second point is
about the possibly wider impact of the unprecedentedly general string
instability result in discrete-time.

A more precise summary of the thesis contributions will be given a�er de-
scribing the problem se�ing in the following chapter. Tables summarizing
our results are also provided in the Conclusion (Chapter 6).
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Chapter 2

Problem definition

In this chapter we present the state of the art in the mathematical study of
platooning of vehicles. We start with its origins and then we focus on some
important aspects and problems that arise in this kind of interconnected
vehicles. Specifically, we present the main problem definitions that will be
investigated in detail in the other chapters of this thesis.

2.1 Origins and basic model for platooning of vehi-
cles

As we mentioned in Chapter 1, there exist several works in the literature in
theory and applications using di�erent methods and techniques to optimize
the usage of roads, towards intelligent transportation systems to improve
more e�iciently the capacity and safety of roads and the comfort of passen-
gers.

The control of platoons of vehicles is not a new topic. In early works like [5]
and [6], optimal controllers have been developed for this task which guaran-
tee the satisfaction of constraints like following the leader, maintaining inter-
vehicle distances within specified bounds, while optimizing for instance the
fuel consumption. However, these first approaches were based on centralized
controllers, where each agent/vehicle must have access to all the states of
other vehicles. In particular, they must all have an accurate and direct mea-
sure of their behavior with respect to the leader, irrespective of how far they
may be down the chain. Such approach appears to be poorly scalable.

Therefore, researchers have started looking at decentralized or distributed
controllers, where each vehicle only has access to information from a few
nearest neighbors. This turned out to lead to surprising challenges. Indeed,
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the authors in [17, 18] have observed that with distributed controllers, it
already appears unavoidable that a disturbance acting on a given vehicle,
gets amplified along the chain, such that deviations of inter-vehicle distances
from their nominal value would grow unbounded mathematically – in prac-
tice, leading to unavoidable collision or breaking of the chain. More precisely,
this observation involves a simplified model of vehicles, just keeping the
dominating dynamics of a second-order integrator subjected to acceleration
inputs, and a distributed system where each vehicle reacts in real-time to
measurements of its distance to a few preceding vehicles. This observation
has been formalized under the concept of “string stability”. It has henceforth
been the subject of intense research (see more references later in this thesis),
and will be the main subject of the present thesis.

In agreement with the literature, we consider an idealized model of a vehi-
cle as a second-order integrator, representing position as a state, controlled
by acceleration (in fact force, with units such that the mass equals one) as
inputs. An important comment in this respect is that if we would include a
drag force, i.e. a damping term proportional to velocity, then this would solve
the string stability problem. However, in a context where we search for more
and more fuel-e�icient means of transportation, it would be contradictory
to rely solely on this dissipation in order to avoid collisions. Already with
vacuum tube proposals, or chains of spaceship, the presence of drag force at
all would have to be questioned. We would thus argue that string stability
should be proved, even in the harder se�ing where drag force tends to zero.
Moreover, the mathematical concept of string stability could be applied with
mechanical subsystems being other than road vehicles, where again drag
forces may be minimal. Thus, the absence of drag force is an important
modeling assumption, meant to guarantee robustness of the “string stability”
property. Other details of the dynamics, like actuation details, are not sup-
posed to change the game, as long as they all rely on variables derived from
relative position measurements between vehicles. Indeed, it really appears
that the combination of double-pole at zero, and feedback relying on relative
measurements only, are the key ingredients for string instability. Since we
are allowing “any controller” for the rest, some of the actuation dynamics
can in fact be delegated into the controller transfer function.

We thus consider N + 1 acceleration-controlled vehicles, whose position
along the road at time twe denote byx(t) = (x0(t), x1(t), x2(t), ..., xN (t)) ∈
RN+1. Their dynamics is described by

ẍk(t) = uk(t) + dk(t) , k = 0, 1, 2, ..., N , (2.1)
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or in Laplace domain

s2xk = uk + dk , k = 0, 1, 2, ..., N . (2.2)

Here xk is the absolute position of vehicle k, while uk and dk are acceleration
control input and disturbance input, respectively. These disturbances dk can
be used to model unavoidable external contingencies like road conditions,
wind gusts, altitude changes, small inaccuracies in the motor/engine out-
put; commands exogenous to the control system like human driver inputs,
higher-level control loops, necessary driving commands to the leader k = 0,
or safety braking in front of obstacles; and, by equivalent reformulation to
some extent, deviations of the initial conditions from the target inter-vehicle
distance.

In the following section, before giving more details about the objective of
this thesis and in particular a mathematical definition of string stability, we
distinguish di�erent control methods existing in the related literature, and
we clarify the positioning of the present thesis with respect to these aspects.

2.2 Di�erent control systems for platoon of vehicles

In this section, we mention di�erent control design methods and two di�er-
ent spacing methods between the vehicles in a vehicle chain. We follow the
structure established in [43], where more discussion about these aspects can
be found.

2.2.1 Homogenous and heterogenous control systems

It is a standard and rather valid abstraction to consider a chain in which
di�erent vehicles in the platoon have identical dynamics, as we do in the
model (2.2). However, in addition, one might consider that the controllers
of the di�erent vehicles all follow the same rules with the same parameter
values – this is called a homogeneous controller – or that they can be chosen
di�erently – this is called a heterogeneous controller. The la�er has been
considered in [9] for instance, with additional weak coupling of each vehicle
to the leader. Also optimal controllers (see below), for a finite chain, tend to
lead to heterogeneous controllers (although usually weakly so, except at the
boundaries, when the chain length is large). In [10], the authors have proved
using heterogenous controllers between the vehicles where the control gains
increase through the vehicle, it is possible to avoid string instability. This
however implies that the control gain grows to infinity as the number of
vehicles N increases, which is not an acceptable solution.
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Besides these approaches, a large part of the literature has studied string
stability for homogeneous controllers. These are arguably more scalable to
design and deploy, since one just specifies a single controller that everybody
uses. In line with this literature, the work presented in this thesis will use the
assumption of a homogeneous platoon almost exclusively. Towards designs
which do enable string stability, this is not a big restriction as soon as some
minimal robustness can be guaranteed, which we believe is true. Towards
impossibility results, i.e. showing that in certain situations no controller can
guarantee string stability, it is true that homogeneous control is a simplifying
assumption. Strictly speaking, in these se�ings, it may be that heterogeneous
control can solve the issue. However, all indications so far rather point to
the fact that this is not the case; for instance heterogeneity that would be
periodic along the chain changes nothing to our conclusions, and the op-
posite approach with gains increasing monotonically along the chain is not
acceptable. If very specific heterogeneous structures can help, it is certainly
worth knowing for curiosity, although it may have debatable practical use.

2.2.2 Linear or nonlinear control systems

In the systems theory literature, the distinction between nonlinear and linear
control is a major point regarding available tools for analysis and design.

According to [43], a few papers have considered vehicle chains with nonlinear
dynamics or controllers. However, the vast majority of theoretical work has
been done for linear time invariant systems (LTI systems), which are more
straightforward to analyze with tools like the frequency response, using Bode
diagrams, and the superposition principle for di�erent disturbance inputs
[8, 11, 17, 18, 22].

In a big part of the present thesis, we will propose several contributions to the
literature about linear systems. As for the distinction heterogeneous/homo-
geneous, regarding positive results, this is a controller choice more than an
actual restriction. For impossibility results, it does not exclude that nonlinear
controllers would do be�er.

This last point has bothered us quite significantly. Indeed, nonlinear con-
trollers are no curiosity anymore and routinely applied in some specific ap-
plications (e.g. nonlinear damping, mechanical elements with asymmetries
like ropes). Moreover, nonlinear dynamics typically appear by themselves in
systems, via actuator saturation and/or when disturbances are too large to
justify a linear approximation; string instability is precisely about a situation
where errors become unboundedly large. So, excluding nonlinear systems ap-
pears like a big limitation, and in some sense (see also below when we define
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it more comprehensively) string stability has from its origins been presented
as an unavoidable shortcoming of linear time-invariant systems. Therefore,
we really wanted to say something about nonlinear systems. In Section 3.3,
we give a quite general impossibility result, in discrete-time though, showing
that string instability is unavoidable in a quite large sense also with nonlinear
homogeneous controllers.

2.2.3 Distributed parameter systems

Several authors have tried to gain insight on the behavior of large chains of
vehicles by considering directly the infinite-length limit. A first approach [12]
keeps the chain discrete but draws its conclusions explicitly from spatially
invariant systems, which can does have no finite-length boundary. Other au-
thors [30] derive insight from the continuous-chain limit, in the framework of
partial di�erential equations (PDE). In particular, their insight that asymmet-
ric bidirectional coupling can have advantages over symmetric bidirectional
coupling has a direct interpretation in terms of dominating orders of spatial
derivatives in the PDE context.

In the present thesis, the techniques used to prove string stability or string
stability, always start from a finite chain length N whose limit is taken for
increasing N . In this way, we are never confronted with the question of how
much exactly inherently infinite-dimensions results are telling about finite
chains; there are indeed some traps (or call it discontinuities) about this issue.
An insight that we do take from the existing studies on infinitely long chains,
is the possible advantage of asymmetric bidirectional controllers, specifically
in Chapter 4.

2.2.4 Optimal control systems

We have already mentioned a few papers which have applied optimal control
methods to the vehicle chain. More can be found in [43]. We are not pursuing
this approach explicitly in the present thesis, in order to first focus on the
issue of satisfying string stability, at all. One point that we can recall here is,
in the context of time-headway spacing policy (see below) where it is known
that some definition of string stability can be achieved, there have been
studies including string stability in optimal control criteria, like [13] with
receding horizon control. A minimum value for the time headway is found by
iteration. We will present a criterion for the minimum time headway, which
does not require any iteration as soon as some control transfer function is
fixed.
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2.2.5 Di�erent spacing policies

In order to design control systems for platoon of vehicles, at first we should
choose the spacing policy between the vehicles. We let

ek(t) = xk−1(t)− xk(t)− ck(t)

denote the error in vehicle spacing, where ck(t) is thus a desired inter-vehicle
spacing between the vehicles with positions xk(t) and xk−1(t); we take the
convention that the vehicle with the index k is the follower of the vehicle
with the index k − 1. We will consider two approaches that have been used
in the literature about string stability.

In the first one, ck(t) = c for all k in the vehicle chain, with c a real positive
constant. This spacing policy is called constant spacing policy. This is a very
common selection and highly desirable policy since it implies that if the
control architecture brings the errors ek(t) to zero, we know that the vehicles
are all spaced by exactly c. Making c very small ensures a tight packing of
the vehicles on the road — provided proper stabilization close to this value
indeed allows to avoid collision. Furthermore, implementing this spacing
policy a priori requires no extra measurements besides the relative distance
between vehicles.

In [18], motivated in part by the di�iculty to actually design controllers achiev-
ing the first goal, the authors have discussed another control method, called
time-headway spacing policy. A headway time, measured in seconds, is the
di�erence between the times at which two consecutive vehicles cross the
same reference point in space. By factoring the headway time into the target
distance between vehicles, the la�er becomes velocity-dependent, in a way
that reminds typical safety regulations. Explicitly, the spacing policy writes
ck(t) = c+hẋk(t), with h > 0 being the time headway parameter. A possible
issue with the time-headway spacing policy is that we have to add a sensor,
measuring accurately the absolute velocity of each vehicle with respect to a
common global reference system, to implement the controller. For cars this
might not be a big deal, but for ships, planes or space vehicles this might not
always be innocent. Another issue is that this somewhat contradicts our goal
of obtaining an advantageous packing of vehicles by making them move like
a single rigid body, independently of their speed. Indeed, as shown in [18, 24],
obtaining string stability in such context o�en involves a minimum value for
the time headway, and this is a constraint on how much the spacing between
vehicles will depend on their speed. Finally, from a more general viewpoint, in
physically interconnected systems, Galilean invariance says that interaction
forces would not depend on the global speed of the system. In any context
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where we would want to keep this property, time headway would not be a
viable option.

For these reasons, we believe that it is worth studying string stability without
velocity measurement, i.e. with the constant spacing policy, as we do in
Chapters 3 and 4 of the present thesis. In Chapter 5, we give some results
about systems with time-headway spacing policy.

2.2.6 Di�erent interconnection methods

The interconnection specifies to which other vehicles each vehicle in the
chain will react. This is an essential ingredient of the distributed control
system.

Indeed, if the relative distance between each vehicle and the leading vehicle is
known accurately, then it is su�icient that each vehicle individually, stabilizes
its distance to the leader within accurate bounds, and the platoon would be
safe. Such assumption is however not realistic in a scalable control system,
where measurements will most likely be made locally, between neighboring
vehicles. Even if the information about the relative distance from a vehicle
k to the leader can be obtained indirectly from such measurements and as-
suming some communication, necessarily this “indirect knowledge” will be
less and less accurate further down the chain; relying solely on such control
with respect to the leader to stabilize vehicles k and k + 1, would become
less and less reliable to avoid collisions between them. Such se�ing is in fact
be�er modeled as controllers which allow communication between vehicles,
but introduce a robustness condition on the communication channel. We are
thus back to local interconnections, but possibly with communication (see
next subsection).

In this thesis, we will consider di�erent se�ings for the local interconnection,
as follows. The first three cases are the most common in the literature; the
last one is also occasionally studied, and provides the most freedom, and thus
the strongest impossibility result.

I. Unidirectional controller

In this case, each vehicle only reacts to preceding vehicles. Most o�en, re-
searchers have considered the unidirectional control structure using the rela-
tive position of one predecessor, as this can be most directly measured. This is
for instance the interconnection used in combination with the time-headway
policy, typically in [18, 24] and also in our Chapter 5. The corresponding
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controller writes:

uk = K(s)(xk−1 − xk − c− hsxk) , k = 1, 2, ..., N , (2.3)

where K(s) is the (here, homogeneous) control transfer function. The lead-
ing vehicle is supposed to be controlled by making it follow a virtual one,
tracking the reference position x0 and velocity v0, on which we will here
assume zero control input. In more practical se�ings, this could become a
time-dependent signal but we should first be able to achieve string stability
at least for the steady state situation.

II. Symmetric bidirectional controller

In this case, each vehicle reacts identically to its predecessors as to its fol-
lowers. This can be viewed as a particular choice for cars on the road, but
it becomes even more natural when the subsystems are connected through
physical means, where a force applied between vehicles a�ects both of them
symmetrically. Again the most common model is where each vehicle is con-
nected symmetrically to one predecessor and one follower, e.g. as in [22, 23]
using a constant spacing policy. The controller is then

uk = K(s)(xk−1 − xk − c) + (2.4)

K(s)(xk+1 − xk + c), k = 1, 2, ..., N − 1

uN = K(s)(xN−1 − xN − c) .

For x0 one can assume to have no control, like in the unidirectional case, or
the symmetric situation of xN .

III. Asymmetric bidirectional controller

The asymmetric bidirectional controller assumes reactions of each vehicle to
both predecessors and followers, but possibly in a di�erent way. Asymmetric
bidirectional coupling to one predecessor and one follower has been proposed
in [23] as a way to improve the scaling with N of the least stable closed
loop eigenvalue of a chain of interconnected systems, in comparison with
the symmetric coupling. The corresponding controller writes, with constant
spacing policy:

u0 = K2(s)(x1 − x0 + c) (2.5)

uk = K1(s)(xk−1 − xk − c) +

K2(s)(xk+1 − xk + c), k = 1, 2, ..., N − 1

uN = K1(s)(xN−1 − xN − c) .
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In our model indeed, mostly considered in Chapter 4, the leading vehicle of
the asymmetric bidirectional controller will be reacting to its follower.

The three schemes can in fact be viewed as particular variants of an asym-
metric bidirectional controller. Schematically, this can be represented as on
Figure 2.1.

Figure 2.1: Scheme of asymmetric bidirectional controller ofN+1 vehicles.
The unidirectional controller would be the special case where
the arrows from k to k + 1 have zero gain. The symmetric
bidirectional controller would impose the same transfer function
on forward and backward arrows.

IV. Coupling to several forward and backward neighbors

A less stringent requirement that we can impose, while imposing some lo-
cality of feedback information, is that vehicle k can react to at most m1

preceding vehicles andm2 following vehicles, withm1 andm2 two constants
fixed independently of the chain length N . In Chapter 3.3 we will consider
this case with a very general controller, whose form we do not further specify.
We would thus have:

uk = f(ek, ek−1, ..., ek−m1 , ek+1, ..., ek+m2 , [...] ) . (2.6)

Here f is some arbitrary function and [...] denotes some other control vari-
ables; we will specify this model more concretely later in this Chapter, in the
specific context of discrete-time control in which we will analyze it later.

In this context, we can briefly discuss that the present thesis is restricted to
a single vehicle chain, with vehicles aligned a�er each other. This is indeed
somewhat restrictive. A very similar behavior can however be expected if
e.g. there is a junction somewhere with another vehicle chain; at the junction,
the corresponding vehicle would just have two followers, and this does not
seem to significantly change the game. Another structure that could be
directly related to the present study – although probably not really with
vehicles as applications – would be a la�ice withN subsystems along several
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dimensions. Some of the techniques can be carried over to this case; e.g. when
proving impossibility of string stability, if we assume the same disturbance
is applied on each vehicle that has index k along one dimension, then the
e�ective behavior of the la�ice is equivalent to the case of a chain along the
dimension of k.

2.2.7 Communication between the vehicles

In the above expressions, the controller at vehicle k only depends on local
measurements of relative positions. Given the e�iciency of modern com-
munication infrastructure, it would seem natural to also consider possibly
communication among neighboring cars in a vehicle chain. Controllers using
communication between the vehicles have indeed been considered previously
in the literature, see e.g. [13, 14, 22, 27, 28, 36–40]. In this model, some signals
such as control signal or measurements of relative distance at each vehicle,
are transmi�ed to neighboring vehicles; and possibly retransmi�ed further
down the chain; along a communication channel with o�en a linear analog
model (communication channel transfer function).

In this thesis, with the notable exception of Section 3.3, we will analyze a
se�ing with this linear analog model. In Section 3.3 though, in discrete-time,
we will allow a more general communication structure with enough freedom
to include quantization, digital encoding and packing, and other elements
closer to a true modern communication system. We detail the following
communication se�ings.

I. Communication from leading vehicle

Assuming perfect communication between the vehicles allows to circumvent
the issue of string stability [22]. Indeed, with perfect communication, vehicle
k can get very fast knowledge of e1 +e2 + ...+ek = xk−x0−kc, and thus a
controller could be designed on the basis of xk−x0−kc only, i.e. controlling
each vehicle independently. This does guarantee a well-controlled chain,
but it is not realistic. If we add a transfer function into the communication
channel which is not identically one everywhere, e.g. expressing a bandwidth
limitation, then this ideal picture does not hold anymore and the whole sys-
tem has to be analyzed again. In [15], it has been proved if there exists
time-delay in the communication channels it is not possible to guarantee
string stability with the constant space policy and time-headway would be a
requirement in the control structure proposed in [22].

In other words, the strategy proposed above would only work if we had
communication “from leader to each vehicle” with error independent of chain
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length N ; it is not clear how this would be done in practice. We will not
consider this case in the present thesis.

II. Cooperative Adaptive Cruise Control (CACC)

This structure has been most popular in the literature, see e.g. variations on
this theme in [27, 28, 36–40]. It assumes that the message sent by vehicle
k to its follower k + 1 is a filtered version of the input command uk. Such
communication has mostly been considered together with the time-headway
policy – one goal of the present thesis was precisely to disentangle such
things – and the corresponding model writes:

s2xk = K(s)(xk−1 − xk − c− hsxk) +H(s)rk + dk

u
′
k = 1

B(s)

(
K(s)(xk−1 − xk − c− hsxk) +H(s)rk

)
(2.7)

rk+1(s) = W (s)u
′
k(s) . (2.8)

Here u
′
k and rk+1 are scalar signals, respectively the signal sent by vehicle

k and the filtered signal received by vehicle k + 1. W (s) is the transfer
function of communication channel, including e.g. time delay and/or a low
pass filter. The “encoding” filter 1

B(s) and “decoding” filterH(s) express how
the controller relates its internal logic to those signals on the communication
line. One could for instance amplify the frequencies that will be a�enuated
by the communication line W (s), but there is some limitation to this: 1

B(s)

and H(s) must both be bounded to avoid amplification of communication
noise. In the analysis, obviously, only the product HW/B between signals
used in the internal logic will play a role.

In this thesis, we will consider the CACC se�ing in Chapter 3 (with h = 0
i.e. constant spacing policy) and in Chapter 5 (with time-headway spacing
policy).

III. More general linear communication between the vehicles

In Chapter 3, we prove it is not possible to guarantee string stability using
CACC without time-headway. That is why we consider a slightly more gen-
eral model of communication between the vehicles. We keep the assumption
that each vehicle is connected just with one vehicle in front. However, we do
not impose that the message u′k sent by vehicle k corresponds to its control
input: it can be a di�erent combination of the information available to vehicle
k, namely of the measured inter-vehicle distance error ek = xk−1 − xk − c,
and of the signal rk received from its predecessor. We moreover allow the
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communicated signals u
′
k and rk to be vectors of several components. This

could result for instance from stacking e1 and r1 into u
′
1, then both u

′
1 and

r2 will both be of dimension two, by stacking e2 and r2 we get u
′
2 of dimen-

sion three, and so on. In this way one could e�ectively send e1, e2, ... as a
vector towards vehicle k; however, each of them would be passed through
a (somewhat) realistic transfer function of the communication model. The
control structure with general communication and constant spacing policy
then writes:

s2xk(s) = K(s)(xk−1 − xk − c) +H(s)rk + dk

rk = W (s)u
′
k−1

u
′
k = F (s)(xk−1 − xk − c) +G(s)rk (2.9)

for k = 1, 2, ..., N , where now both F (s), G(s) are bounded transfer func-
tions, possibly chosen independently of H(s) and K(s). This control struc-
ture will be discussed in Chapter 3 and Chapter 5 of the present thesis.

IV. Digital communication between the vehicles

In the present thesis, we will depart only in Section 3.3 from the linear model
discussed in the previous points. In that case, we will barely specify any par-
ticular model for the communication. Indeed, the key point of our argument
there is just that, up to a few vehicles close to the boundaries of the chain,
each vehicle should behave in the same way (homogeneous controller).

For simplicity of the discussion, we will keep a deterministic model of com-
munication in this case. For an impossibility result, this is not really restric-
tive compared to realistic communication models as in [? ]. Indeed, we
do allow a nonlinear controller which would include protection mechanisms
against packet losses etc, but then we would just not include the fact that
packets are actually lost with a finite probability.

