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Abstract

The cyclic AMP responsive element binding protein 3-like 1 (CREB3L1) gene codes for the 

endoplasmic reticulum stress transducer old astrocyte specifically induced substance (OASIS), 

which has an important role in osteoblast differentiation during bone development. Deficiency 

of OASIS is linked to a severe form of autosomal recessive osteogenesis imperfecta (OI), but 

only few patients have been reported. We identified the first homozygous pathogenic missense 

variant (p.(Ala304Val)) in a patient with lethal OI, which is located within the highly conserved 

basic leucine zipper domain, four amino acids upstream of the DNA binding domain. In vitro 

structural modeling and luciferase assays demonstrate that this missense variant affects a 

critical residue in this functional domain, thereby decreasing the type I collagen transcriptional 

binding ability. In addition, overexpression of the mutant OASIS protein leads to decreased 

transcription of the SEC23A and SEC24D genes, which code for components of the coat protein 

complex type II (COPII), and aberrant OASIS signaling also results in decreased protein levels 

of SEC24D. Our findings therefore provide additional proof of the potential involvement of the 

COPII secretory complex in the context of bone-associated disease. 
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Introduction

Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous group of heritable 

bone dysplasias, with the severity of symptoms ranging from perinatal lethality to generalized 

osteopenia (1). This brittle bone disease affects one in 15,000-20,000 births and is characterized 

by typical clinical manifestations such as bone fragility, skeletal deformities, low bone mass 

and short stature. Extraskeletal features, including blue sclerae, dentinogenesis imperfecta, 

adult-onset hearing loss, joint hypermobility, restrictive pulmonary disease, cardiovascular 

abnormalities and easy bruising, contribute to the multisystemic disorder (1-3). The 

predominant autosomal dominant (AD) forms are caused by mutations in either COL1A1 (MIM 

120150) or COL1A2 (MIM 120160), encoding the α1- and α2-chains of type I procollagen 

respectively. Another rare AD OI subtype is associated with mutations in interferon–induced 

transmembrane protein 5 (IFITM5, MIM 614757), which is involved in bone mineralization. In 

approximately 10% of OI cases, the disease has an autosomal recessive (AR) inheritance. 

Several genes have been associated with these AR forms of OI, and they are classified according 

to their mechanism and pathophysiology: collagen post-translational modification (CRTAP, 

MIM 605497; P3H1, MIM 610339; PPIB, MIM 123841), collagen processing and crosslinking 

(SERPINH1, MIM 600943; FKBP10, MIM 607063; PLOD2, MIM 601865; BMP1, MIM 

112264), bone mineralization (SERPINF1, MIM 172860) and osteoblast 

differentiation/function (SP7, MIM 606633; TMEM38B, MIM 611236; WNT1, MIM 164820; 

CREB3L1, MIM 616215; SPARC, MIM 182120; MBTPS2, MIM 300294; TAPT1, MIM 

616897) (1, 2, 4-18). 

The CREB3L1 gene (cAMP Responsive Element Binding Protein 3 Like 1) encodes the 

endoplasmic reticulum (ER)-stress transducer ‘old astrocyte specifically induced substance’ 

(OASIS), a basic leucine zipper (bZIP) transcription factor which belongs to the well-conserved 

family of the cyclic AMP responsive element binding protein/activating transcription factor 

(CREB/ATF) genes. OASIS is processed by regulated intramembrane proteolysis (RIP) in 

response to ER stress, and is highly expressed in osteoblasts (19, 20). OASIS-/- mice exhibit 

severe osteopenia and spontaneous fractures, resulting from a decrease in type I collagen in the 

bone matrix and a decline in the activity of osteoblasts. More recently, Col1a1 was identified 

as a target of OASIS, and Murakami et al. demonstrated with murine studies that OASIS 

activates the transcription of Col1a1 through an unfolded protein response element (UPRE)-
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like sequence in the Col1a1 promoter region, thereby revealing its critical role in bone 

formation (19-21).

Hitherto, only 3 reports have associated homozygous CREB3L1 defects to an AR form of OI (a 

whole gene deletion, the in-frame deletion (c.934_936delAAG, p.(Lys312del)) and the 

nonsense variant (c.1284C>A, p.(Tyr428*))), which is currently classified as OI type XVI (2, 

15, 22, 23). 

