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Abstract

Background: Aligning short reads to a reference genome is an important task in many genome analysis pipelines.
This task is computationally more complex when the reference genome is provided in the form of a de Bruijn graph
instead of a linear sequence string.

Results: We present a branch and bound alignment algorithm that uses the seed-and-extend paradigm to
accurately align short Illumina reads to a graph. Given a seed, the algorithm greedily explores all branches of the tree
until the optimal alignment path is found. To reduce the search space we compute upper bounds to the alignment
score for each branch and discard the branch if it cannot improve the best solution found so far. Additionally, by using
a two-pass alignment strategy and a higher-order Markov model, paths in the de Bruijn graph that do not represent a
subsequence in the original reference genome are discarded from the search procedure.

Conclusions: BrownieAligner is applied to both synthetic and real datasets. It generally outperforms other
state-of-the-art tools in terms of accuracy, while having similar runtime and memory requirements. Our results show
that using the higher-order Markov model in BrownieAligner improves the accuracy, while the branch and bound
algorithm reduces runtime. BrownieAligner is written in standard C++11 and released under GPL license.
BrownieAligner relies on multithreading to take advantage of multi-core/multi-CPU systems. The source code is
available at: https://github.com/biointec/browniealigner
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Background
Modern Illumina machines produce sequencing data with
a high throughput at a low financial cost. Reads gener-
ated by this platform are relatively short (100-300 bp) and
have a relatively low error rate (1-2% errors) [1]. A key
data structure to represent and manipulate these data in
many bioinformatics applications is the de Bruijn graph.
It has been used in different contexts, ranging from de
novo genome assembly [2], transcriptome assembly [3],
metagenomics [4], variant calling and structural variation
detection [5].
The de Bruijn graph is a directed graph where nodes

correspond to k-mers and edges represent an overlap of
k − 1 nucleotides between nodes. When the de Bruijn
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graph is built from sequencing data and all k-mers and
their overlaps are present in the input data, the origi-
nal sequence can be found as some path through the
graph. The de Bruijn graph can thus be seen as a com-
pact multiple sequence alignment representation of the
input reads.
Aligning reads to a reference genome is a prerequi-

site step in many genome analysis pipelines. The vast
majority of read alignment software aligns short reads
to a linear reference genome [6, 7]. A common strategy
in these aligners is a “seed-and-extend” paradigm. First,
seeds such as maximal exact matches between a read and
the reference sequence are identified. Those seeds indi-
cate candidate positions in the reference genome from
which the read originated. In the second step, each seed is
extended to the left and right until a full read alignment is
obtained and the alignments with statistically significant
similarity are reported [8].
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For certain applications, the reference genome may
be provided as a de Bruijn graph rather than a linear
sequence. For example in the scaffolding phase of a short
read assembler, reads can be aligned to the assembly graph
[9]. Additionally, for genome identification of reads with
an unknown origin in a metagenomics study, reads can
be aligned to a de Bruijn graph that is built from multiple
genomes. Recently, two standalone tools have been pro-
posed to align short Illumina reads to de Bruijn graphs:
BGREAT [10] and deBGA [11].
In order to align reads to a graph representation of the

reference genome, the same seed-and-extend approach
can be used. While the seeding phase is straightforward,
the extension phase is computationally more expensive
when dealing with graphs. Given a seed, a brute-force
approach would be an exhaustive search in the graph (e.g.
depth-first search (DFS) or breadth-first search (BFS)),
exploring all possible branches of the tree until the best
alignment is found that covers the entire read. However,
the number of visited nodes can grow exponentially in the
length of the read. Assuming a four-letter DNA alphabet,
each node has up to four outgoing arcs. Therefore, to align
a read of size l, up to 4l−k nodes need to be explored in
the worst-case scenario. While most of the reads never
reach this upper bound, it shows that aligning reads to the
graph can potentially be intractable, especially in repeti-
tive regions where the graph contains many branches. To
tackle this problem, BGREAT and deBGA have an early
stop mechanism, which stops exploring nodes when the
number of mismatches exceeds a certain threshold. This
strategy reduces the search space but potentially fails to
return the optimal solution.
A second complication that arises when aligning reads

