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Abstract 19 

Introduction: Our understanding of the complexity of cardiovascular disease 20 

pathophysiology remains very incomplete and has hampered cardiovascular drug 21 

development over recent decades. The prevalence of cardiovascular diseases and their 22 

increasing global burden call for novel strategies to address disease biology and drug 23 

discovery. 24 

Areas covered: This review describes the recent history of cardiovascular drug discovery 25 

using in vivo phenotype-based screening in zebrafish. The rationale for the use of this model 26 

is highlighted and the initial efforts in the fields of disease modeling and high-throughput 27 

screening are illustrated. Finally, the advantages and limitations of in vivo zebrafish screening 28 

are discussed, highlighting newer approaches, such as genome editing technologies, to 29 

accelerate our understanding of disease biology and the development of precise disease 30 

models. 31 

Expert opinion: Full understanding and faithful modeling of specific cardiovascular disease 32 

is a rate limiting step for cardiovascular drug discovery. The resurgence of in vivo phenotype 33 

screening together with the advancement of systems biology approaches allows for the 34 

identification of lead compounds which show efficacy on integrative disease biology in the 35 

absence of validated targets. This strategy bypasses current gaps in knowledge of disease 36 

biology and paves the way for successful drug discovery and downstream molecular target 37 

identification.  38 
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Article Highlights 39 

• Modern cardiovascular drug discovery has lagged recently due to the lack of 40 

understanding of complex disease pathophysiology; 41 

• Target-based in vitro screening cannot model the complexity of biological and 42 

pathological processes in a whole organism or mimic the pharmacokinetic behaviors of 43 

bioactive molecules; 44 

• The resurgence of phenotype-based screening, as represented by zebrafish embryo 45 

models, has been a bright spot; 46 

• Using new approaches, such as genome editing technologies, has accelerated the 47 

understanding of disease biology and development of zebrafish disease models; 48 

• New molecular entities initially identified in zebrafish screens are expected to represent 49 

an increasing proportion of the drug candidates that will enter clinical testing in the near 50 

future.51 
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1. Introduction 52 

Despite the significant decline in cardiovascular disease (CVD) mortality over the last 53 

several decades due to improved medications and surgical procedures, CVD remains one of 54 

the leading causes of death globally [1–3]. Myocardial infarction, heart failure, stroke and 55 

other CVDs resulted in an estimated 17.9 million deaths worldwide in 2016, representing 56 

some 31% of all global deaths [4–6]. The global burden of CVD was estimated over US$800 57 

billion in direct healthcare costs and productivity losses worldwide in 2010 alone and these 58 

costs are projected to reach US$20 trillion by 2030 [7]. Thus, the burden of cardiovascular 59 

disease is both a major public health concern and a growing global challenge [8]. 60 

Notwithstanding the increasing global cardiovascular disease burden, investment in 61 

cardiovascular drug development has stagnated and the approvals for new cardiovascular drug 62 

therapies have declined substantially [9–10]. The application of genomic technologies and 63 

systems biology approaches has identified multiple potential new cardiovascular drug targets, 64 

as well as novel molecules with potential cardiovascular applications. However, these 65 

scientific advances have not stimulated an increase in drug development for CVD. Fewer drug 66 

candidates were found in the cardiovascular research pipeline compared with other 67 

therapeutic areas [9]. For instance, as shown in Figure 1, the antineoplastic agents undergoing 68 

early-phase development grew +6.9% between two time intervals (1990-1999 vs. 2000-2007), 69 

whereas for cardiovascular agents, there was a significant contraction in the same time period 70 

(-4.6%) [9]. Compared to the high number of new molecular entity applications (n=61, year 71 

2000-2012) and first-cycle FDA approvals (72%) of oncology drugs, cardiovascular drugs 72 

had significantly fewer applications (n=21) and a much lower rate of first-cycle approvals 73 
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(32%) [10]. 74 

Though there are many reasons for this downward trend in cardiovascular drug discovery, 75 

a particularly important one is the limits of our understanding of cardiovascular 76 

pathophysiology. Promising novel druggable targets are rare. Target-based strategies have 77 

been adopted as the method of choice in cardiovascular drug discovery for the past two 78 

decades. Recently, the cardiovascular drug development process has become much longer, 79 

riskier and more complex. Many diseases exhibit multifactorial etiologies, resulting from the 80 

interactions of multiple genetic factors, signaling pathways and various environmental risks. 81 

For instance, coronary artery disease (CAD) has been demonstrated to be, at least in part, an 82 

intricate chronic inflammatory disease, whose etiopathogenesis is complex including 83 

environmental factors, such as diet, smoking, air pollution or physical activity, and genetic 84 

factors that modulate the risk of the disease [11]. To data, genome-wide association studies 85 

have identified over 100 genetic loci, yet they are able only to explain a proportion of the 86 

heritability of CAD [11]. It remains a daunting challenge to discover a single druggable target 87 

that can address such complex disease biology. 88 

The advancement of systems biology approaches, such as genome editing, functional 89 

genomics and computational modeling, is currently accelerating the understanding of disease 90 

biology and the exploration of druggable targets. In the meantime, a resurgence of interest in 91 

phenotype-based screening for drug discovery such as zebrafish-based in vivo screening has 92 

also occurred, taking advantage of the tractability of the zebrafish model and of human 93 

induced pluripotent stem cell modeling. To date, few drugs have made it to the clinic from 94 

zebrafish in vivo screening, but several examples are imminent. The combination of these 95 
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strategies would be expected to bring new enthusiasm and investment, while paving the way 96 

for more efficient cardiovascular drug discovery in the near future. 97 

 98 

2. Target-based screening in the face of complexity 99 

Target-based approaches are designed to identify biologically active small molecules 100 

based on systematic, repetitive, and quantitative investigation of their effects on a therapeutic 101 

target. The target is usually a single gene product or a specific molecular mechanism that has 102 

been identified via human genetic studies or basic biological research. In particular, once a 103 

robust link is identified between a specific human gene and a disease signature, molecules 104 

that target this gene product are strong candidates to succeed as potential therapeutic drugs. 105 

