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We discuss the relations between the violation of the CHSH Bell inequality for systems of two
qubits on the one side and entanglement of formation, local filtering operations, and the entropy and
purity on the other. We calculate the extremal Bell violations for a given amount of entanglement
of formation and characterize the respective states, which turn out to have extremal properties also
with respect to the entropy, purity and several entanglement monotones. The optimal local filtering
operations leading to the maximal Bell violation for a given state are provided and the special role
of the resulting Bell diagonal states in the context of Bell inequalities is discussed.

INTRODUCTION AND PRELIMINARIES

Entanglement has always been a key issue in the on-
going debate about the foundations and interpretation of
quantum mechanics since Einstein, Podolsky and Rosen
(EPR) published their famous gedanken-experiment in
1935 [1]. For a long time discussions about entangle-
ment were purely meta-theoretical. However, this appeal
was changed dramatically in 1964 by John Bell’s [2] ob-
servation that the EPR dilemma could be formulated in
the form of assumptions naturally leading to a falsifi-
able prediction. The experimental fact that these Bell
inequalities can indeed be violated [3] has not only ruled
out a single theory, but the very way theories had been
formulated for quite a long time. Whereas until 1989 en-
tanglement was widely believed to be equivalent to the
violation of a Bell inequality, it turned out that such a vi-
olation is neither necessary for mixed entangled states [4]
nor a good measure for the amount of entanglement [5, 6].
It was in particular shown by Gisin [6] that some states
initially satisfying Bell’s inequalities, lead to a violation
after certain local filtering operations. Hence, local filter-
ing operations can on an average increase the degree of
violation while decreasing the amount of entanglement.
Although general structural knowledge about entangle-
ment [7] on the one side and Bell’s inequalities [8] on the
other has increased dramatically in the last few years, our
knowledge about their relation is still mainly restricted
to the fact that states violating a Bell inequality have to
be entangled.
The present paper is devoted to settling the relation-

ship between entanglement, measured in terms of the
concurrence, the Bell violations and their behaviour un-
der local filtering operations for the case of two qubit
systems.
To fix ideas we will start by recalling some of the basic

definitions and properties. Throughout this paper we will
consider systems of two qubits – one may think of two

spin 1
2 particles or the polarization degrees of freedom

of two photons – for which we can explicitly calculate
the amount of entanglement, in terms of the entangle-
ment of formation [9], as well as the maximal violation
of the Bell inequality in its Clauser-Horne-Shimony-Holt
(CHSH) form [10, 11].
The concept of entanglement of formation (EoF ) is

related to the amount of entanglement needed to prepare
the state ρ, and it was shown by Wootters [9] that

EoF (ρ) = h

(

1 +
√
1− C2

2

)

, (1)

where h(x) = −x lg x− (1− x) lg (1− x) and the concur-

rence C = max
[

0,
√
l1 −

∑4
i=2

√
li

]

with {li} being the

decreasingly ordered eigenvalues of ρ(σy⊗σy)ρT (σy⊗σy).
In order to circumvent lengthy logarithmic expressions
we will in following use the concurrence rather than EoF ,
which is in fact a convex and monotone function with re-
spect to C.
The CHSH inequality formulated for two qubit systems

states, that within any local classical model the expecta-
tion value Tr (ρB) of the Bell operator

B =
1

2

3
∑

ij=1

[

ai(cj + dj) + bi(cj − dj)
]

σi ⊗ σj , (2)

where (~a,~b,~c, ~d) are real unit vectors and σi being the
Pauli matrices, has to be bounded by one. Its violation
is a measure of how strong non-classical properties of the
state manifest themselves in correlation experiments.
In the sequel we will often represent the two qubit

state in terms of the 4 × 4 matrix R̃ij = Tr (ρσi ⊗ σj)
(with σ0 being the identity) and the 3 × 3 block Rkl =
Tr (ρσk ⊗ σl), where k, l = 1, 2, 3. It is important to note,
that the latter can be diagonalized just by changing the
local bases, which will neither affect the entanglement
nor the maximal Bell violation.
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ENTANGLEMENT OF FORMATION VERSUS

VIOLATION OF THE CHSH INEQUALITY

In [11]the Horodecki family showed, that the maximal
violation of the CHSH inequality can be calculated by
considering the 3 × 3 matrix Rkl = Tr (ρσk ⊗ σl). We
will give an alternative derivation of this result in a way
that will be very useful in the sequel:

Lemma 1 (Horodecki [11]) Given the decreasingly or-
dered singular values {σi} of R, the maximal violation
β(ρ) = maxB Tr (ρB) is given by

√

σ2
1 + σ2

2.

