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Abstract

In this survey paper transitional turbulence modeling is approached from the

point of view relevant to small unmanned aerial vehicles (span ≈ 1m), of which

the flow is characterized by very low values of turbulent intensity and transi-

tion is predominantly of the separation induced kind. The physical mechanisms

that are present during transition are discussed based on the experimental and

numerical findings of the last five decades and their influence on high angle of

attack behavior, with the appearance of abrupt stall, stall cells, low frequency

oscillations and hysteresis are reviewed. Furthermore, an overview will be given

of the different methodologies that exist to predict transitional flows. Emphasis

will be placed on the modeling of separation bubbles within the RANS-based

environment: a number of transitional turbulence models will be summarized

and categorized based on their transition predicting methodologies. Four dif-

ferent turbulence models for low Reynolds number flow will be discussed in

depth: Menter’s k − ω SST model with Wilcox’s low-Re modification, Menter

& Langtry’s (k − ω SST) γ − Reθ model, it’s simplified (k − ω SST) γ model

and Walters & Cokljat’s k − kl − ω model.
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Nomenclature

c Chord length, [m]

CD Drag coefficient; D/0.5ρU2
refc, [−]

CL Lift coefficient; L/0.5ρU2
refc, [−]

CM Moment coefficient; M/0.5ρU2
refc

2, [−]

Cs Smagorinsky constant

CSEP Separation bubble size constant of the γ model

Cλ Scaling factor cutoff eddy size

D Drag, [N ]

fp Frequency-induced pitching; cα̇/Uref , [−]

fSS Shear sheltering inspired damping function

F Control function

Gr Grashof number; buoyancy to viscosity ratio, [−]

h Shear layer thickness

K Wave number

Kv Chord fraction of vortex core

k Turbulent kinetic energy, [m2/s2]

kl Laminar kinetic energy, [m2/s2]

L Lift, [N ]

M Moment, [Nm]

n Amplification factor for discrete frequencies, [−]

nSC Number of stall cells, [−]

N Amplification factor, envelope of all n, [−]

p Static pressure, [Pa]

Pk Production term of k

Pr Prandtl number; viscous to thermal diffusion ratio, [−]

R kl to k transfer term

Ra Rayleigh number, convection to conduction ratio: Gr · Pr, [−]

RT Turbulent viscosity ration; µt/µ, [−]

Rec Chord-based Reynolds Number; ρUrefc/µ, [−]
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Reθ Momentum-thickness Reynolds number; ρUrefθ/µ, [−]

Reν Vorticity Reynolds number; ρy2/µ, [−]

ReT Turbulent Reynolds number; ρk/µω, [−]

Ri Richardson number; buoyancy to flow shear ratio, [−]

s Span, [m]

si Separation bubble size determing function

S Modulus rate-of-strain tensor; 2
√
SijSij , [s−1]

Sij Rate-of-strain tensor; 0.5(∂ui/∂xj + ∂uj/∂xi), [s−1]

Tu Turbulent intensity, [−]

U Local velocity, [m/s]

Uref Free-stream velocity, [m/s]

x Chordwise position, [m]

y Distance to wall, [m]

Greek

−αi Spatial growth rate of disturbances

∆αl Circulation lag [o]

αv Angle between chord line and line connecting separation line and vortex center

β Threshold function

δ∗ Displacement thickness, [−]

δij Kronecker delta, [−]

ε Turbulence dissipation rate, [m2/s3]

γ Intermittency, [−]

λeff Cutoff eddy size, [m]

λL Turbulent length scale, [m]

λθ Pressure gradient parameter; (ρθ2/µ)(∂U/∂x), [−]

µ Dynamic viscosity of air, [kg/ms]

µt Turbulent/eddy viscosity, [kg/ms]

ω Specific turbulence dissipation rate, [1/s]

ωv Angular disturbance frequency, [rad/s]

Ω Vorticity; ∇× u
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ρ Density of air, [kg/m3]

σθ Diffusion coefficient

τ Wall shear stress, [Pa]

θ Momentum thickness, [−]

ξ Relative chordal position; x/c, [−]

Superscript

lim Limiting function for low Tu

Subscript

BP Bypass

c Critical

e Boundary-layer edge condition

eff Effective

L Locally defined

length Correlation for the transition length

NAT Natural Transition

on Activating function for high Reynolds numbers and/or separating flows

onset Correlation for the onset of transition

reattach Correlation for the reattachment position

sep Separation

t Value at transition

0 Blending function restricting γsep to the boundary layer

Acronyms

AoA Angle of Attack, [◦]

AR Aspect Ratio; s/c, [−]

BSL Baseline

CFD Computational Fluid Dynamics

DES Detached Eddy Simulation

DNS Direct Numerical Simulation

FST Free-Stream Turbulence

KH(I/R/B) Kelvin-Helmholtz (Instability/Rolls/Billows)
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LCTM Local Correlation-based Transition Modeling

LCV I Localized Core Vortex Instability

LES Large Eddy Simulation

(L/RA)NS (Linearized/Reynolds-Averaged) Navier-Stokes

(L)SB (Laminar) Separation Bubble

LST Linear Stability Theory

MFD Mean Flow Deformation

OSE Orr-Sommerfeld Equations

PUIM Prescribed Unsteady Intermittency Method

PSE Parabolized Stability Equations

RSM Reynolds Stress Model

SA Spalart-Allmaras

SAS Scale Adaptive Simulation

SC Stall Cell

SCDI Secondary Core Deformation Instability

SCI Secondary Convective Instability

SFD Selective Frequency Damping

SFS Subfilter-Scale

SGS Subgrid-Scale

SLV Separation Line Vortex

S(M/O)C Second (Moment/Order) Closure

SPI Stagnation Point Instability

SSI Secondary Shear Instability

SST Shear Stress Transport

SV BI Secondary Vorticity Band Instability

TELV Trailing Edge Line Vortex

TS Tollmien-Schlichting

UAV Unmanned Aerial Vehicle

WKBJ Wentzel-Kramer-Brillouin-Jeffreys

WMLES Wall-Modeled Large Eddy Simulation

5



1. Introduction

The series of comprehensive tasks, ranging from military and humanitarian

up to commercial and recreational, for which drones are used cannot be over-

looked. This has led to a large body of research in drones-related fields [1]. A5

deep understanding and correct modeling of the aerodynamic behavior is funda-

mental with the objective of further extending their capabilities: flying further

and longer, carrying heavier loads and operating under more severe conditions.

Within the extensive range of drones that exists nowadays, this paper focuses

on unmanned aerial vehicles (UAV) [2, 3] those that operate at a chord-based10

Reynolds numbers (Rec) below 5×105, the condition which is referred to as low

Reynolds number flow [4, 5].

A characteristic of UAVs operating at low Reynolds numbers is the appear-

ance of a separation bubble (Figure 1) on the wing, also attributed to the low

turbulence intensity of the external flow. While detrimental in nature to the per-15

formance of airfoils and therefore often avoided through the use of turbulators

and bubble ramps, it is fundamental in the analysis, design and optimization of

the flight behavior of UAVs to correctly model this phenomenon.

Direct Numerical Simulations (DNS) can bring solace in this matter. How-

ever, their applicability is restricted by the high computational cost. This has20

paved way for cheaper methods such as Large Eddy Simulations (LES) or the

stability theory based eN -method. However, the cost of LES is still the Reynolds

number, especially for parameter studies and optimization. Therefore, this pa-

per focuses on Reynolds-Averaged Navier-Stokes (RANS) simulations, which

have obtained a more prominent role through their ability to be used in increas-25

ingly complex 3D geometries with a relatively low computational cost. Classic

turbulence models, which serve to close the system of RANS equations, assume

a fully turbulent flow. This makes their use in low Reynolds application some-

what ambiguous. The last couple of decades have however seen the birth of
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a number of turbulence models that attempt to model the transition phenom-30

ena that are attributed to low Reynolds number flow. Over recent years, the

modeling of transitional flow with RANS simulations became increasingly more

important and this has led to its implementation in commercial software. The

turbulence models that were created to simulate this phenomenon were often

designed to accurately represent the transition from laminar to turbulent flow35

for specific cases, such as bypass transition over a compressor blade [6, 7], nat-

ural transition over a flat plate [8], wake-induced transition over a cascade [9]

or hypersonic/supersonic transition through Mack instabilities [10].

In §2 of this paper a compact and selective overview of the research on

separation bubbles relevant to aeronautical applications is presented: from its40

discovery in 1934, over an extensive period of experimental, theoretical and nu-

merical research, up to today, at which point a cautious statement can be made

with regard to its dynamics. The methods designed to model this phenomenon

are presented in §3, with a short note on direct numerical and large eddy sim-

ulations and the eN -method, followed by a more extensive survey of attempts45

made within the RANS-society. Four turbulence models are discussed in depth,

firstly Menter’s k − ω Shear Stress Transport (SST) model [11] with Wilcox’s

low Reynolds modification [8], secondly Menter and Langtry’s γ − Reθ model

[12, 13], thirdly Menter and Langtry’s γ model [14] and fourthly and finally

Walter & Cockljat’s k−kl−ω model [15]. A comparative study of these models50

presented in 2D for the prediction of high AoA and hysteresis behavior is given

in §4. Comparison with experimental data brings forth discrepancies, which are

further investigated in 3D in §5.
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Figure 1: Separation bubble [16]

2. Low Reynolds Aerodynamics

The most prominent feature of low Reynolds number flow is the appearance55

of a separation bubble. As a result of the low Reynolds number, the flow remains

laminar well past the low pressure peak that exists on the surface of airfoils sub-

jected to a strong adverse pressure gradient (on the suction side, but also on

the pressure side for more rounded airfoils at lower AoAs). This results in sep-

aration of the laminar boundary layer before transition to turbulence, typically60

of the K-type by means of Tollmien-Schlichting (TS) waves, takes place. The

separated laminar shear layer is highly unstable due to the existence of an inflec-

tion point (Rayleigh’s inflection point theorem [17]) which causes transition to

turbulence and reattachment as a fully turbulent boundary layer. This enclosed

volume is known as the separation bubble.1 The transition process, even with65

the exponential growth in computational power, is up to this day considered as

the most important phenomenon in fluid flows that is not yet fully understood

1The terms laminar separation bubble and transitional separation bubble are often inter-
changeably used in literature to describe the process mentioned above, while only the latter
term refers to the phenomenon described here. In a laminar separation bubble, just as in a
turbulent separation bubble, there is no transition process and the flow separates and reat-
taches in a laminar, respectively turbulent, condition. These bubbles are mainly caused by
discontinuities in the boundary of the flow [18].
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[19]. A large body of research - experimental, numerical and analytical - has

been conducted to clarify the phenomenon. In the following section a compact

overview will be given of the research that has been performed over the last five70

decades and the growing consensus in regards to different aspects of transition.