Target-based drug discovery usually relies on a tightly controlled in vitro screening approach, 106 

which drives less expensive and less time-consuming experiments compared to whole 107 

organism-based methods. Besides, this type of screening can also be used to assess a large 108 

number of variables, such as different experimental parameters or combinations of small 109 

molecules, which is often not feasible with the whole organism-based models [12,13].  110 

However, despite the thousands of potential therapeutic targets identified since the 111 

human genome has been decoded, it remains quite difficult to predict which proteins, when 112 

modulated in vivo, will reverse a disease phenotype or alter a poorly understood pathological 113 

process, especially for complex chronic diseases like cardiovascular disease, diabetes and 114 

cancer [14-16]. In the case of cardiovascular arrhythmias for example, despite constantly 115 

improving systems biology technologies, the fundamental disease mechanisms are still 116 

difficult to elucidate. It remains a particularly challenging problem to uncover the precise 117 
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pathways that cause a sudden cardiovascular event after years of quiescence in patients. 118 

Another major issue is that many biological processes cannot be faithfully reproduced in 119 

target-focused biochemical assays or even in cultured cells. The three-dimensional context 120 

and complex interactions with other cells, tissues, or circulating factors are often important 121 

factors in disease biology and/or in drug responses.  122 

Furthermore, the pharmacokinetic behavior of the bioactive molecules, as described by 123 

parameters quantitating compound absorption, distribution, metabolism and excretion 124 

(ADME), is a determining factor for the in vivo efficacy of drug candidates. In whole 125 

vertebrate models, such as the zebrafish, the effects of individual human drugs are typically 126 

representative of human complexity, including most known drug–drug interactions. In 127 

addition, there is increasing evidence that drug distribution across active physiological 128 

boundaries such as the blood–brain barrier can also be faithfully observed in animal models 129 

including the zebrafish [17], while these pharmacokinetic characteristics by definition cannot 130 

be established in target-based in vitro drug discovery efforts. 131 

 132 

3. Resurgence of the In Vivo Screens 133 

A phenotype-based approach is designed to study biologically active small molecules 134 

based on their interactions with whole organisms. Before in vitro approaches made possible 135 

by advances in molecular biology, many biologically active molecules were empirically 136 

discovered based on their unexpected phenotypes resulting from their effects on whole 137 

organisms. For instance, the anticoagulant dicoumarol and its derivatives were first 138 

discovered when cattle fed on rotting sweet clover died of internal bleeding, while the 139 
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Hedgehog signaling antagonist cyclopamine was discovered because of a fetal deformity, 140 

cyclopia, which was observed in offspring from sheep grazing on veratrum californicum 141 

[18,19]. Some attempts were also made to accelerate discovery of bioactive small molecules 142 

by systematic chemical screening, albeit in costly screens in modest numbers of rodents 143 

[20,21]. 144 

Despite the power of phenotype-based approaches demonstrated by the successful 145 

examples above, cost and lack of scalability led to the dominance of target-based methods 146 

during the last few decades. Currently, there is a resurgence of interest in phenotype-based 147 

screening because of the growing number of early discovery successes from such efforts, such 148 

as the usage of caenorhabditis elegans, drosophila melanogaster and zebrafish disease models. 149 

A recent analysis of first-in-class drugs that were approved by the FDA at 1999-2008 revealed 150 

that 62% were discovered by phenotype-based screens, despite the fact that such screens 151 

represented only a small subset of drug discovery efforts [22]. 152 

Several benefits may contribute to the success of phenotype-based approaches. First, 153 

phenotype-based drug discovery can identify chemical modifiers of virtually any biological 154 

process while target-based approaches typically can only discover modifiers of a specific 155 

target and then usually in a cell autonomous context. Therefore, phenotype-based approaches 156 

provide an opportunity to reveal novel targets and their functions and to obtain fundamental 157 

insights into poorly understood biological processes, in contrast to target-based approaches 158 

where a prior biological understanding is a prerequisite. Without robust criteria for causation, 159 

relevance of any target to a specific disease may be ephemeral. Second, phenotype-based 160 

discovery can identify chemical modifiers that produce a therapeutic effect through 161 
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simultaneous activity at multiple targets. For instance, the antiarrhythmic agent, amiodarone, 162 

discovered through serendipitous observation, exhibits activities with multiple molecular 163 

mechanisms, like actions on ion channels, adrenergic receptors, and possibly via binding to 164 

the nuclear thyroid receptor [23]. On the other hand, many molecules that exclusively target 165 

the conductance of individual ion channels as antiarrhythmic agents have proved to be 166 

unsuccessful. One possible reason for this discrepancy might relate to the incompletely 167 

understood roles of the various types of ion channels [15]. Third, phenotype-based approaches 168 

can identify chemical modifiers in the context of a whole organism, which can discover 169 