Proof: Translated into the R-picture, calculating the
maximal expectation value of B under the constraint that
(~a,~b,~c, ~d) are real unit vectors, amounts to maximizing
Tr (RX) with

X =
(

~c ~d
) 1

2

(

1 1
1 −1

)(

~aT

~bT

)

. (3)

It is an easy exercise to show that X is a real 3 × 3
matrix, subjected to the only constraints that it be of
rank 2 and that Tr

(

XTX
)

= 1. Standard linear algebra
then dictates that Tr (RX) is maximized iff X is chosen
to be proportional to the best rank 2 least-squares ap-
proximation of the matrix R. In the basis where R is
diagonal (R = diag(σ1, σ2, σ3)), X is therefore given by
X = diag(σ1, σ2, 0)/

√

σ2
1 + σ2

2 , which immediately leads

to β =
√

σ2
1 + σ2

2 .

In the following we will derive the extremal violations
for a given amount of entanglement plotted in Fig.1.

Theorem 1 The maximal violation of the CHSH in-
equality for given concurrence C is β(ρ) =

√

1 + C2(ρ).

Proof: As shown by Wootters [9], it is possible to de-
compose a mixed state of two qubits ρ =

∑

i pi|ψi〉〈ψi|
into a convex sum of pure states, all with concurrence
equal to the concurrence of the mixed state. Since the
extremal violation is moreover a convex function, i.e.,
maxB Tr (ρB) ≤

∑

i pimaxB〈ψi|B|ψi〉, it is sufficient to
have a look at pure states, which can always be writ-
ten in their Schmidt form as |ψ〉 = λ+|00〉 + λ−|11〉
with λ± = (

√
1 + C ±

√
1− C)/2. The corresponding

R-matrix is diagonal with singular values (1, C, C) lead-
ing to β =

√
1 + C2.

It is interesting to note that there also exist mixed
states of rank 2 for which the violation is as strong as for
pure states. These are, up to local unitary operations,
all of the form

ρ =
1

2









. . . .

. 1− a C .

. C 1 + a .

. . . .









(4)

with C being the concurrence and a a free real parameter
constrained by |a| ≤

√
1− C2, where equality leads to
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FIG. 1: The region of possible maximal Bell violation
for given concurrence. The dark grey region corresponds
to Bell diagonal states and the three lines represent pure
states (solid), Werner states (dashed) and maximally entan-
gled mixed states (dotted).

pure states and Bell diagonal states (see section below)
are obtained for a = 0.

Theorem 2 The minimal violation of the CHSH in-
equality for given concurrence C is given by β(ρ) =
max[1,

√
2C(ρ)].

The proof is quite technical and may be skipped by read-
ers not interested in technical details.
Proof: We will use similar techniques as used in [12, 13,
14], where it was shown that surfaces of constant con-
currence can be generated by transforming R̃ 7→ R̃′ =
L1R̃L

T
2 by left and right multiplication with proper or-

thochronous Lorentz transformations, taken into account
the constraint that the (0, 0) element of R̃ (representing
the trace of ρ) does not change under these transforma-
tions. They leave the Lorentz singular values [13] in-
variant, and the concurrence is a function of these four
parameters only.
Using the variational characterization used in lemma

1, the first step consists of varying the Lorentz trans-
formations L1, L2 and the 3 × 3 rank 2 matrix X (with
constraint Tr

(

XTX
)

= 1), and imposing that these vari-
ations be zero (i.e. we have an extremum). The object
function is given by

Tr

(

L1R̃L
T
2

(

0 0
0 X

))

(5)

under the constraints Tr
(

XTX
)

= 1 and

Tr









L1R̃L
T
2









1 . . .
. . . .
. . . .
. . . .

















= 1. (6)

The orthogonal degrees of freedom of X can be absorbed
into L1, L2, such as to yield a diagonal X of rank 2:
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X = diag(q, r, 0) with q2 + r2 = 1. Variation of the
Lorentz transformations yields the extremal conditions

Tr

(

G1R̃
′

(

λ 0
0 X

))

= Tr

(

R̃′G2

(

λ 0
0 X

))

= 0. (7)

for all possible generators G1, G2 of the Lorentz group
and λ being a Lagrange parameter. The generators are
all of the form

G =

(

0 ~v
~vT A

)

(8)

with ~v ∈ R
3 and A a real and antisymmetric 3× 3 block.

