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Abstract. The notion of invariant operators, or Fourier multipliers, is dis-
cussed for densely defined operators on Hilbert spaces, with respect to a fixed
partition of the space into a direct sum of finite-dimensional subspaces. As a
consequence, given a compact manifold M endowed with a positive measure, we
introduce a notion of the operator’s full symbol adapted to the Fourier analysis
relative to a fixed elliptic operator E. We give a description of Fourier multipliers,
or of operators invariant relative to E. We apply these concepts to study Schatten
classes of operators on L?(M) and to obtain a formula for the trace of trace class
operators. We also apply it to provide conditions for operators between L”-spaces
to be r-nuclear in the sense of Grothendieck.

1 Introduction

Let M be a closed manifold (i.e., a compact smooth manifold without boundary)
of dimension n endowed with a positive measure dx. Given an elliptic positive
pseudo-differential operator £ of order v on M, by considering an orthonormal
basis consisting of eigenfunctions of E, we associate a discrete Fourier analysis to
the operator E in the sense introduced by Seeley [See65]], [See69]. This analysis
allows us to introduce further a notion of invariant operators and of matrix-symbols
corresponding to those operators. The operators on M are then analysed in terms
of the corresponding symbols relative to the operator E.

As a general framework, we first discuss invariant operators, or Fourier multi-
pliers, in a general Hilbert space . This notion is based on a partition of J into a
direct sum of finite-dimensional subspaces, so that a densely defined operator on
3 can be decomposed as acting in these subspaces. There are two main examples
of this construction discussed in the paper: operators on 7 = L*(M) for a compact
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manifold M as well as operators on 3 = L?(G) for a compact Lie group G. The
difference in approaches to these settings is in the choice of partitions of I into
direct sums of subspaces: in the former case, they are chosen as eigenspaces of a
fixed elliptic pseudo-differential operator on M, while, in the latter case, they are
chosen as linear spans of matrix coefficients of inequivalent irreducible unitary
representations of G.

We note that for some results, the assumptions of self-adjointness and elliptic-
ity of E can be dropped; see [RT15].

We give applications of these notions to the derivation of conditions charac-
terising those invariant operators on L?>(M) that belong to Schatten classes. We
also give conditions for nuclearity on LP-spaces and, more generally, for the r-
nuclearity of operators. While the theory of r-nuclear operators in general Banach
spaces has been developed by Grothendieck [Gro55] with numerous further ad-
vances (e.g., in [HP10, [Ko6n78,|0lo72) [Pie84, IRL13]), in this paper we give condi-
tions in terms of symbols for operators to be r-nuclear from L”' (M) to LP>*(M) for
1 < p1,p» <ooand 0 < r < 1. Consequently, we determine relations between
P1, P2, and a, ensuring that the powers (I + E)™* are r-nuclear. Trace formulas
are also obtained relating operator traces to expressions involving their symbols.

In the recent work [DR14c], the authors found sufficient conditions for op-
erators to belong to Schatten classes S, on compact manifolds in terms of their
Schwartz integral kernels. For p < 2, it is customary to impose regularity con-
ditions on the kernel because there are counterexamples to conditions formu-
lated only in terms of the integrability of kernels. Such examples go back to
Carleman’s work [[Carl6], and their relevance to Schatten classes has been dis-
cussed in [DR14b]]. A characteristic feature of conditions of this paper is that no
regularity is assumed either on the symbol or on the kernel. In the case of com-
pact Lie groups, our results extend results on Schatten classes and on r-nuclear
operators on L” spaces that have been obtained in [DR13]] and [DR14b]]. We show
this by relating the symbols introduced in this paper to matrix-valued symbols on
compact Lie groups developed in [RT13]] and in [RT10].

Schatten classes of pseudo-differential operators in the setting of the Weyl-
Hormander calculus have been considered in [TofO6]], [TofOS8]], [BNO4]], [BNO7I,
[BT10]. Conditions for symbols of lower regularity are given in [Sobl4f]. For
the global analysis of pseudo-differential operators on R”, see [BBR96[; see also
[NR10O, Chapter 4] for a basic general introduction to Schatten classes.

To formulate the notions more precisely, let H{ be a complex Hilbert space, and
let T : H — 3 be a linear compact operator. Denote by 7* : H — H the adjoint
of T. Then the linear operator (T*T): : H > His positive and compact. Let
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(wx)x be an orthonormal basis for I consisting of eigenvectors of |T| = (T*T)/2,
and let s¢(T) be the eigenvalue corresponding to the eigenvector wy, k = 1,2, .. ..
The non-negative numbers s;(7), kK = 1,2, ..., are called the singular values of
T:H — H. If 0 < p < oo and the sequence of singular values is p-summable,
then T is said to belong to the Schatten class S,(}{). It is well known that each
Sp(30) is an ideal in Z(H). If 1 < p < oo, a norm is associated to S,(H) and is
given by | Tls, = (252, (x(T)Y) 7. If 1 < p < oo, the class S,(H), endowed
with the norm [|T'||s,, becomes a Banach space. If p = 0o, we define Soo(FH) as
the class of bounded linear operators on J{, with operator norm || T||s. := [|T ||op-
For the Schatten class S,, we sometimes write |7 ||ys instead of ||T]|s,. In the
case 0 < p < 1, the quantity || T||s, defines only a quasi-norm, and S,(H) is also
complete. The space S;(J) is known as the trace class, and an element of S,(HH)
is usually called a Hilbert-Schmidt operator. For the basic theory of Schatten
classes, we refer the reader to [GK69], [RS75]], [S1im79]], and [Sch70].