modifiers with acceptable pharmacokinetic/pharmacodynamic profile and parse out chemicals 170 

with undesirable qualities including obvious toxicities. Thus, hit compounds advancing from 171 

phenotype-based drug discovery have a higher probability of passing further tests in other 172 

models for effectiveness, side effects, toxicity, and pharmacokinetic profile compared to 173 

compounds identified in target-based screens. 174 

 175 

4. Zebrafish as a Valuable in Vivo Tool for Cardiovascular Drug Discovery 176 

Zebrafish (Danio rerio) were first used as a model for the study of developmental 177 

biology, and later were increasingly applied to the study of human disease, including 178 

cardiovascular disease and cancer [24,25]. In recent years, small-molecule screening for drug 179 

discovery in zebrafish has been a fast-growing fraction of phenotype-based screens. The 180 

zebrafish not only provides the common advantages of phenotype-based screens described 181 

above, but also offers some distinct advantages that are beyond other in vivo models, such as 182 

flies, worms and yeast. 183 
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4.1 Morphology and physiology.  184 

The scale that can be achieved in zebrafish experiments is distinctive for a vertebrate 185 

species. First, adult zebrafish are extremely fertile, laying up to 300 eggs per week. Thus, it is 186 

feasible to generate thousands of embryos per day even for a small zebrafish facility. Early 187 

embryos are approximately 1 mm in diameter, allowing several embryos to fit easily in a 188 

single well of a 96 or even 384 well plate [25,26]. Second, the embryogenesis of zebrafish 189 

proceeds rapidly. The entire body plan is established by 24 hours post fertilization (hpf) and 190 

most of the internal organs are well developed by 96 hpf [27]. For instance, the heart is one of 191 

the first organs to form and function during embryogenesis with rapid maturation within the 192 

first 48 hpf [28]. Third, zebrafish embryos are transparent, which means organs, cells and 193 

tissues can be visualized in vivo and functional changes can be investigated in real-time 194 

[29,30]. These observations can be further highlighted by the use of transgenic lines and other 195 

reporter molecules. For example, the Tg(myl7:GFP) transgenic line, with myocardial cells 196 

expressing green fluorescent protein (GFP), was employed in a range of studies to trace the 197 

developmental fates of heart cells, finding new heart specific genes, establishing biological 198 

indices of environmental pollutants, and studying the efficacy of therapeutic drugs [31-33]. In 199 

another example, a luciferase-based transgenic zebrafish line, Tg(nppb:F-Luc), enabled in 200 

vivo identification of genetic and chemical modifiers of the expression of cardiac natriuretic 201 

peptides. The advantages of zebrafish transparency and the luminescence produced by the 202 

transgenic marker were combined to facilitate rapid, large-scale screening for small molecules 203 

that could be potentially useful in modifying the pathological response to sarcomeric gene 204 

mutations that cause hypertrophic cardiomyopathy [34]. 205 
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4.2 Genetic Manipulation.  206 

In the past two decades, rapid development of knowledge and technologies have greatly 207 

increased the utility of zebrafish as a screenable vertebrate model. The zebrafish genome has 208 

been sequenced and annotated [35]. The application of DNA microarrays, whole-embryo in 209 

situ hybridization (WISH) and RNA sequencing has accelerated transcriptional studies which 210 

are often important in validating disease models. More importantly, gene functions can be 211 

rapidly and robustly studied in zebrafish by use of specific genetic manipulations, such as 212 

morpholinos, RNA interference, transcription activator-like effector nucleases (TALENs), 213 

zinc finger nucleases, and in recent years also the CRISPR (Clustered regularly interspaced 214 

short palindromic repeats)-Cas (CRISPR -associated protein) system [36,37]. Morpholinos 215 

are among the most commonly used genetic tools in the zebrafish community. They act by 216 

"steric blocking", binding to a specific target sequence within an RNA molecule and thereby 217 

inhibiting the interaction of ribosomes or spliceosomes with the RNA [38,39]. By producing a 218 

reduction or even loss of expression of the gene product, morpholinos can be used to discover 219 

the functions of genes without an available mutant allele. Despite concerns regarding the 220 

specificity of morpholino effects, larger scale assessments have confirmed biological 221 

relevance, albeit requiring careful validation. In addition, the dose-dependent effect of 222 

morpholinos on the level of gene knockdown allows for the investigation of intermediate 223 

phenotypes [39]. The latest tool for targeted genome editing, the CRISPR-Cas system, is 224 

precise and efficient. By delivering the Cas9 nuclease and a synthetic guide RNA 225 

complementary to the genomic target sequence of interest (either produced by the cell after 226 

DNA/mRNA transfection or injected directly as a Cas9 protein / guide RNA complex), the 227 
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genome can be cut at a desired location, which allows existing genes to be edited or removed 228 

and/or new ones to be inserted [36,40,41]. The CRISPR-Cas system has been widely adopted 229 

in recent years and newer gene editing enzyme discoveries promise only to broaden the 230 

repertoire of what is possible. These tools enable targeted mutagenesis by inducing small 231 

mutations and even in-frame knock-in to any chromosomal locus of choice [36]. During the 232 

past few years, a number of zebrafish models of cardiovascular disease has been established 233 

using this method, such as inherited cardiomyopathy and congenital heart defects [42,43].  234 