We defer the presentation of the corresponding controller to the model of the
discrete-time se�ing, later in the present Chapter. Possible generalizations
should be clear from the (rather simple) corresponding proof in Chapter 3.3.

2.3 String stability: general idea

In a nutshell, string instability is a situation where the spacing error be-
tween consecutive vehicles in a vehicle chain grows unbounded when the
number of vehicles increases to infinity, and string stability is the situation
where this is avoided. We intentionally keep the definition of spacing error
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loose at this point as there are several versions, to be detailed below. This
concept has spurred a lot of discussion and research since its definition in
[17, 18]. Basically, it is known since [17, 18] that string stability cannot be
achieved in a homogeneous string of interconnected second-order integra-
tors (e.g. acceleration- controlled vehicles), with any controller that is linear
and whose local control actions are determined from the relative distance
to a few directly preceding vehicles, using constant space policy. This has
a�racted a�ention as a prototypical, unavoidable shortcoming of linear sys-
tems [17, 18]. When each vehicle only reacts to its immediate predecessor,
a straightforward proof of string instability follows from the Bode integral
theorem [16]. Indeed, the transfer function from error on vehicle k−1 to error
on vehicle k takes the form of a complementary sensitivity function built on
a double pole at the origin; this transfer function unavoidably amplifies some
frequencies of the disturbance [22].

Let us recall this point in detail. Using the control structure (2.3) without
time-headway policy h = 0, and assuming dk = 0 for k > 0 i.e. only
a disturbance on the leading vehicle, the error on the relative distance as
vehicle k is easily computed to take the form:

ek = T (s)k−1 1

s2 +K(s)
d0 , k = 2, ..., N , (2.10)

with T (s) =
K(s)

s2 +K(s)
=

R(s)

1 +R(s)

where R(s) = K(s)/s2. Thus T (s) takes the form of a complementary
sensitivity function built on R(s). The la�er has a double pole at the ori-
gin, under the reasonable assumption that K(s) can have no zero at the
origin — i.e. in practice, assuming that K(s) cannot be made proportional
to the derivative of e(t), without any contribution from the value of e(t)
itself; this is a common assumption in realistic filters. To guarantee that ek
remains bounded, for any frequencies in the disturbance signal d0 and with
k arbitrarily large, it is then necessary in particular that |T (jω)| ≤ 1 at all
frequencies ω. One concludes that this is impossible for a stable system, from
the statement of Bode’s Complementary Sensitivity integral [16] which we
recall below.

Proposition 2.1: Assume that the loop transfer function R(s) of a system has
(at least) a double pole at s = 0. If the associated feedback system is stable,
then the complementary sensitivity function T (s) = R(s)

1+R(s) must satisfy:∫ ∞
0

ln | T (jω) | dω/ω2 = π
∑
k

1

q
(T )
i

≥ 0 ,
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where {q(T )
i } are the zeros of R(s) in the open right half plane. In particular,

if |T (jω)| < 1 at some frequencies, then necessarily |T (jω)| > 1 at other
frequencies.

So, no linear controller of the type uk(s) = K(s)ek(s) can achieve string
stability (under the reasonable assumption of no pole-cancellation, namely
that K(s) has no zero at s = 0).

As an illustrative example, we choose K(s) = 2s+ 1 a PD controller and we
plot the Bode diagram of the transfer function T (s) on Figure 2.3. Clearly,
theH∞ norm of the transfer function T (s) has a value larger than one. That
means if we a�ect the system with the disturbance input d0 in the frequencies
where | T (jω) |> 1, then the error function ek will grow unbounded as
k increases. This can lead to collision between the vehicles or too large
distances to still speak of an e�icient platoon. I.e., we certainly want to avoid
this situation in practice, and this is the purpose of imposing string stability.
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Figure 2.2: Bode diagram of the transfer function T (s) illustrating Proposi-
tion 2.1.

To investigate in more detail this problem and options to solve it, a distinction
among several string stability notions has been made. This distinction has
sometimes been somewhat implicit in the literature, or using one as a proxy
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for others. We thus deem it worthwhile to distinguish them with some care
in the following section.

2.4 Di�erent definitions of string stability

2.4.1 Common features

In the vast majority if not all of the existing literature, researchers have
concentrated on L2 norms over time of input disturbance signals dk and
output error signals ek. This may not be exactly the goal for the application,
where a BIBO type property looks like the most natural specification; this
would correspond toL∞ norms over time. However, theL2 approach has the
big advantage to have a direct corresponding frequency-domain equivalent,
via the Parseval equality. This is not di�erent from many other control appli-
cations. For the same reason of analysis tools, we will stick to this dominating
choice of the literature in the present thesis, whenever considering linear
systems.

Another common point between all our definitions is the disturbances con-
sidered. Two types of approaches have been most popular in the literature:
either considering disturbances on initial conditions, or considering distur-
bance input signals. These two versions are to some point equivalent, as
bad initial conditions can be viewed as resulting from disturbance inputs.
What is usually le� out of string stability studies, is the possibility of having
measurement noise; communication noise when there is communication;
and model uncertainties. These are important points in practice. For impos-
sibility results, clearly if we cannot satisfy string stability in absence of such
disturbances, we cannot satisfy it with them either. For working solutions,
this is another story.

In this thesis, like in the literature, we do not include explicitly disturbances,
besides on the input signals. However, we will impose typical robustness con-
straints on our designs, like avoiding pole cancellations or too large transfer
functions on the communication channel, such that one can expect other
disturbances to be kept in check if the system can counter input disturbances.
Of course, when we assume that disturbances a�ect the leader only (see
Chapter 4 below), it also means that we e�ectively discard these other types
of uncertainties on all vehicles, except the leader.
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2.4.2 Distinct treatments of the vector of vehicles

A first version of string stability is to avoid that a single, localL2-bounded dis-
turbance signal would have unbounded e�ects far o� in the chain; the Bode
integral argument indeed shows that particular local disturbances would
grow unbounded, unavoidably, with the simpler controllers (unidirectional
coupling to one vehicle in front, no time-headway, no communication). We
will call this version L2 string stability. Many researchers have concentrated
on this problem first [18, 22, 24–27], which is a prerequisite for stronger
versions of string stability.

Stronger versions require that an lp-bounded vector of L2-bounded distur-
bance signals induces a bounded vector of inter-vehicle distance errors in the
same norm [28]. For instance, (L2, l∞) string stability would request that if
each vehicle is subject to an L2-bounded input disturbance, then each inter-
vehicle distance error should remain L2-bounded. This appears to be the
most practical formulation, but it seems it has only been recently examined
in [29], and mentioned in [28]. Indeed, for the benefit of analysis tools, the
(L2, l2) version has been its most popular proxy in standard work [22, 23].

In this thesis, we aim to address these three di�erent definitions of string
stability, using di�erent control methods: so called L2, (L2, l2), and (L2, l∞)
string stability. The L2 norm of a time-dependent scalar signal is denoted

‖xk(t)‖ =
√∫ +∞
−∞ |xk(t)|2dt. For a time-dependent vector e.g. x(t) , a lower

index will indicate the discrete norm used on the vehicle index dimension.
The (L2, lp) norm is thus

|| x(.) ||(L2,lp)= (

N∑
k=0

(

∫ +∞

−∞
| xk(t) |2 dt)p/2)1/p .

In particular, the (L2, l2) norm is given by ‖x( · )‖2 =
√∑N

k=0

∫ +∞
−∞ |xk(t)|2dt

and the (L2, l∞) norm is ‖x( · )‖∞ = maxk (‖xk( · )‖).

Definition 1 (L2 String Stability): The vehicle chain is L2 string stable if,
with the closed-loop dynamics, for every ε > 0 there exists δ > 0 such that:
‖d( · )‖2 < δ implies ‖ek(t)‖ < ε, uniformly for all N = 1, 2, ... and for all
k ∈ {1, 2, ..., N}.

Definition 2 ((L2, l2) String Stability): The vehicle chain is (L2, l2) string
stable if, with the closed-loop dynamics, for every ε > 0 there exists δ > 0 such
that: ‖d( · )‖2 < δ implies ‖e( · )‖2 < ε, uniformly for all N = 1, 2, ... .
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Definition 3 ((L2, l∞) String Stability): The vehicle chain is (L2, l∞) string
stable if, with the closed-loop dynamics, for every ε > 0 there exists δ > 0
such that: ‖dj( · )‖ < δ for all j ∈ {0, 1, ..., N} (equivalently ‖d( · )‖∞ < δ)
implies ‖ek(t)‖ < ε for all k (equivalently ‖e( · )‖∞ < ε), uniformly for all
N = 1, 2, ... .

In a nutshell, the focus of string stability is that the configuration error must
be bounded uniformly in N . The weaker notion is L2 string stability, as it
bounds the sum of disturbance inputs but requests a bounded e�ect just
independently for each ek. This may look somewhat surprisingly asymmet-
ric, but it has been considered very much in existing research as a proxy for
stronger versions of string stability. Indeed, L2 string stability is a necessary
condition but not su�icient to guarantee the stronger versions: (L2, l2) string
stability, where the sum-of-squares of the ek must be bounded too; and
(L2, l∞) string stability, where the ek are considered individually but also
the input disturbances dk need to be bounded only individually. A priori,
the (L2, l2) and (L2, l∞) string stability are not in a definite relation with
respect to each other. Indeed, when N becomes infinite these norms are
not in a finite ratio of each other; one may seek to bound one norm by
another, but since this happens on both sides (disturbance input and error
output), it says nothing as such about the related property. For curious
readers, we can mention that the mirror of L2 string stability is obviously
impossible: i.e. allowing any bounded disturbance input on each vehicle, it
appears readily too demanding to request that the resulting vector of output
disturbances should be bounded in the (L2, l2) sense.

For practical purposes, it seems definitely realistic that disturbances could act
on each vehicle, and that in this case we want each inter-vehicle distance to
remain bounded. This makes (L2, l∞) the probably most relevant definition.
The (L2, l2) version may be related more to energy-type interpretations, and
appears to be somewhat harder to achieve as we will see. It can serve as a
proxy for (L2, l∞) as has been done in the literature, and is more constraining
than the necessary L2 version.

Remark 2.1 (admissible disturbances): These variants of string stabil-
ity sometimes restrict the structure of the disturbance vector, e.g. assuming
dj = 0 for all j > 0 to model disturbance on the leader only [19, 20], or the
opposite. Disturbances on the leader are indeed special, both practically as
this is the “active” boundary of the chain, and for analysis as the controller
on the leading vehicle is di�erent; we will see that some results can indeed
di�er.
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2.4.3 Precisions on previous work

Several papers have considered the impossibility of L2 string stability under
relative information only, and proved how alternative se�ings using e.g. abso-
lute velocity feedback (as in the time-headway policy, see [5, 9, 10, 13, 15, 24–
26, 28, 36–39]) do allow to achieve L2 string stability with appropriate tun-
ing. While this absolute velocity solution has gathered serious a�ention as
solving L2 string stability [24–27, 36–40], sometimes in conjunction with
inter-vehicle communication and in particular with simple PD controllers,
it appears that no result so far has established its power for the stronger yet
practically important (L2, lp) versions. Those have only been investigated
with even more information, e.g. controllers relying on absolute position
and/or on non-deteriorated knowledge of the leader’s velocity profile [29].
We precisely set to answer these missing points in this thesis.

It has also been proved, using symmetric bidirectional controller (2.4) it is
possible to guarantee L2 string stability with constant spacing policy be-
tween the vehicles, if only there exists disturbance input on the leading ve-
hicle [19, 20]. However, regarding (L2, l2) string stability, as well as the
less-studied (L2, l∞) string stability, the situation is more negative. In the
symmetric bidirectional control se�ing of [19, 20], it has been proved that
(L2, l2) norm string stability cannot be achieved using any linear symmetric
bidirectional controllers, see [22, 23].

2.5 Discrete-time se�ing

In this section, we translate the discussions given in the previous sections
from continuous-time se�ing to discrete-time se�ing. We give the model of
the system, and the three di�erent definitions of string stability in discrete-
time se�ing.

2.5.1 Model description

The dynamics of a chain of undamped second-order integrators, with discrete-
time controller, writes:

xk(t+ dt) = xk(t) + vk(t) dt+ uk,1(t) + dk,1(t) , (2.11)

vk(t+ dt) = vk(t) + uk,2(t) + dk,2(t) ,

where xk, vk ∈ R for k = 0, 1, 2, ..., N denote position and velocity respec-
tively, uk,1, uk,2 come from feedback control inputs, dk,1, dk,2 come from per-
turbation forces, and dt is the time increment of a typically digital controller.
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The model (2.11) is obtained by integrating the corresponding continuous-
time model over a finite time interval [t, t+dt). When accelerations uk(t) and
dk(t) are applied to the system in continuous-time, the associated discrete-
time inputs and disturbances are obtained via single integration of the signals
over [t, t+dt) for uk,2 and dk,2, and double integration of the same signals for
uk,1 and dk,1. Regarding control inputs, we may mention that by choosing
di�erent profiles for u(t) during the interval [t, t+dt), the values of uk,1 and
uk,2 can be specified independently.

We will consider the discrete-time model only under the more constraining
constant spacing policy, where the feedback signals uk,1, uk,2 must be based
on only relative displacement measurements ek = xk−1 − xk − c between
consecutive vehicles in the chain, including possibly relative speeds ėk =
vk−1 − vk, internal variables and memory; but not using any information
about absolute position nor absolute velocity. However, we will consider
a very general controller structure which can include nonlinear and digital
elements. Indeed, denoting by ek:` for ` > k the set of values ek, ek+1, ..., e`,
we will consider:

uk,1 = f1(e(k−m1):(k+m2), ė(k−m1):(k+m2), ck,+, ck,−, ξk, N, t) ,

uk,2 = f2(e(k−m1):(k+m2), ė(k−m1):(k+m2), ck,+, ck,−, ξk, N, t) ,

ck+1,+ = g1(e(k−m1):(k+m2), ė(k−m1):(k+m2), ck,+, ck,−, ξk, N, t) ,

ck−1,− = g2(e(k−m1):(k+m2), ė(k−m1):(k+m2), ck,+, ck,−, ξk, N, t) ,

ξk(t+ dt) = h(ξk(t), ξk(t− dt)..., ξk(t−Mdt), (2.12)

e(k−m1):(k+m2), ė(k−m1):(k+m2), ck,+, ck,−, N, t)

In this model, m1 and m2 are the number of agents ahead and behind to
which a vehicle can react, respectively; ck,+, ck,− ∈ Rnc withnc some bounded
integer are communication signals from k−1 to k and from k+1 to k respec-
tively; the ξk ∈ Rnξ for some finite integers nξ andM , allow for a dynamical
controller with finite memory of length M ; and f1, f2, g1, g2, h are arbitrary
functions, with some minimal regularity just to ensure that the solution to
the dynamical system is well-defined at all times. The controller (2.12) is
applied on all vehicles k ∈ (m1, N − m2), whereas adapted versions are
applied on the m1 leading and m2 last vehicles. The exact form of the la�er
will play no role in our analysis. We recall that, by tailoring the continuous-
time acceleration u(τ) that is applied to the physical system during the time
interval τ ∈ [t, t + dt) between two updates of the digital controller, it is
possible to independently assign the values of uk,1 = f1 =

∫ ∫ t+dt
t u(τ)dτ2

and uk,2 = f2 =
∫ t+dt
t u(τ)dτ .

All the controller functions can be nonlinear and time-dependent (e.g. modu-
lated at specific frequencies), thereby vastly extending the traditional LTI set-
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ting. They contain unidirectional coupling and symmetric bidirectional cou-
pling as special cases. They also allow arbitrary communication functions,
for instance with digital encoding and decoding. Like in the continuous-time
case and in line with the mainstream literature, we do not model the commu-
nication noise (e.g. packet drops) explicitly. Once a general communication
scheme is allowed this is not really a restriction, as we will see that even
assuming that the deployed communication infrastructure works perfectly
(say without any packet loss), one can establish impossibility results. The
way that communication noise intervenes is at the design stage, where one
would not allow to assume e.g. communication to all vehicles during the time
span dt.

The main constraints which will remain on our analysis of the discrete-time
se�ing are:

• no dependence on absolute position nor absolute velocity (i.e. constant
spacing policy, no time-headway)

• homogeneous controller, i.e. the functions f1, f2, g1, g2, h do not de-
pend on vehicle index k and the internal variables are initialized with
the same default values for each k. This can obviously be relaxed to
approximately homogeneous, or to periodically homogeneous. In fact
we believe that heterogeneous control could not essentially solve the
issue of string instability, but we do not cover this in full generality in
our proof.

• finite discretization time: the time step dt will be kept constant, al-
though possibly very small, as the chain length N grows.

2.5.2 Di�erent definitions of string stability

We now translate the di�erent definitions of string stability to the discrete-
time se�ing.

Definition 4: The `2 string stability requires that there exist some C2, C1 > 0
independent of N such that: for any disturbances satisfying

N∑
k=0

∑
n

|dk,1(ndt)/dt2|2dt+

N∑
k=0

∑
n

|dk,2(ndt)/dt|2dt < C1

, it is ensured that
∑

n |ej(ndt)|2dt < C2 for each j.
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Problem definition

Definition 5: The (`2, `2) string stability requires that there exist someC1, C2 >
0 independent of N such that: for any disturbances satisfying

N∑
k=0

∑
n

|dk,1(ndt)/dt2|2dt+

N∑
k=0

∑
n

|dk,2(ndt)/dt|2dt < C1

, it is ensured that
∑N

k=0

∑
n |ek(ndt)|2dt < C2.

Definition 6: The (`2, `∞) string stability requires that there exist C1, C2 > 0
independent ofN such that: for any disturbances satisfying

∑
n |dk,1(ndt)/dt2|2

dt < C1 and
∑

n |dk,2(ndt)/dt|2dt < C1 for all k, it is ensured that
∑

n

|ej(ndt)|2dt < C2 for all j.

The dt factors are introduced as dk,1 and dk,2 are supposed to result from
integrating (twice or once) a continuous-time acceleration perturbation sig-
nal dk(t) over the time interval [t, t + dt). In principle we could just choose
units such that dt = 1, but we choose to keep it for the benefit of later
discussion. Similarly to the continuous-time case, Definition 5 is stronger
than Definition 4, as it requires the influence of a same disturbance signal
to not only be bounded on each ej , but also on their sum-of-squares; this
essentially supposes exponential decay of the influence of dk,1 on ej as j
gets farther away from k. Definition 6 is similarly stronger than Definition
4, as it requires the same e�ect but allows stronger disturbances. Its relation
to Definition 5 appears undetermined in general.

Remark 2.2: Those definitions were initially stated in the linear context,
where the constants C1 and C2 can be rescaled, such that in this context it
makes no di�erence in which order they are chosen (e.g. variants like “for
each C1, there exists a C2” become equivalent to our statement). In the
nonlinear context this might di�er, and we have chosen the weaker con-
straint: this ensures that our impossibility result in Chapter 3 will also hold
for stronger variants of the definitions.

We are now ready to state the aim of this thesis more precisely.

2.6 The aim of this thesis

The problem se�ing for the thesis is the following.

• We consider the dynamics of a vehicle chain where every vehicle fol-
lows 2nd order dynamics, according to (2.1) in continuous-time or (2.11)
in discrete-time.
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The aim of this thesis

• The aim of the feedback controllers uk of each vehicle is to stabilize
configuration errors ek of the vehicle chain, that is the distances be-
tween consecutive vehicles

• Moreover, when subject to local force noise dk, the controllers must
keep the errors ek bounded independently of the chain length N , in
the sense of satisfying string stability according to some selected Def-
initions 1-6.

• As illustrated in Section 2.4, the feedbacks uk will have to be designed
under various information constraints, among which the most impor-
tant ones are: dependence on local variables only and, except for time-
headway where absolute velocity can play a role, relying only on rela-
tive position measurements.

The particular theoretical interest in this problem comes from the observa-
tion in [17, 18] that, at least for some design constraints and string stabil-
ity definition, there exists no linear controller at all which would solve this
task. Subsequent investigation, e.g. proposing time-headway or bidirectional
coupling, have provided working designs or further impossibility results for
particular scenarios. The aim of this thesis is to complete the picture by pro-
viding comprehensive results about which scenarios (combination of design
constraints and string stability definition) are possible or impossible to solve.

In order to facilitate navigation among the various results of this thesis, we
anticipate the conclusions in the following tables. The meaning of each item
should be clarified by reading the corresponding section of the thesis. Con-
versely, the context of a particular result later in the thesis can be checked by
referring to the general tables below. The previously existing results are indi-
cated with lowercase le�ers, our contributions in this thesis are highlighted
with uppercase le�ers.
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Problem definition

Table 2.1: Satisfying string stability with disturbances on all vehicles and
no time-headway (h = 0). We only list our generalizations with
respect to existing results, which are worked out in Chapter 3.

Generalized CACC communication (2.7), IMPOSSIBLE
unidirectional coupling;

any definitions
General linear scalar communication (2.9), IMPOSSIBLE

unidirectional coupling;
any definitions

General vector communication , IMPOSSIBLE
(2.9), finite K(0) unidirectional

coupling; (L2, l2)

Sensor dynamics breaking, IMPOSSIBLE
relative position symmetry

unidirectional coupling; any definitions
Any Digital Controller IMPOSSIBLE

(2.12), possibly nonlinear,
communicating, bidirectional;

any definitions

Table 2.2: Satisfying string stability with disturbance on the leader only
and no time-headway (h = 0). Our new contributions are in
capital le�ers and worked out in Chapter 4.