It is well known that the class S>(L?) is characterised by the square integrabil-
ity of the corresponding integral kernels. However, kernel estimates of this type
are not effective for classes SP(LZ) with p < 2. This is explained by a classical
Carleman’s example [Carl6] on the summability of Fourier coefficients of con-
tinuous functions; see [DR14b] for a complete explanation of this fact. This ob-
struction explains the relevance of symbolic Schatten criteria, and here we clarify
the advantage of the symbol approach with respect to this obstruction. With this
approach, no regularity of the kernel need be assumed.

In Section [l we discuss the relation of our approach to that of the global anal-
ysis on compact Lie groups. In particular, in the case of compact Lie groups, the
Fourier coefficients can be arranged into a (square) matrix rather than in a column,
and this leads to several simplifications. On general compact manifolds, this is not
possible since the multiplicities d; need not all be squares of integers.

We introduce ¢P-style norms on the space of symbols X, yielding discrete
spaces {P(X) for 0 < p < oo, normed for p > 1. Denoting by or the matrix
symbol of an invariant operator T provided by Theorem .1l we can characterise
Schatten classes of invariant operators on L>(M) concisely by conditions

(1.1) T € Z(L*(M)) & o1 € {°(2),
and for 0 < p < oo,
(1.2) T € S,(L*(M)) &= o7 € (’(X);

see (Z.4) and (Z3). Here, the condition that T is invariant means that 7 is strongly
commuting with E; see Theorem 4]l On the level of the Fourier transform, this
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means that 7/"?(5) = a(f)f(f) for a family of matrices o({), i.e., T assumes the
familiar form of a Fourier multiplier.

In Theorem 2.1l below, we discuss the abstract notion of symbol for operators
densely defined in a general Hilbert space J{ and give several alternative formula-
tions for invariant operators, or for Fourier multipliers, relative to a fixed partition
of H into a direct sum H = P ; H; of finite-dimensional subspaces. Consequently,
in Theorem we give the necessary and sufficient condition for bounded ex-
tendability of an invariant operator to .Z(H) in terms of its symbol, and, in Theo-
rem the necessary and sufficient condition for the operator to be in Schatten
classes S,.(JH) for 0 < r < o0, as well as the trace formula for operators in the
trace class S (J) in terms of their symbols.

As our subsequent analysis relies to a large extent on properties of elliptic
pseudo-differential operators on M, in Sections 3] and ] we specify this abstract
analysis to the setting of operators densely defined on L>(M). The main differ-
ence is that we now adopt the Fourier analysis to a fixed elliptic positive pseudo-
differential operator E on M, contrary to the case of an operator E, € Z(H) in
Theorem[2.2]

The notion of invariance depends on the choice of the spaces H;. Thus, in
the analysis of operators on M, we take H;’s to be the eigenspaces of E. How-
ever, other choices are possible. For example, for H = L?(G) for a compact Lie
group G, choosing H;’s as linear spans of representation coefficients for inequiv-
alent irreducible unitary representations of G, we make a link to the quantization
of pseudo-differential operator on compact Lie groups as in [RT10]. These two
partitions coincide when inequivalent representations of G produce distinct eigen-
values of the Laplacian; for example, this is the case for G = SO(3). However, the
partitions are different when inequivalent representations produce equal eigenval-
ues, which is the case, for example, for G = SO(4). For the more explicit example
on H = L*(T") on the torus, see Remark A similar choice could be made in
other settings, producing a discrete spectrum and finite-dimensional eigenspaces,
for example for operators in Shubin classes on R”; see Chodosh [[Chol1] for the
casen = 1.

The concept analogous to Schatten classes in the setting of Banach spaces is the
notion of r-nuclearity, introduced by Grothendieck [GroS3]]. It has applications to
questions of the distribution of eigenvalues of operators in Banach spaces. In the
setting of compact Lie groups, these applications have been discussed in [DR14b]],
and they include conclusions on the distribution or summability of eigenvalues of
operators acting on LP-spaces. Another application is the Grothendieck-Lidskii
formula, which is the formula for the trace of operators on L”(M). Once we have
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r-nuclearity, most of our further arguments are then purely functional analytic, so
they apply equally well in the present setting of closed manifolds. Because of this,
we omit the repetition of statements and refer the reader to [DR14b] for further
such applications.