4.3 Conservation of Cardiovascular Development.  235 

As a vertebrate model, zebrafish share well-conserved genetic pathways that govern 236 

cardiovascular development similarly as in humans, which is not as straightforward for 237 

invertebrates, such as fruit flies, worms and yeast. The zebrafish heart is the first organ to 238 

function, developing rapidly starting around 5 hpf, and fully formed by 48 hpf, compared with 239 

12dpf in the mouse and 35dpf in the human embryo [44]. The zebrafish heart is 240 

two-chambered, resembling that of a human embryo at 3 weeks gestation [45]. Despite the 241 

apparent morphological differences, owing mostly to the lack of a pulmonary circulation, the 242 

highly conserved nature of zebrafish and human hearts at anatomical, cellular and 243 

membrane-biology levels make it a powerful model for studying cardiac development and 244 

related diseases. Interestingly, many human cardiovascular drugs have shown identical effects 245 

in zebrafish, and several human cardiovascular disorders have been recapitulated in zebrafish 246 

models [46]. Compared to rodents, the electrophysiological properties of human 247 

cardiomyocytes are more similar to the zebrafish, suggesting higher relevance to human 248 

cardiovascular physiology [47-49]. The hematopoietic system and processes in zebrafish are 249 
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also highly conserved from humans, and drugs affecting hematopoiesis and anemia in humans 250 

have similar effects in zebrafish [50,51]. Finally, vascular development is also conserved 251 

between zebrafish and higher vertebrates, which has enabled the discovery of new modulators 252 

of angiogenesis using zebrafish as a model [52-54]. 253 

Multiple drug toxicities, including repolarization cardiotoxicity, are conserved between 254 

zebrafish and human. For example, during a screen for the potential toxic effects of small 255 

molecules on zebrafish heart rate, 22 of the 23 drugs tested exhibited bradycardia and 256 

atrioventricular block effects in zebrafish embryos, which were consistent with the 257 

repolarization abnormalities, such as QT prolongation, observed in humans. Classical 258 

drug-drug interactions between cimetidine and terfenadine, as well as cisapride and 259 

erythromycin, were also reproduced [55]. Similarly, some anti-neoplastic drugs such as 260 

doxorubicin with specific effects on human cardiac function, ranging from asymptomatic 261 

electrocardiographic changes to pericarditis and decompensated cardiomyopathy, consistently 262 

recapitulate these effects in zebrafish [56]. Compounds discovered via zebrafish screening 263 

have conserved responses in corresponding rodent disease models. Eight drug candidates 264 

identified in separate screens produced the expected effects/toxicities in rodents in follow-up 265 

studies [57-63], providing strong evidence that the conservation of 266 

pharmacological/toxicological effects between zebrafish and mammals is high for the 267 

majority of drugs. 268 

 269 

5. Recent Screens in Zebrafish and Examples of Success. 270 

The development of phenotype-based screening highlighted the benefits of using the 271 
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zebrafish model for many complex phenotypes inaccessible in other screenable models. Over 272 

the past few years, more than 40 small-molecule screens in zebrafish have been published. 273 

The phenotypes probed varied widely, including embryogenesis, cardiac function, 274 

cardiotoxicity, cell migration, cell proliferation, lipid absorption, regeneration, angiogenesis, 275 

cancer and behavior [64,65]. Several of these screens have been related to cardiovascular 276 

disease and these are discussed to illustrate some of the successful strategies for drug 277 

discovery in this organism. 278 

A number of zebrafish phenotypic screens have targeted cardiovascular diseases, 279 

including cardiomyopathy, heart failure, long QT syndrome, aortic coarctation, angiogenesis 280 

and cerebral cavernous malformations (Table 1) [34, 61, 62, 66-76]. The key concepts of such 281 

phenotypic screens are illustrated in a flowchart in Figure 2. Using genetic modification or 282 

drug challenge, primary disease characteristics, such as reduced cardiac contraction or other 283 

molecular and cellular homeostatic responses, can be recapitulated in zebrafish. Taking 284 

advantage of the feasibility of maintaining and manipulating zebrafish embryos or larvae in 285 

96 or 384 multi-well plates, a phenotypic screen based on automated video/image capture and 286 

analysis or visual assessment can be undertaken to identify new lead compounds. The typical 287 

cardiovascular parameters such as cardiac output, heart rate, blood flow or vascular 288 

morphology can readily be quantified (Figure 2, right). Multiple zebrafish screens have 289 

identified repurposing opportunities for existing drugs, whereas others have discovered novel 290 

therapeutic compound classes (Figure 3). 291 

5.1 Cardiomyopathy.  292 

Despite our improved understanding of the pathophysiology of cardiac disorders like 293 
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hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy, it is still a great challenge 294 

to find novel modifiers of these disease phenotypes. The cardiac natriuretic peptide genes 295 

(nppa and nppb), which have been shown to be induced in the heart of embryonic zebrafish 296 

by pathological cardiac stimuli, are promising markers of cardiomyocyte hypertrophy and 297 

heart failure [34,77]. The transgenic zebrafish reporter line Tg(nppb:F-luc) faithfully 298 

recapitulated the expression profile of the nppb gene, allowing for a quantifiable read-out of 299 

pathological induction of this marker. The application of this line in a focused screen of a 300 

model for hypertrophic cardiomyopathy successfully identified two compounds, Trichostatin 301 