Here, we present a Turkish family, in which molecular analysis of the proband revealed a 

previously unreported homozygous missense variant (c.911C>T, p.(Ala304Val)).

We applied structural modeling to study the effects of this missense variant on the OASIS 

protein. We then performed further in vitro studies to investigate the functional consequences 

regarding regulation of type I collagen and COPII component gene expression.
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Results

Clinical phenotype

We report a consanguineous Turkish family of second cousins, who had a medically terminated 

pregnancy at 19 weeks of gestation due to skeletal changes highly suggestive for severe OI. 

Antenatal ultrasound findings of the female fetus (IV-3, Fig. 1) included short tubular bones, 

multiple rib fractures with beaded appearance, and a narrow thorax circumference of 81mm 

(2.5-5th percentile). Postnatal findings revealed a birth length, weight and occipitofrontal 

circumference of 16cm, 210g and 15.3cm, respectively, and the presence of soft calvaria, 

microretrognathia and short and bowed extremities. 

The parents (III-7 and III-8, Fig. 1) did not show any overt clinical signs of OI and had no 

history of fractures. Bone densitometry revealed Z-scores of the left femur of -1.2 for the mother 

and -2.1 for the father, while Z-scores for the lumbar L1 to L4 vertebrae were -2.5 for the 

mother and -3.7 for the father, markedly lower values than expected for their age. Two prior 

pregnancies of the couple were terminated with early first trimester abortions of unknown cause 

(IV-1 and IV-2, Fig. 1). The parents have two healthy sons (IV-4, 3.5 years old; IV-5, 2 years 

old, Fig. 1) and interestingly, three individuals in the family had a history of fractures (III-9, 

paternal uncle, 5 fractures of the ankle and elbow after mild trauma; III-10, paternal uncle, one 

fracture; paternal grandmother (not included in the pedigree), 2 fractures of the wrist). Clinical 

assessment of other family members was not possible.

Molecular studies and structural modeling reveal a critical residue in the nuclear 

localization sequence of CREB3L1 

Panel sequencing of all known OI-associated genes identified a homozygous missense variant 

c.911C>T p.(Ala304Val) in exon 7 of the CREB3L1 gene, which was confirmed by direct 

Sanger sequencing. Both parents (III-7 and III-8, Fig. 1A) and two healthy siblings (IV-4 and 

IV-5, Fig. 1A) were found to be heterozygous carriers of the missense variant, and sequencing 

for the other family members (with or without fractures) was not possible as no blood samples 

were available. Based on the criteria of absence of the variant from the queried population 

databases, in silico prediction tools pointing to a possible pathogenic allele (PolyPhen-2, 

Probably Damaging (0.992); SIFT, Deleterious (0.03); Align CVGD, C0 (GV=58.02); 

DEOGEN2, overall deleterious score of 51.5%), and a clinical phenotype highly suggestive for 
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the CREB3L1 related form of OI, we initially classified this variant as a variant of unknown 

significance (VUS, class 3) (24). 

The affected alanine (Ala) residue is located within a highly conserved bipartite nuclear 

localization sequence (NLS) (RVRRKIKNKISAQESRRKKKEY) within the bZIP domain, 

and only 4 amino acids (AA) upstream of the DNA binding domain (RRKKKEY), in which the 

earlier reported in-frame deletion p.(Lys312del) is located (RRKKKEY), (Fig. 2, Fig. 3A) (22). 

Based on these observations, we hypothesized that the pathogenic mechanism underlying 

p.(Ala304Val) is similar to what has been suggested for the p.(Lys312del) variant, i.e. that 

mutant OASIS cannot reach the nucleus and/or bind to its target DNA sequence (22). Therefore, 

we decided to include the p.(Lys312del) as a positive control in our further experiments. 

Three dimensional structural modeling of the full-length WT, p.(Ala304Val), and 

p.(Lys312del) protein sequences of OASIS, by means of Iterative Threading ASSembly 

Refinement (I-TASSER) algorithms, showed that both mutations result in conformational 

changes within the NLS (Fig. 3). Substitution of an Ala to Val residue has been associated with 

a decreased ability to adopt an α-helical conformation (25), which is seen in all models for 

p.(Ala304Val), while being less pronounced for p.(Lys312del) (Fig. 3) (26-28). 