Some results of this paper have been announced in [DR14a]]. Here we provide
their proofs. We also include, given by Theorem .J(iv), a correction to the for-
mulation of [DR14al, Theorem 3.1(iv)].

The paper is organised as follows. In Section 2] we discuss Fourier multipliers
and their symbols in general Hilbert spaces. In Section[3l we associate a global
Fourier analysis to an elliptic positive pseudo-differential operator E on a closed
manifold M. In Section ] we introduce the class of operators invariant relative
to E as well as their matrix-valued symbols, and use this to characterise invariant
operators in Schatten classes in Section 5l In Section [6] we relate the analysis
developed so far to the analysis on compact Lie groups from [RT13]], [RT10], and
establish formula relating their matrix symbols in the case when M is a compact
Lie group. In particular, we show that left-invariant operators on compact Lie
groups are invariant in our sense. In Section [7} we analyse the integral kernels of
invariant operators on general closed manifolds. Finally, in Section |8 we apply
our analysis to study r-nuclear operators on L”-spaces.

Throughout the paper, Ng = NU{0}. Also J;, denotes the Kronecker delta, i.e.,

1 forj =¢,
dje
0 forj #¢.

2 Fourier multipliers in Hilbert spaces

In this section, we present an abstract set up to describe what we call invariant
operators, or Fourier multipliers, acting on a general Hilbert space J{. We give
several characterisations of such operators and their symbols. Subsequently, we
apply these notions to describe several properties of the operators, in particular,
their boundedness on I, as well as the Schatten properties.

We note that direct integrals (sums in our case) of Hilbert spaces have been in-
vestigated in a much greater generality; see, e.g., Bruhat [Bru68]], Dixmier [Dix96,
Ch 2., §2], [Dix77, Appendix]. The setting required for our analysis is much sim-
pler, so we prefer to adapt it specifically for consequent applications, also provid-
ing short proofs for our statements.

The main application of the constructions below is in the setting when M is
a compact manifold without boundary, K = L?>(M), and H>® = C*®(M), which
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is described in detail in Section Bl However, several facts can be more clearly
interpreted in the setting of abstract Hilbert spaces, which is our set up in this
section. With this particular example in mind, in the following theorem, we can
think of {e’;} as being an orthonormal basis given by eigenfunctions of an elliptic
operator on M, and d; as being the corresponding multiplicities. However, we
allow flexibility in grouping the eigenfunctions in order to be able to cover also
the case of operators on compact Lie groups.

Theorem 2.1. Let H be a complex Hilbert space, and let H>* C H be a dense
linear subspace of H. Let{d;}en, C N, and let { €]}}jeN0,1gk5dj be an orthonormal
basis of H such that e’J‘- € H*® forall j and k. Let H; := span{e’]‘-}f’;l, and let
P; : } — Hj be the orthogonal projection. For f € H, we set f(j, k) :=(f, elj‘-)}c
and denote by f(j) e CY% the column off(j, k),1 <k<dj LetT : H* — H be
a linear operator. Then the following conditions are equivalent:

(A) T(H;) C H; foreach j € Ny;
(B) for each € € Ny there exists a matrix o(€) € C%*4 such that

Tk (€, m) = 6(O)iie.

for all e§ ;
(C) if, in addition, e’; are in the domain of T* for all j and k, then for each
t € Ny, there exists a matrix o(€) € C¥%*4 sych that

TF(6) = a(O)F ()

forall f € H™.
The matrices o(£) in B) and (Q) coincide. The equivalent properties (A)—(C)
follow from the condition
(D) For each j € No, we have TP; = P;T on J{*°.
If; in addition, T extends to a bounded operator T € £(H), then (D) is equivalent
to (A)—(D).

Under the assumptions of Theorem 2.1l we have the direct sum decomposition
BN d
2.1) H =EPH;, H;=span{e};
rt

and d; = dimH;. The two applications that we consider are with H = L*(M)
for a compact manifold M with H; being the eigenspaces of an elliptic pseudo-
differential operator E, or with 3 = L?>(G) for a compact Lie group G with H ;=
span{Cun}1<k,m<q. for a unitary irreducible representation { € [{;] € G. The
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difference is that in the first case, the eigenvalues of E corresponding to H;’s are
all distinct, while in the second case, the eigenvalues of the Laplacian on G for
which H;’s are the eigenspaces, may coincide. In Remark [2.6] we give an example
of this difference for operators on the torus T”.

In view of properties (A) and (C), respectively, an operator T satisfying any
of the equivalent properties (A)—(C) in Theorem is called an invariant op-
erator, or a Fourier multiplier relative to the decomposition {H,}cy, in
(2.1). If the collection { H,} jen, is fixed once and for all, we can just say that T is
invariant or a Fourier multiplier.