to a de Bruijn graph is that paths in the graph do not
necessarily correspond to a substring of the reference
genome. Although two connected nodes in the de Bruijn
graph always correspond to two consecutive k-mers in
the reference genome, paths of three or more connected
nodes do not necessarily correspond to a chain of k-mers
in the reference genome. Therefore, aligning reads to such
paths would reduce the overall accuracy of the alignment
procedure.
In this paper, we introduce BrownieAligner to align

short Illumina reads to a de Bruijn graph. Even though
for most practical applications, a de Bruijn graph would
be constructed from sequencing data, we assume in this
paper that it is built from a known reference genome, thus
yielding a complete and error-free de Bruijn graph. This
allows us to focus on the accuracy of the actual alignment
algorithms unimpeded by superimposed noise from the
graph structure itself. For read alignment, the seed-and-
extend paradigm is used.We propose additional strategies
to narrow down the search space and avoid the alignment
to paths in the graph that do not correspond to sequences

in the reference genome. First, the exhaustive DFS is aug-
mented with a branch and bound algorithm. For each
branch, an upper bound is computed to the alignment
score that could be obtained in that branch. The branch is
discarded from the search procedure if it cannot improve
the best solution found so far. In order to rapidly find
candidate solutions with a high score, the DFS greedily
prioritizes towards the node that appears best. Secondly,
we propose to annotate the graph with information about
the paths that do exist in the reference data. This is mod-
eled as a higher-order Markov model (MM). A priori,
this information is not present in the de Bruijn graph.
We thus propose to perform the alignment in two passes:
one alignment pass to train the MM, and a second align-
ment pass that is guided by the MM to obtain the final
alignments. Using this MM improves the overall align-
ment accuracy. This procedure is similar to the strategy
used in STAR to perform spliced alignment of RNA-seq
reads: in a first alignment round the aligners learns new
splice sites; in the second round, the final alignments are
obtained [12].

Methods
Read alignment algorithm
In our de Bruijn graph representation, linear paths of
connected k-mers are contracted to unitigs. Nodes thus
represent sequences of length k or larger. The problem
of finding an optimal read alignment in a graph can be
formalized as finding the optimal walk in that graph. A
walk is an alternating list v0, e1, v1, . . . , ew, vw of nodes and
edges such that, for 1 ≤ i ≤ w, edge ei has endpoints
vi−1 and vi. In a de Bruijn graph there is at most one edge
between two nodes. Therefore the walk can unambigu-
ously be represented as a chain of nodes v0, v1, . . . , vw. It
has been shown that given a de Bruijn graph G, a read
r and a cost function f, finding an optimal chain in G
for r that minimizes the cost function is an NP-complete
problem [10].
Given a read, the first step of finding such optimal

chain is finding at least one node of that chain (seeding).
Then, by traversing the graph to the left and right, we can
find a chain that maximizes a well-defined objective func-
tion (extension). BrownieAligner attempts to maximize
the similarity score as used in the Needleman-Wunsch
algorithm [13]. Therefore a chain that has the high-
est similarity score to the input read is assumed to be
the optimal chain. The advantage of this approach is
that it can deal with both substitution errors as well as
insertions and deletions. In contrast, the Hamming dis-
tance, which is for example used in BGREAT, can only
deal with substitutions. In the following, the similarity
score of a chain to a given read is defined as the sim-
ilarity score of the sequence represented by that chain
to the read.
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BrownieAligner first generates a hash table index of
the graph’s k-mers (default: k = 31) to accelerate the
seed-finding procedure. Given an input read as a query, it
iterates over all k-mers of that read and returns a seed for
all k-mers that exist in the graph. Seeds that are contigu-
ous in both the read and the graph are merged and sorted
according to length.
Depending on the k-mer size, read length and the error