Based on systematic AA replacement analysis in budding yeast, Kosugi et al. created a platform 

which enables researchers to study the functional contribution of AAs at each position of a NLS 

class (29). Use of these NLS mapper algorithms results in a predicted bipartite NLS loss for 

both p.(Ala304Val) and the positive control p.(Lys312del) (Supplemental Fig. S2) (22, 23, 29), 

suggesting that both mutant proteins might not be able to translocate to the nucleus. 

To further investigate this hypothesis, we also modeled the p.(Ala304Val) variant on a 

homology model of the CREB bZIP-CRE complex (30). The results demonstrated that the AA 

at position 304 is facing inward, pointing towards the CRE binding site of the DNA helix. 

Importantly, a size difference is noted at this position when comparing the WT (Ala, 67 

Angstrom cube) to the mutant protein (Val, 105 Angstrom cube) (Supplemental Figure S3) 

(31). No change in polarity was noted, and the variant did not disrupt H-bridges of adjacent 

AAs (31, 32). 

Mutant OASIS affects expression of type I collagen and COPII vesicle proteins 

Since CREB3L1 is expressed at very low levels in fibroblasts, we reasoned that this is a 

suboptimal cell type to study the function of OASIS, and therefore chose the same 

overexpression system as used by Keller et al. to study the pathogenic nature of the identified 

variant (20-22). The expression constructs generated for this study are referred to as ‘Empty’ 
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(empty vector), ‘WT’ (WT OASIS), ‘A304V’ (variant reported in this study) and ‘K312del’ 

(variant previously reported, (22)). Transfection of these expression constructs in HEK293 cells 

resulted in the expression of stable OASIS proteins (Fig. 4G). Biochemical assays using a 

luciferase reporter were performed in order to validate the direct impact of the p.(Ala304Val) 

variant on the regulation of the expression of the downstream target genes of OASIS, using 

type I collagen expression as a representative example. Significantly decreased luciferase 

activity was observed for the A304V and K312del constructs compared to WT, indicating that 

the respective variants lead to a reduced transcriptional activation of the Col1a1 promoter. 

This was observed not only for the full-length Col1a1 promoter, but also for the Col1a1 

promoter with a mutant UPRE sequence, which was previously used to demonstrate that OASIS 

directly binds to this specific Col1a1 promoter sequence (Fig. 4A and Fig. 4B) (19-21). In 

addition, luciferase activity levels of cells transfected with both A304V and K312del constructs 

were comparable to transfection of the Empty vector, indicating that both mutant proteins have 

no detectable residual DNA binding and/or gene expression activation ability to regulate the 

Col1a1 gene. Since SEC23A and SEC24D, both members of the COPII secretory pathway, were 

previously shown to be targets of CREB3L2 and CREB3L1, respectively, we performed 

overexpression studies in HEK293 cells in order to investigate the effects of the OASIS variants 

on the expression of these genes (22, 33). Measurements of SEC23A and SEC24D mRNA levels 

showed that overexpression of the A304V and K312del variants significantly decreased 

transcription of both COPII inner coat components (Fig. 4C-D). At the protein level however, 

only the level of SEC24D was significantly decreased after overexpression of either A304V or 

K312del (Fig. 4E-F and 4H-I), which is in line with the earlier report on the effects of the 

p.(Lys312del) in-frame deletion (22). 

Taken together, these functional data enabled us to reclassify the p.(Ala304Val) VUS as a 

pathogenic variant (causal mutation, class 5) and to offer appropriate genetic counselling to the 

affected family.
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Discussion

This is the first report linking a pathogenic missense variant to the CREB3L1-related AR form 

of OI, and the 4th case in total implicating this gene. In 2013, we described the association of 

CREB3L1 to a lethal AR form of OI in a family with two affected relatives carrying a 

homozygous whole gene deletion (15). More recently, a pathogenic in-frame deletion 