The family of matrices ¢ is called the matrix symbol of T relative to the
partition {H;} and to the basis {e’J‘- }. It is an element of the space X defined
by

(2.2) T ={0:Ny>3 > o) e Clxdy,

A criterion for the extendability of 7" to .Z(J() in terms of its symbol is given in
Theorem 23]
For f € X, in the notation of Theorem 2.1l by definition we have

oo dj
_ 7 k
(2.3) f =Y 1. ke
=0 k=1
with convergence of the series in J. Since {e’;}}igﬁd" is a complete orthonormal

system on I, for all f € H{, we have the Plancherel formula

oo dj oo dj
(2.4) 115 =D D 1A NP =Y Y 1F G = 1 170,50

j=0 k=1 j=0 k=1

where we interpret ]? € X as an element of the space

oo dj
(2.5) *(No.Z) = {h :No— [[C?:h(j) e CYand Y Y |h(j, bI* < oo},
d

j=0 k=1

and where we have written A(j, k) = h(j)i. In other words, 52(N0’ 2) is the space
of all h € X such that Y352, ZZ’ZI |h(j, k)|> < co. We endow £?(Ny, X) with the
norm

o0

d; 1/2
(2.6) 17l 2, s 1= (Z > Ik, k>|2> :

=0 k=1

We note that the matrix symbol o(£) depends not only on the partition (2.1]) but
also on the choice of the orthonormal basis. Whenever necessary, we indicate the
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1<k<d;

dependance of ¢ on the orthonormal basis by writing (o, {ek }izo

to (o, {ek}1 ks d’) as the symbol of 7. Throughout this section, the orthonormal
basis is ﬁxed and, unless there is some risk of confusion, the symbols are denoted
simply by o. In the invariant language, as is clear from the proof of Theorem 2.1
the transpose o(j)" = T| ; of the symbol o is just the restriction of T' to H;, which

’); we also refer

is well-defined in view of the property (A).

We also sometimes write 7, to indicate that 7, is an operator corresponding to
the symbol o. It is cl,ear from the definition that invariant operators are uniquely
determined by their symbols. Indeed, if T = 0, then ¢ = O for every choice of
orthonormal basis. Moreover, by taking j = ¢ in Theorem 2.1\{Bl), we obtain the
following formula for the symbol:

2.7 (P mic = T, m),

forall 1 < k, m < d;. The formula (2.7) furnishes an explicit formula for the sym-
bol in terms of the operator and the orthonormal basis. The definition of Fourier
coefficients tells us that for an invariant operators 7,

(2.8) o(Imk = (T€,, ey

In particular, o;(j) = ls;, where I is the identity operator and I, € C%*4; is the
identity matrix.

Before proving Theorem 2.1 let us establish a formula relating symbols with
respect to different orthonormal basis. For orthonormal bases {e,} and { f,,} of I,
we consider the unitary operator U determined by U(e,) = f,. Then

(Tey, ep)sc = (UTe,, Uep)sc = (UTU*Ue,,, Uep)sc = (UTU™ fy, fp)ac.

Denoting by (o7, {e,}) the symbol of T" with respect to the orthonormal basis {e,}
and by (oyru~, { f»}) the symbol of UTU* with respect to the orthonormal basis
{ f«}, we have

(2.9) (o7, {ea}) = (ouru=, { fu})-

Thus, the equivalence relation of basis {e,} ~ { f,} given by a unitary operator U
induces the equivalence relation on the set X of symbols given by (2.9). In view
of this, we can also think of the symbol as an element of the space £/ ~ with the
equivalence relation given by (2.9).

We make another remark concerning Theorem 2. I(C). We use the condition
that e" are in the domain Dom(7*) of T* in showing the implication (B) = (C).
Since e ’s give a basis in J, and are all the e are contained in Dom(7*), Dom(T*)
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is dense in JH{. In particular, by [RS80, Theorem VIII.1], 7 must be closable (in
part (0)). These conditions are not restrictive for the further analysis since they
are satisfied in the natural applications of this paper.

The principal application of the notions above are as follows, except for in the
sequel we need more general operators E unbounded on J. In order to distinguish
from this general case, in the following theorem, we use the notation E,,.

Theorem 2.2. With the notation of Theorem[2.1] let E, € £ (H) be a linear
continuous operator with H; as its eigenspaces: Eoe’j? =4 e’j‘- foreach j € Ny and
all 1 < k < dj. Then equivalent conditions (A)—(C) imply

(E) TEOe’]‘- = EOTe’j‘- foreach j e Ngand 1 <k < j,
and if 1j # A for j #¢€, then (E) is equivalent to Theorem[2Z_I(A)—(C). Moreover,
if T extends to a bounded operator T € £ (H) then the equivalent properties
(A)—(D) imply

(F) TE, =E, T onH,
and ifalso 1 # A¢ for j # €, then (B) is equivalent to (A)—(E).