2.1. Long and Short Bubbles and Bursting

The appearance of a separation bubble on an airfoil was first described by

Jones in 1934 [20] and marked the starting point of an intensive search towards

the understanding of its physical nature and behavior. One of the earliest works75

was executed by Owen & Klanfer [21] who introduced the concept of ‘short’ and

‘long’ bubbles depending on the length of the bubble in comparison to the

displacement thickness at separation (δ∗ =
∫∞

0
[1− u(y)/Uref ]dy, with u(y) the

local velocity as a function of the distance to the wall and Uref the free-stream

velocity). The short bubbles occupy 102 - 103 δ∗ and the long roughly 104
80

δ∗. They recognized the transition of the former to the latter by the process

of ‘bursting’2, which, based on a comparative study with Gaster’s results was

defined by Pauley et al. as the demise of unsteady separation [23].

Tani [24] expressed the difference between the two bubbles by their influence

on the pressure distribution: a short bubble only affecting the pressure distribu-85

tion locally and a long bubble affecting the pressure distribution over the entire

chord. He furthermore stated that: “the region underneath the separated flow

is formed of more or less quiescent or slowly circulating fluid, and is commonly

referred to as dead-air region or a long bubble”. Yarusevych and colleagues

[25], amongst other, also found this region of slowly circulating flow in a short90

bubble. This serves as an explanation for the region of nearly constant pressure,

often referred to as the ‘pressure plateau’. Marxen & Henningson [26] refined

the criteria by which a short bubble can be distinguished from a long one, with

the former being recognized by the following features: (i) the effect of the sep-

2The bursting phenomenon of a separation bubble should not be confused with the near-
wall turbulence-production process of intermittent quasi-cyclic violent outward ejections of
low-speed and inrushes of high-speed fluid [22].
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aration bubble on the potential flow is limited and local, (ii) the ratio between95

laminar and transitional parts of the separation bubble is approximately 1.6-

3, (iii) the disturbance amplification occurs by means of the Kelvin-Helmholtz

Instability (KHI) and (iv) the breakdown to three-dimensional, small-scale tur-

bulence is sudden. In regard to the third criterion, Marxen & Henningson stress

the difference between a turbulent part and a transitional part, with the latter100

being characterized by the nonlinear effect coming forth from the interaction

of secondary instabilities (discussed further on) as opposed to the traditional

models of a separation bubble that consider the flow fully turbulent in the latter

part. This feature was shown by Alam & Sandham using direct numerical sim-

ulations (DNS) [27]. While not all short bubbles exhibit all these features, long105

bubbles do not display more than two of these characteristics. It can already

be mentioned and will be discussed later on that the last criterion is highly

dependent on the kind of disturbances that are amplified by the KHI. Marxen

& Henningson went even a step further in their approach of long bubbles by

questioning the existence of statically stable long bubbles and stating that the110

long bubble is in fact “a long-time average of an intermittently occurring short

bubble that undergoes repeated bursting”.

In the studies conducted by Thwaites [28] and Curle & Skan [29] a crite-

rion to govern the bursting process was proposed based on a pressure gradient

parameter: λθ = (ρθ2/µ)(∂U/∂x). The research conducted by Gaster [30] laid115

bare the importance of the Reynolds number, which he included in an updated

criterion. The search towards the physical understanding and a robust criterion

for the onset of bursting is up to this day ongoing [26].

2.2. Influence of Flow Parameters

Owen & Klanfer [21] and Gaster [30] laid bare the importance of airfoil120

section shape and flow parameters on the bubble length: thick airfoils are char-

acterized by an increase of the bubble length and a backward movement of the

bubble with decreasing Reynolds number and angle of attack. This is on the

one hand caused by the increased effect of viscous damping, which tends to
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suppress the transition process or delay reattachment and on the other hand by125

the decreased pressure gradient resulting in a later separation.

Jones [20] and McCullough & Gault [31] presented three different kinds of

stall3 behavior depending on the airfoil section shape: trailing edge stall, also

referred to as mild stall, is typically encountered on thick airfoils and character-

ized by the separation of the trailing edge which grows towards the leading edge130

until it reaches the bubble which results in its bursting. Leading edge stall, also

referred to as abrupt stall, is typically encountered on airfoils with moderate

thickness and characterized by the bursting of the bubble before the separation

growing from the trailing edge has reached the bubble and results in a more

abrupt loss of lift than encountered on thicker airfoils. The transition thickness135

from mild to abrupt stall is a function of Rec, resulting in case-dependent stall

behavior of airfoils in low-Re flow. Finally, the thin airfoil stall is character-

ized by the appearance of a bubble just aft of the leading edge, which shows

a progressive growth of the bubble length with increasing angle of attack until

reaching the trailing edge. Thin airfoils are noted for a much smaller maximum140

lift coefficient in low-Re flow.

The influence of free-stream turbulence (FST) on the behavior of the sepa-

ration bubble was examined by Mueller and colleagues [32], amongst others. It

was concluded that an increase in FST results in a decrease of bubble length

due to the forward movement of the transition point in the bubble. This con-145

tinues until transition occurs before the separation of the laminar boundary

layer and the subsequent appearance of bypass transition occurs. The preced-

ing three flow conditions: angle of attack (and thus magnitude of the adverse

pressure gradient), Reynolds number and free-stream turbulence, are, along air-

foil shape, the most determining factors of the behavior of the bubble. A large150

body of work has been executed over the years to quantify the relation between

them (in particular the work of Mayle and colleagues and the references therein

3defined as “a loss of lift caused by the breakdown of airflow over the wing when the angle
of attack passes a critical point.” (Dictionary of Aviation. (1999). London: A&C Black.)
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[33, 34]). These studies are used as the base of the semi-empirical turbulence

models under consideration and will be discussed further on.

2.3. Transition Process155

The traditional view on transition within a separation bubble encircles the

road to three-dimensionality and breakdown of the Kelvin-Helmholtz rolls (KHR)

following a secondary instability. However, this only considers convective insta-

bilities, where disturbances that are created during the receptivity phase4 are

swept away from the source [35], such as TS-waves due to surface curvature,160

surface roughness and free-stream turbulence. The latter has been put forward

by Lam & Rott [36], who provided the Lam-Rott eigensolutions that describe

the excitation of short-wavelength disturbances convected within the boundary-

layer by large-wavelength free-stream disturbances. In this case the separation

bubbles acts as an amplifier of disturbances. Absolute instability, characterized165

by the presence of disturbances that spread upstream and downstream [35], is

what causes vortex shedding behind bluff-bodies. It’s relevance with regard to

the current study is that it can act and cause instability at times when the

upstream disturbances are too small to cause unsteadiness through convection.

The transition process in a separation bubble is not only controlled by the in-170

teraction of different coherent structures coming forth from different secondary

instabilities caused by differences in the receptivity phase, but also by the self

sustaining abilities of the bubble and regions of high localized shear. The re-

search conducted by Metcalfe and colleagues [37] on the behavior of a mix-

ing layer and by Rist & Maucher [38] on the behavior of a separation bubble175

illustrated this first feature. In both studies the flow was subjected to two-

dimensional and three-dimensional disturbances where the former led to the

formation of a predominantly two-dimensional flow and a vortex pairing pro-

cess, while the latter led to the formation of rib vortices between the KHR which

4The initial phase of the natural transition process during which disturbances in the bound-
ary layer arise due to free-stream turbulence, surface curvature, shape discontinuities and
surface roughness.
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enhanced the transition process. In both cases the disturbances are periodically180

forced: in Metcalfe’s work by linearizing the Navier-Stokes equations and intro-

ducing a periodic perturbation and in Rist’s work by a periodic blowing, which

leads to a stronger organized flow and shorter bubble length with increasing am-

plitude [39]. A possible explanation for this phenomenon was given by Dovgal

& Kozlov [40] and Marxen & Rist [41] who proposed the existence of a feedback185

loop: the mean flow deformation (MFD) across the bubble caused by the forced

disturbances changes the pressure distribution, which results in a stabilization

of the bubble with respect to the collectively amplified disturbances [26]. This

feedback loop is believed to be a primary global instability (discussed further

on), which illustrates the bubble’s self sustaining nature.190

The appearance of coherent motions within the shear layer is what is re-

sponsible for the production and dissipation of turbulence. The discrepancy of

definitions and terminology in this regard has lead to a more difficult devel-

opment of a closing theory regarding transition in a separation bubble. The

definition of a coherent structure presented here is the more general one pro-195

posed by Robinson [22]: “a three-dimensional region of the flow over which at

least one fundamental flow variable (velocity component, density, temperature,

etc.) exhibits significant correlation with itself or with another variable over a

range of space and/or time that is significantly larger than the smallest local

scales of the flow.”200

2.3.1. Secondary Instability

The KHI (Figure 2) encompasses the instability that comes forth from the

existence of a velocity shear in a flow without a density difference, such as

found in a separation bubble. Chandrasekhar [42] presented the conditions

for which the KHI occurs in case of a continuous velocity distribution and the205

absence of a density variation (expressed as a Richardson number equal to zero):

0 < Kh < 1.2785, with K the wave number and h the shear layer thickness.

Yang & Voke considered the behavior of a SB over a plate with a semicircular

leading edge with large eddy simulations (LES) and found these conditions to
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be met [43].210

When a disturbance is introduced in the shear layer, it grows to form a

billow (KHB), subsequently a spiral and thereafter an elliptical vortex. The

instabilities introduced upstream of the point of separation are determining in

the transition process (discussed further on) and lead to a continuous formation

of vortices. These coherent structures have a strong two-dimensional character215

and are in literature often referred to as KHR. The ‘two-dimensional character’

refers to the observation that these spanwise vortices extend over a part of the

span of the bubble and that their length is much greater than the shear-layer

thickness [26]. Thorpe [44] remarked their beauty and, recalling William Blake’s

poem ‘The Tyger’, ‘fearful symmetry’. The regions between these structures,220

called braids, are characterized by a strong shear, depleted vorticity and are

once again prone to the formation of rolls [45].

Figure 2: Kelvin-Helmholtz Instability (KHI) following a perturbation of the shear layer
dividing two flows of different velocity leading to the formation of billows, spirals and

elliptical vortices, poetically referred to as ‘cat eyes’.