(c.934_936delAAG, p.(Lys312del)) was reported, in which a qualitative alteration of the 

protein affected both the DNA binding capacity of OASIS and the COPII coat secretory 

pathway (22). Phenotypically, this p.(Lys312del) pathogenic variant led to intrauterine fetal 

demise in the homozygous proband, whereas heterozygous carriers presented with mild signs 

of OI (history of fractures, osteopenia and blue sclerae) (22). Previous medically terminated 

pregnancies in this family displayed similar severe and lethal signs of OI, but no molecular 

studies were conducted for these cases (22). Recently, a third homozygous nonsense pathogenic 

variant (c.1284C>A, p.(Tyr428*)) was reported by Lindahl et al., for which studies on 

osteoblasts and fibroblasts revealed a decrease in COL1A1 transcription only in osteoblasts, 

thereby strengthening the role of OASIS as a tissue-specific transcription factor (23). 

Furthermore, the authors demonstrated that deficiency of OASIS affects transcription of several 

bone-associated genes (COL1A1, COL1A2, ALPL, IBSP and OPN), reduces 

glycosaminoglycan levels in bone extracellular matrix and has negative effects on osteoblasts 

(23). In contrast to the two earlier reports, the child presented by Lindahl et al., survived 

infancy. The boy’s healthy parents and four siblings did not display signs of (mild) OI (23). 

Molecular studies of the identified homozygous c.911C>T, p.(Ala304Val) pathogenic variant 

reported in this study revealed that the mutated AA is a critical residue in the NLS, positioned 

in the same functional domain as the earlier described in-frame deletion c.934_936delAAG, 

p.(Lys312del) (22). The lethal phenotype observed in the proband with this homozygous 

pathogenic missense variant and the milder OI signs in heterozygous carriers are similar to 

these described by Keller et al. for the p.(Lys312del) variant (22). Our structural modeling data 

show impaired NLS protein conformation and predicted bipartite NLS loss for both 

p.(Ala304Val) and p.(Lys312del) mutants. In support of this observation, it is known that Ala 

residues can be involved in substrate recognition or specificity and that Lys residues are quite 

common in protein-active or -binding sites (25), which is further illustrated by structural 

modeling on the CREB bZIP-CRE complex (30). Luciferase assays further demonstrated that 

overexpression of both mutant A304V and K312del proteins have a similar negative impact on 
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activation of type I collagen transcription. Together, these findings suggest that both 

p.(Ala304Val) and p.(Lys312del) have similar working mechanisms; they both form stable 

mutant proteins, which subsequently might accumulate in the cytosol. Although we cannot fully 

exclude the possibility that residual mutant proteins are translocated to the nucleus, we 

hypothesize that these mutant proteins have compromised promotor binding ability.

By performing overexpression studies, we also demonstrated that both the p.(Ala304Val) and 

the p.(Lys312del) mutants do not have the same ability as WT OASIS to increase protein levels 

of SEC24D, and therefore confirmed SEC24D as a target of OASIS which is potentially 

relevant to the pathogenesis of OI (22). SEC24D is part of the well-conserved COPII coat 

secretory pathway, and bi-allelic pathogenic variants in SEC24D result in a syndromic form of 

OI, resembling Cole-Carpenter syndrome (MIM 616294), with skull ossification defects and 

fractures (22, 34, 35). COPII vesicles are processed when proteins, destined for downstream 

intracellular compartments, are sorted and packaged at discrete sites on the ER membrane, also 

called ‘ER exit sites’ (36). COPII structures consist of an inner (SEC23/24) and outer 

(SEC13/31) coat, providing stability. Their formation is aided by SAR1, SEC12 and SEC16, 

before transporting its cargo proteins to the ER-Golgi intermediate compartment and Golgi 

apparatus (37). Loading of large COPII vesicles, needed for packaging of procollagens, is 

enabled by the auxiliary proteins cTAGE5 (cutaneous T-cell lymphoma-associated 5) and 

TANGO1 (transport and Golgi organization 1), with the latter recruiting Sedlin (another helper 

protein) in a later stage. Recent studies have shown that monoubiquitylation of SEC31A helps 

to regulate COPII size, that glycosylation of both SEC24 and SEC23 is important for 

organization and regulation of COPII vesicles, and that phosphorylation of SEC23 and SEC24 

confers directionality on COPII vesicles from ER to Golgi (34, 38). By now, it is well 

established that the secretion of procollagen requires an optimal working of the COPII secretory 

pathway. Perturbation of COPII components, and of global regulators of COPII expression, 

such as the transcription factors CREB3L2 and CREB3L1, which promote transcription of 

SEC23A and SEC24D, respectively, all result in defects in procollagen secretion and 

extracellular matrix assembly (34). Saito et al. demonstrated that Creb3l2-/- chondrocytes 

accumulated type II collagen and other cartilage matrix proteins in the ER lumen (22, 23, 33). 