Symmetric Bidirectional Coupling Asymmetric
Bidirectional Coupling Bidirectional

Coupling
L2 ≡ (L2, l∞) possible with POSSIBLE

advanced linear controller
WITH PD

(L2, l2) impossible POSSIBLE
WITH PD
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Table 2.3: Satisfying string stability with time-headway and unidirec-
tional coupling (reacting only to the preceding vehicle). Our new
contributions are in capital le�ers and worked out in Chapter 5.

finite K(0) e.g. infinite K(0) e.g.
PD control PID/Integral Controllers

L2 possible possible
(L2, l2), IMPOSSIBLE POSSIBLE
|| d0 ||2 6= 0

(L2, l2), POSSIBLE POSSIBLE
|| d0 ||2= 0

(L2, l∞) POSSIBLE POSSIBLE
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Chapter 3

Comprehensive impossibility
results for string stability

The objective of the present chapter is to narrow down the conditions of
impossibility results towards a more precise understanding of string stability,
and consequently hopefully related issues. As a small variation, we con-
sider both discrete-time and continuous-time se�ings for the impossibility, in
which discrete-time se�ing has the advantage of being closer to digital con-
troller implementations and of incorporating related “natural” constraints in
a direct way; the conclusions should carry over in practice to the continuous-
time se�ing as long as numerical discretization schemes allow a faithful mod-
eling of the system. We work only with relative state measurements between
neighboring subsystems, e.g. we do not allow additional absolute velocity
sensors as in the time-headway spacing strategies. In accordance with the
existing literature, we do not model measurement errors nor communication
noise explicitly. For impossibility results, this is not a restriction. Our main
approach is to relax some of the conditions found in the literature, and show
that still under these relaxed conditions, achieving string stability, according
to any of the three definitions provided above, is impossible. Specifically:

1. In Section 3.1, we consider a more general model of linear communi-
cation in continuous-time, and study it with constant spacing policy,
while most of the literature about communicating vehicles has also
combined it with time headway. We prove how such general com-
munication alone, i.e. without resorting to a time-headway strategy,
still makes it impossible to guarantee string stability. This extension
is done under the common assumption of unidirectional coupling with
one vehicle in front.
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Communication between the vehicles

2. In Section 3.2, we consider that the realistic dynamics of relative dis-
tance sensors are in fact not exactly dependent on relative positions
between the vehicles. Everything still depends on relative positions
though, of sensor parts with respect to the vehicles and so on. It there-
fore comes at no surprise that however strongly one would amplify
these e�ects, it does not solve the string instability issue. This is meant
as an illustration confirming that string stability is robust to dynamic
model details, as long as one does not explicitly resort to an external
reference frame (like for measuring absolute velocity).

3. In Section 3.3, we provide a most general string instability result in
discrete-time. We indeed establish that enabling nonlinear controllers,
any couplings to a few vehicles in front and behind, any (nonlinear,
quantized,...) local communication, and controller dependence on the
chain length and on time explicitly, all together do not allow to design a
controller which would achieve string stability with respect to any dis-
turbances acting on the subsystems of the chain. We prove this for the
various string stability definitions, and with as only key constraints: (i)
the controller is homogeneous, i.e. each vehicle in the chain reacts in
the same way to its neighbors; (ii) the controller discretization step dt
remains bounded away from zero despite increasing chain length.
Once the se�ing has been identified, the proof comes down to working
out a counterexample with rather basic mathematical concepts, and
we believe that the contribution mainly rests on the unprecedented
generality of the conclusions. Essentially: string instability in a chain of
second-order integrators is an unavoidable property of distributed sens-
ing, for a (much) larger class of controllers than LTI systems. The only
realistic opening le� by this result is, we would say, the assumption
of a homogeneous chain. We would rather conjecture though, that
designing heterogeneous chains would not allow to solve this issue
either — although of course we may be wrong on this point.

The insight from this chapter could allow to seriously narrow down researchers’
a�empts at designing string stable controllers, in particular by resorting to
nonlinear control means. Indeed, as a conclusion of Section 3.3, it would
rather seem that string stability in this general definition would be too strong
a goal for any system based on relative measurements only.

3.1 Communication between the vehicles

In this section we consider the problem of impossibility of string stability
using communication between the vehicles in which each vehicle is only
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Comprehensive impossibility results for string stability

interconnected with one preceding vehicle, and in the case where we use con-
stant space policy between the vehicles. The presence of communication has
indeed been considered mostly in combination with a time-headway spacing
policy, which thus combines two facilitating elements: communication, and
measurement of absolute velocity. We here want to disentangle them, and
consider a more general linear communication model than in the existing
literature.

3.1.1 Cooperative Adaptive Cruise Control (CACC)

We first consider the impossibility of string stability using Cooperative Adap-
tive Cruise Control (CACC). With respect to the existing literature, this will
clarify in particular whether we need a time-headway policy to guaranteeL2

string stability or not.

Computing the dynamics of ek = xk−1 − xk − c from the one of xk in the
control structure (2.7) without time-headway, and defining zk = [ek ; u

′
k−1−

u
′
k], we get the closed-loop dynamics described by:

zk+1 = T(s) zk +

[ 1
s2+K
1
B · −K

s2+K

]
(dk − dk+1) (3.1)

in which

T(s) =

[
K

s2+K
HW
s2+K

K
B · s2

s2+K
HW
B · s2

s2+K

]
.

This takes the form of an iteration for the propagation of disturbances from
vehicle k to vehicle k+ 1, so for each frequency s = jω we must investigate
the stability of the matrix T(jω).

In the following Theorem, we prove it is not possible to guarantee any of the
definitions of string stability mentioned in Chapter 2 for a vehicle chain using
such CACC and when there is no time-headway. Before giving the results,
let us summarize the constraints again.

• Transfer function W is imposed. W (jω) is bounded at all frequencies
and decreases towards zero at high frequencies ω. This is a model
transfer function, which might have some uncertainty; this must be
taken into account in the sense that we cannot rely on its perfect knowl-
edge to ensure some cancellations.

• For stability, s2 +K must have all zeros with negative real part.
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• For stability, we need a negative real part for all eventual poles of
1/B, H, W .

• For a realistic communication, we must give some minimal conditions
that avoid to amplify communication noise unboundedly. This has
not been included into (2.7) because we will replace it by a simple
constraint; indeed, by adding communication noise, the above ma-
trix equations include terms in H

K and H
KB multiplying noise terms.

Therefore we will just require that at least H(s)/(B(s)K(s)) remains
bounded for all s = jω.

Theorem 3.1: It is not possible to guarantee any of the Definitions 1-3 of string
stability, in a vehicle chain model with Cooperative Adaptive Cruise Control
given by (2.7), with H(s)W (s)/(B(s)K(s)) bounded for all s = jω and
without time-headway (h = 0).

Proof: We must thus prove that L2 string stability cannot be achieved. The
key step is to notice that T(s) is a singular matrix for all s, since the right
column equalsHW/K times the le� column. Thus the single nonzero eigen-
value of T (s) equals its trace,

trace(T(s)) =
K + HW

B s2

K + s2
.

We can rewrite trace(T(s)) = R
1+R with R =

K+HW
B

s2

s2(1−HW/B)
=

1+HW
BK

s2

s2(1/K−HW/BK)
.

SinceHW/BK is bounded, the numerator ofR tends to 1 as s tends to zero,
while 1/K − HW/BK cannot be tuned to have a pole precisely at s = 0.
Therefore, R has at least a double-pole at s = 0 and we are in the condi-
tions to apply Proposition 2.1 mentioned in Chapter 2 (Bode complementary
sensitivity integral). This implies that there will be a range of frequencies ω
where T(jω) has an eigenvalue with norm |trace(T(jω))| larger than 1. The
corresponding eigenvectors,

[ek ; vk−1 − vk] ∝ [K(jω) ; −ω2/B(jω)] ,

unavoidably make the system string unstable.

Since L2 string stability is a necessary condition for (L2, l2) and (L2, l∞)
string stabilities, we can conclude the proof. �

3.1.2 General communication scheme

We now want to investigate whether a more general (linear) communication
scheme could allow to drop the requirement for time-headway.
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Similarly to the case of CACC using the control structure (2.9), by defining
zk = [ek ; vk−1] we can reformulate the dynamics as:

zk+1 = T(s)zk +

[ 1
s2+K

0

]
(dk − dk+1) (3.2)

in which now

T(s) =

[
K−HWF
s2+K

HW (I−GW )
s2+K

F GW

]
.

Here I is the identity matrix, emphasizing that vk might be a vector and
F,G,H,W matrices/vectors of appropriate size.

Before giving the results, let us summarize the constraints again in this set-
ting.

• Transfer function W is imposed. W (jω) decreases towards zero at
high frequencies ω. This is a model transfer function which might have
some uncertainty, i.e. we cannot rely on perfect tuning/cancellation
with respect to W .

• For stability, s2 + K must have all zeros with negative real part; K
can have at most one more zero than pole (e.g. term proportional to
velocity, but not to acceleration).

• For stability, we need a negative real part for all eventual poles of F,G
H,W .

• G(jω) and F (jω) must be bounded for all ω to avoid amplification of
communication noise, while H may be of a similar form as K .

We do not have the complete picture for this case, but we can give two
complementary results: one with bounded controllers, and one when com-
munication signals u

′
k are scalar.

Theorem 3.2a: The vehicle chain with communication-based control (2.9) can-
not achieve (L2, l2) string stability with a bounded control gain K(0).

Proof: A problem can be identified in the neighborhood of s = 0. The proof
starts by showing thatT(0) has an eigenvalue 1. This is easily seen by noting
that

T(0)− I =

[ −HW
K F −HW

K (GW − I)
F (GW − I)

]
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is obviously singular. A signal d0 concentrated on arbitrarily low frequen-
cies, can then propagate along the whole chain without significant damping,
preventing the satisfaction of (L2, l2) string stability; for a more explicit
argument on this fact, see the proof of Theorem 5.2 in Chapter 5. The only
way to avoid that this leads to unbounded ‖e‖2, is to avoid that such d0 gets
into the chain in the first place, i.e. making 1

s2+K(s)
→ 0 as s approaches 0.

�

So, using any controller K(s) with a bounded DC gain, it is impossible to
guarantee (L2, l2) string stability. We do not mention the other definitions,
because in fact we believe that the following stronger result should also hold
for communication signals of arbitrary dimension. Indeed, several (moder-
ately handwaving) arguments would suggest that nothing significant can
be won by sending a vector signal of information to a follower, instead of
sending a particular scalar signal that would be of interest for the control
decisions. We were not able however to explicitly analyze the system in its
full generality, beyond the case where the u

′
k are scalar (i.e. one-dimensional)

signals.

Theorem 3.2b: The vehicle chain with communication-based control (2.9) can-
not achieve L2 string stability, when each u

′
k is a scalar signal and K,G,W are

rational transfer functions satisfying the conditions summarized before Theorem
3.2a.

Proof: We use a Routh-Hurwitz type criterion for discrete-time systems ([41]).
For a two-dimensional state matrix A, it states that the eigenvalues belong
to the open unit circle provided

|det(A)| < 1 and

|det(A)∗trace(A)− trace(A)∗| < 1− |det(A)|2 .

The determinant of T(s) imposes

|det| =
∣∣∣∣GWK −HWF

s2 +K

∣∣∣∣ =:
|A|

|s2 +K|
≤ 1 ,

where we have defined A = (GK −HF )W . Next, we need

1 ≥ |trace− trace∗det|
1− |det|2

=

∣∣∣∣1 +
s2

1− |det|2

(
GW − 1

s2 +K
− (GW − 1)∗

(s2 +K)∗
A

s2 +K

)∣∣∣∣ .
Since s2

1−|det|2 is real negative for s = jω and |det| < 1, the above equation

cannot be satisfied if (GW − 1)/(s2 + K) takes a real negative value for
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some s = jω. Indeed, for any c1, c2 real negative and c3 complex but of norm
smaller than one, we have that 1 + c1c2(1 − c3) lies outside the unit disk.
Thus to conclude the proof, there remains to show that (GW − 1)/(s2 +K)
will always take a real negative value for some s = jω.

Since s2 + K has two more zeros than poles, and all zeros must satisfy
stability, we have that the phase Bode plot of 1/(s2 +K) goes down at least
by 180 degrees, to end at−180 degrees for ω tending to infinity. In contrast,
GW − 1 has as many zeros as poles; all poles are stable, implying 90 degrees
down in the phase Bode plot, such that overall with GW − 1 we either go
down or stay, and again we end at −180 degrees for ω tending to infinity.
Now assume as a first possibility, that GW − 1 starts at another value than
−180 degrees. In this case, it must go down nontrivially, i.e. we must go sown
by strictly more than 180 degrees to end up at −360 degrees: somewhere in
between, there will be a 180 degree phase, proving impossibility. (Note indeed
that we forbid any perfect cancellation with GW = 1 at a target value of ω.)
So the only choice le� is that GW starts at -180 degrees. Then for K(0)
finite we would have a negative real phase at s = 0, thus impossible. There
remains the case with K having a pole of order m > 0 at s = 0. In this case,
1/(s2 +K) has m of its zeros at s = 0, and 1

sm
1

s2+K
has a phase Bode plot

going down by (180 +m90) degrees overall. This means, GW−1
s2+K

would start
with a phase of −180 +m90 degrees at s = 0, then go down by 180 +m90
degrees to end up at −360 degrees for ω tending to infinity, with m > 0.
Again, this implies a phase of −180 degrees for some intermediate ω. There
are no possibilities le�, so the proof is concluded. �

The achievement of string stability with communicated signal vectors thus
remains a possibility, in theory.

3.2 Modeling dynamic sensor parts

The main di�iculty in achieving string stability is to rely on measurements
of only relative positions ek. We thus wondered whether a positive result
could be obtained in some way if we can use slightly more than the relative
information between the vehicles.

In particular, one can take into account that the sensors are usually composed
of two parts, mounted on the rear of car k and the front of car k + 1, and
whose relative distance is actually measured. Those mounts are not exactly
static, and one might wonder if it could be beneficial to tune their dynamics
in some way. We thus consider the rear and front parts to be linked to the
vehicle via transfer functions
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x
(r)
k = M (r)(s)xk , x

(f)
k = M (f)(s)xk ,

while the actual measurement replaces ek by

e′k = x
(r)
k−1 − x

(f)
k .

We consider the system (2.1). Writing the dynamics with ek replaced by e′k,
without time-headway nor communication, yields

ek =
M (r)(s)K(s)

s2 +M (f)(s)K(s)
ek−1 +

1

s2 +M (f)(s)K(s)
(dk−1 − dk) , (3.3)

for k = 1, 2, ..., N . There remains to clarify the mount models M (r) and
M (f). The sensor part dynamics, is itself sensitive to its relative position
with respect to the vehicle on which it is mounted, e.g. x(r)

k − xk. Thus,
consistently with the rest of this section, we should have

s2x
(r)
k = K(r)(s) (xk − x

(r)
k )

and the same on the front sensor part, which yields

M (r) =
K(r)

s2 +K(r)
,

M (f) =
K(f)

s2 +K(f)
. (3.4)

It is not hard to see that this implies: tailoring K(r) and K(f) cannot solve
the string stability issue.

Theorem 3.3: The vehicle chain with dynamics (3.3),(3.4) cannot achieve L2

string stability, namely for any choice of stabilizing K(s), K(r) and K(f) there
will always be a frequency s = jω at which a perturbation is amplified expo-
nentially along the vehicle chain.

Proof: We rewrite (3.3) as

ek = M (r) ·
1

M (f)
·

K ′(s)

s2 +K ′(s)
ek−1 =: A(s) ek−1 (3.5)

where K ′(s) = M (f)(s) ·K(s). In this product of 3 transfer functions, M (r)

takes the form of a complementary sensitivity function, with loop transfer
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function K(r)(s)/s2 satisfying the requirements of Proposition 2.1; M (f)(s)
does as well, although here its inverse appears; and the last factor T ′(s) =
K′(s)

s2+K′(s) again is a complementary sensitivity function, with loop transfer

function K ′/s2 = M (f)K/s2. The la�er must of course still be stabilizing
and since M (f)(0) = 1, K ′/s2 has the same double pole at s = 0 as K/s2,
i.e. again Proposition 2.1 applies. Overall, we thus have∫ ∞

0
ln|A(jω)|.dω/ω2 =

∫ ∞
0

ln|M (r)(jω)|.dω/ω2

−
∫ ∞

0
ln|M (f)(jω)|.dω/ω2

+

∫ ∞
0

ln|T ′(jω)|.dω/ω2

=
∑
k

1

q
(M(r))
k

− 1

q
(M(f))
k

+
1

q
(T ′)
k

,

where the qk denote the zeros associated to the transfer functions; for no-
tational simplicity we use a single sum over the zeros of the di�erent loop
transfer functions, assuming appropriate padding if their number of zeros
di�er. Like for the basic case mentioned before (see Proposition 2.1), achieving
string stability requires that the last line is negative. The only way to obtain
this is ifK(f)(s)/s2 has zeros in the open right half plane, without having the
same zeros in the other terms. However, the la�er would mean that M (f)(s)
has zeros in the right half plane, unmatched by the other transfer functions,
and by (3.5) this would imply that the vehicle chain has a pole in the right
half plane i.e. it is unstable. �

Another case of sensor dynamics that is even easier to check is delay. Con-
sidering that distances are deduced from a time-of-flight measurement, one
could say that the actual measurement is xk−1(t − τ) − xk(t) rather than
xk−1(t) − xk(t). In Laplace domain, this amounts to the previous situation
with

M (r) = exp(−sτ) , M (f) = 1 .

The dynamics thus comes down to ek = exp(−sτ)T (s) ek−1 with T (s) the
transfer function in absence of delay. This dynamics trivially has the same
problems for s = jω, as |T (jω)| in absence of delay.

So, we can conclude, by using a realistic class of sensor dynamics, it is not
possible to circumvent the problem of L2, (L2, l2) nor (L2, l∞) string insta-
bilities. As mentioned earlier, we were motivated to consider this particular
variation in order to illustrate that the impossibility results for string stability

41



String stability is impossible with any homogeneous controllers that can be
nonlinear, time-varying, and locally communicating

are robust to nontrivial modifications in the dynamical model. Based on
Theorem 3.3, we would dare to conjecture that adding any (reasonable) model
detail to the vehicle dynamics, as long as it involves relative distances only,
would maintain the string instability problem.

3.3 String stability is impossible with any homoge-
neous controllers that can be nonlinear, time-
varying, and locally communicating

In this section, we significantly extend the impossibility results of string
stability, from the LTI se�ing to any homogeneous controllers that can be
nonlinear, unidirectional, bidirectional, time-varying, and locally communi-
cating. We should mention this important point that we consider discrete-
time se�ing model called digital controllers in this section.

The main idea of the impossibility proof is to construct a disturbance input
that is badly countered by any distributed controller. While exactly solvable
situations may appear hard to find, we take advantage of a simple construc-
tion that focuses on the central part of the chain only, in order to give a lower
bound on the induced error. As a result, the counterexample does not need to
rely on linearity, and in fact it is not hard to consider with the same approach
possibly other variants of string stability than Definitions 4-6, for instance
an (l∞, l∞) type which would correspond to the maybe most practical BIBO
criterion.

3.3.1 A badly countered disturbance situation

Consider disturbances of the following form:

dk,1(t) = dk,2(t) = 0 for all t < 0, k = 0, 1, ..., N ; (3.6)

dk,1(t) = αkdt2

N ,

dk,2(t) = αkdt
N

}
for all t = 0, dt, ..., T, and k = 0, 1, ..., N ;

dk,1(t) = dk,2(t) = 0 for all t > T, k = 0, 1, ..., N ,

with constants α > 0 and T > 0 to be specified later.

We note that this disturbance takes a very particular form, maybe at odds
with the intuitive picture of a disturbance propagating along a chain. How-
ever, it fits with the definitions of string stability in Chapter 2, and it is a
possibility – although maybe not too probable – for a disturbance acting
on a distributed system. To show impossibility, a single counterexample is
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su�icient. Maybe this indicates that the general definition of string stability
is too demanding for vehicle chains. However, in this sense, we must mention
that the next Chapter 4 shows how if we restrict disturbances to the leader
only, instead of allowing such distributed diturbances, then string stability
can be recovered, counter to common consensus about the problem se�ing.
For other applications than vehicles, the proposed perturbation may suggest
a way to disrupt large chains with arbitrary couplings. Anyways, the follow-
ing mathematical analysis stands as a fact.

To compute the evolution of the system under these disturbances, the trick
is to exploit the finite propagation speed of signals along the chain — namely
at most m = max(m1,m2) vehicles per time step — in order to restrict our
a�ention to a central subset of vehicles, for which the computations are easy.

• We thus consider the discrete-time system (2.11) with general controller
(2.12) presented in Chapter 2. Consider the evolution of ek = xk−1−xk and
ėk = vk−1 − vk over one time step, when the N + 1 vehicles all start with
the same state xk(0) = vk(0) = 0 for all k, and with controllers initialized
at ξk = ck,+ = ck,− = 0 for all k. We get

ek(dt) = ek(0) + dt ėk(0) + uk−1,1(0)− uk,1(0) + dk−1,1(0)− dk,1(0)

= uk−1,1(0)− uk,1(0) + αdt2/N ;

ėk(dt) = ėk(0) + uk−1,2(0)− uk,2(0) + dk−1,2(0)− dk,2(0)

= uk−1,2(0)− uk,2(0) + αdt/N .

Here we have dropped all the arguments of u1 and u2 except time, to avoid
heavy notation. It is clear however that, since the internal variables are all
equal at time t = 0, the controller values are too, i.e. uk−1,1 = uk,1 and
uk−1,2 = uk,2, for all vehicles that are not in the “boundary layer” with
specific controllers, i.e. for all vehicles with m1 < k < N − m2. For those
central vehicles, completely irrespectively of the controller chosen, we have

ek(dt) = αdt2/N and ėk(dt) = αdt/N , for all m1 < k < N −m2 .

For the same reason, the ck,+(dt), ck,−(dt) and ξk(dt) of all these vehicles
will be equal.

• Now consider a time t = ndt for some integer n > 0 and assume that all
the state variables ek(t) = ej(t), ėk(t) = ėj(t), ck,+(t) = cj,+(t), ck,−(t) =
cj,−(t) and ξk(t) = ξj(t) for all j, k ∈ [Nlead, N − Ntail] for some integers
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Nlead, Ntail > 0. Slightly extending the above example, we get:

ek(t+ dt) = ek(t) + dt ėk(t) + uk−1,1(t)− uk,1(t) + dk−1,1(t)− dk,1(t)

= ek(t) + dt ėk(t) + αdt2/N = ej(t+ 1)

for all j, k ∈ [Nlead +m1, N − (Ntail +m2)] ;

ėk(t+ dt) = ėk(t) + αdt/N = ėj(t+ 1)

for all j, k ∈ [Nlead +m1, N − (Ntail +m2)] , (3.7)

and similarly we maintain ck,+(t) = cj,+(t), ck,−(t) = cj,−(t) and ξk(t) =
ξj(t) for j, k ∈ [Nlead +m1, N − (Ntail +m2)].

We can thus iterate the above argument and get the following property.

Lemma 3.1: Consider the system (2.11),(2.12) subject to the particular distur-
bance (3.6) and zero initial conditions. Then for any (well-defined) controller
choice, the solution satisfies:

ek(t) = t(t+ dt) α / (2N) (3.8)

ėk(t) = t α/N ,

for all t ∈ [0, T ] and all k ∈ ( tdtm1, N − t
dtm2).