For an operator T = F(E,), when it is well-defined by the spectral calculus,
(2.10) orkE)(J) = F I,

In fact, this is also then well-defined for a function F defined on A;, with finite
values which are, e.g., j-uniformly bounded (also for non self-adjoint E,). We
first prove Theorem 2.11

Proof of Theorem (A) = (B). If T satisfies condition (&), we
consider the matrix of T'|y, : H; — H; with respect to the orthonormal basis
{ef : 1 < i < d;} of H; and denote it by S(j). Then Tef = Z;jil BUie.
Consequently,

?e\lj(f, m) = (Te,llc" ez’”) = ﬁ(j)kmajf = ﬁ(f)kméj[.

We take then o(£) := B(£)T; it belongs to C%*% and satisfies (B).
B) = (A). Since e’;- € H®°, writing the series 2.3) for Te’; e H, we have

d[ o d[ d[
@.11) Ty =) > Tk, mef => ) o(@midjce) = o(jme] € Hj.
¢ m=1 ¢ m=1 m=1

Since {€”' : 1 < m < d;} spans H;, we obtain (A).

(B) = (). We assume in addition that e’; are in the domain of T* for all j and
k. We also assume that for each £ € Ny, there exists a matrix o(£) € C%*% such
that

(2.12) Tk (€, m) = o(O)miie.
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Now, if f € H, then Tf € J; and, by the inversion formula [2.3)), we have

oo d
£=3>" ke

7=0 k=1

<

Now, using this and the fact that all ¢} are in the domain of 7", we have

d;

Tf(,m) = (Tf,ef) = (f, T*¢}) = (Z Y FG ke, T*e@”)
j=0 k=1
d; =N co dj o
= 7k (T, ) = Z Z FG Tk e, m)
1 j=0 k=1

d;

f(j, Ko(O)midje = Z o(Omif (L, k),

=1 k=1

M8 i[>

~.
Il
S

where we have also used (2.12). Hence 7/”\f(€ ) = a(f)f(f), yielding (C)).
(@) = B). If Tf(£) = o(£)f(€), then
. R dj R dj
15, m) = (a(OeS©0) =3 o(Omiehl.i) =D oOmidjedu = oOmdic
i=1 i=1
which gives (B)), even without any assumptions on 7*.

(D) = (A). We take f € H;. Then P;f € H; since P;f = f, so that by
assumption (D), we have Tf = TP;f = P;Tf € H;, implying (A).

(&) = (D). For this part, we assume, in addition, that T extends to a bounded
operator T € Z(J). First we show that this together with (A)) implies that T'(H jl)
is orthogonal to H;. For g € Hi-, we can write g = D04 Zf‘zl(g, eb)el with the
convergence in 3, so that Tg = },; ZZ*:] (g, €)Tek with the convergence in K,
due to the boundedness of T on H. Since, by (Al), Te’g e H, C HjL for ¢ # j, we
conclude that Tg is orthogonal to H;.

Let now f € H™. Writing f = fi + f, with f; := P; f so that f; € H; and
f> € Hj are both in H>, we have P;Tf = P;Tf; + P;Tf, = Tf; = TP, f, since
the proved claim P; f> = 0 implies that P;Tf; = 0. (]

We now continue with the proof of Theorem 2.2l when the basis X

 corresponds

to the eigenvectors of an operator E, € L(J).
Proof of Theorem 2.2l (A) = (E). Let us fix some e . By (&), we can
write Te" = 27:1 a;é 7 for some constants a;. Then
d;

E(,Te —E()Zae Za /IJeJ =1; Zae =1; Te —Tijelj‘- =TE(,e];,
i=1
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which shows (E)).

® = (A). It suffices to prove that Telj‘. € H;, since {e’j‘- 1 <k < dj)
forms a basis of the finite-dimensional space H;. We can assume that Te’j‘- # 0,
since otherwise there is nothing to prove. We recall that Eoelj‘- =1 e’]‘». Using (E),
we have 4; Te? = TEOe§ = EDTeﬁ. Hence Tef- € J is a non-zero eigenvector
of E, corresponding to the eigenvalue ;. Consequently, since H; are maximal
eigenspaces corresponding to 4;, we must have Te’; € H;.

(E) = . Since we have already shown that (A)—(C) imply (E), it suffices to
prove that (E) implies (B) under the additional assumption that T € Z(H). Let us
write S :=E,oT,D :=T o E, and let f € . Under the assumptions, both S and
D are bounded on K; hence (2.3) implies

d; d;

N N
Sf =lil\r]nz (f, €5)Seh =1i]5nz (f, &)Dés = Df,
Jj=0 k=1 =0 k=1

<
<

with the convergent series in J.