The notion of the KHI in separation bubbles has been proven both experi-

mentally [46, 47] and numerically [48, 49]. While it perpetuates the separation

bubble’s function as an amplifier of external disturbances, it doesn’t serve as225

en explanation for its ability to initiate the transition to turbulence. The de-

formation of the vortex core and braid region is obtained through elliptical and

hyperbolic instabilities respectively, proven by Marxen and colleagues [50]. The

elliptical instability mechanism [51] (it is believed that this is the Secondary

Convective Instability (SCI) [52]) corresponds to the process through which the230

elliptical vortices, characterized by elliptical streamlines, poetically referred to

as the eyelids of the individual Kelvin ‘cat eyes’, formed by the KHI in the shear

layer, are deformed. The hyperbolic instability mechanism [53] takes places in

the braid, which is characterized by hyperbolic streamlines, from which it fol-

lows that the center is a stagnation point. Consequently the flow is susceptible235
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to a hyperbolic instability which leads to the formation of tubes or rib vortices

through the Orr-mechanism [54, 55]: this is a non-modal growth mechanism

and describes the short term inviscid instabilities due to the tilting of initial

disturbances into the direction of the mean shear.

Klaassen & Peltier [56] examined the existence of the vortex merging phe-240

nomenon within KHB and found the existence of two types of amalgamation

instability: the more well known subharmonic vortex pairing [57] or referred to

as orbital merging by Klaassen & Peltier, which is characterized by the merg-

ing of two following vortices by draining of the braid (vorticity dominated) and

the draining instability, also referred to as deformational merging, in which one245

vortex grows in size at the cost of another (strain dominated). Experimen-

tal results illustrating the appearance of subharmonic vortex merging [57] on a

NACA 0018 profile were found by Kurulek & colleagues [58]. The tests were

executed at a Rec = 1 × 105, which is above the value at which performance

transition takes place [4]. In an overview of the secondary instabilities following250

the KHI, Thorpe [44] separately added knots, which he experimentally observed

[59]. These knots can be considered as a three-dimensional version of the orbital

merging. The pairing of two spanwise vortices does not occur simultaneously

across the span, but is spread out in time and space, making the vortices ap-

pear as forming a knot. Chandrsuda et al. [60] also observed a form of pairing,255

characterized by spanwise phase dislocation leading to the formation of double

helix vortex and named the process helical pairing. It is believed that these

double helix vortices and knots are identical in nature. Abdalla & Yang [61]

found these vortices to appear on a flat plate with blunt edge and deduced it to

be responsible for the appearance of staggered lambda vortices, corresponding260

to the later state of H-type transition [62] (also referred to as N-type transition,

depending on the author [63]). The latter has also been discovered numerically

by Lardeau et al. [64], Alam & Sandham [27] and Nati et al. [65] among oth-

ers. Experimental prove was presented by Watmuff [46] through the study of

the evolution of a a small-magnitude impulsive disturbance in a SB. Studies by265

Gaster [66] showed that an impulsive disturbance excites all possible instability
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modes and forms a wave packet through selective amplification and interference,

making it a powerful tool for exploring the stability characteristics of flows.

An additional number of secondary instabilities that follow the formation of

rolls due to the KHI have been discovered within the framework of geophysical270

phenomena, which are characterized by the influence of buoyancy and thermal

effects, expressed by the Richardson (Ri), Grashof (Gr), Rayleigh (Ra) and

Prandtl (Pr) numbers. They are the (i) localized core vortex instability (LCVI)

[67], which has the tendency of formation of counterclockwise vortices at the

tips of the vorticity bands in the cores and deforms the braid leading to the275

generations of multiple secondary vortices on the braid as the flow evolves. (ii)

The secondary core deformation instability (SCDI) [67], which has the tendency

of to inflate the vortex cores. (iii) The stagnation point instability (SPI) [68]

composed of a single localized counter-rotating pair of vortices that surround

the stagnation point. This mode emerges due to the action of the strain field280

induced by the vortex cores on the braid. The SPI emerges once the cores

have grown large and their outermost unstable regions have become extended

close to the stagnation point. This phenomenon is not to be confused with

the hyperbolic instability that leads to the creation of rib vortices. (iv) The

secondary shear instability (SSI) [69] characterized by the advection of vortices285

(upon formation) by the braid velocity field towards the vortex cores. (v) The

secondary vorticity bands instability (SVBI) [68] (experimentally observed by

Staquet [70]), triggered by the fusing of the vorticity bands inside the core,

which can lead to the formation of isolated vortices inside the cores, and a

deformation of the braid, which in turn can subsequently lead to the splitting of290

the stagnation point. This makes it possible for a recirculating region to form

between the two starred points. However, they have not yet been discovered

within the separation bubble on an airfoil.
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2.3.2. Primary Global Instability

Theofilis, Hein, & Dallmann [71] were the first to execute a BiGlobal stability295

analysis5 on a separation bubble. It demonstrated the existence of global modes,

oscillations in time, that are distinguished from the frequencies of the waves

which are amplified by the KHI, and provided the evidence of the existence of

absolute instabilities inside separation bubbles. These discovered self-sustaining

modes can be categorized as global centrifugal instabilities, giving rise to three-300

dimensionalization of the bubble [73]. Jones, Sandberg & Sandham [74, 75]

provided the evidence of the existence of a global mode through a number

of DNS: after being amplified in the braid region, disturbances are convected

upstream trough the reversed flow and again amplified in the braid region. This

particular feature proves the bubble not only being an amplifier, but also an305

oscillator. Both forms of global modes, the oscillator driven by local regions

of absolute inflectional instability (amplification through braid regions) and the

centrifugal one, serve as an explanation for the experimentally observed, but not

through absolute/convective linear instability analysis explainable, occurrence

of breathing/flapping of the separation bubble [76].310

2.3.3. Oblique Transition

A third manner through which the separated laminar shear layer is known to

transit to a turbulent flow is by introducing a set of oblique waves. This so called

5BiGlobal stability analysis is a form of modal linear stability theory (LST), which implies
that, in the case of a temporal study the Laplace transform and in the case of a spatial
transform the Fourier transform of the linearized Navier Stokes (LNS) equations is solved.
The LNS equations are obtained by subtracting the NS equations of the basic flow from the
NS equations where every flow quantity is decomposed in a steady value and a unsteady value.
In the case of a BiGlobal stability analysis the unsteady value is written as the product of an
amplitude function that can change in two spatial directions (which explains its name) and
a wave function which assumes periodicity in the third spatial direction and time [72]. This
form of stability analysis is particularly attractive for the study of separation bubbles, more so
than the traditional Orr-Sommerfeld equations (OSE), which, by imposing the parallel flow
assumption only allows for the amplitude function to change in one direction and enforces
a periodicity in the remaining two spatial directions and thus it is a form of local stability
theory, or the parabolized stability equations (PSE), which allow for a slowly varying wave
number by using the Wentzel-Kramer-Brillouin-Jeffreys (WKBJ) approach and can thus be
considered as a form of non-local LST. Nevertheless, the use of the OSE and PSE cannot
be overlooked even though they are slowly shifting towards becoming diagnostic tools, rather
than as a predictive tools.
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oblique transition (often referred to as O-type transition) was first presented by

Schmid & Henningson [77] as a manner of fast transition in a Poiseuille flow315

at subcritical Reynolds numbers6. There analysis was a product of DNS, but

has since been experimentally verified [78]. The introduction of two interact-

ing oblique waves of small amplitude with wave angles of equal magnitude but

opposite sign leads to a nonlinear interaction. This translates itself in a redis-

tribution of disturbance energy to generate streamwise vortices, which are know320

to experience a strong non-modal (typically referred to as transient) growth.

The growth is caused by a non-orthogonality of the flow eigenmodes, and the

result is independent of whether or not the shear flow is linearly unstable due to

exponentially growing disturbances [79]. This leads to the formation of streaks

through the lift-up effect, the generation of horizontal velocity perturbations325

by the lifting-up of fluid elements in the presence of the mean shear, [80] and

a subsequent breakdown similar to bypass transition with the appearance of

Λ-vortices at the later stage of transition. These vortices are closely related to

the final breakdown since inflectional velocity profiles in normal and spanwise

direction and large velocity fluctuations are first detected in their vicinity [81].330

Rist, Maucher & Wagner studied O-type transition in a separation bubble

by means of DNS [82] and observed a much swifter transition to turbulence,

resulting in a shorter bubble and the altogether absence of vortex shedding.

2.4. Stall Characteristics and Stall Cells

The appearance of a separation bubble results in a turbulent boundary layer335

aft of the bubble that is thicker than the one that would be formed in the case

of a natural transition, which leads to an increased drag and may lead to an

earlier separation in the vicinity of the trailing edge [83]. At a critical AoA the

flow from the trailing edge will separate and with increasing AoA will lead to

a forward movement of the point of separation. Experimental measurements340

have shown the existence of coherent structures commonly referred to as stall

6Subcritical transition in shear flows refers to transition to turbulence despite linear sta-
bility of the laminar flow.
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cells, characterized by oil flow and tuft measurements in the shape of counter-

rotating swirl patterns, poetically addressed as owl faces or mushroom cells

[84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101]. These

features also have been predicted numerically [102, 103, 90, 91, 104]. A more345

theoretical description can be given by means of critical point theory7: stall

cells can be recognized on the surface as two foci connected by two separation

lines emerging from a saddle point [102] (Figure 3). This particular topological

description is referred to as global flow separation, which is characterized by a

stream-surface acting as a barrier separating the set of streamlines that have350

risen from the surface on one side of the global line of separation from the

set arisen from the other side. This dividing surface rolls up forming a vortex

parallel to the span, numerically observed by Manolesos and colleagues [90, 91]

and referred to as separation line vortex (SLV). Vortex filaments originate from

the two foci and are drawn in the core of the SLV, which is at this point parallel355

to the chord. Manolesos recognized these as stall cell vortices (SCV). The vortex

loops are closed by a trailing edge vortex (TEV), completing the stall cells. The

interaction between the SLV and SCV was already observed experimentally by

7Introduced in the early 1950s by Robert Legendre[105] based on the work of Henri Poincaré
[106] and up until today an active field of research [107], critical point theory is used to describe
the three-dimensional separated flow field based on a topographic description of the on-wall
shear distribution and amongst others refined by Lighthill [108], Dallmann [109] and Tobak &
Peake [110], the latter of whom linked it to bifurcation theory, discussed further on. Through
the observation that a separated flow generates a characteristic oil-flow distribution on the
wall of which it separates, Legendre proposed describing the distribution using Poincaré’s
geometric theory of two-dimensional vector fields. In general, through each point on the
surface only one line can be defined, tangent to the skin friction vector and referred to as the
skin friction line or limiting stream line, as a solution of dx/τz(x, z) = dz/τx(x, z). This is
not valid in points where the shear approach zero and the equation becomes singular, such
points are called critical points. The behavior of the flow in these points can than be described
through eigenvalues: by considering the Taylor approximation in the vicinity of these points,
the eigenvalue problem reduces to an algebraic second order equation whose coefficients are
determined by the Jacobian of the shear vector. Tobak & Peake categorized these singular
points by subdividing them in nodes, characterized by an infinite number of skin friction
lines originating from (node of attachment) or focusing in (node of separation) the singular
point, and saddle points, which are characterized by two skin friction lines originating from
and focusing in the singular point simultaneously. A node can be further subdivided in a
nodal point and a focus or spiral node, with the former characterized by the presence of a
skin friction line to which all other skin friction lines but two are parallel. A more in debt
description of the methodology and performed research can be found in the review paper of
Délery [111].
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Werlé [112] and hypothesized by Legendre [113] in the 1960s at which time they

referred to the dividing surface as being of the “horn-type”.360

LE

TE

Figure 3: Schematic representation of the skin friction lines on the suction side of a section
of a wing (AR = 4) confined by two symmetry planes (dotted lines) at an angle of attack

just past the stall angle. The two stall cells are visible in the shape of counter rotating swirl
patterns: two foci (blue dots) connected by a global separation line emerging from the

saddle point (red dot).