Proof: The main argument is provided by the explanations preceding the
statement. From (3.7), it is first clear that ėk is obtained as a sum of t/dt
times the bias αdt/N . Then replacing this into the expression of ek in (3.7),
one observes that the increment of ek at time n = t/dt is linear in n, so the
standard formula for a linearly progressing series gives the result. �

To be useful at time t, the solution (3.8) of Lemma 3.1 should cover at least 1
vehicle, i.e. N − t

dt(m1 + m2) ≥ 1. For fixed m1,m2 and dt, we can ensure
to have a valid solution for at least N/2 vehicles over the interval [0, T ],
when taking T = N dt

2(m1+m2) . Asm1 andm2 are constants independent ofN ,
we just mean that we would select the duration T of the “bad” disturbance
applied at the inputs, to be of order N dt.

3.3.2 Consequences for string stability

We now investigate what the above construction implies for string stabil-
ity. First take Definition 4 defined in Chapter 2. To satisfy the condition
on dk,1, dk,2, we must thus have, by using the formula for a quadratically
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progressing series,

N∑
k=0

∑
n

|dk,1(ndt)/dt2|2dt+
N∑
k=0

∑
n

|dk,2(ndt)/dt|2dt

= 2T ( α
2N )2

N∑
k=0

k2 = 2T ( αN )2 (N
3

3 + N2

2 + N
6 ) < C1

or in other words, α of order 1/
√
NT . This fixes the maximum amplitude

that we can give to the input disturbance, as a function ofN and T . Looking
at the output, for the vehicles covered by Lemma 3.1, we then have

∑
n

|ej(ndt)|2dt & ( α
2N )2

T/dt∑
n=0

[n(n+ 1)]2dt5 ∼ ( αN )2( Tdt)
5dt5 ∼ N dt4 .

Here we have replaced α by 1/
√
NT as just discussed and T by N dt as

suggested a few lines earlier, and we use the fact that a series progressing as
{tk}t=0,1,...,M will have a leading term of order Mk+1 – just to get an order
of magnitude, as we denote by & and ∼. The > comes from the fact that
on the right we compute the sum for t = 0, 1, ..., T/dt, whereas the actual
perturbation on ej will of course remain nonzero, in general, for many t > T
as well.

The basic conclusion is: the relevant norm of ej grows at least linearly in N
(for large values of N ). Thus despite allowing a very general choice of homo-
geneous controllers, `2 string stability in the sense of Definition 4 cannot be
satisfied — unless dt converges to zero with increasing N . We will comment
about dt in the next subsection.

A similar argument can be repeated for the other definitions of Chapter 2,
only the relative scalings of α,N, T, dt must be adapted. Altogether, this
yields the following results.

Theorem 3.4: For the system (2.11),(2.12), there exist disturbances dk,1 and dk,2
satisfying the required respective bounds according to the definitions of Chapter
2 and such that, irrespectively of any (well-defined) controller choice, for large
N :

• [`2, Definition 4]:
∑

n |ej(ndt)|2 dt grows as Ndt4;

• [(`2, `2), Definition 5]:
∑N

k=0

∑
n |ek(ndt)|2 dt grows as N2dt4;

• [(`2, `∞), Definition 6]:
∑

n |ej(ndt)|2 dt grows as N2dt4 .
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Proof: The computation for Definition 4 is given above. For Definition 5 it
is the same, but summing the disturbance over the number of vehicles for
which Lemma 3.1 is valid – this can be of order N as mentioned in the last
sentence of Section 3.3.1. For Definition 6, the disturbance can be larger i.e. α
of order 1/

√
T , and with respect to the Definition 4 computation this adds a

factor N to
∑

n |ej(ndt)|2 dt. �

For dt fixed, this result establishes impossibility to satisfy any of the defini-
tions of string stability given in Chapter 2, in a very general se�ing, allowing
unidirectional or bidirectional symmetric or asymmetric coupling, looking a
number of vehicles ahead and behind (as long as that number is independent
ofN ), communicating with neighbors with general protocols, and processing
all this in an arbitrary nonlinear control system with memory.

Remark 3.1: We may consider the generalization of this impossibility result
to other graph structures than a chain. In [32], the behavior of a la�ice
of simple linearly coupled systems under stochastic noise is examined as a
function of la�ice dimension, and higher-dimensional la�ices turn out to
perform be�er. The investigation of [32] is motivated by more profound
implications for the stability of physical ma�er, which a�er all appears to
be governed by forces depending on relative states. Implications are also
expected for the numerical simulation of related PDEs. It is not hard to
extend the analysis towards our Theorem 3.4 to la�ices of possibly nonlinear
systems:

• The number of time steps over which we can compute before the bound-
ary e�ects appear everywhere in the la�ice is T = N1/D , with D the
la�ice dimension and N the total number of subsystems. We can then
keep our counterexample with dk increasing along one dimension of
the la�ice from 0 to α with steps α

N1/D , and constant along the other
dimensions.

• Computing the acceptable α for each case, we get the relevant error to
grow like N2/D−1 for Definition 1, and like N2/D for Definitions 2-3.

• Thus there remains a doubt, as our counterexample fails to feature
string instability, for Definition 1 as soon as D ≥ 2. Note that this
is only a hint at a dimensionality e�ect, to be confirmed with more
general disturbance inputs and with an upper-bound rather than a
lower-bound analysis.
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• For Definitions 2-3, the internal dissipation is insu�icient and we wit-
ness string instability with our counterexample, for any la�ice dimen-
sion.

Compared to [32], we thus generalize the se�ing by allowing any nonlinear,
time-varying local interactions towards improving the situation, but we ob-
tain a more negative result. A major di�erence however is that we consider
the worst disturbance distribution, over time and over subsystem indices.
These bad disturbances might in fact become negligibly probable with in-
creasing N and D. This suggests that maybe, not only the system se�ing
and objective, but also the disturbance assumptions may have to be revised
towards new, positive string stability results.

3.3.3 How telling is the discrete-time controller se�ing?

Besides the worth of this discrete-time result on its own right, we must briefly
comment on the relevance of this result, keeping dt bounded away from zero,
in comparison with the continuous-time literature about string stability.

As a common point with the existing literature, we can mention that low-
frequency disturbances indeed appear to cause most of the problem in con-
tinuous time string instability proofs, with e.g. transfer functions along the
chain unavoidably larger than 1 at some frequency. Thus, even though our
precise computations towards Theorem 3.4 say nothing rigorously about how
this disturbance fares with a continuous-time system, it seems that adding
the contributions of all the neglected vehicles and time-steps to the norm
of e would finally yield string instability in continuous-time too – at least
in simple cases, like any unidirectional PD controller, in perfect agreement
with existing results. Also in accordance with the existing literature, the
result of Theorem 3.4 models no measurement errors nor communication
noise explicitly. In their presence, the resulting behavior can only be worse
and possibly counterbalance the possible benefits of controllers with smaller
dt.

Regarding di�erences to the continuous-time se�ing, one should not forget
that our result only follows a su�icient construction, where the discrete-time
dt assumption serves as a tradeo� for the generality of the class of controllers
covered. In other words, Theorem 3.4 proves that it is necessary – yet possibly
not even su�icient – to let dt go to zero with increasing N in order to satisfy
string stability. This strongly suggests that controllers which would do well
on string stability, should be those that cannot be modeled well with finite
dt. Therefore, let us try to list and discuss which controller features would
typically necessitate a very small dt:
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• One obvious e�ect of smaller dt is the possibility of faster communica-
tion across the vehicle chain. Intuitively, finite communication speed
appears realistic. If conversely one could communicate arbitrarily fast,
with arbitrarily small dt and without communication noise, then vehi-
cle k could get very fast knowledge of e1 + e2 + ... + ek = xk − x0.
We know that a controller based on the la�er quantity can work to
achieve string stability: just control each xk−x0 independently to sta-
bilize each vehicle with respect to the leader. The “distributed system”
se�ing and chain sizeN play no role anymore. Of course this idealized
situation is unrealistic. In presence of communication noise, precision
of the message is in a clear relation to communication time, at least
for some traditional noise models like white Gaussian channels. In
such context, requiring smaller dt appears to mean requiring increased
communication bandwidth per signal when N increases. This conclu-
sion is in agreement with the impossibility results for continuous-time
controllers that assume a fixed bandwidth, as in the models of Chapter
3.

• Se�ing the communication aside, in practice, the controller’s discretiza-
tion step dt is chosen as the desired control dwell-time or delay needed,
before vehicle k reacts to a measurement of vehicle k−m1 or k+m2;
thus in practice dt converging to zero would mean, controller band-
width tending to infinity. This is typically linked to situations where
the feedback signals ek would possibly move a lot over a short time
span, and thus points towards controllers with high gain, e.g. increas-
ing gain as a function of N .

It is known indeed that this can work: in continuous-time, without
communication, a LTI controller whose gain increases fast enough with
N , can ensure string stability. However, this causes other problems
related to measurement noise and commanded acceleration inputs. It
indeed becomes questionable whether measurement noise can still be
neglected when measurement outputs must be given at increasingly
high speed (see the discussion about communication); and having con-
trol feedback gains tending to infinity is also know to pose a number
of robustness problems.

• Theorem 3.4 thus shows that with the general se�ing (2.11),(2.12), string
stability is not robust to time-discretization. This is important to know
towards typical minimal robustness tests in system simulations, where
situations that work only for infinitesimal dt are quickly considered
singular for all practical purposes.
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In a sense, this robustness to finite dt can even be mathematically
compared to the traditional requirement of “no poles cancellation” in
the continuous-time se�ing. Indeed, allowing a decreasingly small dt
without any measurement noises can be compared to allowing precise
computation of limdt→0

s(t+dt)−s(t)
dt for a signal s, i.e. evaluating pure

derivatives. For a double-integrator system, this implies the possibility
of pole cancellation at zero frequency, which is o�en excluded from the
allowed se�ings.

Finally, a closer look shows that the dependence on dt is rooted in the
fact that we analyze the system before the signals from the edges of the
chain reach all the vehicles and make a detailed analysis harder. This
does not mean of course that the vehicle chain would automatically
be stabilized as soon as the signals from the edges have crossed the
chain. Thus even when dt is allowed to decrease with N , it seems that
e�orts to circumvent string instability will have to take into account
the apparently important role played by the boundary controllers.

While these arguments are of course no match for a full mathematical proof,
they give strong indications to conjecture that string stability would be im-
possible with any “reasonable” homogeneous, possibly nonlinear and com-
municating controllers in continuous-time too. At this point of detail, we
might argue as well that the digital-controller model is in fact closer to many
typically cited applications, than the traditional continuous-time one.

The present chapter has thus completed some gaps in the literature about
string instability with constant spacing policy in continuous-time, before pro-
viding a much generalized impossibility result in discrete-time. To summarize
its contributions, we here repeat the table that was anticipated at the end of
Chapter 2.
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Table 3.1: Impossibility results established in Chapter 3 about satisfying
string stability with disturbances on all vehicles and no time-
headway (h = 0).

Generalized CACC communication (2.7), IMPOSSIBLE
unidirectional coupling; any definitions

General linear scalar communication (2.9), IMPOSSIBLE
unidirectional coupling; any definitions

General vector communication (2.9), finite K(0), IMPOSSIBLE
unidirectional coupling; (L2, l2)

Sensor dynamics breaking relative position symmetry, IMPOSSIBLE
unidirectional coupling; any definitions

Any Digital Controller (2.12), possibly nonlinear, IMPOSSIBLE
communicating, bidirectional; any definitions
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Chapter 4

About the possibility to
satisfy string stability, using
constant spacing policy, with
respect to a disturbance on
the leading vehicle only

In this chapter, we consider string stability with respect to a disturbance
acting on the leading vehicle only. This excludes the construction of the
previous chapter, and it has been considered relevant in applications where
a dominant disturbance is expected on the first subsystem only: modeling
the reaction of a leading vehicle to obstacles, while the others just follow;
or of buildings to earthquakes, with subsystems denoting the levels of the
building (see e.g. [19, 20] and related papers). Anyways, both the case with
disturbance on all vehicles (AV), and with disturbance on the leading vehicle
only (LV), have been considered in the string stability literature. We have
provided a very general impossibility result for the Definitions 4-6 in the AV
case in Chapter 3, in the discrete time se�ing, and extended some more basic
impossibility results in the continuous-time se�ing.

In [19, 20], it has been shown that a linear system using symmetric coupling
can solve Definition 1 (see Chapter 2) of string stability in the LV sense.
The focus there was on passivity-based analysis, and further study of this
se�ing has been le� open — maybe not realizing the importance of this
assumption, having disturbance on the leading vehicle only, in a bidirectional
case. Indeed, for unidirectional coupling, a disturbance on the leader would
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be a good representative of the general situation (see also our next Chapter
5), as an intermediate vehicle may be viewed like the leader of the remain-
der of the queue. For bidirectional coupling however the situation changes
more drastically, and it is possible to achieve a string stable vehicle chain
when input disturbances are known to act only on a fixed number of leading
vehicle. Indeed, to complete the observation of [19, 20], we now prove that
a simple linear PD controller can satisfy Definitions 1-6 (see Chapter 2) of
string stability in the LV sense, both in discrete-time and in continuos-time
se�ings. For the discrete-time se�ing, this also somehow confirms that our
derived model with discretization step dt is reasonable, in the sense that it
does allow to retrieve the same feasibility result as in continuous-time.

4.1 Controller structure and disturbance constraint

We take the simplest possible controller, namely:

• no communication;

• no dependence on N of the controllers;

• each vehicle uses just the relative information of the directly preceding
vehicle and the directly following vehicle with constant spacing policy;

• the vehicles apply a homogeneous PD controller to this information,
but asymmetrically to the information coming from upfront and the
one coming from behind (see also [30, 33, 34]).

The bidirectional coupling is essential. Asymmetric coupling allows to achieve
the stronger versions of string stability, while symmetric coupling is restricted
to the L2 type in [19, 20]. The specific choice of a PD controller is just for
more concreteness in stability and string stability analysis. It should be clear
though, how the proofs and associated results can be repeated for other types
of controllers that one might prefer in practice.

The main point in this chapter is thus that disturbances only act on the
beginning of the chain. More specifically, from a mathematical viewpoint
we must assume that there exists a constant m, independent of the chain
length N , such that disturbance inputs dk = 0 for all k > m. Thus, while
the chain length increases unboundedly, the number of vehicles on which
disturbances can act remains fixed. This is the precise se�ing that we will
consider in the continuous-time case. In practice, the most realistic reason for
satisfying such property is probably when disturbances are restricted to the
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leading vehicle (or subsystem for more general applications); see e.g. [19, 20].
In order to provide a simpler proof, the la�er assumption is made directly in
our study of the discrete-time se�ing; we do believe though that the result
still holds with disturbances restricted to a fixed number of leading vehicles,
like in continuous-time.

4.2 Discrete-time se�ing

In this section, we consider an asymmetric bidirectional controller in discrete-
time se�ing to guarantee the Definitions 4-6 for a disturbance input only on
the leading vehicle.

4.2.1 Particularizing the Model

Consider the model defined in (2.11). We assume dk,1 = dk,2 = 0 for all k
except k = 0 in order to consider the special case where only there exists
disturbance on the leading vehicle, and the controls are defined as:

u0(t) = −a2e1(t)− b2ė1(t) (4.1)

uk(t) = a1ek(t) + b1ėk(t)− a2ek+1(t)− b2ėk+1(t) for 1 ≤ k ≤ N − 1

uN (t) = a1eN (t) + b1ėN (t) ,

where a1, a2, b1, b2 ∈ R are positive constants, representing respectively
proportional and derivative gains for the information coming from upfront
and from behind.

For the remainder of this section, we make the following simplifications to
avoid clu�ering notation; the results however do hold in a more general
se�ing. (i) assume dt = 1, without loss of generality; (ii) choose the controller
tuning b1 = a1, b2 = a2 (i.e. proportional gain equals derivative gain, in
each direction); and (iii) denote the only active disturbances d1 := d0,1 and
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d2 := d0,2. This yields the error dynamics:

e1(t+ 1) = e1(t) + ė1(t) +
a2

2
(e2(t)− e1(t) + ė2(t)− ė1(t)) (4.2)

−a1

2
(e1(t) + ė1) + d1(t)

ė1(t+ 1) = ė1(t) + a2(e2(t)− e1(t) + ė2(t)− ė1(t))

−a1(e1(t) + ė1(t)) + d2(t)

ek(t+ 1) = ek(t) + ėk(t) +
a1

2
(ek−1(t)− ek(t) + ėk−1(t)− ėk(t))

+
a2

2
(ek+1(t)− ek(t) + ėk+1(t)− ėk(t))

for 2 ≤ k ≤ N − 1

ėk(t+ 1) = ėk(t) + a1(ek−1(t)− ek(t) + ėk−1(t)− ėk(t))
+a2(ek+1(t)− ek(t) + ėk+1(t)− ėk(t))
for 2 ≤ k ≤ N − 1

eN (t+ 1) = eN (t) + ėN (t) +
a1

2
(eN−1(t)− eN (t) +

ėN−1(t)− ėN (t))− a2

2
(eN (t) + ėN (t))

ėN (t+ 1) = ėN (t) + a1(eN−1(t)− eN (t) + ėN−1(t)− ėN (t))

−a2(eN (t+ ėN (t)) .

In matrix notation and frequency domain, with z = ejω the frequencies
associated to a discrete-time system, (4.2) becomes:

S E = D , (4.3)

where the matrix S and vectors E and D are defined as:

E = col(E1, E2, . . . , EN ), Ek = col(ek, ėk) ; D = col(D1, 0, . . . , 0),

D1 = col(d1, d2)

S =


p −a2 p0 0 . . . 0

−a1 p0 p −a2 p0 . . . 0
...

. . . . . . . . .
...

0 . . . −a1 p0 p −a2 p0

0 . . . 0 −a1 p0 p

 with

p0 =

[
1/2
1

] [
1 1

]
, p = (a1 + a2) p0 +

[
(z − 1) −1

0 (z − 1)

]
.
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4.2.2 Explicit expression of the induced errors

The model (4.3) gives D as a function of E, we must invert this relation to
compute E as a function of D. We carry out this inversion in two steps,
loosely inspired by a procedure based on directional flows from [35], to which
we add an explicit analysis of the boundary e�ects.

Lemma 4.1: The system of equations (4.3) with associated definitions is equiv-
alent to the following system :[

aN−1
1 (p− βp0) βN p0

βN p0 aN−1
2 (p− βp0)

] [
E1

EN

]
=

[
aN−1

1 D1

βN−1 pzD1

]
(4.4)

and

(p− 2βp0) Ek = βk−1

ak−1
2

pzD1 − βk

ak−1
2

p0E1 − βN+1−k

aN−k1

p0EN for2 ≤ k ≤ N − 1

with pz =

[
1/2
1

] [
(z − 1) z

]
/ 3z−1

2 ,

β = γ −
√
γ2 − a1a2 , γ =

a1 + a2

2
+

(z − 1)2

3z − 1
.

Proof: Consider the matrix M with structure:

M =


I C2 C2

2 . . . CN−1
2

C1 I C2 . . . CN−2
2

...
. . . . . . . . .

...
CN−2

1 . . . C1 I C2

CN−1
1 . . . C2

1 C1 I

 ,

where I is the identity matrix and C1, C2 are 2 × 2 transfer functions to
be computed. This idea comes from [35], with C1 denoting the gain for
flows from subsystem k to k + 1 and C2 the gain for flows from k + 1 to
k. Multiplying both sides of (4.3) by M , we have

M SE = QE = M D (4.5)

where we have defined Q = M S, and we want it to have the structure:

Q =


q1,1 0 0 . . . q1,N

q2,1 q 0 . . . q2,N
...

. . . . . . . . .
...

qN−1,1 . . . 0 q qN−1,N

qN,1 . . . 0 0 qN,N

 . (4.6)
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This would indeed yield a system driven by the boundary conditions E1 and
EN .

Satisfying the zero components of (4.6) imposes the following relations:

−Ck+1
2 a1p0 + Ck2 p− Ck−1

2 a2p0 = 0 ,

−Ck+1
1 a2p0 + Ck1 p− Ck−1

1 a1p0 = 0 , for k = 1, 2, ..., N − 2.

The relations with C1 are all satisfied once the quadratic matrix equation
corresponding to k = 1 holds, that is:

−a1p0 + C1p− C2
1a2p0 = 0 . (4.7)

Multiplying this equation on the right by col(1,−1), we get the condition

C1

[
−z

(z − 1)

]
= 0

so the matrixC1 must be singular. WritingC1 = V1W
T
1 , withV1 = col(v1, v

′
1)

and W1 = col(w1, w
′
1) both two-dimensional column vectors, we thus know

that w1 = z−1
z w′1. Multiplying both sides of (4.7) from the le� by the row

vector V ⊥1 orthogonal to V1, we get

V ⊥1 (−a1p0+C1p−C2
1a2p0) = V ⊥1 a1p0 = a1

[
V ⊥1

[
1/2
1

]
V ⊥1

[
1/2
1

] ]
= 0

so we can identify V1 = col(1/2, 1). There remains to identify the normal-
ization of W1. By plugging all our knowledge into (4.7), we get

w1 =
z − 1

z
w′1 =

(z − 1)β

(3z − 1)/2

with β defined as in the statement, and where in principle we can (con-
sistently) choose the meaning to give to the square root. A strictly similar
procedure gives C2 = a2

a1
C1. In particular, C1 and C2 commute as they are

equal up to a scalar factor, and we can write C1 = C0/a2, C2 = C0/a1 with
C0 = β pz .

The remaining equations from (4.5),(4.6) just define the nonzero terms of Q.
By taking into account the just computed result from (4.7) we get:

q = p− 2C0p0

q1,1 = qN,N = p− C0p0 ;

qk,1 =
Ck0
ak−1

2

p0 for k = 2, 3, ..., N ;

qk,N =
CN+1−k

0

aN−k1

p0 for k = 1, 2, ..., N − 1.
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Writing down the related terms, carrying out the algebra with the particular
property Ck0 p0 = βkp0 and computing M D yields the announced result.�

Lemma 4.2: The explicit solution of the system (4.3) is given by:

E1 =

[
(z + 1)s1 + (2d1 − d2)
2(z − 1)s1 − (2d1 − d2)

]
/ (3z − 1) ,

Ek =

[
(z + 1)
2(z − 1)

]
sk / (3z − 1) for k = 2, 3, ..., N , with

sk =
(aN−k+1

1 aN−k+1
2 -β2N−2k+2)ak−1

1 βk-1

aN+1
1 aN+1

2 -β2N+2

2β
(3z-1)

[
(z-1) z

]
D1

for k = 1, 2, ..., N .

Proof: We first consider the second row of the matrix equation in (4.4) and
we notice that all terms except aN−1

2 pEN have a vector col(1/2 , 1) on
the le�. Hence the term aN−1

2 pEN must also take this form. This already
gives the stated expression for EN , where the value of the parameter sN =
row(1 , 1)EN still has to be identified.