Keller et al. first proposed that mutations in OASIS can lead to OI due to disruption of the 

important role this protein plays in the secretion of type I collagen and other bone matrix 

proteins from osteoblasts during osteogenesis (22, 23, 33). This hypothesis was first confirmed 

in a recent study by Lindahl et al. and is now strongly supported by the new evidence provided 

in this report (22, 23, 33). 
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In conclusion, this report of the first homozygous pathogenic missense variant broadens the 

mutational and phenotypic spectrum of CREB3L1-related OI and provides additional proof of 

the lack of an optimal working COPII secretory complex as a potentially critical factor in the 

context of bone-associated disease.  
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Materials and Methods

Ethical considerations

Written and signed informed consent was obtained from the parents of the patient participating 

in this study. Genomic DNA (gDNA) from the proband, siblings or parents was isolated from 

whole blood according to the standard procedures. 

Molecular studies

We used conventional Sanger sequencing and next generation panel sequencing (MiSeq 

platform – Illumina) for molecular screening of the COL1A1, COL1A2, CRTAP, LEPRE1, 

PPIB, CREB3L1, WNT1, PLS3, BMP1, FKBP10, IFITM5, PLOD2, SERPINF1, SERPINH1, 

SP7 and TMEM38B genes. For NGS, single bases (up to 20 bases intronic of all coding exons) 

were covered with a minimal of 30x. Confirmational Sanger sequencing and segregational 

analysis was performed using the BigDye Terminator Cycle Sequencing Kit (Life 

Technologies, Carlsbad, Ca, USA) and run on a ABI 3730XL DNA Analyzer (Life 

technologies).

Nucleotide numbering reflects cDNA numbering, with +1 corresponding to the A nucleotide of 

the ATG translation initiation codon in the reference sequence of CREB3L1 (NM_052854.2). 

AA residues are numbered from the first methionine residue of the protein reference sequence 

(NP_005421.1). Variant nomenclature follows the Human Genome Variation Society (HGVS) 

guidelines (http://www.hgvs.org/mutnomen), and variant classification was done by using the 

Alamut Visual software (version 2.10) and according to the American College of Medical 

Genetics (ACMG) standards and guidelines (Genome Aggregation Database, 

http://gnomad.broadinstitute.org) (24, 39). In addition, DEOGEN2 was used to check the 

mutation effect prediction on protein level (overall score and amino acid similarity) (31), and 

the variant was checked and submitted to the OI Variant Database 

(http://www.le.ac.uk/ge/collagen/). 

Structural modeling of the variant

By means of the I-TASSER server, which is an integrated platform for automated protein 

structure and function prediction based on the sequence-to-structure-to-function paradigm, 5 

different (monomeric) three dimensional structural protein models were generated of the full 

length WT, p.(Ala304Val), and p.(Lys312del) protein sequences (26-28). We retained 3 models 
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in which a clear (functional) helical bZIP domain could be distinguished within the expected 

AA positions 292 and 353 (data for the other 2 models is not shown) (Figure 3).

The homology model of the CREB bZIP-CRE complex (PDB: 1DH3 – Mus musculus – 

generated in the expression system of Escherichia coli) was used as a template (30). The UCSF 

Chimera software package (version 1.13, build 41780) was used to visualize, study the 

localization, and model the effect of the specific protein variant (Dunbrack rotamers and 

FindHBond function), respectively (32, 40) (Supplemental Figure S3). 