A (TSA, a histone deacetylase (HDAC) inhibitor) and U0126 (a mitogen-activated protein 302 

kinase kinase (MEK) inhibitor), which could normalize nppb induction [34]. 303 

In another study, a zebrafish model for arrhythmogenic cardiomyopathy (ACM) was 304 

generated by transgenic cardiac myocyte–specific expression of the human plakoglobin gene 305 

carrying the pathogenic 2057del2 mutation [62]. Crossing the Tg(nppb:F-luc) reporter line 306 

into this model enabled high throughput screening of a library of bioactive compounds, which 307 

identified three hits that suppressed the disease phenotype. One suppressor, SB216763, 308 

previously annotated as an activator of canonical Wnt signaling, with the largest body of 309 

extant data, was selected for priority follow-up validation. Early SB216763 therapy could 310 

reduce nppb levels, prevent bradycardia and contractility defects and reduce mortality in the 311 

fish model. The mutant plakoglobin-induced reductions in INa and IK1 current densities were 312 

also normalized in zebrafish ventricular myocytes treated with SB216763. In addition, this 313 

phenomenon was also observed in an in vitro neonatal rat ventricular myocyte model 314 

overexpressing the mutant 2057del2 plakoglobin [62]. Follow-up studies in mice showed that 315 
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the SB216763 compound rescued myocyte injury and cardiac function in two different 316 

models of ACM, validating the in vivo efficacy of this lead compound in a mammalian system 317 

[78]. Importantly, the discovery of SB216763 and subsequent experiments with this 318 

compound in different animal models has revealed novel mechanistic pathways responsible 319 

for the clinical phenotype of ACM [62,78]. Taken together, these results highlight the utility 320 

of zebrafish models for efficient screening of chemical and genetic modifiers of different 321 

types of cardiomyopathy. 322 

5.2 Arrhythmic heart disorders.  323 

Zebrafish have been very useful as an excellent animal model to study human disorders 324 

related to cardiac arrhythmia [79]. Our initial studies confirmed that drugs causing 325 

electrocardiographic QT interval prolongation in humans, a common and serious 326 

toxicological issue in drug development, have similar effects in zebrafish [55]. This study 327 

hinted to a strong concordance between zebrafish and human cardiac electrophysiology, 328 

which was further supported by the discovery of several zebrafish mutations affecting cardiac 329 

rhythmicity. The zebrafish mutant strains breakdance (bre) and reggae (reg) [80], which 330 

demonstrate 2:1 atrioventricular block and cardiac fibrillation respectively, were both found 331 

to affect the zebrafish ortholog of the ether-à-go-go-related gene (zERG). The bre missense 332 

mutation decreases the activity of the channel responsible for the rapid delayed rectifier K+ 333 

current (IKr), leading to slower cardiac repolarization [81], while the reg mutation has a 334 

gain-of-function effect, resulting in premature IKr channel activation and faster repolarization 335 

[82]. As such, the bre and reg zebrafish mutants represented the first in vivo models for long 336 

and short QT syndrome, respectively. Studies on additional zERG mutants [83] confirmed the 337 
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relevance of this gene, while positional cloning of the bradycardic zebrafish hiphop mutant 338 

revealed a mutation in the atp1a1a.1 gene [84], the ortholog of the human Na+-K+-ATPase for 339 

which a SNP has been associated with long QT syndrome in several genome-wide association 340 

studies. 341 

Of note, the zERG gene mutated in bre and reg is kcnh6a, which is considered to be the 342 

functional ortholog of the human KCNH2/hERG gene, one of the most frequently affected 343 

genes in patients diagnosed with long or short QT syndrome [85]. The channel encoded by 344 

this gene is also of great importance from a drug development perspective, since it is sensitive 345 

to inhibition by different classes of small molecules. Drug-induced QT prolongation has been 346 

the major reason for the withdrawal or restriction of drugs that had already been marketed 347 

[86], leading to the FDA recommendation to test all new chemical entities developed for 348 

human use for their potential to affect QT duration. Considering the functional orthology with 349 

human electrophysiology, the zebrafish represents an attractive model organism for early 350 

preclinical high-throughput in vivo testing of the electrophysiological profile of small 351 

molecules [81,87,88]. 352 

In order to discover new genetic determinants modulating cardiac repolarization, we 353 

screened a genetic library to identify zebrafish mutant embryos that were sensitized or 354 

resistant to the 2:1 atrioventricular block which is uniformly induced in wild-type controls 355 

after exposure to the KCNH2/hERG inhibitor dofetilide. Using an automated assay to 356 

measure heart rate [48], we discovered a network of 15 genes modulating repolarization, of 357 

which one gene (GINS3) was also found to be associated with QT variation in humans [89]. A 358 

subsequent small molecule screen identified two compounds that reproducibly rescued the 2:1 359 
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atrioventricular block in bre mutant zebrafish embryos. One of these compounds functions via 360 

the glucocorticoid signaling pathway, representing a new potential therapeutic option to treat 361 

long QT syndrome [71]. 362 

Another screen was designed to further dissect the regulatory mechanisms involved in 363 

cardiac Ca2+ handling and its effects on cardiac rhythmicity. A library of synthetic compounds 364 

was tested for their ability to rescue the irregular, fibrillation-like cardiac rhythm phenotype in 365 

zebrafish tremblor (tre) mutant embryos, which carry a mutation in the slc8a1a gene coding 366 

for the cardiac-specific Na+-Ca2+-exchanger 1 (NCX1h) [90]. The compound efsevin, which 367 

binds to VDAC2 and potentiates mitochondrial Ca2+ uptake from intracellular stores, was able 368 

to restore coordinated contraction in tre embryos [74]. This finding suggests that 369 

mitochondrial Ca2+ uptake can limit Ca2+ overload and might therefore represent a new 370 

therapeutic target to treat cardiac arrhythmia associated with Ca2+ handling disorders. 371 