Next, we multiply the whole matrix equation in (4.4) by β pz ⊗ I2 on the
le�. Using p2

z = pz and the property βpz(p − βp0) = a1a2p0 deduced from
(4.7) (we recall that C1 = βpz/a2), this yields two scalar equations in two
unknowns sN = row(1 , 1)EN and s1 = row(1 , 1)E1, namely:[

aN1 a2 βN+1

βN+1 aN2 a1

] [
s1

sN

]
=

2aN−1
1 β

(3z−1)

[
(z − 1) z

]
D1

2βN

(3z−1)

[
(z − 1) z

]
D1

 .

Analytically inverting this system yields the expressions for s1 and sN .

Then we multiply the first row of the matrix equation in (4.4) by row(2 , −1)
on the le�, such that only the term with p (and thus E1) remains on the
le� hand side. We rewrite it as a function of (e1, s1 = e1 + ė1) instead of
E1 = (e1, ė1). From there we can readily deduce the expression for e1, and
thus via s1 for all of E1.

We are now le� with a 2×2 equation to invert for each k with 2 ≤ k ≤ N−1.
To solve this, we first plug the obtained expressions of E1 and EN into the
result of Lemma 4.1. Again, we notice that all terms except pEk have a vector
col(1/2 , 1) on the le�, and this allows us to deduce the expression for Ek,
where only sk remains to be identified. The la�er easily follows as the system
now reduces to a scalar equation for each k. �
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4.2.3 Proving string stability

Having the explicit expression of Lemma 4.2, there remains to check that a
controller tuning exists for which (i) the transfer functions are stable and (ii)
their frequency response guarantees the satisfaction of the string stability
definitions.

Proposition 4.1: The system (4.3) is stable provided a1+a2
2 +

√
a1a2 < 1 and

a1 6= a2.

Proof: This analysis concerns all z ∈ C. We must thus show that all the poles
of the transfer functions in the solution from D1 to E, whose expression is
explicitly wri�en in Lemma 4.2, belong to the unit circle centered on z =
0. The factors 1/(3z − 1) and β always satisfy this requirement. So there
remains to analyze the denominator of sk, thus checking when (a1a2)N+1−
(β2)N+1 = 0 , or equivalently when (β/

√
a1a2)N+1 = 1.

A necessary condition for this is to have |β/√a1a2| = 1. We can rewrite∣∣∣∣ β
√
a1a2

∣∣∣∣ =

∣∣∣∣1−√1− x√
x

∣∣∣∣ =: |f(x)| with x = a1a2/γ
2 ∈ C .

Complex analysis shows that |f(x)| = 1 if an only if x ∈ [1,+∞], while
|f(x)| < 1 for all other x ∈ C. Thus the poles are defined by

γ2

a1a2
∈ [0, 1] or equivalently

a1+a2
2 + (z−1)2

3z−1√
a1a2

∈ [−1, 1] .

In particular this requires the imaginary part of this last expression to vanish,
which a quick analysis reveals to happen in the following cases:

(a) z = 1: In this case we have γ√
a1a2

= (
√
a1/a2 +

√
a2/a1)/2 ≥ 1 with

equality holding if and only if a1 = a2. Thus provided a1 6= a2, this
will give no pole.

(b) z ∈ R in general: For z > 1 we have γ√
a1a2

> (
√
a1/a2+

√
a2/a1)/2 ≥

1 so no pole can be found. For z < −1, the value of γ√
a1a2

decreases
monotonically as z decreases towards −∞; indeed, its derivative with
respect to real z is positive for all z < −1/3. A su�icient condition
to have no pole for z ∈ [−∞,−1] is thus, to have γ√

a1a2
< −1 for

z = −1, which is equivalent to a1+a2
2 +

√
a1a2 < 1.

(c) z = 1
3 −

2
3e
jθ for all θ ∈ [−π, π). This implies |z| ≤ 1 with equality

holding only at z = 1. The la�er has already been excluded in (a), so
case (c) can only yield poles inside the unit circle.
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So under the stated conditions, the property |β/√a1a2| = 1 necessary for a
pole is excluded for all z satisfying |z| ≥ 1, and the system is stable. �

Note that the conditions of Proposition 4.1 are also “kind of necessary” for
stability. Indeed, once |β/√a1a2| = 1, a pole is obtained when the related
phase provides a (2N + 2)th root of unity. As N can grow to infinity, this
phase condition boils down to the rational multiples of 2π.

Towards string stability, there remains to examine how the frequency re-
sponse of this stable system depends on N .

Proposition 4.2: For any λ ∈ (0, 1), there exists a tuning of a1, a2 such that
the stability conditions of Proposition 4.1 are satisfied and simultaneously the
transfer function fromD1(z) to eachEk(z) is bounded byC λk, for all k,N and
all z = ejω , ω ∈ [−π, π), and with C > 0 independent of all those parameters.

Proof: This analysis only concerns z of the form z = ejω , with ω ∈ [−π, π).
Since the vector components 2(z− 1) and z+ 1, as well as the explicit factor
1/|3z − 1| = 1/|3ejω − 1| = 1/

√
10− 6 cosω ≤ 1/2, provide bounded

nonzero contributions independently of N, a1, a2, there only remains to ex-
amine the dependence on N, k, a1, a2 of the fraction

(aN−k+1
1 aN−k+1

2 − β2N−2k+2)ak−1
1 βk

aN+1
1 aN+1

2 − β2N+2
= (4.8)

1−
(

β√
a1a2

)2N+2−2k

1−
(

β√
a1a2

)2N+2

(
β

√
a1a2

)k ak/2−1
1

a
k/2
2

appearing in sk. Let us write a2/a1 = α and a1 = κ/(1 + α), for some
positive real κ and α. Then we have a1 + a2 = κ and

√
a1a2 = κ

1+α

√
α. The

conditions for stability of Proposition 3 become α 6= 1 and κ(1/2 +
√
α/(1 +

α)) < 1, for which a su�icient condition independent of α is κ < 1. We will
henceforth consider κ < 1 fixed and adjust α to satisfy the stated property.

We first consider γ. Given the locus of (z−1)2

3z−1 for z = ejω , ω ∈ [−π, π), see
Figure 4.1, for any κ ∈ (0, 1) there exists a value g ∈ (0, κ) such that |γ| =

| (z−1)2

3z−1 +κ/2| > g for all z = ejω . From this, we can take a su�iciently small
α/(1 + α)2 � g2/κ2 to apply in β the Taylor expansion of f(x) =

√
1 + x

with small approximation error at first order, and we get

β = γ

(
1−

√
1− κ2

γ2
α

1+α2

)
=

γ

2

κ2

γ2

α

(1 + α)2
+ ε
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with |ε| < κ4

g3
α2

(1+α)4 . We will here take a su�iciently large α � 1 to ensure
this condition. From there we can ensure∣∣∣∣ β

√
a1a2

∣∣∣∣ =

∣∣∣∣ κ2γ
√
α

1 + α
+ ε′

∣∣∣∣ < κ

g
√
α
,

with α chosen large enough such that |ε′| < ( κ
√
α

g(1+α))3 < κ
2g
√
α

. With these
developments and taking α large enough such that κ

g
√
α
< 1, the fraction

(4.8) becomes∣∣∣∣∣∣∣
1−

(
β√
a1a2

)2N+2−2k

1−
(

β√
a1a2

)2N+2

(
β

√
a1a2

)k a
k/2−1
1

a
k/2
2

∣∣∣∣∣∣∣ ≤
1 + κ2

g2α

1− κ2

g2α

(
κ

g
√
α

)k 1
√
α
k−2

1 + α

κα
.

Recall that here g < κ. For fixed κ, taking all things together, we thus have:

for k = 1 : max(|e1(z)|, |ė1(z)|) ≤ (C1
κ

g
+ C2) max(|d1(z)|, |d2(z)|)

for k ≥ 2 : max(|ek(z)|, |ėk(z)|) ≤ C1

(
κ2

g2α

)k−1

max(|d1(z)|, |d2(z)|) ,

for all z = ejω , ω ∈ [−π, π) and all α > α; with C1, C2 > 0 some constants
independent of α, ω; and α > 1 a su�iciently large lower bound on α. The

Figure 4.1: Locus of (z−1)2

3z−1 for z = ejω , ω ∈ [−π, π).
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exponential rate λ = κ2

g2α
can be decreased at will by taking large enough α,

without deteriorating the constants C1, C2. �

One might wonder what is the tradeo� for lower λ, i.e. for faster rejection
along the chain of a perturbation on the initial vehicle. A quick analysis
shows that taking a higher asymmetry α between forward and backward
coupling a1 and a2, implies that disturbances acting on the last vehicles
would be amplified more when travelling from the back to the front of the
chain. Thus in practice, at some point, the neglected disturbances dk,1, dk,2
for k > 0 will become relevant for too low λ. The se�ing of this section
however assumes, as in previous work like [19], that disturbances strictly act
on the first vehicle only. We then have the following result.

Theorem 4.1: There exists a tuning of a1, a2, with a1+a2 < 1 and a2/a1 � 1,
such that the system (4.3) is string stable towards disturbances D1 acting on the
leading vehicle only, according to all of Definitions 4-6 in the LV sense.

Proof: By Propositions 4.1-4.2 there exists a tuning as stated such that the
system is stable and the transfer functions from D1 to Ek are bounded by
C λk, with λ < 1 and C both independent of N , for any frequency z = ejω .
We can then use Parseval’s equality to rewrite the `2 norm over time of the
signals as 1

2π

∫ π
−π |d1(ejω)|2dω, 1

2π

∫ π
−π |d2(ejω)|2dω and respectively

1

2π

∫ π

−π
|ei(ejω)|2dω =

1

2π

∫ π

−π
|H1,id1(ejω) +H2,id2(ejω)|2dω

≤ 1

π

∫ π

−π
|H1,i(e

jω)|2|d1(ejω)|2 +

|H2,i(e
jω)|2|d2(ejω)|2 dω

≤ 1

π
C2λ2i

(∫ π

−π
|d1(ejω)|2dω +

∫ π

−π
|d2(ejω)|2dω

)
≤ 2C2C1 λ

2i .

where H1,j and H2,j are the transfer functions from disturbances d1 and d2

respectively to ej , and the last line follows from the hypothesis in Definitions
4-6. Since λ < 1 and C,C1 are independent of N , this result readily proves
the satisfaction of Definition 4 = Definition 6 of string stability in the LV
sense. Moreover, taking the sum over j we have a geometric series, yielding

N∑
i=1

∑
t

|ei(t)|2 ≤
2C2C1

1− λ2

independently of N , i.e. satisfying Definition 5 in the LV sense. �
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While Theorem 4.1 states the result for inputs acting on the leading vehicle
only, a similar result could be obtained for disturbances acting on theM ≥ 1
first vehicles only, with M fixed independently of N , and strictly zero distur-
bance input on vehicles k > M . It is however harder to see which application
would motivate such se�ing.

4.3 Continuos-time se�ing

In this section, we establish the same positive results derived in the previous
section not for the continuous-time model. We still assume that each vehicle
is connected with one preceding vehicle and one following vehicle asymmet-
rically with PD control gains.

4.3.1 Particularizing the Model

As in discrete-time, we thus consider asymmetric bidirectional coupling (??)
with a PD controller, i.e.:

u0 = a2(x1 − x0) + b2(ẋ1 − ẋ0) (4.9)

uk = a2(xk+1 − xk) + b2(ẋk+1 − ẋk) + a1(xk−1 − xk) +

b1(ẋk−1 − ẋk) for 1 ≤ k ≤ N − 1

uN = a1(xN−1 − xN ) + b1(ẋN−1 − ẋN ) ,

where a1, a2, b1 and b2 are constant parameters. Plugging (4.9) into (2.2), we
write the dynamics of the configuration error ek = xk−1 − xk in Laplace
domain:

s2e1 = (a2 + b2s)(e2 − e1)− (a1 + b1s)e1 + d′1 (4.10)

s2ek = (a2 + b2s)(ek+1 − ek) + (a1 + b1s)(ek−1 − ek) + d′k

for 1 ≤ k ≤ N − 1

s2eN = (a1 + b1s)(eN−1 − eN )− (a2 + b2s)eN + d′N

Here d′k = dk−1 − dk and by the triangle inequality, ‖d‖2 < δ/2 implies
‖d′‖2 < δ. Thus investigating reactions to bounded D′ instead of bounded
D, is a su�icient condition (yet not fully necessary) for string stability.
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4.3.2 Proof of string stability with respect to the leading vehi-
cle

I. Partial inversion of the dynamics

The error dynamics (4.10) can be wri�en compactly as

SE = D
′

(4.11)

with matrix S and column vectors E, D′ given by

E = (e1, e2, . . . , eN )

D′ = (d′1, d
′
2, . . . , d

′
N )

S =


s2 + q −p2 0 . . . 0
−p1 s2 + q −p2 . . . 0

...
. . . . . . . . .

...
0 . . . −p1 s2 + q −p2

0 . . . 0 −p1 s2 + q


where we have defined the elementary transfer functions p1 = a1 + b1s,
p2 = a2 + b2s and q = p1 + p2.

To analyze in detail the e�ect of D′ on E, we essentially want to invert
equation (4.11). We will do this in two steps, as for the discrete-time analysis.
Namely, first we apply a transformation that makes (4.11) almost diagonal –
i.e. a�er transformation each component follows a diagonal dynamics, plus
a drive by the boundary vehicles e1 and eN . We are then able to analyze the
resulting system by hand. For the first step (transformation), we define the
matrix

M =
1

m


C C2 C2

2 . . . CN−1
2

C1 C C2 . . . CN−2
2

...
. . . . . . . . .

...
CN−2

1 . . . C1 C C2

CN−1
1 . . . C2

1 C1 C


with m =

√
(s2 + q)2 − 4p1p2 ,

and C,C1, C2 to be found. Multiplying both sides of (4.11) by the proposed
matrix M , we want to obtain

MSE = QE = MD
′

(4.12)
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with a matrix Q easy to invert. In particular, we impose the structure:

Q = MS =


q1,1 0 0 . . . q1,N

q2,1 1 0 . . . q2,N
...

. . . . . . . . .
...

qN−1,1 . . . 0 1 qN−1,N

qN,1 . . . 0 0 qN,N

 .

By working out the matrix multiplication, this imposes the following rela-
tions:

0 = −Ck2 p2 + Ck+1
2 (s2 + q)− Ck+2

2 p1 (4.13)

0 = −Ck+2
1 p2 + Ck+1

1 (s2 + q)− Ck1 p1

for k = 1, 2, ..., N − 3;

0 = −Cp2 + C2(s2 + q)− C2
2p1

0 = −C2
1p2 + C1(s2 + q)− Cp1

m = −C1p2 + C(s2 + q)− C2p1

and

mqk,N = −CN−(k+1)
2 p2 + CN−k2 (s2 + q) (4.14)

mqk+2,1 = Ck+1
1 (s2 + q)− Ck1 p1

for k = 1, 2, ..., N − 2;

mq1,1 = C(s2 + q)− C2p1

mq2,1 = C1(s2 + q)− Cp1

mqN−1,N = −Cp2 + (s2 + q)C2

mqN,N = −C1p2 + (s2 + q)C .

The second set of equations (4.14) just defines the qk,1 and qk, N , to which
we will come back later. The first set of equations (4.13) defineC,C1, C2; one
checks that they are satisfied if and only if we take

C = 1 , C1 =
(s2 + q)−m

2p2
, C2 =

(s2 + q)−m
2p1

(4.15)

with m =
√

(s2 + q)2 − 4p1p2 .

In particular, the last line imposes the sign in front of m in the expressions
of C1 and C2. To obtain proper transfer functions ([35]), the complex square
root of m should be interpreted along the branch for which the dominant s2

terms cancel at high frequencies.

64



About the possibility to satisfy string stability, using constant spacing policy,
with respect to a disturbance on the leading vehicle only

Using (4.15) the error dynamics of the vehicles rewrites:

e1 =
1

q1,1

(
−q1,NeN + d′1/m+

N−1∑
k=1

Ck2 d
′
1+k/m

)
(4.16)

ek = −qk,1e1 − qk,NeN + d′k/m

+
k−1∑
`=1

C`1 d
′
k−`/m+

N−k∑
`=1

C`2 d
′
k+`/m

for k = 2, 3, ..., N − 1

eN =
1

qN,N

(
−qN,1e1 + d′N/m+

N−1∑
k=1

Ck1 d
′
N−k/m

)
.

We see that the pair e1, eN now forms a system of its own, which drives the
other vehicles inside the chain. The la�er are in addition driven by their local
disturbance d′k and by two flows: a flow of disturbances coming from the
front, which we denote

fk =
k−1∑
`=1

C`1 d
′
k−` = C1(fk−1 + d′k−1) ,

and a flow coming from the rear,

gk =
N−k∑
`=1

C`2 d
′
k+` = C2(gk+1 + d′k+1) .

In the next subsection, we analyze separately the parts of ek related to the
disturbance flows and to the e1, eN pair.

II. Bounding the flow transfer functions

We first consider the flows fk and gk. In order to ensure (L2, l2) boundedness
of those signals, the H∞ norm of both C1 and C2 would have to be lower
than one. We next show that we can tune the controller such that one of
those two constraints is satisfied, but not both. We typically choose to have
‖C1(jω)‖∞ < 1. This leaves the hope of achieving string stability with
respect to disturbance inputs e.g. d′1 6= 0 on the leading vehicle only. We
will then conclude by showing that indeed, assuming d′k = 0 for all k > 1,
the e1, eN part of the dynamics has an (L2, l2) bounded influence on the
dynamics as well, and thus the asymmetric system can be string stable in
that sense.
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Note that if we take a symmetric controller, with a1 = a2, then we have
C1(ω = 0) = C2(ω = 0) = 1, so the series defining fk, gk does not converge.
In particular, for a very low frequency disturbance d′1 6= 0 on the leader
only, we have fk = d′1 for all k; so the l2-norm of the vector (f2, f3, ..., fN )
would be proportional to N d′1, i.e. not bounded independently of N . The
asymmetry thus appears necessary to obtain string stability. We then obtain
the following.

Lemma 4.3: Consider the controller (4.9) with a1 6= 0 6= a2 (no poles cancel-
lation). It is impossible to have both ‖C1(jω)‖∞ ≤ 1 and ‖C2(jω)‖∞ ≤ 1.
(Allowing a1 = a2 might at best weaken the ≤ into <, as just discussed.)

Proof: Let us assume a2 > a1; the converse case is similar. We have

C2 =
(s2+p1+p2)−

√
(s2+p1+p2)2−4p1p2

2p1

= 1
2p1

(
p1 + s2 + p2 −

√
(s2 + p2 − p1)2 + 4s2p1

)
= 1

2

(
1 + s2+p2

p1
−
(
s2+p2

p1
− 1
)√

1 + 4s2p1

(s2+p2−p1)2

)
' 1

2

(
1 + s2+p2

p1
−
(
s2+p2

p1
− 1
)
− 2s2

s2+p2−p1

)
+O(|s|4)

= 1 + s2

p1−p2−s2 .

The second line is obtained by square completion. The third line is valid for
|s| � 1, taking into account that a2 > a1 for the phase of the factor taken
out of the square root. The next line is Taylor approximation for the square
root for |s| � 1; the higher order terms are of order |s|4 provided a1 6= a2

and a1 6= 0 6= a2, which is the condition to avoid pole cancellation. Replacing
s = jω in the last line we obtain

|C2(jω)| '
∣∣∣ (a2−a1)+(b2−b1)jω

(a2−a1)+(b2−b1)jω−ω2

∣∣∣ > 1

for low frequencies. �

On the positive side, we have the following results.

Lemma 4.4: Consider the controller (4.9) with a1 6= 0 6= a2 (no poles cancel-
lation).
(a) For any choice of the control parameters we have || C1(jω)C2(jω) ||∞≤ 1.
(b) Taking p2 = αp1, for any 1 6= α > 0 and any a1, b1 > 0, we have
‖C1(jω)C2(jω)‖∞ < 1.
(c) Taking case (b) and writing p1 = κ

1+αp, with any κ > 0 and p = a + bs
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for some fixed a, b, κ > 0, there exists ᾱ such that for α > ᾱ, we have
|| C1(jω) ||∞< 1.

Proof: (a), (b) We haveC1C2 = (1−
√

1− x)/x =: f(x) withx = 4p1p2

(s2+p1+p2)2 .

The property follows from the fact that f(1) = 1 and f(x) < 1 for all x ∈ C.

For the particular choice of (b), we have x =
4αp2

1
(s2+(1+α)p1)2 . Since x(jω) can

be real positive, only if the phases of numerator and denominator match, this
can happen only for (jω)2 parallel to (1 +α)p1, i.e. p1 real. With b1 6= 0 this
happens only at ω = 0, for which we have x = 4α/(1 + α)2 < 1. Thus with
(b) we never have x ∈ [1,+∞), so f(x) < 1.

(c) We here propose a particular design with p1 = βp and p2 = αβp, for some
α, β > 0 to be tuned and a more or less arbitrarily fixed transfer function
p(s) = a+ bs. We have

C1 =
s2 + κp−

√
(s2 + κp)2 − 4αβ2p2

2αβp
,

where κ = (1+α)β. Denote by g the minimum norm of h(s) = (s2+κp)2/p2

over all s = jω; recall from standard Bode diagram approximations that g >
0 as long as perfect undamped resonance is avoided. We can now decrease
the value of αβ2 to make it arbitrarily smaller than g, while keeping κ and
hence h(s) constant, by decreasing β and increasing α at the same time.
This allows to apply the Taylor expansion of

√
1 + x to the square root inC1,

uniformly for all ω:

C1 =

4αβ2p2

(s2+κp)
+O( (αβ2/g)2 )

2αβp
=

2β

h(s)
+O(αβ3/g2).

It is clear that the norm of this last expression can be made arbitrarily small
by decreasing β while maintaining κ = (1 +α)β constant, such that we can
make ‖C1(jω)‖∞ smaller than 1 or in fact any other value. �

Those results indicate that one cannot expect L2 string stability with this
controller, however tuned, when all the vehicles are subject to disturbances
d′k. However, thanks to Lemma 4.4(c), string stability might hold when the
disturbance is only concentrated on the first vehicle(s) not on other vehicles.
We now further analyze this situation.