A detailed discussion of the case λ 6= 0 shows, that this
leads to the maximal violation, which we have already
obtained in theorem 1 using a more simple argumenta-
tion. The minimal value of the Bell violation turns out
to correspond to the case where λ = 0 and yields the
condition that R̃′ is of form

R̃′ =









1 . . a
. x . .
. . y .
b . . z









. (9)

The extremal violation of the Bell inequality is then di-
rectly found by varying the remaining diagonal elements
of X , leading to a violation given by

√

x2 + y2. The
concurrence of the extremal state can be calculated ex-
plicitly, and is given by:

C =
1

2
max

[

0, |x− y| −
√

(1− z)2 − (a− b)2,

|x+ y| −
√

(1 + z)2 − (a+ b)2
]

. (10)

The constraints that R̃ corresponds to a (positive) state
are expressed by the inequalities

− 1 ≤ z ≤ 1, (11)

(1 + z)2 − (a+ b)2 ≥ (x− y)2, (12)

(1− z)2 − (a− b)2 ≥ (x+ y)2. (13)

Applying these to the expression of the concurrence,
this immediately leads to the sharp inequality C ≤
min(|x|, |y|). The Bell violation, given by β =

√

x2 + y2,
will then be minimal for given concurrence if |x| = |y|,
leading to final result: β(ρ) ≥

√
2C(ρ). To complete the

proof, we still have to check if there indeed exists a state
with the properties that x = y, (1 + z)2 = (α + β)2,
(1− z)2 − (α− β)2 ≥ (x+ y)2,−1 ≤ z ≤ 1 and |z| ≤ |x|.
Choosing for example α = β = (1 + z)/2 and z = −|x|
indeed leads to a possible result, which is a convex combi-
nation of a maximally entangled and an orthogonal sep-
arable pure state. Note that all parameters fulfilling the
above constraints lead to states with the same minimal
possible amount of β for given concurrence.

The states minimizing the Bell violation for given en-
tanglement of formation are all rank deficient and belong
to the class of maximally entangled mixed states intro-
duced by Ishizaka and Verstraete et al. [15, 16]. These
states do have a remarkable property: their entanglement
of formation, negativity [17] and relative entropy of en-
tanglement [18] cannot be increased by any global unitary
transformation [16] (and thus under any transformation
preserving the spectrum). For given entanglement their
entropy is the largest and their purity (measured in terms
of Tr

(

ρ2
)

) is the smallest possible one. In [12] it was
shown that these states also minimize the negativity and
the relative entropy of entanglement for a fixed amount
of entanglement of formation, which is fully compatible
with the result about the minimal violation of the Bell
inequality.

OPTIMAL FILTERING

Local filtering operations on single copies are of par-
ticular importance whenever it is difficult or even im-
possible to operate jointly on several copies – such as in
single photon experiments. Gisin [6] noted that there ex-
ist mixed states that do not violate any CHSH inequality
but can violate them after a filtering operation is applied
to them. Therefore the question is raised: what local fil-
tering operation has to be applied to a given state such
as to yield a new state that violates the CHSH inequality
maximally?

Theorem 3 Given a single copy of a state ρ, then the
optimal local filtering operations yielding a state with
maximal possible violation of the CHSH inequality are the
unique stochastically reversible filtering operations bring-
ing the state into Bell diagonal form.

Proof: The proof is completely similar to the proof of
theorem 2, so we will only repeat the major steps. In
the R̃-picture, filtering operations correspond to left and
right multiplication with Lorentz transformations, fol-
lowed by renormalization. The function, which we have
to maximize with respect to L1, L2 and X = diag(q, r, 0)
in order to obtain the maximal Bell violation, therefore
becomes

Tr





L1R̃L
T
2

(

L1R̃LT
2

)

00

(

0 0
0 X

)



 (14)

with the constraint q2 + r2 = 1 and the normalization
factor (L1R̃L

T
2 )00. Variation leads to the condition

Tr

(

G1R̃
′

(

−β 0
0 X

))

= Tr

(

R̃′G2

(

−β 0
0 X

))

= 0,

where again this has to hold for arbitrary G1, G2, and
where β is equal to Eq. (14), i.e., the Bell expectation
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value for given q, r, L1, L2. If β > 1 (i.e. Bell violation), it
holds that β cannot be equal to |q| or |r|, and the form of
the generators in Eq.(8) implies that the above equations
can only be satisfied iff R̃′ is diagonal corresponding to
a Bell diagonal state (see next section). In [13] it was
shown that for each mixed state there exist local filtering
operations bringing the state into a unique Bell diagonal
form, such that we have proven that these are the filtering
operations that maximize the Bell violation. For a more
detailed discussion of these filtering operations we refer
to Ref. [13].