In their study of NACA 0012 profile near stall Moss & Murdin [92] tackled

the discrepancy that was found between 2D and 3D measurements in earlier

studies on helicopter rotor blades. Through a series of oil flow measurements at

Rec of 0.84−1.68×106 they found the existence of the strong three dimensional

nature of the wake near stall. Gregory et al. [87] first used the term stall cells365

to refer to these vorticital structures and in their experimental study on the

NACA 0012 at Rec of 0.85− 1.7× 106 on test sections with ARs of 1.4 and 2.8

they found that multiple sets of stall cells can exist depending on the span to

chord ratio. This was also found by Winkelmann [98] in his study on the Clark

Y profile at Rec = 0.35 × 106 with ARs ranging from 3 to 12, which implies370

that the presence of stall cells is not related to tip effects, but to a spanwise

breakdown of the separated region. Weihs & Katz [95] proposed an equation

to predict the number of stall cells: nSC = AR/17.2Kvtanαv, with Kv the

fraction of the chord at which the vortex is centered and αv the angle between

the chord line and the line connecting the separation line and the vortex center.375

Based on experimental results, Kv is found between 0.3 and 0.5 and αv closely

corresponds to the AoA. Weihs & Katz [95] further presented a model on the

development of stall cells, which shows strong similarity to the transition process

in a separation bubble: the separated flow rolls up in a von Karman vortex street

after which the pure two-dimensional vortex cores become unstable through the380

Crow instability [114] leading to a breakup of the core and the formation of
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the stall cells. However, while this might explain the breakup of the vortex

sheet, the inviscid nature of the Crow instability does not permit predicting

the formation of stall cells, caused by separation, a viscous phenomenon [93].

Rodriguez & Theofilis ascribe the formation to a two-dimensional instability of385

the separation line [102], while Elimelech and colleagues attribute it to a three-

dimensional spanwise instability [115]. An updated equation for the prediction

of the number of stall cells was presented by Yon & Katz [100] based on their

tufts study on a NACA 0015 profile at Rec = 0.62 × 106 for ARs ranging 2 to

6: nSC = (AR+ 2)/3, implying that an at an AR = 1 stall cells already start to390

appear. The use of tufts instead of oil flow studies showed an unsteady behavior

in the shape of a spanwise movement. Furthermore, it was noted that wings

with an AR for which the predicted number of cells is between two integers are

characterized by the merging or splitting of cells: the attached region between

stall cells will grow in case the AR increases, leading to a growth in CL. This395

persists until the induced downwash by neighboring cells is unable to uphold

the attached flow and an additional cell is formed. The destruction of a cell

due to the downwash caused by the neighboring cells will eventually occur if the

AR is decreased in size. The increased CL following the formation of stall cells

translates itself in a reduced decrease of CL following CL,max. Winkelmann et400

al. [97] and Boiko et al. [85] respectively showed on a NACA 0015 profile at

Rec = 2 × 106 and a NACA 63-2-615 profile at Rec = 0.58 × 106 that with

increasing AoA the stall cells merge, finally leading to a fully separated flow

from the leading edge and the disappearance of the cells altogether. Overall,

the appearance of these cells is limited to a small region of ∼ 3o following405

CL,max.

The appearance of stall cells has also been shown by means of RANS sim-

ulations through studies by Sarlak et al. [103] using the k − ω SST model [11]

on a NACA 0012 profile at Rec = 0.39 × 106 for AR = 8, studies by Zarut-

skaya & Arieli [116] using the Spalart-Allmaras model [117] on a S826 profile410

at Rec = 0.1 × 106 for an infinite wing (this will be discussed later on) with

a spanwise resolution of AR = 8 and studies by Manolesos et al. [90, 91] on
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a 18% thick airfoil at Rec = 0.5 − 1.5 × 106 and ARs= 1.5 − 2.0 using the

Spalart-Allmaras model [117].

Profile shapes and Reynolds number are explicitly mentioned for two rea-415

sons: one, it can be noted that only thick airfoils are considered, which are

characterized by trailing edge stall. This implies that the shape of the airfoil

by nature forbids the formation of a leading edge bubble at higher Reynolds

number. Second, the higher Reynolds numbers for which the test has been

executed lead to the absence of separation bubbles that would be present for420

lower values. The RANS simulations, which make use of fully turbulent models,

will not resolve low Reynolds effects. This brings forth the remark that the

effect of vortex shedding from the separation bubble on the stall cells is never

taken into account. Studies by Zaman et al. [118] on a LRN(1)-1007 airfoil at

Rec = 0.15−3×105, Bragg et al. [119] and Broeren & Bragg [120] on the same425

airfoil at respectively Rec = 0.3 − 1.25 × 106 and Rec = 0.3 × 106, Bragg &

Khodadoust [121] on a iced NACA 0012 profile at Rec = 1.5× 106 and Broeren

& Bragg [86] on serveral airfoil shapes and Rec = 0.3× 106 have addressed this

issue by experimentally observing a more violent fluctuating behavior of CL

in the corresponding AoA-region, attributed to shear-layer flapping [76]. They430

found that in the presence of a separation bubble, in time-averaged sense, the

flow is two-dimensional and the stall cells are absent altogether. Research per-

sists up until today with the objective of increasing the lift coefficient at past

stall angles through flow control [122].

Either the formation of stall cells or the appearance of violent vortex shed-435

ding persists all the way up to the point where the separation bubble bursts,

either caused by the separation point reaching the reattachment point of the

separation bubble or the inability of the separated shear layer inside the sepa-

ration bubble to reattach. Both lead to an abrupt decrease in lift, increase in

drag and backward movement of the aerodynamic center of the airfoil. In the440

case of the NACA 0018 profile, a series of steady experimental studies have been

executed that illustrate this fact [123, 124, 125].
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2.5. Hysteresis

Closely related to the bursting of bubble is the steady8 hysteresis phe-

nomenon. In the field of aeronautics it is characteristic for round nosed airfoils445

at low Reynolds numbers. It refers to the history dependency of aerodynamic

characteristics, typically expressed as the dependency on the change of the angle

of attack [126]. Any flow parameter that may influence the bursting behavior

of the separation bubble may introduce hysteresis: such as the Reynolds num-

ber [127] and most likely the turbulent intensity (Tu), however no experimental450

data in this regard has been found. The hysteresis loop implies that two values

of the coefficients of lift (CL), drag (CD) and moment (CM ) can be obtained

within a specific range of the flow parameter under consideration. One value

distinguishing itself from the other depending on the manner by which the flow

parameter is changed. The importance of the correct modeling of this behavior455

is found in the prediction of the performance in off-design conditions and thus

robustness of, for example, unmanned aerial vehicles.

The steady hysteresis phenomenon can be further subdivided by considering

the loop direction: either clockwise and counterclockwise. Here airfoil shape

and Reynolds number are the determining factor as was pointed out by Mueller460

when examining the Miley M06-13-128 and Lissaman 7769 airfoils [32, 128].

Airfoils for which a separation bubble appears (thus a reattachment of the sep-

arated shear layer) at low angles of attack (typically at ‘higher’ free-stream

turbulence) and a bursting of the bubble at higher are characterized by a clock-

wise loop. Airfoils for which the shear layer only reattaches at high angles of465

attack (typically at lower Reynolds numbers) show a counterclockwise loop.

A second form of hysteresis, associated with the pitching and plunging mo-

tion of airfoils, and thus an unsteady9 form, can occur in the absence of the

8With steady hysteresis we refer to the phenomenon of history dependency of aerodynamic
characteristics on the sense change of the AoA. Williams and colleagues use the term static
[122]

9With unsteady hysteresis we refer to the phenomenon of history dependency of aerody-
namic characteristics on the speed of change of the AoA. Williams and colleagues use the
term dynamic [122]
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separation bubble. Characteristic for pitching airfoils is the overshoot of the

stall angle in upward direction and undershoot in downward direction. This470

is caused by two components. (i) a circulation lag caused by Karman-Sears

vortex wake effects [129]: ∆αl = 1.5cα̇/Uref , and a delay of the adversity of

the pressure gradient as can be seen from the non-stationary Bernoulli equation

[130, 131].

dpe
dξ

=

(
∂pe
∂ξ

)
α=0

−
(
∂pe
∂α

)(
cα̇

Ue

)
(1)

with pe the static pressure defined on the boundary-layer edge and ξ = x/c475

the relative chordal position. Both components are a function of fp = ċα/Uref ,

the dimensionless frequency-induced pitching. Near the stall angle, high pitch-

ing frequencies can lead to leading edge vortex shedding, which gives rise to an

additional lift force while the vortex travels along the chord, after which the

airfoils stalls as in the static case. This is referred to as dynamic stall (see the480

review article of McCorskey for a more extensive discussion of the phenomenon

[132]). In case of the appearance of a separation bubble, the size of the bubble is

decreased and its forward movement is suppressed during a quasi-static pitching

motion [133], which in turns leads to a hysteresis loop, experimentally observed

by, among others Lee & Basu [134], Lee & Petrakis [135], Brendel & Mueller485

[127] and Nati & colleagues [65]. Increasing Tu diminishes this effect [136].