distribution, it is possible that no exact k-mer seeds can be
found in some reads. In that case, maximal exact matches
(MEMs) between the read and the unitigs of the graph are
found using the essaMEM library [14]. Those MEMs are
necessarily shorter than k nucleotides.
The extension phase is straightforward when the entire

read is contained within a single unitig. In this case, the
seed can be extended to the left and to the right within
a single node and the alignment score is easily obtained.
However, it is also possible that extending the seed moves
the alignment across an edge, into an adjacent unitig. In
this case, the aligner should decide at each branching
point along which nodes to continue.
Our graph alignment algorithm at branching points is

shown in Algorithm 1. The input of this algorithm is: a
de Bruijn graph G, the unaligned part of the read s and
final node v of the seed. The goal of this algorithm is to
find a path in G with the highest similarity score among
all possible paths in the graph starting from v to the input
string s. Without loss of generality, consider the case of a
seed extension to the right.
The algorithm always considers nodes with a higher

priority score first. PQ denotes a priority queue whose
elements are paths from the root v. The priority of
an element is the similarity score of that element
to (a prefix of ) s. The algorithm keeps extending a
path until a full alignment with s is obtained. best-
Path is then updated with currPath if the current
path has a higher similarity to s than bestPath. The
algorithm terminates when there are no items left in
the queue.
For w a path in G, s a sequence of size l, let f (w, s) be the

alignment score between w and a prefix of s, let fid(s) be
the alignment score of s to itself, and let fmax(w, s) be the
maximal similarity score between any path in the graph G
that starts with w, and s. In our case, fid(s) = ml, wherem
is the score for amatch. Then, given an alignment between
a path w in G and a prefix s[ 1 : n] of s:

fmax(w, s) ≤ f (w, s[ 1 : n] ) + fid(s[ n + 1 : l] )
= f (w, s[ 1 : n] ) + m(l − n).

This bound is used to a priori discard subtrees in G in
which no path exists with a score that is higher than the
best complete alignment found so far. The greedy heuris-
tic of prioritizing extension of the highest scoring paths,
combined with this branch and bound strategy narrows

Algorithm 1 Graph alignment

Input: Graph G
Input: String s � unaligned suffix of read
Input: Node v � final node of the seed
1: global variables
2: PriorityQueue pq
3: Path bestPath � best path so far
4: Path currPath � current path
5: end global variables
6: currPath.append(v)
7: currPath.updateScore(s)
8: pq.push(currPath)
9: while pq �= ∅ do

10: currPath ← pq.pop()
11: if currPath.len = s.len then
12: if currPath.score > bestPath.score

then
13: bestPath ← currPath
14: end if
15: continue � fully aligned
16: end if
17: if currPath.maxScore ≤ bestPath.score

then
18: continue � branch-and-bound
19: end if
20: for node in currPath.outNodes do
21: ifpathExtensionIsValid(currPath, node)

then
22: newPath ← currPath
23: newPath.append(node)
24: newPath.updateScore(s)
25: pq.push(newPath)
26: end if
27: end for
28: end while
29: return bestPath

down the search space, while still resulting in the optimal
alignment between G and s.

Implicit repeat resolution using a Markov model
Even though all subsequences of the reference genome
can be represented as a contiguous path in the de Bruijn
graph, the opposite is not true. In particular, not all
paths in the graph that span 3 or more nodes corre-
spond to a subsequence of the reference genome. When
extending a path in the alignment process of an indi-
vidual read, a validation is performed, as shown in
Algorithm 1 (line 21). This validation relies on a
higher-order (≥ 2) Markov model (MM) and allows skip-
ping paths in the graph that do not occur in the genome.
At each branching point, we take into account the
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topology of the graph and implicitly perform a consensus
alignment between all the reads from that genomic region.
To do this, it is necessary to train the model by align-