() = (A). We note that we require T € Z(3H) in order for TE, and E,T
to make sense on H. It is clear that (E) implies (E); and, under the additional
assumption that 1; # A, for j # €, we already know that (A)—(C) and (E) are
equivalent. If T is bounded on H, then they are also equivalent to (D). (]

We have the following criterion for the extendability of a densely defined in-
variant operator 7 : H{* — I to Z(J(), which was an additional hypothesis for
properties (D) and (E). In the statements below, we fix a partition into H;’s as in
@.1), and the invariance refers to it.

Theorem 2.3. An invariant linear operator T : H® — I extends to a
bounded operator from H to H if and only if its symbol o satisfies

sup ||0(5)||$(H5) < Q.
fGNo

Moreover,

1Tz = sup lo(O)ll 2@y,
€€N0

where T also denotes the extended operator.
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Proof. We often abbreviate ||({)|| ##,) to ||6(£)],p- Let us first suppose that
lo(©)|l,p < C forall € € Ny. By the Plancherel formula (2.4), we have

ITF 13 = 1T Vagzy = O MTF Oy = O NoOF Ol 2car,
t 4

< MO T Oy < 5 10O, S NFON: e
l l

2
= (Sup ||O'(£)“0p> ”f”iz}f
4

Conversely, let us suppose that T is bounded on J{. Then there exists a con-
stant C > 0 such that | Tf||3c < C for all f such that | f|lsc = 1. We can take
C := Tl .#@c- Hence Ty, : Hi — H; is bounded, and || 7|y, || £@;) < C. On
the other hand, let B(j) denote the matrix of T'|y; : H; — H; with respect to
the orthonormal basis {ei- : 1 < i < d;}of Hj, as in the proof of (A) implies
(B) in Theorem 2.1 We consider an unitary operator U : H; — C%, which de-
fines coordinates in C% of vectors in H; with respect to the orthonormal basis
{e’;- :1 <k <d;} of H;. We also consider the operator A(j) : C% — C% induced
by the matrix S(j). Then T'|p;, = U*A(j)U and

||0-(j)||()p = ”ﬂ(])”up = “A(])“()p = ”TlH,'“f(H,») < C,

completing the proof. (]

We also record the formula for the symbol of the composition of two invariant
operators.

Proposition 2.4. [fS, T : H*® — I are invariant operators with respect to
the same orthonormal partition and such that the domain of S o T contains H,
then S o T : H*® — H is also invariant with respect to the same partition. More-
over, if os denotes the symbol of S and or denotes the symbols of T with respect
to the same orthonormal basis, then os.7 = osor, i.e., as.r(j) = as(j)or(j) for
all] € Np.

Proof. Recalling the definition of the composition of densely defined opera-
tors, we see that the domain of S o T is the space of functions f in the domain of
T such that Tf is in the domain of S, in which case we set (S o T)f = S(Tf). The
hyothesis says that we are in the position to use Theorem Applying Theo-
rem 2.1[C) repeatedly, we have

(SoTVf(j) =STH) = os(HTF() = os(Nar(HF),

so S o T is invariant by Theorem [2.1({C)). U
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We now apply the above notions to give a characterisation of Schatten classes
of invariant operators in terms of their symbols.

Theorem 2.5. Let 0 < r < 0o. An invariant operator T € £ (H) with symbol
o is in the Schatten class S,(H) if and only if >";2, lo(Olls, @z, < oo. Moreover,

o] 1/r
(2.13) N7 \ls,30) = <Z IIU(f)IIE,(Hf)) .
£=0
In particular, if T is in the trace class S1(H), then
(2.14) Te(T) = Z Tr(o(£)).
£=0

Proof. First, we claim that Schatten classes of invariant operators can be char-
acterised in terms of the projections to the eigenspaces Hy:

oo
(2.15) IS, 50 = D M T 1 N5 o
£=0
Let us prove @2.13). Since ||T||s, = |||T||ls,, we can assume without loss of gen-

erality that T is positive definite. We first observe that 4 is an eigenvalue (sin-
gular value) of T if and only if 4 is an eigenvalue (singular value) of T'|y,, for
some £(1). Indeed, if 4 is an eigenvalue of 7, there exists ¢, € H\{0} such that
Tp;, = ;. Using Theorem 2.II[D), we obtain TP;p; = AP, for every £. Since
@, # 0, there exists £(A) such that Py;yp; # 0. Consequently, 4 is the eigenvalue
of Tle) = TP{'(D.

Conversely, since T'(Hy;)) C He(;), an eigenvalue of T'|g,,, is also an eigen-
value of T. Therefore, we obtain (2.13)).