The phenomenon of hysteresis can be theoretically described using bifurca-

tion theory10 by considering the CL(α)-, CD(α)- and CM (α)-characteristics as

10As critical point theory, bifurcation theory finds its origins in the work of Poincaré, who
first introduced the term in 1885. Bifurcation theory studies the branching process of the
qualitative, topological picture of an object with a change of the parameters on which the
object depends and the stability properties of the bifurcating solutions. Both global and
local bifurcation can be distinguished, based on the branching process’ ability to be studied
through local or global stability analysis. In case of the former, the system can again be
described through the eigenvalues of the linearized system about an equilibrium solution:
either an eigenvalue passing through zero, leading to saddle-node or tangent bifurcations,
which describes the birth or collapse of two equilibria, or a set of non-zero eigenvalues crossing
the imaginary axis, leading to trans-critical or pitchfork bifurcations, the latter of whom lies
at the origin of chaos. Emphasis is placed on saddle-node bifurcations in which two fixed
points (or equilibria) of a dynamical system collide and annihilate each other. If two of these
saddle-node bifurcations exist, the bifurcation diagram may display a s-shape, leading to
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bifurcation diagrams with α being the bifurcation parameter. Two saddle-node

bifurcations exist: the burst angle and the reattachment angle, with correspond-490

ing catastrophes: bursting and reattaching, leading to the hysteresis loop as an

be seen in Figure 4
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Figure 4: Hysteresis loops of the characteristics of a NACA0018 profile at Rec = 3×105 caused
by a change of angle of attack. Reproduced from the experimental results of Timmer[125]

3. Modeling Transition

3.1. Direct Numerical Simulations

Without a doubt the most straightforward method to predict transition is495

by solving the Navier-Stokes (NS) equations and resolving the whole range of

spatial and temporal scales. However, these DNS are computationally expensive

since the grid must be able to resolve the flow up to the Kolmogorov scale,

the smallest scale of a turbulent flow where the viscosity dominates and the

turbulent kinetic energy is dissipated into heat. Furthermore, it is difficult to500

specify a proper external disturbance level and structure. While they allow an in

three steady states: two stable ones and an unstable one. This is referred to as bistability.
When reaching a saddle-node bifurcation from a stable branch, a microscopic increase of the
parameter will lead to a macroscopic jump to the other stable branch, this phenomenon is
referred to as a catastrophe, extensively studied in catastrophe theory through the works of
Thom in the 1960s and Zeeman in the 1970s. A further outline of the theory would lead
us astray. The interested reader is referred to the works of amongst others Arrowsmith &
Place [137], Strogatz [138], Guckenheimer & Holmes [139], Wiggins [140], Kuznetsov [141],
Perko [142] and Hubbard & West [143]. Within the field of fluid mechanics, more specific, the
field of critical point theory, Tobak & Peake [110] and Dallmann [109] used bifurcation theory
to describe the branching of three-dimensional separated flow that occurs due to changes in
Reynolds number, Mach number, angle of attack, aspect ratio, etc.
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debt analysis of the different aspects of the transition phenomenon, for example

referring to the work of Rist & Maucher [82], the cost to resolve the entire range

of operation conditions of an airfoil, let alone an airplane, is out of bounds

with current available computational power. Nevertheless, the knowledge gained505

from DNS has lead to the development of different LES and RANS models that

are able to do the aforementioned in a more or less trustworthy manner.

3.2. Large Eddy Simulations

The first LES can be traced back to 1963 when Smaroginsky [144] introduced

his idea to model the atmospheric air currents. He based his method of modeling510

on the concepts of turbulence introduced by Kolmogorov [145]: his hypothesis

of local isotropy (at sufficiently high Re, the small-scale eddies are statistically

isotropic) implies that as energy is transferred to smaller scales, the memory of

the boundary conditions (responsible for anisotropy) is eventually lost. Thus,

instead of resolving the entire flow field, one can opt for resolving the flow up515

to a certain vortex scale and modeling the smaller vortices. This is done by

applying a filter function to the Navier-Stokes equations, with the former being

a function of a filter width. This width represents the scale up to which the

vortices should be resolved, typically related to the mesh size. The filtering of

the Navier-Stokes equations leads to a residual stress term called the subgrid-520

scale (SGS) or subfilter-scale (SFS) stress, τij , similar to the appearance of the

Reynolds stress in the RANS equations discussed later on. The filtered Navier-

Stokes equations require additional information to determine the SGS stress and

close the set of equations. The SGS stress can be considered as the outer end of

the energy cascade and through the use of a SGS model energy can be removed525

from the resolved vortices. Most SGS models build on the Boussinesq hypothesis

which relates the SGS stress to the strain-rate tensor: τij = 2µtS
∗
ij − 2/3ρkδij ,

with δij the Kronecker delta, S∗ij the large-scale strain-rate tensor and µt the

eddy viscosity, which accounts for the transfer of momentum caused by turbulent

eddies.530

The number of SGS models is high and a complete overview is beyond the
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scope of this work. However, within the bounds of the modeling of transition

we mention two: the very first model was proposed by Smagorinsky, who came

forth with the following relation for the eddy viscosity: µt = (Cs∆̄)2|S̄|, with

Cs the Smagorinsky constant equal to 0.18. However, it produces a non-zero535

eddy viscosity in laminar flows, this leads to the introduction of an unphysical

dissipation by the model during transition, which results in the damping of

perturbations. Different corrections have been proposed that force the SGS

stress to zero in laminar flows. Success was achieved with the dynamic SGS

model, which is characterized by the calculation of the model coefficients (for540

example Cs) as the simulation progresses. This leads to µt = 0 for laminar

flows.

A difficulty encountered in the modeling of transition with LES is related to

the grid size: while the use of filtered NS-equations leads to a cheaper calculation

compared with a DNS, the appearance of a fine shear layer in the case of sepa-545

ration induced transition requires a very fine grid in that specific region, since

the vortices in that region depend strongly on the Reynolds number and the

hypotheses of Kolmogorov on which Smagorinsky built his model, are no longer

valid. This has led to the appearance of simulations in which the region near the

wall is modeled. These methods differ on the one hand in the extent to which550

the outer boundary layer is resolved: going from Detached Eddy Simulations

(DES) and more recent Delayed DES (DDES), which model the entire boundary

layer [146, 147], to Wall-Modeled LES (WMLES) where only the inner layer is

modeled [148, 149]. Amongst these, the hybrid RANS-LES models have become

increasingly popular the past few years [150, 151, 152, 154]. A recent model that555

has proven to be successful in addressing the issue of log-layer mismatch (LLM),

the difference in prediction of the log layer by filtered and Reynolds-averaged

Navier-Stokes equations, is the Improved DDES (IDDES) by Shur et al. [155].

By switching between DDES, which has proven to be accurate in the prediction

of strongly separated flow, and WMLES, which has proven to be accurate in560

mildly separated flows it has brought the better of both worlds together.This

has lead to the appearance of simulations in which the inner layer is modeled:
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Wall-Modeled LES (WMLES). Prime examples are Detached Eddy Simulations

(DES) and Scale Adaptive Simulations (SAS). These hybrid models combine

the concept of RANS (discussed further on) in the boundary layer and LES565

in the outer layer. However, this implies that the wall-layer’s correctness will

be determined by the turbulence model, introducing again inaccuracies in the

region of separation and transition.

A second difficulty is found in the definition of the inlet conditions, since they

should also include the spatial and temporal distribution of vortices, different570

methods exist all with their respective advantages and disadvantages. A com-

plete outline would lead us astray, however, it should be noted that the manner

by which vortices are organized lead to a different form of 3D-breakdown of the

KHRs.

The use of LES for the study of transition has obtained a more prominent575

position during recent years. Proving itself as an explanatory tool and paving

the way towards a deeper understanding of the transition phenomenon. How-

ever, currently the use of LES is still restricted to more simplified geometries,

forcing the designers to resort to even cheaper methods that allow more complex

geometries to be resolved with affordable computational power in a trustworthy580

manner.

3.3. Stability theory: eN -method

The industrial standard, in reference to transition prediction, is the eN -

method. Discovered independently and simultaneously by Smith & Gamberoni

[156] and van Ingen [157] in 1956, it requires three consecutive steps to obtain the585

location of laminar-turbulent transition. During the first step, the velocity and

temperature profiles of a fully laminar flow around the investigated geometry

are calculated. After which, by means of solving the local stability equations or

more correctly the parabolized stability equations, the amplification factor, n,

at a given location x and for a given frequency ωv can be determined as590

n(x, ωv) =

∫ x

x0

−αi(ωv)dx (2)
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with x0 the position where a disturbance with frequency ωv and amplification

rate −αi becomes unstable. en thus becomes the amplification ratio. The final

step consists of determining the N -factor, which corresponds to the envelope

of n-curves that are formed as a function of x for different frequencies ωv.

Transition is then said to occur if N reaches a critical value obtained from595

experimental correlations. The eN method can thus be designated as a semi-

empirical method.

The reader is reminded of the high complexity of the transition process,

amongst others caused by the influence of the spatial distribution of the dis-

turbance, which is not taken into account in the eN -method. Furthermore, the600

laminar flow is significantly different from the actual flow in the presence of a

separation bubble. This results in the eN -method predicting the onset of tran-

sition too late. A third remark on the eN -method is that it only predicts the

onset of transition, it is not able to resolve its influence on the downstream

flow regime. A final comment is on the difficulty implementing linear stability605

theory in three-dimensional flows. BiGlobal or even TriGlobal stability theory

could bring solace in this matter. However, the significantly higher computa-

tional cost of the three steps, even when using parabolized or even local stability

equations, along with the inherent difficulties related to parallel unstructured

codes compared to traditional RANS-models and the fact that the method is610

based on convective instability, thus unable to predict absolute instability rele-

vant at very low values of Tu, has lead to a loss of interest in the method and

was replaced by active search towards turbulence models capable of predicting

intermittent behavior. Nevertheless, the concepts of the eN -method are still

actively in use by 2D panel code XFoil by Drela [158] and the RANS model of615

Begou and colleagues [159].