ing all reads to the graph and clustering them by genomic
region to which they align. However, the model needs
to take into account that the data has sequencing errors
and the read coverage is not uniform across the genome.
The presence of sequencing errors in reads may result
in a wrong alignment of reads to the graph. Therefore,
the model needs to distinguish between spurious paths
which appear to exist in the reference genome because
of misaligned reads and true paths. On the other hand,
a true path for which the corresponding sequence exists
in the genome might not be observed due to a lack of
coverage. The probability of observing a true path in the
data is smaller for longer paths. The following section
describes how BrownieAligner implicitly resolves repeats
and guides the aligner using a higher-order MM.
Markov models have been used as a robust statistical

framework to model real-time processes in marketing,
text analysis, bioinformatics, network analysis, weather
forecasting, etc. [15]. One of these applications commonly
used in text editors is word prediction. It predicts the
most likely word of the user by considering the previously
typed words based upon amodel that is trained on a broad
set of training data [16]. Similarly, in the graph align-
ment of an individual read, by looking at previously visited
nodes, and the information of other reads, the aligner
predicts the true path among all possible paths, and pre-
vents alignment against false paths that do not exist in the
reference genome.

Formally, an n-order Markov Model (n-MM) in the de
Bruijn graph G is defined by:

• A set of states S = {s1, . . . , sm}, in which each state
represents a path of n nodes (v1, . . . , vn) in G.

• A set of transition probabilities pij representing the
probability of extending state path si with node vj.

The transition probability between a state path and a
node is used to specify whether the path of length n + 1
exists in the reference genome. We are therefore not par-
ticularly interested in the actual values of the transition
probabilities; we are merely interested in distinguishing
the transitions that do not occur (pij = 0) from those that
do occur (pij > 0). Transitions with zero probability corre-
spond to paths that span n + 1 nodes in the graph that do
not represent a true sequence in the reference genome and
can hence be skipped during the read alignment step. The
first-order MM is memoryless in that sense that that the
prediction of the next node only depends on the current
node. Any edge in de Bruijn graph represents a valid over-
lap between two k-mers in the reference genome. Thus,
a 1-MM is not informative in this regard. As shown in
Fig. 1, the higher-order MM tables can be useful to guide
the alignment procedure at branching nodes.
To derive a n-MM table, reads are aligned to the graph

in a first alignment pass using Algorithm 1 but without
any restrictions on alignment path, i.e., without the if-
statement in line 21. The goal of this alignment pass is
merely to train the MM. Aligned reads imply paths in the
graph and all observed paths or subpaths of length n + 1
are used to populate the MM table. The first n nodes of

Fig. 1 This figure shows the association between the de Bruijn graph and MM tables. On the left side, part of a de Bruijn graph is shown. True paths
are depicted by blue lines. The numbers inside each node indicate the multiplicity of that node, i.e., the number of times the node’s sequence is
present in the reference genome. A table at each node guides the aligner based on previously observed nodes. The 2-MM and 3-MM tables of node
A are shown on the right side. Based on the 2-MM table, reads that align to CA are guided to E as the continuation to node D is not allowed.
However, the information in this table is insufficient to guide reads that align to BA since continuations to E and D are both valid. In contrast, the
3-MM table guides the reads that align to FBA to D, and GBA to E. The information in the final row in 3-MM table is redundant because it is also
contained in the lower-order 2-MM table
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Table 1 Artificial datasets used for the evaluation of graph aligner tools

Abbr. Organism Reference ID
Genome Repeated Sequencing

Cov.
Read

size 31-mers (%) platform length

S1 Escherichia coli K-12 DH10B NC010473 4.5 Mbp 3.2 Illumina HiSeq 2500 25 150 bp

S2 Escherichia coli K-12 DH10B NC010473 4.5 Mbp 3.2 Illumina HiSeq 2000 50 100 bp