III. Analysis III: the e1,eN subsystem and conclusion

Let us rewrite the first and last line of (4.16):

q1,1e1 = −q1,NeN + d′1/m+ g1/m

qN,NeN = −qN,1e1 + d′N/m+ fN/m .
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Multiplying the first one by qN,N and substituting the second one into it
(respectively conversely), we obtain

e1

d
′
1

=
mqN,N −mq1,NC

N−1
1

m2q1,1qN,N −m2q1,NqN,1

eN

d
′
1

=
−mqN,1 +mq1,1C

N−1
1

m2q1,1qN,N −m2q1,NqN,1
.

With this expression we can state the following result.

Theorem 4.2: With appropriate tuning (see Lemma 4.4), the vehicle chain
described by the controller (4.9) is string stable with respect to disturbances d′

restricted to the first k̄ vehicles only, for some integer k̄ independent
ofN ; in other words, it is string stable provided we impose d′k = 0 for all k > k̄,
according to all of Definitions 1-3.

We will use the following facts later in the proof.

(a) By choosing α > ᾱ large enough in the conditions of Lemma 4.4(c), it
is possible to ensure that m(s) 6= 0 in the RHP, and thus in particular
m(jω) bounded away from 0. Indeed, in this se�ing we have m =

(s2 +p)
√

1− 4α
(1+α)2 ( p

s2+p
)2. The second-order polynomial s2 +p has

all roots in LHP for positive coe�icients. Since moreover p
s2+p

goes to
0 for |s| going to infinity, we can upper bound | p

s2+p
|2 < η̄ in the RHP.

Then by taking α large enough, we can make 4α
(1+α)2 small enough, in

particular such that
√

1− 4α
(1+α)2 η̄ > 0, thus implying the property.

(b) For a tuning as in Lemma 4.4(c), we can give a lower bound η2 > 0 for
the norm of ( s

2+q+m
2 )2 in the RHP. Indeed, note that s2+q+m = (s2+

p) + (s2 + p)
√

1− 4α
(1+α)2 ( p

s2+p
)2. The factor s2 + p has roots in LHP,

like for point (a). We have also explained in point (a) that by choosingα
large enough, we can make the term 4α

(1+α)2 ( p
s2+p

)2 arbitrarily small in

the RHP. It is then clear that we can ensure 1+
√

1− 4α
(1+α)2 ( p

s2+p
)2 6=

0 in the RHP.

Proof: The basic case is of course when k̄ = 1 i.e. only the leader is subject
to a disturbance. We here provide the proof for this case; the general case is
similar.

We will choose p1, p2 according to Lemma 4.4(c) such that ‖C1(jω)C2(jω)‖∞ <
1, and with the controller parameterized via α and p.
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We thus assume d′k = 0 for all k > 1, which implies gk = 0 for all k and
fk = Ck−1

1 d′1.

We first analyze e1. A few computations lead to

e1

d′1
=

1− (C1C2)N

s2+q+m
2 [1− (C1C2)N+1]

. =: H1(s) =: G1(s) .

A first point is to prove stability of H1(s). By the property (b) above, this
comes down to proving that (C1C2)N+1 6= 1 in the RHP. Since C1C2 =

( s
2+q−m

2 ) / ( s
2+q+m

2 ), we have to prove that

(
s2 + q +m

2
)N 6= (

s2 + q −m
2

)N .

As N can take arbitrary integer values, we will show that |s2 + q + m| 6=
|s2 + q +m|. To have equality, we would need m perpendicular to s2 + q in
the complex plane. But analyzing m as in property (a) above, we can choose
α such that m = (s2 + p)

√
1 + η3 with |η3| � 1, such that perpendicularity

cannot be achieved. Thus, H1 is stable.

We next check string stability. For large ω we have ‖C1(jω)C2(jω)‖ =
O(1/ω2), so H1(s) behaves like O(ω2) /O(ω4) for large ω,N , with leading
coe�icients independent of N . For any ξ > 0, we can thus define ω̄ such
that |H1(jω)| < ξ for all ω > ω̄ and for all N > 3. For the compact domain
ω < ω̄, thanks to property (b) above and to ‖C1(jω)C2(jω)‖ < 1, we have
a bound on ‖H1(jω)‖∞ which is independent of N .

We next turn to eN .
Similarly we have

eN

d
′
1

=
( s

2+q+m
2 )CN−1

1 + [CN−2
1 p1 − CN−1

1 (s2 + q)]

( s2+q+m
2 )2 − (C1C2)N − 2p1p2[1− (s2+q−m)(s2+q)

2p1p2
]

=
( s

2+q+m
2 )CN−1

1 + p1C
N−2
1 [1− (s2+q−m)(s2+q)

2p1p2
]

( s
2+q+m

2 )2 − (C1C2)N−2p1p2[1− (s2+q−m)(s2+q)
2p1p2

]

=
mC1C2

p2( s
2+q+m

2 )
·

CN−2
1

1− (C1C2)N+1
=: HN (s) .

By the same arguments the transfer function HN is stable and the transfer
function GN := HN/C

N−2
1 from CN−2

1 d′1 to eN is bounded independently
of N .
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For the other vehicles, we then have

ek

d
′
1

= −qk,1
e1

d
′
1

− qk,N
eN

d
′
1

+ Ck−1
1 /m

= Ck−2
1

(
C1

m
−

[1− (C1C2)N ]C1C2( s
2+q−m

2 ) +m(C1C2)N−k+2

mp2[1− (C1C2)N+1]

)
=: Hk(s) =: Gk(s)C

k−2
1 .

Proving stability involves the same elements as for vehicle 1, plus requiring
m 6= 0 in the RHP; the la�er property is proved in item (a) above. Towards
proving string stability, one can also apply the same arguments as for G1(s)
to the di�erent terms of Gk(s): they are bounded for ω � 1, and for finite ω
we can bound ‖Gk(jω)‖∞, independently ofN and of k, provided we have a
lower bound on ‖m(jω)‖∞. The la�er is also ensured by property (a) above.

This proves L2 and (L2, l∞) string stability. Indeed, here Definition 1 is
equivalent to Definition 3 because we consider the case where there is only
disturbance input on the leading vehicle: thus having a constraint on the
sum over vehicles of disturbance inputs, or on their maximum, amounts to
the same.

For (L2, l2) string stability, taking all things together, we have

‖e( · )‖22 ≤
N∑
k=1

‖Hk(jω)‖2∞ ‖d′1( · )‖22

=
N∑
k=2

‖Gk(jω)‖2∞ ‖C1(jω)k−2‖2∞ ‖d′1( · )‖22

+‖G1(jω)‖2∞ ‖d′1( · )‖22
≤ ‖d′1( · )‖22 ‖Gmax(jω)‖2∞ rN .

HereGmax is the transfer function, among theGk, with the largestH∞ norm;
we have just shown that this norm is bounded independently of N . And

rN := 1 +

N∑
k=2

r2(k−2) = 1 +
1− r2(N−1)

1− r2

with r := ‖C1(jω)‖∞ is bounded independently ofN when r < 1; the la�er
condition can be satisfied by Lemma 4.4(c). So, the (L2, l2) string stability
according to Definition 2 is proved. This concludes the proof. �

To conclude these theoretical results, we should repeat that the PD con-
trollers considered here are a only a particular, simple example of a controller
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that achieves string stability. We have imposed them to be able to give
concrete proofs where all elements are worked out. However, the steps of
those proofs can be repeated in very similar manner for other controllers
which one may prefer in practice.

4.4 Simulation results

We now illustrate in simulation the possibility of string stability for distur-
bance acting on the leading vehicle only. We will thus investigate the cri-
teria of Definitions 1-6 using asymmetric bidirectional controllers, both in
discrete-time and in continuos-time. Furthermore, for completeness we il-
lustrate the problematic behavior of (l2, l2) string stability using a symmetric
bidirectional controller. Indeed, it is known from the literature [23, 30] that
symmetric bidirectional controllers do not allow to a�ain (l2, l2). The same
authors have also proposed to use slight asymmetry, in order to obtain a
be�er scaling of the spectral gap as a function ofN . We here propose a more
radical approach, where achieving string stability really relies on a strong
enough asymmetry between forward and backward coupling. So, we wanted
to illustrate how indeed the importance of asymmetry readily shows up in a
practical example.

We recall that when assuming disturbance on the leader only,L2 and (L2, l∞)
string stability become equivalent: having a constraint on the sum over ve-
hicles of disturbance inputs, or on their maximum, amounts to the same for
string stability, as soon as the number of vehicles on which disturbances di�er
from zero, remains bounded independently ofN . So Definition 1 = Definition
3 and likewise Definition 4 = Definition 6, under the special circumstance that
one restricts disturbance inputs to the leader or to a fixed number of leading
vehicles that is independent of N .

4.4.1 Discrete-time se�ing

We can illustrate the e�ectiveness of the proposed asymmetric bidirectional
controller with a concrete example. We take the values a1 = 0.01 and
a2 = 0.1 for the controller parameters. We apply a pulse disturbance in-
put on the leading vehicle. This contains all the frequencies which could
a�ect the vehicle chain and for a linear system it should be a good indi-
cator of its general behavior. We then simulate the behavior of the vehicle
chain for various chain lengths, from 1 to 50 vehicles. Figure 4.2 shows the
most stringent criterion, that is the (l2, l2) norm of the error vector E =
col( e1, ė1, e2, ė2, . . . , eN , ėN ). It must remain bounded independently of N
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to ensure string stability according to Definition 5, which then automatically
implies Definition 4 = Definition 6. Figure 4.3 shows the `2 norm of EN ,
i.e. the error between the last two vehicles always, even if this is not the
largest one. Indeed the largest ||Ek||, which would determine the L2 string
stability, always lies at the beginning of the chain while disturbances further
down exponentially decrease, as suggested by Figure 4.3. Finally, Figure 4.4
shows the evolution over time of the errors Ek induced at di�erent vehicles
by the disturbance acting on the leader. While the signal shape stabilizes to
the least damped frequencies, the scale of the vertical axis contracts rather
dramatically, confirming the good damping of any signal while propagating
along the chain.

Intuitively, this exponential decrease of the leader’s influence comes from the
asymmetric design of our controller, in which each subsystem gives a larger
weight to the rear subsystem than to the preceding subsystem in the chain.
Other simulations confirm that conversely, when a stronger weight is given
to the front subsystem — or equivalently, when a disturbance acts on the
last subsystem with our tuning — the induced error on the first subsystems
of the chain grows as the chain gets longer (not shown, as this is just a
growing exponential). This is in agreement with the theoretical result that
when disturbances can act everywhere on the chain, it is impossible in a very
wide sense to satisfy string stability.
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Figure 4.2: Discrete-time; (l2, l2) norm of the vector E(t) of error functions
as a function of N , for a pulse disturbance acting on the leader,
using asymmetric bidirectional PD controller (4.1).

Next we illustrate what happens, in contrast, when taking a symmetric bidi-
rectional controller, taking a1 = a2 = 0.1. We again apply a pulse as
disturbance input on the leading vehicle. We simulate the behavior of the
system for a varying number of vehicles, from 1 up to 51. Figure 4.5 shows the
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Figure 4.3: Discrete-time; l2 norm of error function EN (t) between the last
two subsystems as a function ofN , for a pulse disturbance acting
on the leader, using asymmetric bidirectional PD controller (4.1).

(l2, l2) norm of the error vector, thus the criterion for (l2, l2) string stability.
This norm keeps increasing with N , unlike with the asymmetric controller.
On Figure 4.6, we can see that the individual components of the error do
not decrease anymore with increasing values of k, as was the case with a
properly tuned asymmetric controller. This is in agreement with results from
the literature, showing that a symmetric bidirectional controller would not
work; it is also in agreement with our results, where we require a large enough
level of asymmetry to make the proofs work.

4.4.2 Continuous-time se�ing

We now go over to the continuos-time se�ing. The vehicle chain is controlled
via asymmetric bidirectional coupling between vehicles and PD parameters
a1 = 0.01, b1 = 0.01, a2 = 0.1 and b2 = 0.1. This is not exactly the “practi-
cal” tuning p2 = αp1 exploited in the proof, but it appears to work as well,
showing some (expected) robustness with respect to the tuning parameters.

We first illustrate the transfer function C1(s) which plays a major role in the
discussion of the previous section. Since it involves a square-root, we use the
continued-fraction expansion

√
z2 + y = z +

y

2z + y
2z+ y

2z+
y

. . .
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Figure 4.4: Discrete-time; Error functions ek for various vehicles k =
1, 3, 5, 7, 9, for a pulse disturbance acting on the leader, using
asymmetric bidirectional PD controller (4.1), and N = 10.
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Figure 4.5: Discrete-time; (l2, l2) norm of the vector E(t) of error functions
as a function of N , for a pulse disturbance acting on the leader,
under a symmetric bidirectional PD controller.
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Figure 4.6: Discrete-time; Error functions ek for various vehicles k =
1, 3, 5, 7, 9, for a pulse disturbance acting on the leader, under
a symmetric bidirectional PD controller, and for N = 10.

in order to write

C1 = 1/2(
s2 + q

p2
−

√
(
s2 + q

p2
)2 − 4p1/p2) =

p1/p2

s2+q
p2
− p1/p2

s2+q
p2
− p1/p2
s2+q
p2
− p1/p2

. . .

(4.17)

. Using (4.17), the Bode diagram of the transfer function C1 can be plot as on
Figure 4.7. In particular, with the chosen tuning values, C1 has a H∞ norm
strictly lower than 1.

Next we show the simulations of this asymmetric PD controller coupling on
a chain of vehicles, where again we apply a short pulse disturbance on the
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Figure 4.7: Bode diagram of transfer function C1, (4.17).

leading vehicle of the platoon. Figure 4.8 shows the (L2, l2) norm of the
vector of error functions as a function of the number of vehicles in the vehicle
chain. It appears to converge to a constant value independently of number
of vehicles, confirming the results obtained in Theorem 4.2 for the possibility
of (L2, l2) string stability. Like for the discrete-time case, this is the most
stringent of the three definitions of string stability when disturbance inputs
are restricted to the leader, so Figure 4.8 also implies that the vehicle chain
satisfies the L2 and (L2, l∞) definitions of string stability. Also like for the
discrete-time case, the input disturbance that a�ects the leader appears to
have a smaller and smaller impact down the chain, as illustrated on Figure 4.9.
For more detail, Figure 4.10 shows the evolution in time of the spacing errors
ek(t), for a network of 12 vehicles. It is apparent that the error decreases not
only in time but also along the vehicle chain – a�er 3 vehicles essentially, it
becomes barely visible on the plot.

We recall that these simulations must be viewed mainly as conceptual confir-
mations of the theoretical results. To draw detailed practical conclusions, one
would first have to include more dynamics, measurement noise, parameter
uncertainties,... into the model of the vehicle chain; all these things are
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Figure 4.8: Continuous-time; (L2, l2) norm of the vector e(t) of error func-
tions as a function of N , for a pulse disturbance acting on the
leader, using asymmetric bidirectional PD controller (4.9).
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Figure 4.9: Continuous-time; L2 norm of error function eN as a function
of number of vehicles N , for a pulse disturbance acting on the
leader, using asymmetric bidirectional PD controller (4.9).

discarded in the academic study of string stability. Nevertheless, the con-
ceptual idea remains the same that we are providing results to avoid errors
ek growing unbounded as the length of the chain increases.
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Figure 4.10: Continuous-time; Spacing errors ek(t) of a platoon with 12
following vehicles, for a pulse disturbance acting on the leader,
using asymmetric bidirectional PD controller (4.9).
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Chapter 5

About string stability with
unidirectional controller
using time-headway space
policy

In the previously existing literatures, it has been shown that L2 string stabil-
ity can be solved by adding a su�iciently strong feedback term proportional
to absolute velocity – thus slightly enlarging the se�ing compared to purely
relative information. This absolute velocity can be viewed in several ways. It
can be viewed as a natural drag force on the vehicles [25, 26], although this
would be less in line with developing ever more fuel e�icient transportation
means. In a somewhat subtler way, the absolute velocity term can also be
obtained from a so-called time-headway policy, where the desired distance
from a vehicle to its predecessor increases with the vehicle’s velocity [24, 28].
While this absolute velocity solution has gathered serious a�ention as solving
L2 string stability [28, 36–40], sometimes in conjunction with inter-vehicle
communication and in particular with simple PD controllers, it appears that
no result so far has established its power for the stronger yet practically
important (L2, l2) and (L2, l∞) versions. (L2, l∞) only has been investi-
gated with even more information, e.g. controllers relying on absolute po-
sition and/or on non-deteriorated knowledge of the leader’s velocity profile
[29].

Therefore, the possibilities for time-headway to satisfy (L2, l2) and (L2, l∞)
string stability have remained, somewhat surprisingly, open to date. Estab-
lishing these results is precisely the purpose of the present chapter. We
have both a positive result – characterizing a PD controller which satisfies
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the “practical” (L2, l∞) string stability as requested in [29]; and a negative
result – suggesting why these results were missing, namely because the more
standard (L2, l2) string stability notion cannot be satisfied by any controller
that has bounded DC gain. Although bounded DC gain discards standards
like PID controllers. Furthermore, in the symmetric bidirectional controllers
in which each vehicle is connected with one vehicle in front and one vehicle
in behind with the same gains, controllers with integrator terms were proven
to be unstable [23]. The contribution of this chapter is thus to establish a
simple way to satisfy the strong yet practical (L2, l∞) string stability; and to
clarify that if one truly wants the (L2, l2) version, then a PID controller will
be necessary, with possibly the need to more carefully analyze in the future
the other e�ects related to the associated infinite DC gain.

5.1 Unidirectional controller without communica-
tion

In this section, we consider the unidirectional controller (2.3) presented in
Chapter 2, and without any explicit communication between the vehicles.
The benefits of adding communication will be addressed in the next section.
We consider the three di�erent definitions of string stability mentioned as
Definitions 1-3 in Chapter 2.

5.1.1 Previous results: time headway model and L2 string sta-
bility

We thus consider the unidirectional controller eqrefunidirectional with con-
stant time-headway h > 0. We recall that the la�er expresses that the
desired distance between xk and xk−1 is proportional to velocity ẋk. With
the configuration error ek = xk−1 − xk − hsxi, this controller implies the
closed-loop equation

ek =
K(s)

s2 + (1 + hs)K(s)
ek−1 (5.1)

+
1

s2 + (1 + hs)K(s)
(dk−1 − (1 + hs)dk) ,

for k = 2, 3, ..., N , and e1 = 1
s2+(1+hs)K(s)

(d0 − (1 + hs)d1). The controller
transfer functionK(s) should satisfyK(0) 6= 0, but for the rest it is le� open
for future tuning. This control strategy was motivated by the following result
[24, 43]. The proof is simple enough to be repeated here.
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Proposition 5.1: The norm at s = jω of transfer functionT (s) = K(s)
s2+(1+hs)K(s)

in (5.1) is < 1 at all frequencies ω 6= 0, and its H∞ norm equals T (0) = 1, if
and only if one of the following equivalent conditions hold:
(a), see [43]: If one chooses K̄(s) = K(s)(1 + hs) first and then derives K(s)
from h, then we should ensure that h satisfies

h >

√√√√
max
ω

∣∣∣ R̄(jω)
1+R̄(jω)

∣∣∣2 − 1

ω2

in which R̄(s) = K̄(s)/s2.
(b) If one chooses K(s) first, then the criterion becomes

h > max
ω

√
KR(jω) (2− ω2KR(jω)) + ωKJ(jω)

where KR(jω) = 1
2( 1
K(jω) + 1

K(jω)∗ ), KJ(jω) = 1
2j (

1
K(jω) −

1
K(jω)∗ ), and

the maximization runs over all ω for which the argument of the square root is
positive.

Proof: For case (a), we reformulate T (s) = 1
1+hs

K̄(s)/s2

1+K̄(s)/s2
. Then writing

|T (jω)|2 =
1

1 + ω2h2

∣∣∣∣ R(jω)

1 +R(jω)

∣∣∣∣2 < 1 for all ω 6= 0

directly yields the expression, where the Bode integral (see Chapter 2) en-
sures that the max inside the square root will be non-negative.

For case (b), we just write 1/|T (jω)|2 = | − ω2/K(jω) + (1 + hjω)|2 > 1
and we group real and imaginary parts to finally isolate h. �

The first criterion may appear less natural from a design perspective, but eas-
ier to check; the second one is a reformulation of ours towards perhaps more
natural control tuning. For particular controllers one can get easy criteria,
e.g. for a PD controller K(s) = bs + a, it is not hard to see that if a > 2b2

the right hand side in case (b) is decreasing with ω, and one gets the simple
condition h >

√
2/a.

Note that the system with time headway is not subject to the Bode Integral,
because we have T (s) = R(s)

1+R(s) with R(s) = K(s)/(s2 + hsK(s)) having
a single pole at s = 0. The Bode Integral requires a double-pole at the origin
to impose its severe limitations.

The result of Proposition 5.1 ensures that one can avoid amplification of
disturbances when a disturbance propagates with transfer function T (s)k

throughout the chain; i.e. , the fact that controllers like the above PD example
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can satisfy the conditions of Proposition 5.1, proves that L2 string stability
can be satisfied. The objective of the present section is to provide a rigorous
study for the stronger definitions of string stability defined in Chapter 2.

5.1.2 Impossibility of (L2, l2) string stability using bounded lin-
ear controllers with time-headway

We first prove the impossibility of achieving (L2, l2) string stability using any
bounded stabilizing controller K(s), in particular any controller satisfying
|K(0)| <∞, even in presence of time headway. (As we just recalled, without
time headway i.e. for h = 0, it is already impossible to just achieve L2

string stability.) We do this in two steps to identify that the main culprit
is the disturbance on the leading vehicle: in essence, we can avoid that it
gets amplified, but we cannot damp its e�ect significantly enough along
the chain with any bounded linear controller. In contrast, if disturbances
on the leader reduce to zero, then (L2, l2) string stability can be satisfied.
In practice, this distinction by itself seems to be of li�le importance, as the
leader is the one most likely subject to disturbances; see also the literature,
where disturbances are expected either everywhere, or exclusively on the
leader like in [20]. However, from an academic research point of view, this
informs us that the focus should be on this “boundary e�ect” at the leader. In
any case, the general conclusion may explain why a result about more than
L2 string stability was still missing regarding controllers with time-headway
policy. Indeed, authors have had a tendency to focus on the (L2, l2) string
stability definition whenever more thanL2 was considered; assuming no dis-
turbance at the leader was never a realistic consideration; and most controller
design a�empts have focused on bounded controllers like variations on PD
controllers. Our result proves that in this context indeed, it is impossible to
achieve string stability.