5.3 Angiogenesis.  372 

Pathologic angiogenesis has emerged as an important therapeutic target in several major 373 

diseases, including atherosclerosis, autoimmune diseases, age-related macular degeneration, 374 

and cancer [68,91]. A quantitative, automated assay using transgenic zebrafish with 375 

fluorescent blood vessels was developed to identify antiangiogenic activities. This assay was 376 

designed to automatically administer drugs and collect images of zebrafish in 384-well plates, 377 

followed by custom algorithm-based image analysis to quantify the number of blood vessels 378 

as a read-out for angiogenesis [68]. A screen of 1280 small molecules with this assay 379 

successfully identified three hit compounds, which included two well-known antiangiogenic 380 

compounds, SU4312 (a vascular endothelial growth factor (VEGF) receptor and platelet 381 
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derived growth factor receptor antagonist) and AG1478 (an epidermal growth factor receptor 382 

antagonist), and one previously unknown antiangiogenic compound, indirubin-3’-monoxime 383 

(IRO). Each of these compounds had dose-dependent antiangiogenic activity in zebrafish and 384 

IRO displayed the highest potency among them [68]. 385 

Using a similar strategy, the Tg(kdrl:EGFP) line, which expresses GFP specifically in 386 

endothelial cells, was also employed in a library screen with 2000 small molecules for 387 

angiogenic inhibitors [70]. Seven hit compounds were identified that could inhibit the growth 388 

of the zebrafish intersegmental vessels, which could be classified into three groups: rotenoids, 389 

aristolochic acid, and statins. Among these, rosuvastatin was further demonstrated to decrease 390 

the viability, inhibit the migration, and dose-dependently inhibit the capillary-like tube 391 

formation in vitro in human umbilical endothelial cells (HUVEC). In addition, it also 392 

significantly suppressed prostate cancer growth in a mouse xenograft tumor model by 393 

decreasing the tumor microvessel density and causing tumor cell apoptosis. These results 394 

offered initial evidence of a potential therapeutic use of rosuvastatin in the treatment of 395 

human prostate cancer [70]. 396 

5.4 Aortic coarctation.  397 

The zebrafish gridlock (grl) mutation prevents caudal aortic blood flow in a region and 398 

physiological manner akin to aortic coarctation in humans [66]. In a previous study, we 399 

arrayed mutant embryos in 96-well plates and exposed them to small molecules from a 400 

structurally diverse chemical library to look for hits capable of restoring circulation to the tail. 401 

Of the 5000 molecules tested, a novel class of compounds that were not previously known to 402 

influence vasculogenesis or angiogenesis, as represented by GS4012, was identified to 403 
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suppress the disease phenotype in a dose-dependent manner. It was postulated to function via 404 

activation of the VEGF signaling pathway during the specification and migration of 405 

angioblasts [66].  406 

In a subsequent study, a larger screen was performed using a similar approach, and 407 

identified a distinct compound class that was also capable of suppressing the gridlock 408 

phenotype. A representative compound GS4898, (structurally distinct from GS4012) is a 409 

flavone that likely acts through AKT inhibition [67].  410 

These two classes of compounds identified by unbiased mutant zebrafish screening have 411 

been valuable tools for studying artery/vein specification. They confirmed the importance of 412 

VEGF signaling in the disease process and revealed that the two downstream components of 413 

VEGF signaling surprisingly have opposite effects on artery/vein specification of endothelial 414 

progenitor cells [67]. ERK signaling promotes the arterial cell fate, whereas PI3K has an 415 

opposing effect by blocking ERK activation [67]. Thus, phenotype-based screens allowed the 416 

discovery of small molecules that ameliorate complex vascular phenotypes in zebrafish 417 

embryos without targeting the causal gene directly. 418 

 419 

6. Conclusion. 420 

Identification of novel and highly specific therapeutics tailored to individual needs is one 421 

of the major challenges in modern cardiovascular medicine. Even the best available 422 

cardiovascular models do not perfectly mimic human biology. This knowledge gap is a central 423 

issue in all drug discoveries. To decipher the precise disease mechanisms, merely focusing on 424 

a list of druggable targets is largely insufficient. Even where a specific molecular cause has 425 
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been identified, it is often not feasible to progress directly to a viable therapeutic discovery 426 

strategy due to the limited understanding of the downstream pathophysiology. For example, in 427 

cardiac arrhythmia disorders, drug discovery has focused almost exclusively on modulating 428 

specific transmembrane conductance identified through human genetics, while the potential of 429 

targeting emerging regulators of cellular excitability has largely been ignored [88]. To fully 430 

understand disease manifestation and progression, and improve novel drug discovery efforts, 431 

we need to capture a comprehensive picture of the underlying biology, including the complex 432 

interconnections of molecular and cellular contributions in different cell types or tissues. 433 