S3 Homo sapiens Chr. 21 HG19 45.2 Mbp 4.3 Illumina HiSeq 2500 25 150 bp

S4 Homo sapiens Chr. 21 HG19 45.2 Mbp 4.3 Illumina HiSeq 2000 50 100 bp

S5 Drosophila melanogaster Release 5 116.4 Mbp 1.1 Illumina HiSeq 2500 25 150 bp

S6 Drosophila melanogaster Release 5 116.4 Mbp 1.1 Illumina HiSeq 2000 50 100 bp

such path define a state swhile the final head node denotes
a possible continuation. The table consists of all observed
states s and the corresponding frequencies of all observed
continuations. These frequencies are then converted to
probabilities.
However, there can be two types of errors in this pro-

cess: (1) observing an invalid alignment path because of a
misalignment (due to sequencing errors), and (2) missing
valid alignment paths because of a lack of coverage.
To minimize the first type of error, we test for each

observed path whether its frequency freq corresponds
to the expected frequency using the following two
hypotheses:

• H0 The multiplicity of the path is zero
• H1 The multiplicity of the path is at least one

The multiplicity of a path in the graph indicates the num-
ber of times that the corresponding sequence appears in
the reference genome. Two Poisson distributions are used
to model the frequency of observed paths with multi-
plicity zero (λ = 1) and multiplicity one (λ = CM).
Paths for which likelihoodRatio = P(freq|H0)

P(freq|H1)
≥

minLikelihoodRatio are pruned from the list of eligible
paths. Here, likelihoodRatio is a measure of the degree
of certainty of the decision of eliminating a path from
the eligible set. The higher this value, the higher the

certainty. However, setting a too high value for minLike-
lihoodRatio reduces the ability of the model to avoid
false paths.
Tominimize the second type of error, theMarkovmodel

is only used for paths for which the expected number
of reads covering this path CM ≥ minChainCov. Here,
minChainCov is a second user-defined threshold. Higher
values of this parameter reduce the risk of making the sec-
ond type of error, but again, a too high value reduces the
applicability of the Markov model. Given the sequencing
coverage c, the read length l, and a path P that implies a
sequence of length M and multiplicity 1 in the reference
genome, the expected coverage CM of P is then given by
the following formula:

CM = l − M + 1
l

c (1)

Proof: First, consider a read covering a path of sequence
size M − 1. Second, extend this path with one base, with-
out loss of generality, to the left. For the read to cover this
extended path, its start position has to be strictly before
the start of the original path. The probability of this is
l−M+1
l−M+2 . Hence the following recurrence relation holds:

CM = l − M + 1
l − M + 2

CM−1.

Table 2 Real datasets used for the evaluation of graph aligner tools

Abbr. Organism Reference ID
Genome Repeated

Cov.
Sequencing Read Trimmed

Dataset ID
size 31-mers (%) platform length reads

R1 Bifidobacterium dentium Nc013714.1 2.6 Mbp 0.4 373 X Illumina MiSeq 251 bp SRR1151311

R2 Escherichia coli K-12 DH10B NC010473 4.5 Mbp 3.2 418 X Illumina MiSeq 150 bp Ill. Data library

R3 Escherichia coli K-12 MG1655 NC000913 4.5 Mbp 0.6 612 X Illumina GAII 100 bp ERA000206

R4 Salmonella enterica NC011083.1 4.7 Mbp 0.5 97 X Illumina MiSeq 239 bp � SRR1206093

R5 Pseudomonas aeruginosa ERR330008 6.1 Mbp 0.6 169 X Illumina MiSeq 120 bp � ERR330008

R6 Homo sapiens Chr. 21 HG19 45.2 Mbp 4.3 29 X Illumina HiSeq 100 bp Ill. Data library

R7 Caenorhabditis elegans WS222 97.6 Mbp 2.6 58 X Illumina HiSeq 101 bp SRR543736

R8 Drosophila melanogaster Release 5 116.4 Mbp 1.1 52 X Illumina HiSeq 100 bp SRR823377
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Table 3 Accuracy comparison of graph aligner tools in terms of
correct alignment of reads to the graph on simulated data

S1 S2 S3 S4 S5 S6

Percentage of correctly aligned reads.(%)

BGREAT 99.94 99.61 98.92 96.16 99.89 99.40

BrownieAligner 100.00 99.99 99.42 98.07 99.97 99.89

BrownieAlignerNoMM 99.99 99.98 99.30 97.67 99.96 99.85

deBGA 99.52 83.48 99.07 83.01 99.37 83.37

Solving the recurrence relation leads to

CM = l − M + 1
l

C1.