The reader may note that this is the opposite observation compared to Chap-
ter 4. This comes from the fact that we are considering a unidirectional control
strategy here, with vehicles not reacting to their followers. The results in the
present Chapter may be viewed as closer to the ones of the existing literature,
in the sense that we justify their focus on disturbances that a�ect the leader
— here indeed these are shown to be the worst ones, in contrast to the context
of Chapter 4.
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I. No disturbance on leader, d0 = 0

While d0 = 0 is certainly not a practical situation, we treat it first to show,
by linearity, that all problems essentially arise from d0. We will show indeed
that for d0 = 0, one can achieve (L2, l2) string stability using PD controllers
with time-headway.

Theorem 5.1: There exists a pair (K(s), h) , where h ≥ 0 is a su�iciently
large constant time-headway satisfying Proposition 5.1 and K(s) = bs+ a is a
stabilizing PD controller, that achieves (L2, l2) string stability provided d0 = 0.

Proof: The use of a PD controller simplifies simplifies the checking of stability,
since the denominators of the transfer functions are all based on second-
order polynomials in s; the la�er are stable for any positive coe�icients.

Towards string stability, the key point is to recognize that two e�ects of dk
tend to compensate each other in em with m > k. Indeed, we rewrite (5.1)
as

e1 = −L(s)d1

ek = −L(s)dk +
k∑

m=2

T (s)k−mP (s)dm−1 ,

withP (s) = s2

(s2+(1+hs)K(s))2 andL(s) = 1+hs
s2+(1+hs)K(s)

andT (s) = K(s)
s2+(1+hs)K(s)

.
In matrix form, this means

e(s) =
(
− L(s)A + P (s)B(s)

)
d(s)

with the N × (N + 1) matrices

A =



0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1


,

B(s) =



0 0 0 . . . 0
0 1 0 . . . 0
0 T (s) 1 . . . 0
...

...
...

...
...

0 T (s)N−2 T (s)N−3 . . . 0


.
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We first use the triangle inequality to bound

‖e(s)‖2 ≤
(
|L(s)| ‖A‖2 + |P (s)| ‖B‖2)‖d(s)‖2

with the induced matrix norms, i.e.

‖D‖2 =
√
λmax(D∗D)

with ∗ the complex conjugate transpose. The proof now comes down to
proving a bounded norm, independent of N and s = jω, for the coe�icient
in front of ‖d‖2.

For the first term, since A∗A = diag(0, 1, 1, 1, ..., 1), we immediately have
|L(s)| ‖A‖2 = |L(s)|, and the la�er can be bounded independently of s =
jω for a stable system.

For the second term, we obtain that the element (m,n) of the matrix B∗B
equals

T (s)m−n
N−m∑
j=0

|T (s)|2j

for m,n ∈ {2, 3, ..., N}, m ≥ n, symmetrically for n > m, and zero for
the remaining terms. The Gerschgorin circle theorem thus says that all the
eigenvalues of B∗B(jω) are comprised in the circles of respective center and
radius

c(m) =
N−m∑
j=0

|T (jω)|2j ,

r(m) =

N−m∑
j=0

|T (jω)|2j
  N∑

n=2,n 6=m
|T ||m−n|

 .

With a PD controller satisfying Proposition 5.1, we have |T (jω)| < 1 for all
ω > 0 and we can bound each sum by the result of an infinite geometric
series, provided we investigate the limit of this diverging sum at ω = 0 when
multiplied by P (s). This yields

|P (jω)|2 ‖B(jω)‖22 ≤ |P (jω)|2 maxm(c(m) + r(m))

≤ 1

1− |T (jω)|2
·

2

1− |T (jω)|
· |P (jω)|2

=
|L(jω)|2

1− |T (jω)|2
·

2|R(jω)|2

1− |T (jω)|
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whereR(s) = s2

(1+hs)(s2+(1+hs)K(s))
. Every factor in this expression is bounded

at large frequencies, so there just remains to investigate the limit at ω = 0.
For the first factor we have

|L(jω)|2

1− |T (jω)|2
=

1

|-ω2 + (1 + jhω)K(jω)|2 − |K(jω)|2

' 1

a2
·

1

h2ω2

for ω close to zero. For the second factor, we have |R(s)| ' ω2

a , while
1

1−|T (jω)| has a leading term of order 1/ω at low frequencies. Thus in fact

|P (jω)|2 ‖B(jω)‖22 is of order ω4/ω3 and converges to zero for low ω. This
gives a uniform bound on |P (jω)|2 ‖B(jω)‖22 at all frequencies and thus
concludes the proof. �

Like for the other positive results in this thesis, we must mention that the PD
controller is only a particular, simple example showing that string stability
can be achieved. The key in the analysis is the satisfaction of Proposition 5.1,
in conjunction with the analysis for s = jω close to zero. In this sense, the
proof can be repeated and the same result should easily hold for other types
of controllers which might be used in practice.

II. Disturbance concentrated on d0

The chain’s reaction to disturbances on the leader is slightly di�erent, and
we now show that this precludes the achievement of (L2, l2) string stability
with any linear controller of bounded DC gain.

Theorem 5.2: There exists no pair (K(s), h) , with h ≥ 0 a constant time-
headway and K(s) a stabilizing controller with K(0) finite, which would guar-
antee (L2, l2) norm string stability of system (5.1) when || d0(t) ||2 6= 0.

Proof: We consider only a disturbance input d0 that a�ects the leading vehi-
cle, which leads to

e1 =
1

s2 + (1 + hs)K(s)
d0 (5.2)

ek = T (s)k−1 1

s2 + (1 + hs)K(s)
d0 , k ∈ {2, 3, ..., N}

with still T (s) = K(s)
s2+(1+hs)K(s)

. Then

N∑
k=1

|ek(s)|2 =

N−1∑
k=0

| T (s) |2k ·
|d0(s)|22

|s2 + (1 + hs)K(s)|2
.
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Take some β > 0 and define α > 0 such that |s2 + (1 +hs)K(s)|2|s=jω < α
for all ω ∈ (−β, β). Now select any ε ∈ (0, β), and take an input disturbance
concentrated at low frequencies such that∫ ε

−ε
|d0(jω)|2dω ≥ 1

2

∫ +∞

−∞
|d0(jω)|2dω .

Then

‖e(.)‖22 ≥
∫ ε

−ε

N−1∑
k=0

|T (s)|2k |d0(s)|2

|s2 + (1 + hs)K(s)|2

∣∣∣∣∣
s=jω

dω

≥ ‖d0(.)‖22
2

1

α
min

ω∈(−ε,ε)

N−1∑
k=0

| T (jω) |2k . (5.3)

Since T (0) = 1, for any given K(s) and h and any δ > 0, there will always
exist an ε such that minω∈(−ε,ε) |T (jω)|2 > 1 − δ. As δ can tend towards 0
and N towards infinity, the geometric sum in the second line of (5.3) then
cannot be bounded independently of N . �

Theorem 5.2 implies the impossibility to achieve (L2, l2) string stability in
the general case, and in all practical cases where disturbances are expected
at least on the leading vehicle. As we mentioned earlier, this might explain
why results in the literature are restricted to L2 string stability, because the
next-most popular se�ing would indeed be (L2, l2) with bounded controllers
K(s).

Luckily, there are two possible workarounds for this negative result. A first
one is to allow K(s) with unbounded DC gain, like a PID controller. This
might require to investigate other e�ects more carefully though, as unmod-
eled measurement noises or saturation e�ects could seriously deteriorate the
situation. Another solution is to recognize that (L2, l∞) string stability might
be a satisfactory achievement in practice. Indeed, for the la�er case, we have
the positive result that we present next.

5.1.3 Satisfying (L2, l∞) String Stability with PD controller

We now turn to the positive part of the results, first showing how one does
guarantee string stability in the (L2, l∞) sense using a PD controller with
time headway, for all bounded disturbances d.

Theorem 5.3: There exists a pair (K(s), h) , where h ≥ 0 is a su�iciently
large constant time-headway satisfying Proposition 5.1 and K(s) = bs+ a is a
stabilising PD controller, that achieves (L2, l∞) string stability.
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Proof: Again the stability is easy to achieve with PD controllers as they lead
to second-order polynomials in the denominators, also with time headway.

For string stability, consider the worst case where there are disturbance inputs
satisfying ‖dk‖ = δ on all the vehicles k ∈ {0, 1, ..., N}. From (5.1), we have

‖ek‖ ≤ max
s=jω

∣∣∣∣∣(
k∑

m=2

T k−mP + T k−1L− L)(s)

∣∣∣∣∣ δ
≤ max

s=jω

(
k∑

m=2

|T k−mP |+ |T k−1L|+ |L|

)
δ (5.4)

whereL(s) = 1+hs
s2+(1+hs)K(s)

, whileT (s) = K(s)
1+hs L(s) andP (s) = s2

(s2+(1+hs)K)2

as before. By satisfying Proposition 5.1, we know that | T (jω) |< 1 for all
ω > 0, and then |L(s)| = |T (s)| · |1 + hs|/|K(s)| < 1/a for all s = jω with
the PD controller. The last two terms in (5.4) are thus bounded independently
of k and of N .

For the remaining term, we have

k∑
m=2

|T k−m(jω)P (jω)| ≤ 1

1− |T (jω)|
· |P (jω)| (5.5)

=
1

| −ω2 + (1 + hjω)K(jω) | − | K(jω) |
·

| −ω2 |
| −ω2 + (1 + hjω)K(jω) |

.

We first check its behavior at low frequencies. By Taylor expansion we find
1

|−ω2+(1+jωh)K(jω)|−|K(jω)| '
1
ωa and | −ω2

−ω2+(1+hjω)K(jω)
|' ω2

a . For ω = 0

thus, (5.5) converges to 0. At low frequencies ω > 0, the deviation from 0 in
the right-hand side of (5.5) is independent of k and of N , and this provides a
bound independent of k andN for the le�-hand side. For any given controller
satisfying Proposition 5.1, it is thus straightforward to identify some ω0 > 0
such that

∑k
m=2 |T k−m(jω)P (jω)| < 1/a for instance (this value is chosen

comparable to the other term |L(s)|), for all ω ∈ (−ω0, ω0). There remains
to prove that the same term remains bounded independently, of k andN , for
all ω > ω0. With the proposed PD controller, for any ω0 > 0, there exists
α < 1 such that | T (jω) |≤ α for all ω > ω0; this is checked for instance
by ensuring a monotone decreasing Bode amplitude diagram, as illustrated
in simulations below. Then we have, for all ω > ω0, a uniform bound on

1
1−|T (jω)| <

1
1−α and also on |P (jω)| = |T (jω)|2 · |ω/K(jω)|2. Together, all

this provides a uniform bound on the first term of (5.4) and concludes the
proof. �
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Like for the other positive results in this thesis,the PD controller is only a
particular simple example showing that string stability can be achieved. The
proof can be easily repeated for other types of controllers that would satisfy
Proposition 5.1. The main analysis for such other cases would require to
check stability; ensure a similarly acceptable behavior for s = jω close to
zero; and check the Bode diagram to be bounded away from 1 for s = jω
away from zero.

5.1.4 Satisfying (L2, l2) string stability with a PID controller

In the proof of Theorem 5.2, the prior bound α plays a key role in establishing
the existence of a “bad” disturbance profile. This points to a possible solu-
tion for string stability by using an unbounded K(0), as appears in integral
control. We here show that indeed, combining this with the time-headway
policy, one can ensure (L2, l2) norm string stability. We in fact give a partic-
ular solution which will be illustrated by simulation in a later section.

We must now consider errors on all vehicles and, recognizing the special
occurrences of d0 and dk for subsystem k, we rewrite (5.1) as

e1 = L(s)(d0/(1 + hs)− d1)

ek = L(s)(−dk) + T (s)k−1L(s)d0/(1 + hs) +
k∑

m=2

T (s)k−mP (s)dm−1 , with

P (s) =
s2

(s2 + (1 + hs)K(s))2

L(s) =
1 + hs

s2 + (1 + hs)K(s)

T (s) =
K(s)

s2 + (1 + hs)K(s)
.

Note that applying the filter 1/(1 + hs) to the disturbance d0 just comes
down to an a�enuation of its high-frequency components, so to simplify the
following we can redefine d(s) = col[d0/(1 + hs), d1, d2, ..., dN ]; indeed
this new d(s) will automatically be bounded in (L2, l2) and (L2, l∞) norms
when the original input disturbance is. Then in matrix form, we have

e(s) =
(
− L(s)A + L(s)B(s) + P (s)C(s)

)
d(s)
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with the N × (N + 1) matrices

A =



0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1


,

B(s) =



1 0 0 . . . 0
T (s) 0 0 . . . 0
T (s)2 0 0 . . . 0

...
...

...
...

...

T (s)N−1 0 0 . . . 0


,

C(s) =



0 0 0 . . . 0
0 1 0 . . . 0
0 T (s) 1 . . . 0
...

...
...

...
...

0 T (s)N−2 T (s)N−3 . . . 0


.

Theorem 5.4: Using a stabilizing PID controller K(s) = c/s + bs + a with
time-headwayh satisfying Proposition 5.1, we can ensure (L2, l2) string stability
for any disturbances d.

Proof: In other words, we must prove that we can tune the gains such that
the system is stable and we can guarantee || e(.) ||2< C0 || d(.) ||2 in which
the constant C0 is bounded independently of number of vehicles N .

In the further analysis, we will impose no particular tuning values to h and
to the parameters of the PID controller. To satisfy stability, it is thus suf-
ficient to find a PID controller and h which make the system stable while
fulfilling the conditions of Proposition 5.1. Considering the first criterion
in Proposition 5.1, we will thus fixe some tuning of the polynomial K̄(s)
which makes the system stable (just checking always the same denominator
s3 + s(1 + h s)K(s) = s3 + s K̄(s)). Once K̄(s) has been selected, we
would then choose h according to the related criterion, while adapting the
other parameters in order to maintain K̄(s) fixed as selected. For this to
be possible, the only essential element is to prove that the first criterion in
Proposition 5.1 always remains bounded for a stable PID controller.
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We thus consider s3 + s K̄(s) to be any third-order polynomial with roots in
the open le� half plane. Then in the criterion,

R̄

1 + R̄
=

s K̄(s)

s3 + s K̄(s)

remains bounded for all s = jω and we must only investigate the behavior for
ω close to 0. From the inverse triangle inequality | R̄

1+R̄
|2 − 1 ≤ |( R̄

1+R̄
)2 − 1|

a su�icient criterion for Proposition 5.1(a) is

h >

√∣∣∣∣(jω)2K̄2(jω)− [(jω)3 + (jω)K̄(jω)]2

ω2[(jω)3 + (jω)K̄(jω)]2

∣∣∣∣ ,
which just comes down to

h >

√∣∣∣∣ ω4 − 2ω2K(jω)

(jωK̄(jω)− jω3)2

∣∣∣∣ .
For ω close to 0 and K(jω) a PID controller, the dominating term is h >√
|2ω kI/k2

I |, with kI the integral gain. This imposes a bounded constraint
on h and it is thus possible indeed to satisfy stability and the criterion of
Proposition 5.1 simultaneously with a PID controller.

Towards proving string stability, the proof proceeds similarly to Theorem 5.1.
We first use the triangle inequality to bound

‖e(s)‖2 ≤
(
|L(s)| ‖A‖2 + |L(s)| ‖B(s)‖2
+|P (s)| ‖C(s)‖2

)
‖d(s)‖2 ,

with the induced matrix norms, i.e.

‖D‖2 =
√
λmax(D∗D)

with ∗ the complex conjugate transpose. The proof now comes down to
proving a bounded norm, independent of N and s = jω, for each of the
three terms in the matrix sum.

For the first term, since A∗A = diag(0, 1, 1, 1, ..., 1), we immediately have
|L(s)| ‖A‖2 = |L(s)|, and the la�er can be bounded independently of s =
jω for a stable system.

For the second term, we have

B∗B = diag
(N−1∑
k=0

|T (s)|2k, 0, 0, ..., 0
)

= diag
(1− |T (s)|2N

1− |T (s)2|
, 0, 0, ..., 0

)
.
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Under the conditions of Proposition 5.1, the numerator is lower than 1 and

|L(jω)| ‖B(jω)‖2 ≤

√
|L(jω)|2

1− |T (jω)|2
,

up to a possibly diverging result at ω = 0 where |T (jω)| = 1. For this
behavior at ω = 0, the unbounded DC gain here plays an essential role by
making L(s) converge to zero as well. Indeed, writing

|L(jω)|2

1− |T (jω)|2
=

1

|-ω2 + (1 + jhω)K(jω)|2 − |K(jω)|2

=
1

|K(jω)|2
1∣∣∣ −ω2

K(jω) + (1 + jhω)
∣∣∣2 − 1

,

we clearly recover that forK(0) finite the right hand side cannot be bounded
in a neighborhood of ω = 0, while for K(0) unbounded it may be. More
precisely, with a PID controller where K(jω) ' jc/ω for ω close to zero, the
term −ω2

K(jω) becomes negligible and we have

|L(jω)|2

1− |T (jω)|2
' ω2

c2
·

1

h2ω2
=

1

c2h2

i.e. the limit for ω → 0 of |L(jω)| ‖B(jω)‖2 is bounded, independently of
N . It is then easy to find a bound that is valid independently of N and at all
frequencies ω, for a given PID controller and h satisfying Proposition 5.1.

For the third term, we obtain that the element (m,n) of the matrix C∗C
equals

T (s)m−n
N−m∑
j=0

|T (s)|2j

for m,n ∈ {2, 3, ..., N}, m ≥ n, symmetrically for n > m, and zero for
the remaining terms. The Gerschgorin circle theorem thus says that all the
eigenvalues of C∗C(jω) are comprised in the circles of respective center and
radius

c(m) =
N−m∑
j=0

|T (jω)|2j ,

r(m) =

N−m∑
j=0

|T (jω)|2j
  N∑

n=2,n 6=m
|T ||m−n|

 .
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Again for |T (jω)| ≤ 1 we can bound each sum by the result of an infinite
geometric series, provided we investigate the limit at ω = 0 when the factor
P (s) is included. This yields

|P (jω)|2 ‖C(jω)‖22 ≤ |P (jω)|2 maxm(c(m) + r(m))

≤ 1

1− |T (jω)|2
·

2

1− |T (jω)|
· |P (jω)|2

=
|L(jω)|2

1− |T (jω)|2
·

2|R(jω)|2

1− |T (jω)|

whereR(s) = s2

(1+hs)(s2+(1+hs)K(s))
. We have already shown in the previous

paragraph that the first factor is bounded, independently of ω and N . The
second factor must likewise be investigated for ω close to 0, as it is triv-
ially bounded at other frequencies. For low frequencies, we get |R(s)| '
hc
c/ω = hω, while 1

1−|T (jω)| has a leading term of order 1/ω. Thus in fact

|P (jω)|2 ‖C(jω)‖22 converges to zero for ω → 0 and our proof is concluded.
�

Note that from the computations in the proof, the disturbance d0 (captured
by B) is the only dominant one at low frequencies. This is in agreement with
the observations of the previous sections in this Chapter, and with the fact
that the literature has focused a�ention on rejecting disturbances that act
on the leader.

So, using stabilizing PID controllers with time-headway policy it is possible
to guarantee (L2, l2) string stability with respect to disturbances acting on
the leading vehicle and on other vehicles as well, thus in the general sense of
Definition 2. Again, we wish to mention that the PID controller is chosen
mainly to provide a concrete example that works; it should be clear how
the analysis relies only on a few key points which can be repeated for other
controllers.

5.1.5 Satisfying (L2, l∞) String Stability with PID controller

For (L2, l∞) string stability, we have already shown previously that a PD
controller is su�icient. For completeness, and acknowledging at least once
explicitly that further design considerations could motivate a controller other
than a PD type, we next prove that also a PID controller allows to achieve
(L2, l∞) string stability with time-headway, for all bounded disturbances d.

Theorem 5.5: There exists a pair (K(s), h) , where h ≥ 0 is a su�iciently
large constant time-headway satisfying Proposition 5.1 andK(s) = c/s+bs+a
is a stabilizing PID controller, that achieves (L2, l∞) string stability.
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Proof: For the stability the proof is exactly equal to the (L2, l2) case of course.

For string stability, the proof follows similar lines as Theorem 5.3 (the one
with the PD controller). Explicitly, consider the worst case where there are
disturbance inputs satisfying ‖dk‖ = δ on all the vehicles k ∈ {0, 1, ..., N},
leading to the expression (5.4), just withK now a PID controller. The last two
terms in (5.4) are bounded independently of k and ofN in the same way as for
the PD controller. There remains to consider the term corresponding to (5.5),
where now 1

|−ω2+(1+jωh)K(jω)|−|K(jω)| '
1
hc and | −ω2

−ω2+(1+hjω)K(jω)
|' ω3

c .
For ω = 0 thus, (5.5) converges to 0. From here we can follow the steps of
Theorem 5.3 verbatim. At low frequencies ω > 0, the deviation from 0 in
the right-hand side of (5.5) is independent of k and of N , and this provides a
bound independent of k andN for the le�-hand side. For any given controller
satisfying Proposition 1, it is thus straightforward to identify some ω0 > 0
such that

∑k
m=2 |T k−m(jω)P (jω)| < 1/a for instance (this value is chosen

comparable to the other term |L(s)|), for all ω ∈ (−ω0, ω0). There remains
to prove that the same term remains bounded independently, of k and N ,
for all ω > ω0. With the proposed PID controller, for any ω0 > 0, there
exists α < 1 such that | T (jω) |≤ α for all ω > ω0; this is checked for
instance by ensuring a monotone decreasing Bode amplitude diagram. Then
we have, for all ω > ω0, a uniform bound on 1

1−|T (jω)| <
1

1−α and also

on |P (jω)| = |T (jω)|2 · |ω/K(jω)|2. Together, all this provides a uniform
bound on the first term of (5.4) and concludes the proof. �

5.2 Cooperative Adaptive Cruise Control (CACC)

In the structure of Cooperative Adaptive Cruise Control (CACC) [36–40], we
assume that the message sent by vehicle k to its follower k + 1 is a filtered
version of the input command u

′
k as mentioned in (2.7).

Computing the dynamics of ek from the one of xk that is defined as ek =
xk−1−xk−hsxk, and defining zk = [ek ; vk−1−vk], we get the closed-loop
dynamics described by:

zk+1 = T(s) zk +

[
1

s2+K(1+hs)
1
B · −K(1+hs)

s2+K(1+hs)

]
(dk − (1 + hs)dk+1) (5.6)

in which

T(s) =

[
K

s2+K(1+hs)
HW

s2+K(1+hs)
K
B · s2

s2+K(1+hs)
HW
B · s2

s2+K(1+hs)

]
.
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This takes the form of an iteration for the propagation of disturbances from
vehicle k to vehicle k+ 1, so for each frequency s = jω we must investigate
the stability of the matrix T(jω).