Zebrafish is emerging as an excellent model to explore the genetic and molecular 434 

etiology of diseases, perform highly efficient drug discovery and discover novel disease 435 

mechanisms and therapeutic targets. By use of forward and reverse genetics approaches, 436 

numerous cardiovascular disease models have already been established [80]. As outlined in 437 

this review, an increasing number of studies have taken advantage of the tractability of these 438 

zebrafish models to expedite in vivo drug discovery efforts. In many cases, these studies 439 

succeeded in identifying novel therapeutic targets or shedding light on previously 440 

incompletely understood disease mechanisms. 441 

 442 

7. Expert Opinion 443 

7.1 Key achievements to date.  444 

Since the use of in vivo zebrafish screens is growing, the question arises whether this 445 

approach has a real impact on drug discovery and further development leading to approval for 446 

clinical use. Although the field is still relatively young, several successful screening programs 447 
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have already led to the identification of new compound classes and repurposed drugs that 448 

have started to make the transition to the clinic. An example in the cardiovascular field comes 449 

from the identification of the glucocorticoid receptor as a pathway involved in the modulation 450 

of cardiac repolarization [71], which has led to the testing of the effects of cortisone on QT 451 

interval in patients [92]. Interestingly, the glucocorticoid dexamethasone was confirmed to 452 

show efficacy for the suppression of drug-induced long QT syndrome in a case report [93]. 453 

Zebrafish screens have also been successful in other medical fields. Leflunomide, a drug 454 

previously approved for the treatment of rheumatoid arthritis, was identified as a suppressor 455 

of the neural crest lineage and melanoma growth [94]. Although a phase I/II clinical trial 456 

aimed at repurposing this drug for melanoma treatment was terminated, new clinical trials are 457 

being planned to evaluate its effects in breast cancer and myeloma. In a zebrafish screen for 458 

suppressors of antibiotic-induced ototoxicity, a new class of small molecules was identified 459 

[95]. After lead optimization through a medicinal chemistry approach, the compound 460 

ORC-13661 was developed [96], which has recently received Investigational New Drug 461 

approval from the FDA and is currently being tested in a phase I clinical trial. 462 

Many more zebrafish drug screens and follow-up validations of initial hits are currently 463 

underway, which will undoubtedly lead to more drugs identified through zebrafish research 464 

making their way to market in the future. 465 

7.2 Remaining challenges.  466 

Despite the advantages of the zebrafish model highlighted in the review, several key 467 

limitations are evident that call for further creative solutions. Perhaps the most important 468 

concern is the limit of our knowledge to create faithful zebrafish models for specific human 469 
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diseases. While the understanding of human diseases at anatomical, cellular and molecular 470 

biology levels has increased dramatically, our ability to map these variables to relevant 471 

zebrafish models has lagged. More investigation is still required to better appreciate the level 472 

of evolutionary conservation of different organ systems between zebrafish and mammalian 473 

species. Although zebrafish correlates are obviously lacking for several mammal-specific 474 

tissue types such as lungs and placenta, precluding direct comparisons to diseases affecting 475 

these organs, relevant biology can sometimes still be studied in related organ systems [97]. 476 

Similarly, proxy phenotypes can often be used as a screenable readout even if the zebrafish 477 

phenotype does not completely mirror the human defect. A successful example is the ACM 478 

model, which used embryonic nppb expression as an automatable readout for the cardiac 479 

defects caused by mutant plakoglobin overexpression [62]. 480 

Another important consideration is the teleost-specific whole genome duplication event. 481 

Although most duplicates have been lost during evolution, about 20-30% of human genes still 482 

have two zebrafish co-orthologs. In many cases this has resulted in gene sub-functionalization 483 

and neo-functionalization of the duplicated zebrafish isoforms [98,99]. Targeted genetic 484 

manipulations have recently generated a number of promising zebrafish disease models, 485 

although they have been largely restricted to monogenic disorders [43,62]. Modeling complex, 486 

multifactorial, and chronic disease processes, such as diabetes, hypertension and rheumatoid 487 

arthritis, is still difficult, particularly when aiming to achieve quantifiable readouts during the 488 

early stages of zebrafish development, when the organism is amenable to high-throughput 489 

screening. Another area that requires systematic approaches is the penetration of chemical 490 

compounds into the fish. Drug pharmacokinetics are difficult to measure in zebrafish, and in 491 
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many cases, compounds lacking activity in an in vivo zebrafish assay may not have the proper 492 

absorption, distribution, metabolism and/or excretion characteristics to achieve sufficient 493 

tissue exposure levels. An important factor is the ability of the molecule to cross the 494 

biological barrier of larval zebrafish skin, which is known to be a function of the specific 495 

physicochemical properties of the compound [14,100]. Drugs like cisapride and 496 

chlorpromazine are concentrated within the fish larvae (up to 1380% for chlorpromazine for 3 497 

hours exposure), while others such as aspirin and amoxicillin fail to reach 0.03% of the 498 

external concentrations, or may not be detectable [101]. Thus, in vivo drug penetration 499 

predictions taking into account cutoff molecular weight, log P partition coefficient, and/or 500 

polar surface area, might have to be performed to complement zebrafish screening. It should 501 

be noted that the penetration properties may also indirectly reflect the utility of the molecule 502 

as a drug. As a general rule, compounds compliant with the Lipinski rules have the highest 503 

likelihood of showing both a favorable bioavailability profile for zebrafish exposure as well 504 

as having reasonable drug-like properties. In a zebrafish high-throughput screen designed to 505 

discover new cyanide countermeasures, we have tested over 140,000 compounds, leading to 506 

the discovery of three distinct classes of potential novel antidotes: metal-based chelators, 507 

flavin derivatives, and metabolic modulators [102-104]. The majority of these compounds 508 

showed efficacy in rodent models, which was improved after lead optimization via medicinal 509 

chemistry. These results suggest that candidates identified in zebrafish screens are likely to 510 

represent drug classes that have suitable pharmacokinetic properties for successful translation 511 

to further preclinical studies. 512 

A third issue is that target identification is still required post-hoc for most hits identified 513 
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by in vivo screening. Unlike target-based screening, phenotypic screens in zebrafish allow 514 

small-molecule action to be tested in a more disease-relevant setting at the outset, but they 515 

require follow-up studies to discover the precise molecular targets responsible for the 516 

observed phenotypes. Target identification can be achieved by multidisciplinary strategies, 517 

such as direct biochemical methods, genetic manipulation or computational inferences. In 518 

many cases, combinations of approaches may be needed [105]. This strategy has been proven 519 

to be a promising approach to fully characterize on-target and off-target effects of the lead 520 

molecules identified by zebrafish screening and to understand their mechanisms of action 521 