Now, given (2.13), to prove (2.13), it suffices to check that

(2.16) lo(Olls,ty = T a, s, ,)-

To prove (2.16), we consider an unitary operator U : H; — C%, which de-
fines coordinates in C% of functions in H, with respect to the orthonormal basis
{e’g : 1 < k < d;} of H;. We also consider the operator A(f) : C% — C% induced
by the matrix (67(€))". Then T|y, = U*A(£)U, and basic properties of Schatten
quasinorms imply that

N7\ ez N, 1) = WAl s, (caey = lo(Ols,

completing the proof of (2.16) and of 2.13).
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Finally, let us prove (2.14) for operators in the trace class S;(J{). Since the
trace Tr(T) does not depend on the choice of the orthonormal basis in I, using

property (0) and @.11), we can write

dp de dp de  de
THT) =Y > (Tefef) =Y Y > o@mlef ) =D D> > o(O)milmi
¢ k=1 ¢ k=1 m=1 ¢ k=1m=1
dr
=3 > 0O =>_ Tr(o(0)),
¢ k=1 ¢
completing the proof. ([l

Remark 2.6. Membership in .Z(J) and in the Schatten classes S, (H) does
not depend on the decomposition of H into subspaces H; as in (2.1). However,
the notion of invariance does depend on it. For example, let 7{ = L*(T") for
the n-torus T" = R"/Z". Choosing H; = span{ >/}, j e 7", we recover the
construction of Section [6] on compact Lie groups. Moreover, invariant operators
with respect to { H;} ez are the translation invariant operators on the torus T”".
However, to recover the construction of Section 4 on manifolds, we take ﬁg to be
the eigenspaces of the Laplacian E on T”, so that

H, = @ H; =span{e*™/* : j e Z"and |j|* =€}, € e N.
lj1?=¢

Then translation invariant operators on T", i.e., operators invariant relative to the
partition { H;} ez, are also invariant relative to the partition {I/‘E}KGNO (or relative
to the Laplacian, in terminology of Section ). If we have information on the
eigenvalues of E, like we do on the torus, we may sometimes also recover invariant
operators relative to the partition {PTg}geNo as linear combinations of translation
invariant operators composed with phase shifts and complex conjugation.

3 Fourier analysis associated to an elliptic operator

Our main application is the study of operators on compact manifolds, so we start
this section by describing the discrete Fourier series associated to an elliptic posi-
tive pseudo-differential operator as an adaptation of the construction in Section 2]
In order to fix the notation for the rest of the paper, we give some explicit expres-
sions for notions of Section2lin the present setting.

Let M be a compact smooth manifold of dimension n without boundary, en-
dowed with a fixed volume element dx. We denote by W' (M) the Hormander class
of pseudo-differential operators of order v € R, i.e., operators which, in every
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coordinate chart, are operators in Hérmander classes on R" with symbols in S7 4;
see, e.g., [ShuO1]] or [RT10]. In this paper, we use the class W), (M) of classical
operators, i.e., operators with symbols having (in all local coordinates) an asymp-
totic expansion of the symbol in positively homogeneous components; see, e.g.,
[Duilll]. Furthermore, we denote by W% (M) the class of positive definite opera-
tors in W);(M), and by W,(M) the class of elliptic operators in ¥';(M). Finally,
Y. (M) 1= (M)N W) (M) denotes the class of classical positive elliptic pseudo-
differential operators of order v. We note that complex powers of such operators
are well-defined; see, e.g., Seeley [See67]. In fact, all pseudo-differential opera-
tors considered in this paper are classical, so we may omit explicitly mentioning
this every time. But we note that we could equally well work with general opera-
tors in WY (M), since their powers have similar properties; see, e.g., [Str72].

Inspired by constructions considered by Seeley ([See65l], [See69]], see also
Greenfield and Wallach [GW73]]), we now associate a discrete Fourier analysis
to the operator E € WY (M) However, we adapt the construction to our purposes
and, in the sequel, also prove several auxiliary statements concerning the eigen-
values of E and their multiplicities that are useful to us in the subsequent analysis.
In general, the construction below is exactly the one appearing in Theorem 2,11

The eigenvalues of E (counted without multiplicities) form a sequence {4},
which we order so that

(3.1) 0=/10</11</12<---.

To each eigenvalue A; corresponds the finite-dimensional eigenspace H; of func-
tions on M, which are smooth due to the ellipticity of E. We setd; := dim H;, and
Hy :=kerE, Ap := 0. We also set dj : = dim Hy. Since the operator E is elliptic, it
is Fredholm, hence also dy < oo; see [At168]], [Hor85a] for various properties of
H() and d().
We fix an orthonormal basis of L?(M) consisting of eigenfunctions of E:
1<k<d,
(3.2) {2077,
where {ef}!=¥<% is an orthonormal basis of H;. Let P; : L*(M) — H; be the
corresponding projection. We denote by (-, -) the inner product of L?>(M). Observe
that
dj
Pif =) (f.é)el,
k=1
for f € L*(M). The “Fourier” series takes the form

oo dj
f=2_2 (fie)e,

j=0 k=1
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for each f € L>(M). The Fourier coefficients of f € L?>(M) with respect to the
orthonormal basis {e’}} is denoted by

(3.3) TN 1= FUL R = (f, €.