Additionally, C1 = c by definition. This concludes the
proof.
After constructing the MM tables for different orders

as outline before, all reads are again aligned to the graph
in a second alignment pass, this time guided by the MM.
Different orders are required because a low order might
not be sufficiently informative to guide the read align-
ment whereas a high order might not attain the coverage
requirements. In this second alignment pass, the align-
ment of a read no longer solely depends on the identity
between the read and the sequence implied by the align-
ment path. Rather, the collective information of all other
reads is used to identify the true paths in the graph and
thus obtain a higher alignment accuracy.

Choice of parameters:
The scoring system in Algorithm 1 has match, mismatch
and gap scores of respectively + 1, − 1 and − 3. The
maximum MM order (maxOrder) is 10. The values of
minLikelihoodRatio andminChainCov are set respectively
to 105 and 10.

Graph aligner tools
The performance of BrownieAligner is compared with the
state-of-the-art graph aligners BGREAT and deBGA. A
de Bruijn graph is first constructed from the reference
genome, followed by the alignment of reads to the cor-
responding graph. BrownieAligner and deBGA have the
functionality to construct the de Bruijn graph. BGREAT
does not support this feature, therefore we used BCALM

Table 4 Accuracy evaluation of BrownieAlignerNoMM and
BrownieAligner on the subset of the simulated reads that align to
a path of at least two nodes in the graph

S1 S2 S3 S4 S5 S6

Percentage of correctly aligned reads. (%)

BrownieAligner 99.34 99.05 90.72 86.07 98.21 97.12

BrownieAlignerNoMM 98.72 98.47 87.68 82.39 97.38 96.13

[17] to construct the de Bruijn graph for BGREAT. A
drawback of deBGA is that it only accepts a reference
genome as an input and not a graph in general. There-
fore, it cannot be used as a graph aligner tool to align
reads against the assembly graph. BGREAT and Brown-
ieAligner report corrected reads, i.e., the corresponding
sequences from the reference genome after aligning reads,
in the same order and file format as the input reads. In
contrast, deBGA returns the alignment results in SAM
format. Therefore, we developed sam2Alignment script,
which is used to produce the corrected read from the
reference genome based on the SAM entry. Three ver-
sions of BrownieAligner are provided and evaluated in
this paper. BrownieAligner is the main tool and benefits
from both (1) the greedy branch and bound algorithm and
(2) MM repeat resolution. The first feature is disabled in
BrownieAlignerNoBB and the second one is disabled in
BrownieAlignerNoMM. For all results the default or rec-
ommended k-mer sizes are used. Parameters and settings
are provided in Additional file 1: Data 1.
All tools were run on a machine with four Intel(R)

Xeon(R) E5-2698 v3 @ 2.30GHz CPUs (64 cores in total)
and 256 GB of memory. All tools support multithreading
and run with 32 threads. Elapsed (wall clock) time and
peak resident memory were measured with the GNU time
command.

Data
The performance of the three tools was measured on six
artificial datasets (see Table 1). For three high-quality ref-
erence genomes (E. coli str. K-12 substr. DH10B, Human
chr-21 and Drosophila melanogaster), reads were simu-
lated for two different Illumina platforms (HiSeq 2000
(100 bp), HiSeq 2500 (150 bp)) using ART [18].
Additionally, the three tools were evaluated on eight

real Illumina datasets for which both a reference genome
and sequencing data are publicly available (see Table 2).
Genome sizes range from 2Mbp (Bifidobacterium den-
tium) to 116Mbp (Drosophila melanogaster), and read
coverage varies from 29X to 612X. The data were pro-
duced on the Illumina HiSeq, MiSeq and GAII platforms.
Read lengths range from 100 bp to 251 bp. Two data sets
have a variable read length due to prior read trimming,
while the others have fixed read lengths.