Expression vectors

Starting from a human WT cDNA OASIS construct (generated on a pCMV-3Tag-2 backbone, 

‘WT’), we used the QuikChange II Site-Directed Mutagenesis Kit to generate mutant constructs 

for our identified variant (c.911C>T, p.(Ala304Val), ‘A304V’) and the earlier reported in-

frame deletion (c.934_936delAAG, p.(Lys312del), ‘K312del’) (22, 41). The primers for site-

directed mutagenesis were designed using the QuikChange Primer Design tool (Agilent) and 

were purchased as HPLC-purified primers (primer sequences are listed in the Supplementary 

Table S1) (Integrated DNA Technologies). A pCMV-3Tag-2 empty vector (cat240196, 

Agilent) was purchased to use as a transfection control in our experiments (‘Empty’). Final 

constructs were sequenced, and a control- digestion was performed to confirm correct vector 

structure (data not shown).

Luciferase reporter assay

For the luciferase experiments, 20,000 HEK293 cells were seeded in clear bottom 96 well plates 

(CLS3603-48EA, Sigma-Aldrich) in triplicate at day 1 and transiently co-transfected at day 3 

using FuGene HD transfection reagent (E2311, Promega). Per reaction, 40ng of ‘Empty’, ‘WT’, 

‘A304V’ or ‘K312del’ was combined with 40ng of reporter constructs for Col1a1 (‘Col1a1 

prom’ contains the 2.3-kb Col1a1 promoter and UPRE (TGACGTGG)-like sequence 

(CGACGTGG), ‘Col1a1 prom mUPRE’ contains the 2.3-kb Col1a1 promoter and mutant 

UPRE-like sequence (CGAaGgGG), 10ng of Renilla luciferase expression construct and 0.3l 

FuGene HD transfection reagent (21). Twenty-four hours post transfection, cells were lysed 

according to the manufacturers guidelines (Dual-Glo Luciferase Assay System, Promega) and 

luciferase activity was measured using a GloMax-Multi Detection System (E7031, Promega). 

Data were normalized to Renilla luciferase and log10 transformed. Graphs display data-points 

normalized to WT values. 
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In vitro overexpression studies

In brief, 200,000 HEK293 cells were seeded in 6-well plates in triplicate at day 1 and transiently 

transfected at day 2 using FuGene HD transfection reagent (E2311, Promega) at a 3:1 ratio (3l 

reagent: 1g plasmid) per well and incubated for 48 hours before harvesting. These cells were 

subsequently processed for quantitative reverse-transcription PCR (RT-qPCR) or 

immunoblotting.

Quantitative reverse transcription PCR

Total RNA was extracted from transfected HEK293 cells using the RNeasy Kit (QIAGEN). 

Starting from 2g of RNA, cDNA was subsequently synthesized with the iScript cDNA 

Synthesis Kit (Bio-Rad Laboratories). Primer sequences are listed in the Supplementary Table 

S1) (Integrated DNA Technologies).  RT-qPCR reactions were prepared with the addition of 

RealTime ready DNA Probes Master mix and ResoLight Dye (Roche) and were run in duplicate 

on a Roche LightCycler 480 System. Data were analyzed with qbase+ software (version 3.0, 

Biogazelle) (42), and expression was normalized to the housekeeping genes HPRT1, RPL13A 

and YWHAZ. Graphs display data-points normalized to WT values. 

Immunoblotting

For immunoblotting of OASIS, SEC24D and SEC23A, protein lysates were prepared from 

transfected HEK293 cells using a 0.05M Tris-HCL buffer (pH 8.0, 0.15M NaCl, 5.0mM EDTA, 

1% NP-40 and protease inhibitor cocktail) at 4°C and subjected to SDS-PAGE under reduced 

condition (6.25% 1M dithiothreitol) (NP0335BOX, Life Technologies Europe). Proteins were 

transferred to a nitrocellulose membrane with the iBlot 2 Dry Blotting System (Thermo Fisher 

Scientific). Membranes were blocked in 5% dry milk (OASIS and SEC24D) or 2% ECL 

Blocking Agent (GE Healthcare) (SEC23A and  -tubulin), incubated overnight with primary 

antibodies against OASIS (1/1000; ab33051; Abcam), SEC24D (1/1500, ab191566, Abcam), 

SEC23A (1/500, ab179811, Abcam) or  -tubulin (1/1500, ab6046, Abcam) and subsequently 

incubated with horseradish peroxidase-conjugated secondary antibody (1/1500, 7074S, Bioké 

BV). Membranes were scanned with an Amersham Imager 680 System (GE Healthcare), 

quantitation was achieved using ImageJ and normalized to the amount of b-tubulin. Graphs 

display data-points normalized to WT values. 