3.4. RANS: Turbulence Models for Transition Prediction

The introduction of Reynolds’ decomposition of the flow variables in a mean

and fluctuating part in the Navier-Stokes equations and the ensemble-averaging

of this leads to the RANS-equations, which are much cheaper to solve than the620
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aforementioned DNS and LES, since the smallest vortex motions need no longer

be resolved. However, by decomposing and averaging an additional term is

introduced in the equations, which has the form of a stress-term and is typically

addressed as the Reynolds stress, τij . This leads to a set of equations that is no

longer closed. Different manners exist by which this stress term is solved, either625

by the direct computation of the different components of the stress tensor, using

a Reynolds Stress Model (RSM) also called Second Order Closure (SOC) or

Second Moment Closure (SMC) model, or by relating the Reynolds stress to the

mean strain rate, building forth on the Boussinesq eddy viscosity assumption,

by means of the eddy viscosity, which can be determined either in a linear or630

nonlinear fashion. Amongst the linear eddy viscosity models, we can further

distinguish the algebraic models that determine eddy viscosity by means of an

algebraic function, the one equation models that add another transport equation

to calculate the eddy viscosity, amongst those the Spalart-Allmaras (SA) model,

which is still very much in use for aeronautical applications and finally the635

two equation models that determine the eddy viscosity by the addition of two

transport equations to close the RANS equations. The manner by which the

eddy viscosity is determined from the transport equations and the flow variable

that is solved through the transport equation is model dependent. The focus of

this paper will lie on the transition models that build forth on the k − ω and640

k − ω SST models.

The deficiencies to which turbulence models in general are subjected have be-

come common knowledge over recent years, but in line with the current research,

related to separation-induced transition, it’s worth pointing them out. The stag-

nation point near the leading edgeThe point of separation is a stagnation point645

and gives rise to overly high levels of turbulent kinetic energy. The origin of this

deviation is found in the Boussinesq assumption, which fails in flows with large

strain [160, 161]. Since the unphysical levels of k are convected downstream,

the prediction of transition based on the freestream turbulence intensity is af-

fected. The low-Re turbulence model of Biswas & Fukuyama [162] overcame650

this issue by specifying profiles of velocity and turbulence quantities as bound-
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ary conditions somewhere downstream of a stagnation point. An alternative

approach and most commonly used nowadays for its easy implementation is to

add a constraint to the production term. In general the production term is

often approximated as being equal to µtS
2 where S is the modulus of the mean655

rate-of-strain tensor. A typical constraint is to use the vorticity, Ω, instead of

S, in the definition of the production of turbulent kinetic energy: µtSΩ (Kato

and Launder production term limiter[163]) or µtΩ
2 (Menter production term

limiter [164]), since in case of stagnation, Ω = 0 and for a simple shear flow, the

use of SΩ is identical to S2 [165].660

The prediction of transition using Reynolds-Averaged Navier-Stokes equa-

tions is by nature ambiguous, since transition is the consequence, as discussed

above, of the amplification of disturbances of specific frequencies, which are lost

during the averaging-process. It is uncertain whether the amplitude and average

frequency gained from the RANS equations corresponds to the disturbances that665

cause transition [8]. The prediction of transition in a RANS-environment can

thus only be obtained through some sort of artificial triggering. Suzen and col-

leagues [166] presented four requirements that should be met for the transitional

turbulence models to be trustworthy and useable in a RANS environment:

1. The modeling of transition must be affected by flow parameters such as670

the pressure gradient, turbulent intensity and Reynolds number.

2. The cheapness in reference to calculation time, which distinguishes RANS

modeling from LES and DNS must be maintained.

3. An easy incorporation into and compatibility with existing, widely ac-

cepted turbulence models must be obtained.675

4. The compatibility of the model with unstructured codes is required.

The ability of the most recent transitional turbulence models to overcome

this last difficulty in combination with the other characteristics presented above

is what has led to an enormous evolution in the modeling of transition using

RANS models over the last years. Transition models have become more complex,680
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combining different methods to predict separation as accurately as possible over

a range of different transition mechanisms and conditions. Categorizing them

according to these methods has become ambiguous and arguments can be made

to categorize them one way or another. The categorization used here com-

bines Menter et al.’s distinction between low-Re and experimental correlation685

models [12] and Dick & Kubacki’s distinction between experimental correlation

and physics-based models [167]. The number of transition models is high, each

in their own way have had success, and by no means is the list presented be-

low complete, yet hopefully sufficient to illustrate the differences between the

categories and the diversity of transition modeling methods.690

The existing turbulence models can be subdivided in three categories based

on the manner by which they predict transition. The first category encloses the

methods that, by means of damping functions, limit the production of turbu-

lence in the viscous sublayer. These methods can be easily applied to existing

turbulence models to which is then referred as low Reynolds number turbulence695

models. The models are sometimes referred to as pseudo transitional models

since transition is never actually built into the model and transition is said to be

coincidental [12] as they do not capture the influence of free-stream turbulence,

pressure gradients, wall roughness, curvature, ... [166]. Some more famous ex-

amples of a near endless list using the turbulent Reynolds number (ReT ) are700

Jones & Launders’s k−ε model [168], Wilcox’s k−ω model [8], evaluated below,

and Hadzic & Hanjalic SMC model, of which the latter tries to resolve the tur-

bulence anisotropy close to the wall [169]. Langtry & Sjolander’s model [170]

can also by sorted under this category, but distinguishes itself from previous

models through the use of the vorticity Reynolds number (Reν) as an indicator705

of transition instead of the turbulent Reynolds number. The physics are more

correctly modeled in this way, nevertheless remaining strongly case dependent

and thus, in a broader sense, still coincidental.

The second category by which transition can be predicted includes the RANS

models that rely on empirical relations. The early models were built in a way710

similar to the eN -method: first the laminar solution is calculated and the bound-
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ary layer quantities are integrated to obtain the momentum thickness Reynolds

number, Reθ, at different stream-wise locations. Transition onset is then as-

sumed to occur at the position where the local value of the momentum thick-

ness Reynolds number, Reθt, exceeds the one predicted by an empirically defined715

correlation. Once the starting location of transition has been determined a tur-

bulence model with the eddy viscosity disabled in the laminar regions is used to

calculate the final solution. More recent models use the concept of intermittency

(γ), the time fraction the flow is turbulent, to spread transition in space as first

introduced by Narasihma [171]. Intermittency in turn can be described alge-720

braically or dynamically (through a transport equation), both manners rely in

this category on empirical relations. Examples of the former are the Prescribed

Unsteady Intermittency Model (PUIM) [172, 173], where intermittency is pre-

sented in an integral expression based on the characteristics of the development

of Emmon spots on the surface (and consequently restricted to natural and by-725

pass transition), the γ model of Steelant & Dick [174], that uses conditionally

averaged flow equations for the turbulent and laminar flow, building forth on

the concepts of Libby [175] and Dopazo [176], the model of Fürst et al. [177]

and the model of Koz̆ulović [178]. A transport equation for intermittency was

first introduced by Savill [179], building forth on Cho & Chung’s model [180]730

and further improved by Videco et al. [181]. Other examples are Suzen et al.’s

model [166] and the model of Lodefier & Dick that combines two intermittency

transport equations for the prediction of wake-induced transition [9] and was

further developed by Kubacki et al. [182] However, just as the eN -method, a lot

of these models suffers from a hard implementation in unstructured codes due to735

integration requirements. This restriction was recently solved through the use

of Local Correlation-based Transition Modeling (LCTM). Amongst the models

that make use of this are the Menter, Langtry et al.’s γ−Reθ model [183] and γ

model [14] and Coder & Maughmer’s transition Spalart-Allmaras model [184].

Begou and colleagues used a database to get around the intregration issue [159].740

The third and final category covers the models where the transition pro-

cess is encompassed in a more theoretical framework and can be referred to as
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phenomenological (i.e., physics-based). These models are typically functions of

dimensionless quantities referred to as sensors, such as ReT and Reθ, in a man-

ner similar to the first category but they distinguish themselves from them in745

their attempt to model the transition related phenomena. Amongst these phe-

nomena are the concepts of shear-sheltering and the slat mechanism, examined

more in dept in the section on the k − kl − ω model. Examples are Walters

& Leylek’s k − kl − ε model [185], Walters & Cokljat’s k − kl − ω model [15],

building forth on the concepts of fluctuating laminar kinetic energy, the further750

developed k−kL−ω−I model by Pacciani et al. [186] and k−kL−ω−ν2 model

by Lopez & Walters [187], building forth on Dhakal & Walters k−ω−ν2 model

[188], which attempts to include the effect of curvature and rotation through an

additional equation for a transverse turbulent velocity scale. Examples of sensor-

based intermittency models are Wang et al.’s modular k − ω − γ model [189],755

Ge et al. improved version of Durbin’s model [6, 7], Kubacki & Dick’s model

[190, 191] and Lardeau et al.’s model [192]. The latter combines the laminar

kinetic energy concept along with a correlation driven intermittency concept

to calculate the turbulent viscosity, which in turn is subjected to a damping

function, illustrating the difficulty in categorizing the different models.760

In an attempt to further lay bare the concepts that distinguish the cate-

gories defined above, a representative of each one (two in case of the correlation

models) is further analysed in depth. The turbulence models under consider-

ation are Menter’s k − ω Shear Stress Transport (SST) model [11] in which

Wilcox’s algebraic low Reynolds modification was included [8] as representa-765

tive of the first category, the empirical γ-Reθ model [12, 13] that builds upon

the k − ω SST model, in which a transport equation for the intermittency (γ)

and another transport equation for the momentum-thickness Reynolds number

(Reθ) was added and Menter’s γ model [14], which is a simplified but improved

version of the γ − Reθ model, where the Reθ transport equation is omitted as770

representatives of the second category, and the k−kl−ω model [185, 15], which

attempts to model transition by the addition of a transport equation for the

laminar kinetic energy, kl, as representative of the third category.
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3.4.1. (k-ω SST) low-Re Model

Menter’s k−ω shear-stress transport (SST) model has become a standard in775

resolving aeronautical flows. It builds forth on the baseline (BSL) model, which

obtained its highly respected status by combining the best of two worlds through

the use of zonal weighting of the model’s coefficients: the k − ε model, which

is characterized by good free-stream behavior but suffers from an undefined

turbulent dissipation at the wall and thus requires a viscous damping function780

near the wall, and the k − ω model, where the specific turbulent dissipation

naturally goes to zero at the wall but in the mean time suffers from a free-

stream sensitivity [193]. Furthermore, the capabilities of the BSL model are

enhanced by a modified definition of the turbulent eddy viscosity, namely the

SST assumption, to improve the flow in an adverse pressure region, typically785

found on airfoils. Menter introduced the shear stress concept following the

assumption made by Bradshaw who proposed a linear relation in the boundary

layer between the turbulent shear stress, τ , and the turbulent kinetic energy, k.