Evaluation metrics
For each simulated read, ART generates a correspond-
ing error-free read that is used to perform the accuracy
evaluation (see Additional file 1: Data 2). For real data,
the ground truth is unknown. In this case, it is assumed
that the correct alignment is represented by the align-
ment of the read to the linear reference genome using
BWA. Only paired-end reads where both pairs map to the
reference genome properly are extracted using SAMtools
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Table 5 Accuracy comparison of graph aligner tools in terms of
correct alignment of reads to the graph on real data

R1 R2 R3 R4 R5 R6 R7 R8

Percentage of correctly aligned reads. (%)

BGREAT 94.55 94.28 91.28 84.97 96.09 92.01 94.57 80.37

BrownieAligner 99.81 99.81 99.55 99.02 99.78 96.98 96.53 89.59

BrownieAlignerNoMM 99.81 99.80 99.52 98.99 99.78 96.67 96.47 89.55

deBGA 99.67 99.30 92.36 97.31 93.63 98.42 74.72 85.42

[19]. Finally, the pairwise alignment of each read is recon-
structed based on the CIGAR string and MD tag using
sam2pairwise [20] (see Additional file 1: Data 3). The per-
formance of the aligners is measured based on their ability
to align reads to the correct position in the graph. For a
given read, the correct path in the graph is the path with
the same sequence content as the error-free read corre-
sponding to that read. A detailed explanation is provided
in Additional file 1: Data 4.1.

Results and discussion
Alignment ratio
Table 3 shows the percentage of correctly aligned reads
for the simulated data (see Additional file 1: Data 5.1
for the detailed information). BrownieAligner has the
highest percentage of correctly aligned reads (≥ 98.07%)
for all data sets. BGREAT consistently performs slightly
worse (≥96.16%) than BrownieAligner while deBGA per-
forms slightly worse on half of the data sets (S1, S3,
S5), but significantly worse (≥ 83.01%) on the others
(S2, S4, S6). All tools perform worse on the H. sapi-
ens data (S3 and S4) than on the E. coli data (S1, S2)

and D. melanogaster data (S5, S6). The performance of
deBGA additionally depends on the read length or cover-
age, since it consistently performs significantly better on
the 150 bp 25x coverage data than on the 100 bp 50x cov-
erage data, for all genomes. Additionally, comparing the
results for BrownieAligner and BrownieAlignerNoMM
reveals that the use of theMarkov model in the read align-
ment process always improves the overall accuracy of the
alignment.
We additionally investigated the accuracy of Brown-

ieAligner on those reads that are aligned to a walk in
the graph that comprises multiple nodes, i.e., the reads
for which the Markov model algorithm is actually used.
Table 4 shows the percentage of these reads that are cor-
rectly aligned by BrownieAligner (with Markov models)
and BrownieAlignerNoMM. Results indicate that the use
of these Markov models offers a significant improvement
for the alignment of these harder to align reads.
In order to see the effect of k-mer size on the accu-

racy, all tools were benchmarked with different values of
k on all the simulated datasets. The results indicate that
for each dataset the best accuracy for BrownieAligner is
always higher than the best accuracy for other tools (see
Additional file 1: Data 5.1). The results show Brown-
ieAligner performs better for larger k. This has two
reasons. First, BrownieAligner can use maximal exact
matches during the seeding phase, enabling the identifi-
cation of seeds smaller than k. Hence, the sensitivity of
the seed finding procedure is not negatively affected by a
larger value of k. Second, with higher values of k the repeat
structure in the graph is less complex, and hence Brown-
ieAligner is less prone to choosing an incorrect path in
the alignment phase. The accuracy of BrownieAligner on

Fig. 2 Peak memory usage. Peak memory usage of the aligner tools for simulated datasets