Statistical analysis
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Statistical analysis was performed using GraphPad Prism 7.04 software. The RT-qPCR, 

immunoblotting and luciferase reporter assay results are expressed as mean  standard error of 

the mean (SEM) from three independent experiments, and statistical significance was 

determined by performing one-way ANOVA followed by Sidak’s test for multiple comparisons 

(see figure legends).
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Legends to Figures

Figure 1 Pedigree and clinical findings. (A): Pedigree of the Turkish CREB3L1 OI family. 

The proband is indicated with an arrow, asterisks denote family members available for 

molecular testing. (B): Postmortem examination of fetus IV:3 showed bowed extremities with 

bilateral angulation of the forearms due to fractures, bilateral femoral and tibial bowing. (C): 

Anterior-posterior and (D) lateral radiographs of fetus IV:3 revealed thin, wavy ribs and 

multiple fractures of tubular bones resembling accordion-like femora and humeri.

Figure 2 Protein structure and function of OASIS. OASIS is a 519 AAs long protein 

containing an N-terminal cytoplasmic part, which holds the conserved bZIP domain (AAs 292-

353), and a transmembrane domain (TM), which anchors it in the rough endoplasmic reticulum 

membrane. When a (bone) cell is stressed or depleted, the full-length OASIS is transported to 

the Golgi, where it is cleaved through RIP at the S1P and S2P sites. The released N-terminal 

active factor of OASIS is translocated to the nucleus, where it activates the transcription of its 

target genes (e.g. COL1A1, VEGFA, SEC24D). The NLS is shown, the RRKKKEY DNA 

binding domain is depicted in bold, and the AAs at positions 304 (c.911C>T, p.(Ala304Val)), 

312 (c.934_936delAAG, p.(Lys312del)) and 428 (c.1284C>A, p.(Tyr428*)) are highlighted (2, 

15, 19, 20, 22, 23). 

Figure 3 Structural modeling of human WT and mutant OASIS. Structural modeling of the 

full length WT, p.(Ala304Val), and p.(Lys312del) OASIS protein sequences, by means of I-

TASSER algorithms. Conformational changes within the functional helical bZIP domain 

containing the NLS (blue) are marked with arrows, highlighting the effects of the p.(Ala304Val) 

and p.(Lys312del) variants. 

Figure 4 Effect of overexpression of the Ala304Val variant on Col1a1 promoter activity, 

and on mRNA/protein levels of the COPII components SEC23A/SEC24D, respectively. 

(A) and (B): Luciferase assays provide strong evidence that A304V has a negative effect on 

OASIS-induced transcriptional activation of the Col1a1 gene, similar to K312del. (C) and (D): 

RT-qPCR shows that both A304V and K312del have a negative effect on the expression of 

SEC23A and SEC24D, when compared to WT overexpressed CREB3L1. (E), (F), (G), (H) and 

(I): Immunoblotting shows that A304V is a stably expressed mutant protein that does not appear 
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to be truncated when compared to WT protein. Both A304V and K312del prevent OASIS-

induced increase of SEC24D protein levels, while SEC23A protein levels are not affected by 

OASIS. Values shown are the mean of three independent experiments; Empty, empty vector-

transfected control; WT, wild type-transfected OASIS. Error bars, SEM.  (* P < 0.05, ** P < 

0.01, *** P < 0.001).
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Abbreviations

CREB3L1 cyclic AMP responsive element binding protein 3-like 1 

OASIS old astrocyte specifically induced substance 

OI osteogenesis imperfecta

COPII coat protein complex type II 

AD autosomal dominant 

AR autosomal recessive 

ER endoplasmic reticulum

bZIP basic leucine zipper

RIP regulated intramembrane proteolysis

UPRE unfolded protein response element

VUS variant of unknown significance

NLS nuclear localization sequence

AA amino acid 

I-TASSER Iterative Threading ASSembly Refinement

cTAGE5 cutaneous T-cell lymphoma-associated 5

TANGO1 transport and Golgi organization 1

ACMG American College of Medical Genetics
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