The concept was adapted to the turbulent viscosity, µt, formulation [8]:

µt = min

(
ρk

ω
,
a1ρk

F2S

)
(3)

with a1 a model constant and F2 a blending function. In case of boundary790

layer separation, the second term of Equation (3) may dominate the first term.

The first term is the standard definition of the turbulent viscosity used in the

k−ω model and is prone to over-predict the turbulent shear stress in case of an

adverse pressure gradient, where the production of turbulent kinetic energy is

much larger than the dissipation leading to a too diffusive boundary layer. This795

shortcoming is largely overcome by the reduced net production of the turbulent

kinetic energy and thus contains its growth.

The low Reynolds number damping functions were originally developed by

Wilcox [8] for the k− ω model. By introducing an artificial damping as a func-

tion of the turbulent Reynolds number, ReT = ρk/ωµ, on the closure terms800
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and on the definition of turbulent viscosity. Consequently, the working of the

damping can be understood based on the viscosity ratio, RT = µt/µ, as pre-

sented by Langtry [170] or based on the local Reynolds number, Rex = ρUx/µ,

as presented by Wilcox [8] in case of a Blasius transformation11. A laminar flow

is represented by a turbulent viscosity ratio of less than 1.0 (RT � 1) or found805

at the leading edge where the Rex is near zero. When the flow approaches the

onset of transition the viscosity ratio approaches a value of approximately 1.0

(RT ≈ 1) or as we travel along the chord, we reach the point at which Rex

is equal to a critical value and the damping functions will cause a significant

growth of turbulent kinetic energy. Accompanying this growth is the increase810

in eddy viscosity and the skin friction. In the later stages of transition, the

viscosity ratio becomes large (RT � 1), Rex grows past the critical point and

the growth rate of specific turbulent dissipation, ω, leads to the point where a

balance between the production and dissipation of turbulent kinetic energy is

obtained, indicating a fully turbulent flow.815

A number of deficiencies directly related to the damping functions were rec-

ognized: first of all it was found by Zheng and colleagues [19] that the Wilcox’s

low Reynolds number model predicts the onset of natural transition too early

and is it not able to properly predict separation-induced transition. Secondly,

as put by Menter and colleagues [12], the prediction can be considered coinci-820

dental: “damping functions, which have been optimized to damp the turbulence

in the viscous sublayer, should reliably predict an entirely different and complex

physical proces”. Furthermore is the model not capable of capturing the influ-

ence of factors that affect transition such as the adverse pressure gradient and

turbulent intensity [166]. While Wilcox proposed a numerical roughness strip825

to overcome the absence of these influencing factors in his damping functions,

by changing the value of the specific turbulent dissipation at the wall, the value

of this ‘height’ remains strongly case dependent and the use of a universal value

11a coordinate transformation to reduce the partial differential equations that describe the
incompressible boundary layer over a flat plate to an ordinary differential equation [194]
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would only add to the already coincidental nature of the model.

3.4.2. k − kl − ω Model830

In 2004 Walters and Leylek [185] came forth with the k − kl − ε model in

response to the existing “diffusion controlled” turbulence models, which suffer

from, as they put it, “the interpretation of bypass transition as caused by the

transition, or diffusion, of free-stream turbulent kinetic energy into the bound-

ary layer, where it is acted upon by the mean shear, leading to transition.”835

The result of which is the extreme sensitivity to boundary conditions on the

one hand and the inability of models to correctly reproduce the production of

streamwise fluctuations in the non-turbulent, pre-transitional boundary layer

on the other hand.” Following the theory proposed by Mayle and Schulz [195],

a laminar kinetic energy (kl) equation is introduced to model the elongated840

streamwise streaks, also known as Klebanoff modes [196, 197]. This third trans-

port equation (on top of the transport equations for k and ε) is used to predict

the magnitude of the low-frequency velocity fluctuations, indicators of the onset

of transition in the laminar boundary layer. The growth of kl is attributed to

the splat mechanism, a term introduced by Wood [198] to describe the process of845

redirecting velocity fluctuations normal to the wall into a streamwise direction,

which goes hand in hand with the appearance of local pressure fluctuations that

amplify disturbances [199, 200]. These velocity fluctuations are found on the

higher end of the length scale, thus a cutoff eddy size, λeff = min(Cλy, λT ) with

Cλ a scaling factor, y the distance to the wall and λT the turbulent length scale,850

is introduced to divide the spectrum in large eddies, contributing to the produc-

tion of kl, and small eddies, contributing to the production of k. Note here how

distance to the wall enforces a turbulent free-stream. Furthermore, a transition

parameter is introduced, as an indicator of the onset of bypass transition, at

which point energy of kl will be transferred to k. This is achieved through a855

term R, which is found as a production term in the transport equation for k

and as a dissipation term in the transport equation for kl. It ensures that there

is no net production of energy, and it furthermore represents the averaged effect
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of the breakdown of streamwise fluctuations into turbulence. R is a function of

a threshold function βBP , controlling the bypass transition as function of k, ν860

and y. The same approach is followed for natural transition through TS-waves

by the addition of a function RNAT and βNAT , the latter a function of S instead

of k.

The capabilities of the model were illustrated in a series of test cases [201],

but the model nevertheless suffered from a nonphysical sensitivity to freestream865

turbulence length scales for attached boundary layer transition [202]. Walters

new model, the k − kl − ω model [15], attempted to redeem this fact by ap-

proaching transition trough the concept of shear-sheltering and considering rel-

evant time-scales for nonlinear disturbance amplification and dissipation. The

process of shear-sheltering can be understood as the inhibition of free-stream870

disturbances of entering the boundary-layer, or more broadly, the shear-layer

[203, 204]. This is conceptualized in the shape of a damping function, fSS , of

the production term of turbulent kinetic energy, Pk. The transition process

itself, modeled in the shape of energy transfer from kl to k, is controlled by

ratio of the turbulent production time-scale and the molecular diffusion time-875

scale as proposed by Praisner & Clark [205]. Walters and Cokljat described

it conceptually as follows: “entrained disturbances in the developing boundary

layer undergo non-linear breakdown and amplification when the time-scale asso-

ciated with turbulence production dynamics is sufficiently short relative to the

time-scale associated with molecular diffusion.” Thus, for the present model the880

threshold function of the transition production/dissipation term for both bypass

and natural transition, βBP on the one hand and βNAT on the other hand is a

function of the ratio of time-scales. Furthermore, the model uses the ω transport

equation instead of the ε equation (which may seems counter-intuitive since it

is known that the k−ω suffers from a strong free-stream turbulence sensitivity,885

as discussed above [206]), but provides a better prediction of transition [207].

Along side this is the wall boundary-layer condition replaced with one in which

the increased viscous dissipation in the sublayer incorporated into the k and kl

destruction term.
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In the manner the model was created, its nature restricts itself to the mod-890

eling of bypass[208] and natural transition. External flow, characterized by low

level of turbulent intensity, is to a much lesser extent subjected to Klebanoff

modes. This raises the question whether the model can also predict the laminar-

turbulent transition described above.

3.4.3. (k-ω SST) γ −Reθ Model895

The final requirement put forward by Suzen et al. [166], the use of local

quantities to trigger transition, has been a noteworthy constraint for the use

of correlation based transition models during early years. In the case of the

γ − Reθ model, the experimental correlations used are the ones proposed by

Abu-Ghannam & Shaw [209], who investigated the transition over a flat splat900

in the presence of a pressure-gradient in a low-speed wind tunnel with varying

free-stream turbulence intensity, ranging 0.3-5%. The correlations relate tur-

bulent intensity to the momentum-thickness Reynolds number at the onset of

transition, Reθt.

Reθ =
ρUrefθ

µ
with θ =

∫ ∞
0

u(y)

Uref

(
1− u(y)

Uref

)
dy (4)

However, the latter is a global quantity: which implies the integration over905

the boundary layer and so a well defined boundary layer edge is required, some-

thing hard to obtain in a discretized environment, further complicated in case

of unstructured grids and parallelized calculations.

In spite of this and referring to the KHI discussed above, it can be noted

that disturbances in a laminar boundary layer are amplified in regions that910

have high shear and are well away from the region of wall damping, such as in a

separation bubble. Blumber & Van Driest [210] related the onset of transition to

the vorticity Reynolds number, Reν , which combines the influence of shear and

distance and is a local quantity, in such a way bypassing the global constraint.

Reν =
ρy2

µ

∂u

∂y
=
ρy2

µ
Ω (5)
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Reν can be related to Reθ by rescaling the latter to the maximum value of the915

former for a Blasius boundary layer: Reθ = Reν,max/2.193. In the presence of

a pressure gradient, the boundary layer shape changes, resulting in a different

relation. However, in the case of a small pressure gradient, the influence is

minimal and can be neglected. In case of an adverse pressure gradient near

separation it can be used to the predict separation induced transition since near920

separation Reν increases and for an adverse pressure gradient Reθt decreases.

Menter, Esch & Kubacki [211] proposed using this concept to model transition

and named it LCTM, Local Correlation-based Transition Modeling.

The γ − Reθ model distinguishes itself from other γ models through the

addition of a supplementary transport equation for Reθt. This assures that the925

model captures strong variations of the turbulent intensity, that may occur due

to turbulence decay, the influence of the free-stream and the pressure gradient.

The transition onset Reynolds number is established in the free-stream through

experimental correlations and is diffused into the boundary layer. By defusing

the value of Reθt into the boundary layer, there is a lag on the onset of transition.930

This is desirable according to Abu-Ghannam and Shaw [209], since transition

is primarily affected by the past history of pressure gradient and turbulence

intensity and not the local value at transition. The lag is controlled by a diffusion

coefficient σθt.

By means of additional experimental correlations, the transported value is re-935

lated to the critical momentum-thickness Reynolds number, Reθc, which serves

as the trigger for the production term of the γ equation. This is present as

an onset function, Fonset, related to the turbulent viscosity ratio, RT , and the

earlier mentioned local property Reν : Reν/(2.193Reθc). The production term is

furthermore a function of Flength, an experimental correlation that determines940

the length of the transition region. Reθc can be thought of as the location where

turbulence starts to grow. Reθt is the position where the velocity profile starts

to deviate from the purely laminar one.