[63,67-74]. 522 

7.3 Future perspectives of zebrafish-based drug discovery. 523 

It can be envisioned that the zebrafish model will serve as an invaluable first-line 524 

screening tool in the pre-clinical phase of the drug pipeline, which will reduce the amount of 525 

higher vertebrates, mostly rodents, used in early pre-clinical research. Nevertheless, the use of 526 

mammalian models, like rodents and primates, is essential to fully understand the efficacy and 527 

pharmacokinetic properties of lead compounds and avoid any possible toxicity, and is 528 

required to obtain regulatory approval. Ultimately, identifying the precise role of different 529 

models in drug discovery for different diseases should increase the efficiency of the entire 530 

process. 531 

The continuing further refinement of the already widely adopted CRISPR/Cas9 system, 532 

which allows for highly efficient, specific, and permanent manipulations of the zebrafish 533 

genome, provides exciting possibilities for more individualized disease modeling [106,107] 534 

beyond conventional gene knockdown or knockout strategies. Particularly the possibility to 535 
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generate specific point mutations in the genome using the CRISPR/Cas-based “base editing” 536 

technology is very promising [108]. This technology as well as other emerging genome 537 

editing tools will enable precise modeling of specific genetic variants identified in patients, 538 

paving the way for personalized drug discovery. 539 

Taken together, individual, tailored therapies to treat cardiovascular diseases will become 540 

attainable through further technological improvements in the near future. Though a complete 541 

understanding and widespread application of zebrafish as an integral component of drug 542 

discovery platforms will still need time, the identification of new molecular entities that make 543 

it to market will pave the way for a wider incorporation of zebrafish technology into drug 544 

discovery.  545 
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Table 1. Chemical screens in zebrafish for cardiovascular drug discovery. 818 

Screening Type Readout Major findings Year Refs 

Aortic coarctation Blood circulation in the aorta Two hits (suppressors) targeted on VEGF expression; activation of 
VEGF pathway is sufficient to suppress the gridlock phenotype 2004 66 

Aortic coarctation Blood circulation in the aorta Two compound classes were identified, targeted on VEGF pathway; 
uncovered opposing roles of PI3K and ERK in artery/vein specification 2006 67 

Angiogenesis Vascular morphology Three hits with antiangiogenic activity 2007 68 

Angiogenesis Vascular morphology One hit as PI3 kinase inhibitor 2009 69 

Angiogenesis Vascular morphology Seven hits (represented by Rosuvastatin) with antiangiogenic activity 2010 70 

Long QT syndrome Atrioventricular heart rhythm Two suppressors of atrioventricular block, one targeted on 
glucocorticoid receptor–mediated pathway 

2011 71 

Cardiomyopathy Natriuretic peptide reporter Two alleviators of the disease phenotype 2012 34 

Heart failure Heart morphology Three compound classes with distinct targets 2013 72 

Cardiomyopathy Natriuretic peptide reporter One suppressor of the disease phenotype; 
aberrant trafficking of intercalated disc proteins as a central mechanism 

2014 62 

Cardiomyopathy Rescue of cardiac function Two suppressors of the disease phenotype; 
MDH2 is a new druggable target 2014 61 

Heart failure Heart morphology Several hit compounds (represented by AF-001) 2014 73 

Cardiac 
rhythmicity Cardiac contraction 

One suppressor of the cardiac fibrillation; uncovered the critical role of 
VDAC2-dependent mitochondrial Ca2+ uptake 2015 74 

Angiogenesis Vascular morphology One hit targeted on cysteinyl leukotriene receptors 2016 75 

Cerebral cavernous 
malformations 

Endothelial-specific reporter 
and heart morphology One alleviator of CCM; uncovered several novel related pathways 2018 76 
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Figure 1. Comparison of drug discovery for cardiovascular and other diseases. (A) The percentage of total number of drugs undergoing 819 
early-phase development between two separate intervals (2000-2007 vs. 1990-1999). (B) The first-cycle approval rate of new molecular entities 820 
for each medical specialty from 2000 to 2012. Raw data is from Pammolli et al. [9] and Sacks et al. [10]. 821 

 822 
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Figure 2. The flow chart of in vivo chemical screening in zebrafish cardiovascular disease models. Multiple phenotypes can be quantified via the 823 
established auto Video/Image analysis approaches, as highlighted on the right. a.u.: arbitrary units. 824 
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Figure 3. Representative hit compounds discovered by in vivo screens in zebrafish. Structure information was obtained from Ref. 34, Ref. 61, 825 
Ref. 62, Ref. 66, Ref. 68, Ref. 69, Ref. 70, Ref. 71, Ref. 72, Ref. 73, Ref. 75, and Ref. 76. 826 
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