This result was expected as it was shown in [13] that
exactly the same filtering operations maximize the en-
tanglement of formation and the negativity.
Theorem 3 implies that there exists a large number of

mixed entangled states that do not violate any CHSH in-
equality. A specific example was already given by Werner
[4], and here we have shown that whatever state whose
Bell diagonal normal form does not violate the CHSH in-
equalities cannot violate any CHSH inequality, even after
all possible local filtering operations.
In the following section we will discuss in more detail

the Bell diagonal states, for which theorem 3 shows that
the Bell violation cannot be increased by any local filter-
ing operation.

THE ROLE OF BELL DIAGONAL STATES

We call a state Bell diagonal if there is a local choice of
bases such that it can be written as a convex combination
of the four maximally entangled Bell states [20], which
means that R̃ is diagonal in that basis. The diagonal
elements of R then only depend on the eigenvalues λ1 ≥
. . . ≥ λ4 of the Bell diagonal state [13] and it is thus
straight forward to show that the maximal Bell violation
is

β =
√
2
√

(λ2 − λ3)2 + (λ1 − λ4)2. (15)

Since the concurrence is given by C = max[0, 2λ1−1] the
region of possible violations is in this case

√
2(2C + 1)/3 ≤ β ≤

√

1 + C2, (16)

where the lower bound is sharp for Werner states [4]
and the upper bound is attained for rank 2 Bell diag-
onal states and is equal to the relation for pure states.
The fact that the Bell operator B in Eq.(2) is itself

Bell diagonal due to Tr (Bσi ⊗ σ0) = Tr (Bσ0 ⊗ σi) = 0
already suggests that Bell diagonal states play a special
role in the context of violations of the CHSH inequality.
And in fact, in addition to being the optimal outcomes
of local filtering operations, they exhibit another special
property:

Theorem 4 For any given spectrum of the density ma-
trix the respective Bell diagonal state ρ maximizes the
Bell violation, i.e. ∀U ∈ U(4) : β(ρ) ≥ β(UρU∗).

Proof: First note that as we have to calculate a supre-
mum over all unitary rotations of the state ρ, we can
without loss of generality assume that the initial state
commutes with the Bell operator B. The proof of the
theorem is then based on the fact that if uik are the ma-
trix elements of a unitary matrix, then |uik|2 is a doubly
stochastic matrix, i.e., a convex combination of permuta-
tions τ (cf.[21]). If {λi}, {bi} are the decreasingly ordered
eigenvalues of ρ resp. B, then

Tr (UρU∗B) =
∑

ik

λibk|uik|2 =
∑

τ

pτ
∑

i

λibτ(i)

≤
∑

i

λibi = Tr (ρB) . (17)

This immediately implies that if we fix any spectral
property of the state, such as the purity Tr

(

ρ2
)

or the
entropy−Tr (ρ log ρ), the maximal violation of the CHSH
inequality will always be attained for Bell diagonal states.

CONCLUSION

We derived the range of Bell violations for a given
amount of entanglement (measured in terms of the
concurrence) and discussed the extremal states, which
turned out to have extremal properties also with respect
to several entanglement monotones, the entropy and pu-
rity. It was conjectured by Munro et al. [22] that for
given concurrence the Bell violation increases with the
purity of the state. Although this is not true in general
(which can already be seen from Eq.(15)), our results
show that this is indeed true for the extremal cases.
Moreover, we proved that the local single copy filtering

operations which maximize the concurrence and other en-
tanglement monotones also maximize the Bell violation
and lead to Bell diagonal states, which in turn are opti-
mal with respect to global unitary operations as well.
FV acknowledges the hospitality of the TU Braun-

schweig, and is grateful to Jeroen Dehaene for valuable
comments.
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