Heydari et al. BMC Bioinformatics  (2018) 19:311 Page 8 of 10

Fig. 3 Runtime. Average runtime of tools to align 1M reads for the simulated datasets

simulated data also has been evaluated based on other val-
ues of maxOrder, minLikelihoodRatio and minChainCov.
The results indicate that BrownieAligner performs con-
sistently well over a wide range of parameters setting (see
Additional file 1: Data 5.1).
Table 5 shows the percentage of reads that are correctly

aligned by each tool for 8 real datasets (see Additional
file 1: Data 5.2 for the detailed tables). The accuracy
of BrownieAligner for the bacterial genomes (R1-R5) is
very high (G ≥ 99.02%) and BrownieAligner outper-
forms the other tools, followed by deBGA (G ≥ 92.36%)
and then BGREAT (G ≥ 84.97%). For the H. sapiens

data (R6) deBGA performs remarkably well. For the other
two eukaryotic genomes (R7 and R8), BrownieAligner has
again the highest percentage correctly aligned reads. The
comparison between BrownieAligner and BrownieAlign-
erNoMM again indicates that the use of the Markov
models to resolve repeats improves the accuracy of read
alignment. Additionally, the difference is more significant
in H. sapiens (R6), which is known to be repeat-rich.
The effect of the MM for the alignment of reads that
span multiple nodes is further investigated in real data
(see Additional file 1: Data 5.2). Results indicate that the
alignment accuracy generally benefits from using theMM.

Fig. 4 Runtime. The effect of branch and bound strategy on the running time of BrownieAligner
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Fig. 5 Peak memory usage. Peak memory usage of the aligner tools for real datasets

Time and space requirements
Figures 2 and 3 show the memory usage and run-
time of the aligners for the simulated data (see
Additional file 1: Data 5.3.1 for detailed tables). For
the smallest genomes, deBGA requires the most mem-
ory, while for larger genomes BrownieAligner has the
highest memory requirements. Run times for S1, S2,
S5 and S6 data sets are comparable for all tools.
However, BrownieAligner and BGREAT take signifi-
cantly longer than deBGA to align S3 and S4. Gener-
ally speaking, BGREAT is memory-efficient and deBGA
is fast.

In order to capture the effect of the branch and bound
pruning strategy in Algorithm 1, we disabled this feature
in BrownieAlignerNoBB. Figure 4 compares the amount
of time that the two versions of BrownieAligner take to
align only those reads that align to a non-trivial walk in
the graph, i.e., those reads where Algorithm 1 is used.
Results show that using this strategy reduces the runtime
of BrownieAligner especially for more repetitive genomes
(see Additional file 1: Data 5.3.1 for detailed tables).
Figures 5 and 6 show the memory usage and runtime of

the aligners for the real data (see Additional file 1: Data
5.3.2 for detailed tables). Memory usage and runtime of

Fig. 6 Runtime. Average runtime of tools to align 1M reads for the real datasets
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tools in real data also follow the same pattern as the sim-
ulated data except that BrownieAligner is the slowest tool
for three largest datasets.
Generally, BrownieAligner has a higher runtime to align

reads to the H. sapiens genome (S3, S4 in simulated data
sets and R6 in real data sets). This is due to the presence
of more repetitive patterns in the genome making the de
Bruijn graphmore complex. Therefore, the DFS algorithm
in BrownieAligner has to visit more nodes before it finds
the optimal path in the graph.

Conclusions
BrownieAligner is proposed as a tool to align short Illu-
mina reads to a de Bruijn graph. It uses higher-order
Markov models to implicitly resolve repeats in the graph,
thus avoiding reads to be aligned against paths in the de
Bruijn graph that do not constitute a subsequence of the
genome. Our results show that using this model always
improves the accuracy of the alignment both in simu-
lated and real data. BrownieAligner generally outperforms
other state-of-the-art tools in terms of accuracy, while
having similar runtime and memory requirements.

Additional file

Additional file 1: Supplementary Data: BrownieAligner: Accurate
Alignment of Illumina Sequencing Data to de Bruijn Graphs (PDF 166 kb)
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