The production term of k as used in the model is obtained by multiplication

of the γ with the production term of k as used in the traditional k−ω SST model:945
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P̃k = γPk. In this way it distinguishes itself from other γ models that use γ to

limit the turbulent viscosity [166, 174]. The advantage of the former is found in

its ability to capture the effect of large free-stream turbulence levels on laminar

boundary layers and the related increase in the laminar skin friction and heat

transfer. Yet it was found that the production of turbulent kinetic energy in case950

of separation induced transition occurred too slowly, leading to a reattachment

too far downstream. To counter this feature an effective intermittency, γeff ,

was introduced, which can obtain the value of 2 inside a separation bubble,

accelerating the production of k and forcing the transition bubble to an earlier

reattachment [212].955

γeff = max(γ, γsep) (6)

with

γsep = min

{
simax

[(
Reν

3.235Reθc

)
− 1, 0

]
Freattach, 5

}
F0t (7)

With F0t a blending function, also found in the transport equation of Reθt,

restricting γsep to boundary layer flows, Freattach an empirical correlation that

disables the artificial high value of γsep once RT is large enough to cause reat-

tachment and si a size function to determine the size of the separation bubble.960

The constant in the relation between Reν and Reθc corresponds here to the value

obtained at separation where the shape factor is 3.5, as opposed to the value

of 2.193 for a Blasius boundary layer with shape factor 2.59. Like the model of

Steelant & Dick [174], the γ −Reθ model has a free-stream intermittency value

of 1, this in order for the model to be able to predict free shear transition.965

Menter and colleagues stressed that: “the proposed transport equations do

not attempt to model the physics of the transition process (unlike, e.g. tur-

bulence models [or the k − kl − ω model discussed above and the SMC model

mentioned earlier]) but form a framework for the implementation of correlation-

based models into general-purpose CFD methods. The physics of the transition970

process is contained entirely in the experimental correlations provided to the
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model.” This led to the development of a large series of correlations for the

undisclosed functions mentioned [213, 214, 215, 216, 217] and a further extension

to include the three-dimensional crossflow instability transition phenomenon

[218, 219, 220] before the disclosure of the correlations used by Menter, Langtry975

and colleagues [183]. Since then improvements have been proposed with mixed

succes [221, 222].

Convergence is somewhat reduced in the transitional simulations, as the

transition location has to settle down before convergence can be reached. The

overall increase (additional equations and convergence) of the computing time980

is typically ∼ 20%.

3.4.4. (k-ω SST) γ Model

Following the publication of the γ−Reθ model, Menter and colleagues [223]

listed a stronger set of requirements for transitional turbulence model to meet

today’s standards in comparison with the ones presented by Suzen et al. [166] A985

fully CFD-compatible transition model should (i) have a calibrated prediction

of transition onset and length, (ii) include different transition mechanisms, (iii)

be locally formulated, (vi) avoid multiple solutions, (v) not undermine a fully

turbulent flow, (vi) have a good convergence, (vii) be formulated independent

of the coordinate system: Galilean invariant.990

The γ model [14] was build upon the downsides found in the γ−Reθ model:

the non Galilean-invariance of the model, caused by the dependence on tur-

bulent intensity (and thus the relative velocity to the wall), and the relative

high complexity of the model, among others caused by the auxiliary transport

equation of Reθt and description of empirical correlations.995

A first attempt in simplifying the model was presented by Coder & Gaumer

[224] who introduced a shape parameter-like function to include the effect of

the pressure gradient, this however through the use of the relative velocity to

the wall, thus not Galilean invariant.

The production term of the γ equation remains a function of Flength and1000

Fonset. The former used to be a correlation, but is replaced by a constant and
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the latter was the result of the transport equation for Reθc, but is now rewritten

as an algebraic function: f(TuL, λθL). TuL is a locally approximated turbulent

intensity and λθL is the locally approximated pressure gradient parameter:

TuL = min

(
100

√
2k/3

ωy
, 100

)
(8)

λθL = min

(
max

(
−7.57 · 10−3 dU

dy

y2

ν
+ 0.0128,−1

)
, 1

)
(9)

Note how both functions avoid the use of the relative velocity to the wall1005

and non-local quantities: in the definition of TuL the velocity is approximated

as ωd and in the definition of λθL the momentum thickness (here represented

by θ) is replaced by the distance to the wall, y.

The more artificial γeff and γsep that were introduced in the γ−Reθ model

are discarded in the γ model and replaced by an additional production term in1010

the transport equation for turbulent kinetic energy, P limk , including a trigger

function, F limon , built upon the vorticity Reynolds number to momentum thick-

ness Reynolds number ratio. This method of working would make the model

more reliable in the prediction of separation induced-transition under low Tu

conditions. A constant CSEP controls the separation bubble’s size.1015

The burst angle is overestimated by the γ − Reθ model, while it is better

predicted by the γ model, since the latter predicts a slightly larger separation

bubble [14].

3.5. Comparative studies

The assessment of the correctness of the aforementioned models has been1020

undertaken through a series of comperative tests. Choudry et al. [225] compared

the k−kL−ω and γ−Reθ models for the flow over a NACA 0021 profile at Rec =

1.2×105 with Tu = 0.6% in 2D at a number of discrete AoAs between 0o and 20o

in steady conditions. They found a good correspondence with experimental data

up to AoA = 12o, after which the burst and stall behavior up to AoA = 20o was1025

better predicted by the k− kL − ω model. Sanders et al. [226, 227] studied the
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behavior of the k−kL−ε model for the flow over a low pressure turbine cascade

for Rec = 0.15−1×105 at Tu = 1% and Rec = 0.25−1×105 at Tu = 0.6% using

both 2D and 3D URANS. Comparison with experimental data showed a good

correspondence, besides the 3D breakdown of trailing-edge vortices, which was1030

not seen to occur. Marty [228] compared the separation-induced transition over

a high-lift low-pressure turbine cascade predicted by the γ − Reθ model with

experimental data for Rec = 0.8 × 105, Rec = 1.4 × 105 and Rec = 2.5 × 105

at Tu = 0.9% and found a good agreement between the two. Fürst et al.

[177] compared the k − kL − ω model with their γ model and experimental1035

data for the ERCOFTAC T3 test series, two NACA 0012 airfoils in tandem for

Rec = 2 × 105, 4 × 105 and 6 × 105 at Tu = 0.3% and high-pressure turbine

cascade for Rec = 5.9×105 at Tu = 1.5%. Good correspondence was illustrated

for both models. Pacciani et al. [186] compared the γ − Reθ model with their

k− kL−ω− I model for three high-lift cascades: T106A at Tu = 0.8%− 2.6%,1040

T106C at Tu = 4%, and T108 at Tu = 0.8% all for Rec = 0.8 − 2 × 105.

They concluded that the γ−Reθ model performs well for bypass transition, but

less for separation-induced transition, as opposed to their model that performs

better in the latter case and worse in the former. Piotrowski et al. [229, 213]

compared the PUIM [172, 173] and the γ model of Lodefier & Dick [9] with1045

the γ − Reθ model for wake-induced transition on the N3-60 cascade, which

showed satisfactory results. Dick & Kubacki [167] compared the γ model, the

k − kL − ω, Kubacki et al.’s model [182] and Kubacki & Dick’s model [191]

for the same case. They showed that the γ model performed best, since wake-

induced transition is dominated by the bypass transition, a conclusion similar1050

to the one drawn by Pacciani et al. [186]. Cutrone et al. [230] compared

the k − kl − ω model and Suzen & Huang’s γ model [166] for the flow over a

flat plate with semi-circular leading edge (ERCOFTAC test cases T3L2, T3L3,

T3L5 and T3LA1) with different Reynolds numbers and free-stream conditions

and the T106 turbine cascade in 2D, for Rec = 5 × 105 and 11 × 105 over a1055

range of Tu, and 3D, for Rec = 5 × 105 at Tu = 5.8%. A better comparison

of the k − kl − ω with experimental data than the γ model of Suzen & Huang
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was shown. Suluksna & Juntasaro [216] compared the γ − Reθ model, Suzen

& Huang’s γ model [231] and Lodefier & Dick’s model [9] for the ERCOFTAC

flat plate T3 test cases (T3AM, T3A and T3B, characterized by an increasing1060

value of Tu) and found the γ −Reθ model performing best. Chitta et al. [232]

compared their k− kL − ω − ν2 model with the k− kL − ω model for, amongst

others, a 2D elliptic airfoil for AoAs from 0o to 20o for Rec = 3 × 105 at

Tu = 0.12%. They concluded that the k − kL − ω model strongly over-predicts

the stall angle. Langtry et al. compared the prediction of the characteristics1065

of the S809 airfoil both in 2D and 3D by the γ −Reθ model with experimental

data from at AoA = 1o, 9o, 14o and 20o at Rec = 2 × 106, from which it was

concluded that the model performs well at low AoA, but fails at high AoA [233].

A clear conclusion on the performance of the models discussed above based

on all these cited studies is hard to be drawn. Furthermore, in view of the1070

discussion on high AoA phenomena, it can be noted that as yet no light has

been shed on the abilities of these models for the prediction of burst, hysteresis,

stall cells and high amplitude low frequency oscillations. A statement of the for-

mer can only be made by comparing these models for a 3D simulation in which

the AoA is changed continuously in increasing and decreasing sense. Alterna-1075

tive methods, such as Selective Frequency Damping (SFD) might provide an

alternative to high AoA and hysteresis prediction within the RANS community

[234].

4. Conclusion

In this survey paper a body of work on transitional separation bubbles has1080

been brought together with the emphasis on its behavior on airfoils operating at

high angles of attack, characterized by the appearance of abrupt stall, stall cells,

low frequency oscillations and hysteresis. An overview of different numerical

methodologies for the prediction of said phenomena is presented, elaborating

on the RANS-based methods.1085

A series of transitional turbulence models is summarized and classified. Four
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different turbulence models for low Reynolds number flow have been discussed

in depth: Menter’s k − ω SST model with Wilcox’s damping function based

low-Re modification, Menter & Langtry’s empirical (k−ω SST) γ−Reθ model,

it’s simplified (k − ω SST) γ model and Walters & Cokljat’s phenomenological1090

k − kl − ω model.

A series of comparative tests in the literature is presented from which it

became clear that it is not possible to come to a strong conclusion on the

predictive qualities of current models. Successes by models are reported in the

literature for some test cases, but failures are reported for other test cases. A1095

model that is universally successful is as yet to be found.

It can be concluded that, while modeling of transition has come a long way,

the evaluation of models up until now has always occurred in a set of discrete

points, which makes the prediction of burst only accurate up to the interval

size. Furthermore, no light has as yet been shed on the abilities of these models1100

for the prediction of hysteresis. Finally, experimental results have shown the

strong 3D nature of the flow, especially at high angles of attack. To which,

as yet, only little importance has been attached in the development of RANS

models. This brings forth the need for further testing of transitional turbulence

models taking into account the aforementioned.1105
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