We already proved in Chapter 3 that it is not possible to guarantee string
stability using CACC without time-headway policy, h = 0.

In the following Proposition, we give a su�icient result in order to obtain the
minimum time-headway requirement in CACC. This generalizes the result
of [43] reported in Proposition 5.1, to the case with communication. It may
seem rather direct a�er reading the other elements of our thesis, in particular
the formulation as (5.6). However, at first sight this formulation may not have
been evident. Indeed in the literature so far, the benefit of adding CACC to
time-headway systems was only investigated in full-system simulations, by
trial-and-error with various values of h. The below criterion only requires to
plot a single Bode diagram in order to identify the minimal requirement for
the time-headway. In particular, by comparing it to Proposition 5.1, one can
explicitly identify the benefit of CACC in this criterion.

Proposition 5.2: The norm at s = jω of transfer function T(s) in (5.6) is < 1
at all frequencies ω 6= 0, and its H∞ norm equals T(0) = 1, if and only if the
following condition holds:
Choosing K̄(s) = K(s)(1 +hs) and H̄W̄

B̄
(s) = HW

B (s)(1 +hs) first and then
deriving K(s), HW (s) from h, then we should ensure that h satisfies

h >

√√√√
max
ω

∣∣∣ N̄(jω)+M̄(jω)
1+N̄(jω)

∣∣∣2 − 1

ω2

in which N̄(s) = K̄(s)/s2 and M̄ = H̄W̄
B̄

(s).

Proof:

The key step is to notice that T(s) is a singular matrix for all s, since the right
column equalsHW/K times the le� column. Thus T(s) has one zero eigen-
value, which would robustly ensure string stability; and the single nonzero
eigenvalue of T(s) equals its trace,

trace(T(s)) =
K + HW

B s2

K(1 + hs) + s2
.

We reformulate trace(T(s)) = 1
1+hs

K̄(s)/s2+ H̄W̄
B̄

1+K̄(s)/s2
. Then writing

|trace(T(s))|2 =
1

1 + ω2h2

∣∣∣∣M̄(jω) + N̄(jω)

1 + N̄(jω)

∣∣∣∣2 < 1 for all ω 6= 0
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directly yields the expression. The expression inside the square root will
necessarily have a positive value, because we have proved in Chapter 3 that
with CACC but no time-headway, a unidirectional controller will not be able
to avoid amplifying some disturbance signals (Theorem 3.1). �

5.3 Simulation results

We now illustrate the various results of this chapter. To compute the mini-
mal time headway requirement, we will use the form as in Proposition 5.2,
where first we specify fixed target transfer functions with (1 +hs) implicitly
included, and then we derive what the actual controller should be when
removing the e�ect of (1 + hs). We thus fix K̄ first and then derive K
from it; or, we fix H̄W̄/B̄ first and then derive HW/B from it. For the
la�er situation, in a theoretical framework, there is no unique way to specify
the factors H , B, W , so we just arbitrarily split them according to transfer
functions which appear reasonable for each element, e.g. incorporating a
delay in the channel W (s) and W̄ (s).

We first consider a PD controller K̄ = s + 1 and compute the minimal h =√
2.32 according to Proposition 5.1 without communication, and h =

√
1.9

according to Proposition 5.1 with CACC (same PD parameters but adding
communication with H̄(s) = 1/B̄(s) = 1

s+1 and W̄ (s) = 1
s+1e

−0.01s,
i.e. including a time delay of 0.01). So, CACC can lead to a smaller time-
headway constant h compared to controller (2.3), using the same control gain
K̄ . Figure 5.6 illustrates this point, by showing the full frequency response
of the transfer functions associated to the computation of the minimal value
of h in the cases with (red) and without (blue) communication.

According to our results, the PD controller should be able to satisfy L2 and
(L2, l∞) string stability, but not (L2, l2) string stability. In simulations, we
can first illustrate that a PD type controller does not achieve (L2, l2) string
stability; although of course this is only a particular example, not really an
illustration of impossibility. In this sense, Figure 5.1 illustrates the (L2, l2)
norm of the error functions grows unbounded when increasing the number
of vehicles, with a disturbance acting on the leading vehicle. Using the same
controllers with the disturbance inputs acting on the second and third ve-
hicles only, Figure 5.2 illustrates (L2, l2) norms of the vector of the error
functions converge to a constant value; this confirms the particular distinc-
tion that we have made about disturbances acting on the leader or elsewhere
(Theorems 5.1 and 5.2). Figure 5.3 finally shows how individual errors remain
bounded when bounded input errors are applied to all the vehicles, thus
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illustrating how a PD controller allows to satisfy (L2, l∞) string stability in
a controller with time-headway and unidirectional coupling.
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Figure 5.1: (L2, l2) norm of the vector of error functions for a disturbance
acting on the leading vehicle, as a function of N .
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Figure 5.2: (L2, l2) norm of the vector of error functions for disturbances
not acting on the leading vehicle, as a function of N .

We next turn to the PID controller. We choose K̄(s) = 1 + 2s + 1/s for
the controllers (2.3) and (2.7), with the same communication model as be-
fore. Using Proposition 5.1 and Proposition 5.2 the time-headway requirement
is equal to

√
2.1 and

√
1.78 for the controllers (2.3) and (2.7), respectively.

Figure 5.4 shows the (L2, l2) norm of the vector of error functions, when
disturbances are applied on the leading, second and third vehicles. This norm
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Figure 5.3: L2 norm of error functions || ek ||2 as a function of k, for
disturbances acting on all the vehicles, as a function of N , using
PD controller. The (L2, l∞) string stability criterion for chain
length N is given by || e(.) ||∞= maxk≤N (|| ek ||2), so this
illustrates the possibility of (L2, l∞) string stability.

converges to a constant value, unlike on Figure 5.1 for the PD controller; this
illustrates the possibility of (L2, l2) string stability using PID control. Figure
5.5 illustrates the (L2, l∞) criterion for the same PID controllers, with and
without communication. Note that in presence of communication, we have
chosen a lower value of h instead of trying to improve some performance
criterion. So one should not a�ribute real importance to the slightly larger
e�ect of disturbances that can be observed on the figures, for low number of
vehicles with communication but thus also with smaller h.
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Figure 5.4: (L2, l2) norm of the vector of error functions for disturbances
acting on the leading, second and third vehicles, as a function of
N , using PID control.
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Figure 5.5: L2 norm of error functions || ek ||2 as a function of k, for
disturbances acting on all the vehicles, as a function of N , using
PID controller. The (L2, l∞) string stability criterion for chain
length N is given by || e(.) ||∞= maxk≤N (|| ek ||2), so this
illustrates the possibility of (L2, l∞) string stability.
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Figure 5.6: The red and blue lines show the frequency responses for the

transfer functions
| N̄(ω)+M̄(ω)

1+N̄(ω)
|2−1

ω2 and
| R̄(ω)

1+R̄(ω)
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ω2 , respectively,
used in the computation of the minimal time-headway h, for a
PD controller.
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Chapter 6

Conclusions

The true delight is in the finding out rather than in the knowing.

Isaac Asimov

This thesis has investigated how to control the relative distances between
automated/cooperative driving vehicles, in particular when such vehicles in-
teract in very long chains. Such tightly packed chains would be a power-
ful way to mitigate congestion problems with clear benefits in tra�ic flow,
fuel economy and air pollution. However, ensuring that safety, stability and
control performance do not deteriorate unboundedly with increasing chain
length, is a surprisingly challenging problem, which has been formalized as
“string stability” a few decades ago. The focus of this thesis has been i) to
identify more precisely situations and controllers which can guarantee string
stability for vehicle platoons and ii) to narrow down the di�erent control
options thanks to a more precise understanding of impossibilities to satisfy
string stability.

Towards more general design of intelligent transportation systems, the ex-
pected impact of such a theoretical study of string stability is likewise, to
helps researchers in the area to narrow down the field of investigation when
constructing control architectures which, among other requirements, may
likely include string stability as a specification.

An advantage of the simplified academic model of our theoretical study, is
that the general picture should also be valid for other applications and give
useful insight there. For instance, string stability can be used to investigate
the reaction of buildings to earthquakes [19, 20]. If not as a truly practical
goal for this application, the insights provided in the context of string sta-
bility like in the present thesis, can at least serve as a guiding principle on
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particular design issues, or inspire new ideas for be�er rejecting disturbances.
The results with disturbance restricted to the leader for instance, appear
meaningful for stabilizing buildings more than for vehicle chains; in contrast,
obtaining asymmetric coupling between di�erent levels may require specific
designs in a mechanical structure instead of a control algorithm. Another
extension which should follow similar principles is towards subsystems in-
teracting according to a la�ice structure, instead of just a chain. Some of our
conclusions, e.g. impossibility results, should not be too hard to extend to
this se�ing. La�ices are an ubiquitous model for systems from microscopic
to the most macroscopic scales. In this sense, the following conclusions will
hopefully help inspire diverse working directions.

6.1 Chapter 1

In Chapter 1, we have briefly discussed how the academic concept of string
stability is related to real-world problems and the benefits of more coordi-
nated, smarter control in transport networks.

6.2 Chapter 2

In Chapter 2, we have motivated the basic se�ing of a second-order integrator
model for an isolated vehicle, and presented di�erent approaches to design
controllers towards coordinating them in a vehicle chain. We distinguish
linear/nonlinear se�ings, homogeneous or heterogeneous strings, allowing
communication or not, and various coupling strategies – e.g. reacting only
to preceding vehicles, or reacting both to preceding and to following vehi-
cles. The most important aspect however, in the context of this thesis, is
the type of sensing. The most fundamental sensors in long chains would
measure relative properties between consecutive vehicles, e.g. distances be-
tween cars. On the basis of solely this information, i.e. without relying on
measurements with respect to a common external reference, satisfying string
stability appears to be particularly hard, as we show in the following chap-
ters. Therefore, another line of work has investigated how to control the
system when additional sensors reliably measure the absolute velocity of
each vehicle with respect to a common reference frame, e.g. the road for cars.
Such measurements allow to implement a time-headway spacing policy, in
which the desired distances between the vehicles depend on absolute veloc-
ity; this somewhat simplifies the control task towards enabling string stabil-
ity. Furthermore, we have highlighted that the existing literature about string
stability has considered di�erent measures of disturbances. We have hence
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presented three di�erent definitions of string stability in continuous-time
and discrete-time se�ings, which will be considered in the other chapters of
thesis to derive the possibility and impossibility results. The basic target is
always to keep disturbances on the relative distances between consecutive
vehicles bounded, in the limit where the chain becomes infinitely long. The
definitions investigated in this thesis all consider the standard 2-norm of
signals over time, but di�er in the way they consider vehicles, individually or
as a sum. The main motivation for the 2-norm over time seems to have been
theoretical, namely its straightforward reformulation in frequency domain,
rather than resulting from deep practical considerations. This is also men-
tioned in [28] where other norms are considered for string stability, including
the L∞ norm over time. Such BIBO type criterion would appear to us as
the practically most relevant measure, but has not been addressed directly
in the literature. Now, given the various conclusions that we have found
by clarifying the situation for the various definitions of string stability in
this thesis, we do believe that one should be more careful about choosing
one type of norm as a proxy for another one on this apparently sensitive
problem. Hence, a targeted study of the BIBO criterion, even if requiring
other tools than the popular frequency-domain energy spectrum, now seems
worth carrying out specifically in future work. We must mention however
that the strongest impossibility result in Chapter 3, also holds for the BIBO
criterion.

With respect to di�erences in the behavior of infinite-length platoon models
compared to the limit of a finite-length platoon as it becomes increasingly
long [42], we have to mention that we have always been working in the
la�er situation. I.e., no conclusions were drawn explicitly starting from a
model with infinite platoon length, so we are properly investigating the limit
behavior of a finite chain that becomes increasingly long. In this sense, we
believe to be properly capturing what happens for finite but long chains.

6.3 Chapter 3

In Chapter 3, we give the first results of the thesis, significantly extending
the scope of an impossibility result regarding string stability towards dis-
turbances acting on all subsystems. A main point was to show that com-
munication between vehicles is not a su�icient ingredient to achieve string
stability. Introducing time headway or a combination of communication
and time headway is beneficial, as seen in Chapter 5 and observed to some
extent in the existing literature; but communication on its own does not
succeed, even when extending the communication scheme with respect to
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the existing impossibility result of [36]. The obtained results are summarized
in the following table:

Table 6.1: Satisfying string stability with disturbances on all vehicles and
no time-headway (h = 0). We only list our generalizations with
respect to existing results.

Generalized CACC communication (2.7), IMPOSSIBLE
unidirectional coupling;

any definitions
General linear scalar communication (2.9), IMPOSSIBLE

unidirectional coupling;
any definitions

General vector communication , IMPOSSIBLE
(2.9), finite K(0) unidirectional

coupling; (L2, l2)

Sensor dynamics breaking, IMPOSSIBLE
relative position symmetry

unidirectional coupling; any definitions
Any Digital Controller IMPOSSIBLE

(2.12), possibly nonlinear,
communicating, bidirectional;

any definitions

We here want in particular to highlight our strongest result, Theorem 3.4,
which has been obtained in a discrete-time se�ing but should give strong
indications for all practical purposes about continuous-time design too. In-
deed, while existing results have centered on LTI systems, we show that it
is impossible to achieve string stability even if we allow controllers to be
nonlinear, N -dependent, time-varying, thus possibly modulated, digitally
quantized,... as well as communicating locally. The analysis has involved
no complicated elements once the se�ing and example have been identified,
but as the search for alternative controllers had remained open so far, it
appears to give a definite answer clearly narrowing down the options towards
achieving string stability. Essential features for the impossibility are:

• Second-order integrator model for individual subsystems: if the dy-
namics was first-order, our counterexample would not work, and in-
deed working controller designs are known in continuous-time;

• Relative measurements: variations that do solve string stability by adding
an absolute velocity term are known, see e.g. time-headway policies.
With respect to this criterion, academically, string instability appears
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more than ever as a property of distributed sensing. In practice, the
presence of absolute velocity in the feedback controller or damping
becomes a question of hardware and application tradeo�. We have
to mention that the string instability issue is not directly linked to
the low observability for long-range modes in distributed systems with
relative measurements [31]. Indeed, here the target variables are not
the absolute displacements xk, for which indeed there would be an
observability issue, but rather the relative displacements ek, which are
directly measured. Also see the previous point (second vs. first order
integrator), which plays no role in observability.

• Homogeneous controller, i.e. same logic with same parameter values
at all vehicles: technically, the possibility remains that heterogeneous
controllers, i.e. le�ing the di�erent vehicles react di�erently to the same
signals, could solve the issue. However, we currently have no clue
how to design this heterogeneity — unless one would allow parameters
increasing unboundedly with chain length N , which however would
pose other obvious problems. At least the simplest linear a�empts,
and controllers periodic in vehicle number, do not seem to work. We
would thus rather conjecture that this assumption is not essential.

• Discrete-time controller: this should be representative in practice of
a realistic digital controller. Rigorously, our counterexample analy-
sis would break down when reducing the discretization step dt with
increasing N . However, a property that only works with infinitely
large bandwidth 1/dt for communication and/or control, is usually not
robust in practice, and this suggests that any “reasonable” continuous-
time controller would fail too. Note that the standard string stability
model here includes no measurement nor communication noises, while
with extreme continuous-time controllers those noises can be expected
to become important.

Also note that we have only identified one particular, badly rejected distur-
bance input. In practice, for a generic disturbance, the situation might o�en
be be�er, but also worse.

With this we believe to have given at least a much more comprehensive
picture of what can be done on the standard academic property of string
stability. If this string stability property appears critical in some key appli-
cations, those results should help guide a possible search for very particular
controllers to achieve it, if it is feasible at all without relying on absolute
velocities.

105



Chapter 4

A di�erent option for the future is to acknowledge that the academic defini-
tion of string stability is too strong to act as a useful proxy for applications,
even in an extended framework with nonlinear controllers and so on. In that
sense, distributed controller design should probably not right-away impose
string stability, i.e. working fine for infiniteN , but instead one could quantify
the tradeo� in a more integrated picture: to have a given acceptable error,
what are the best possible combinations of chain lengthN , absolute-velocity-
dependence h, control+communication bandwidths 1/dt, possibly nonlinear
e�ects, and associated N -dependent gains in presence of other noises? This,
knowing that the limit for infinite N will not work, but will also not be
essential for most applications.

Meanwhile, as we are discussing practical applications, we should mention
that it is not hard to extend the strong impossibility result of Theorem 3.4
towards a BIBO version, namely: if we impose that disturbances must satisfy
|dk,1(t)|/dt2 < C1 and |dk,2(t)|/dt < C1 for all k, t, then we can choose α of
order 1 in the “badly countered” disturbance, and this can result in |ek(t)| of
orderNdt2. Thus, if the se�ing of Theorem 3.4 is deemed representative of a
practical situation, then this BIBO version is no direct solution for achieving
string stability either.

A point that we did not study is whether one might be able to achieve string
stability with respect to disturbances only on the initial state, instead of
on input signals. For practical considerations, we would argue that both
types of disturbances must be properly rejected, so our impossibility results
for disturbances in input signals close the question in the negative sense.
Moreover, it is well-known that a perturbed initial condition can be viewed
as resulting from some disturbance input signal that has acted on the system
in the past; in this sense, modulo adapting the norms used to characterize the
disturbances, our results should also give indications for the vehicle chain’s
reaction to initial state disturbances only.

6.4 Chapter 4

In this chapter, we have shown that an asymmetric bidirectional controller
using constant spacing policy among vehicles allows to solve the di�erent
definitions of string stability, provided disturbances act only on the leading
vehicle. In the the controller proposed in this chapter we have supposed
each vehicle is connected with one follower and one predecessor, but with
di�erent coupling gains. We have given the results in continuous-time and
discrete-time se�ings. It is not hard to extend the result to the case where
disturbances act on a few leading vehicles – the key is that the number of
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vehicles subject to disturbances remains fixed, while the length of the chain
grows to infinity.

Table 6.2: Satisfying string stability with disturbance on the leader only
and no time-headway (h = 0). Our new contributions are in
capital le�ers.

Symmetric Bidirectional Coupling Asymmetric
Bidirectional Coupling Bidirectional

Coupling
L2 ≡ (L2, l∞) possible with POSSIBLE

advanced linear controller
WITH PD

(L2, l2) impossible POSSIBLE
WITH PD

The significance of such results are motivated by two points.

First, in several applications, it is reasonable to assume that the leading ve-
hicle or subsystem will be subject to the strongest disturbances, as it is the
“boundary” of the chain. For cars on roads for instance, typically obstacles
are quasi-static and the leading vehicle will be the one encountering them by
surprise. In other applications, the string could be physically a�ached at this
boundary, e.g. when subsystems represent floors of a building. The “leading
floor” would be the ground floor, and it is the only one directly subject to the
action of earthquakes [19].

Second, in the literature it has not always been clearly distinguished whether
one seeks to counter a disturbance acting on the leader or possibly on all
vehicles, in addition to having di�erent definitions of string stability in dif-
ferent papers. From there it is sometimes unclear whether successes really
come from a new controller type, or just rely on a di�erent definition of the
objective. We here thus single out that when disturbances are confined to the
head of the chain, nothing fancy has to be sought for: a simple asymmetric
bidirectional PD coupling is su�icient to solve string stability.

6.5 Chapter 5

In this chapter, we turn to the model with time headway spacing policy, and
assuming unidirectional coupling i.e. each vehicle reacting to its predecessor
only. The time headway concept has indeed been proposed as a solution
to satisfy L2 string stability in this context; but it had never been proved
rigorously, to our knowledge, that it also allows to satisfy stronger definitions
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of string stability. We have completed these proofs and obtained a somewhat
nuanced picture, as summarized in the following table.

Table 6.3: Satisfying string stability with time-headway and unidirec-
tional coupling (reacting only to the preceding vehicle). Our new
contributions are in capital le�ers.

finite K(0) e.g. infinite K(0) e.g.
PD control PID/Integral Controllers

L2 possible possible
(L2, l2), IMPOSSIBLE POSSIBLE
|| d0 ||2 6= 0

(L2, l2), POSSIBLE POSSIBLE
|| d0 ||2= 0

(L2, l∞) POSSIBLE POSSIBLE

We have to briefly give some perspective on the case of (L2, l2) string sta-
bility using any bounded controller and time-headway. We have shown that
string stability cannot be achieved in this case, as soon as there is a dis-
turbance on the leading vehicle. We have also shown that it is possible to
guarantee (L2, l2) string stability using a PD controller, and with su�iciently
large value of time-headway, if there exists no disturbance on the leading
vehicle. This seems to identify the leading vehicle as the “only culprit”, in
apparent contradiction with the results of Chapter 4. The key point is that
we here impose unidirectional coupling. The bidirectional coupling, with in
fact stronger reaction to followers than to predecessors, is really essential in
obtaining the string stability results of Chapter 4. It is thus not surprising
that when the opposite is imposed — i.e. infinitely stronger reaction to pre-
decessors than to followers, as the la�er is zero — the conclusions become
completely di�erent.

At the end of this chapter, we have briefly considered the combination of
inter-vehicle communication (CACC) and time-headway. This is in fact the
context in which communication has been mostly considered in the litera-
ture. While simulations have confirmed the benefits in performance intro-
duced by CACC, it has been observed but seemingly not explicitly proved
that CACC also allows to obtain string stability with a lower value of the
time-headway constant, and thus a weaker dependence of inter-vehicle dis-
tances on velocity. For practical purposes, this can be important to keep
vehicles more tightly packed even at high velocities. We here generalize an
explicit criterion from [43] for the time-headway constant, towards the case
including CACC; this allows to readily show the benefits of communication

108



Conclusions

on the criterion.

Our two concluding messages would be, in a nutshell:

• Be very careful about the assumptions on the se�ing in which string
stability is investigated. Which elements make things di�erent or not,
is not always intuitive.

• The issue of string instability, on the basis of purely relative measure-
ments, appears to be much more deeply rooted (see Theorem 3.4) than
what one might suspect from its origins and standard treatment in the
LTI context.

6.6 Contributions

The contributions of this thesis can be found in the following publications:

• A. Farnam, A. Sarle�e, “About string stability of a vehicle chain with
unidirectional controller," Automatica, under review.

• A. Farnam, A. Sarle�e, “A most general impossibility result for string
stability," IEEE Trans. Automatic Control, under review.

• A. Farnam, A. Sarle�e, “About practical string stability of a vehicle
chain,"Proc. IEEE Conf. on Decision and Control, to be presented in
December 2018.

• A. Farnam, A. Sarle�e, “String stability towards leader thanks to asym-
metric bidirectional controller," IFAC World Congress, July 2017.
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