We call the collection of f( J, k) the Fourier coefficients of f relative to E, or

simply the Fourier coefficients of f.
<

Since {e’j‘-}}zgsd" forms a complete orthonormal system in L?>(M), we have the
Plancherel formula (2.4), namely,

oo dj oo dj
GA s = DD N =D DTGP = 1 1705

=0 k=1 =0 k=1

for all f € L>(M), where the space £>(Np, ) and its norm are given, respectively,
in 2.3) and (2.6)).

We can interpret F = F), as saying that the Fourier transform is an isometry
from L?>(M) into ¢>(Ny, ). The inverse of this Fourier transform can be then
expressed by

oo dj
(3.5) F ') =Y k(). kel ).
j=0 k=1
If f € L>(M), we also write
fG. 1)
fG) = : e CY,
fG.dp)

thus expressing the Fourier transform always as a column vector. In particular, we

—~ ~ d;
interpret % (£) = (e’j? (, m))m=1 as of a column and notice that

(3.6) (L, m) = bj¢un.
Smooth functions on M can be characterised by

f e C®M) <= VYN IACy : |f(j, k)| < Cx(1+ 1))~ forall j, k

(3.7 -
&= VN 3Cy : |f()l < Cy(1+ ;)N forall j,

where |f( J)| is the norm of the vector f( j) € C%. The implication “<” here is
immediate, while the implication “="" follows from the Plancherel formula (2.4)
and the fact that for f € C*°(M), we have (I + E)N f € L>(M) for all N.
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For u € D'(M), we denote its Fourier coefficient by u(j, k) : u(eT‘-). By

duality, the space of distributions can be characterised by
feD M) 3IMIAC: |u(j, k)| < C(1+ 1™ forall j, k.

We denote by H*(M) the usual Sobolev space over L?> on M. This space can be
defined in local coordinates or, by the fact that £ € W} (M) is positive and elliptic
with v > 0, can be characterised by

feHWM) = (I+Ey"fel?M) = {(1+ ,Ij)s/”f(j)}.,» e £’(Ny, X)

(3.8) o & S
=D D A+ 1)PNFG P < oo

J=0 k=1
the last equivalence following from the Plancherel formula (2.4). For the char-

acterisation of analytic functions (on compact manifolds M) we refer to Seeley
[See69].

4 Invariant operators and symbols on compact
manifolds

We now discuss an application of a notion of an invariant operator and of its sym-
bol from Theorem 2.1]in the case H = L?>(M) and H>® = C>®(M) and describe its
basic properties. We consider operators 7 densely defined on L>(M) and make a
natural assumption that their domain contains C*°(M). We also note that while in
Theorem[2.2]it was assumed that the operator E,, is bounded on X, this is no longer
the case for the operator E here. Indeed, an elliptic pseudo-differential operator
E € W) (M) of order v > 0 is not bounded on L*(M).

Moreover, we do not assume that 7 extends to a bounded operator on L*(M)
to obtain analogues of properties (D) and (B) in Section Pl because this is too
restrictive from the point of view of differential operators. Instead, we show that,
in the present setting, it suffices to assume that 7' extends to a continuous operator
on D’(M) to reach the same conclusions.

So we combine the statement of Theorem [2.1] and the necessary modification
of Theorem to the setting of Section [3] as follows. We also remark that con-
dition (v)) of the following theorem provides a correct formulation for a missing
assumption in [DR14al Theorem 3.1,(iv)].

Theorem 4.1. Let M be a closed manifold, and let T : C°(M) — L>(M) be
a linear operator. Then the following conditions are equivalent:
(i) T(H;) C H; for each j € Ny;
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(i1) TEe’j? = ETe’j‘. foreach j e Ngand 1 < k < j;
(iii) for each € € Ny, there exists a matrix o(€) € C**% such that

@.1) Tk (6, m) = o(0)idse

for all e’j‘..
If, in addition, the domain of T* contains C*°(M), then for each € € Ny, then the
above conditions are equivalent to the condition
(iv) there exists a matrix o(€) € C¥* sych that 7/"}(67 ) = o(€ )f({’ ) for all
f e C®(M).
The matrices o(€) in (i) and @) coincide.
If T extends to a linear continuous operator T : D'(M) — D'(M), then the
above conditions are equivalent to the following conditions:
(v) TP; = P;T on C>*(M)for each j € Ny.
(vi) TE = ET on L*(M).

If any of the equivalent conditions ({)—(iv) of Theorem .1l is satisfied, we say
that the operator 7 : C*°(M) — L*(M) is invariant (or is a Fourier multiplier)
relative to E. We also say that T is E-invariant or is an £-multiplier. This
recovers the notion of invariant operators given by Theorem 2.1l with respect to
the partitions H;’s in (2.I) which are fixed, being the eigenspaces of E. When
there is no risk of confusion, we refer to such kind of operators as just invariant
operators or as multipliers. It is clear from ({) that the operator E itself or functions
of E defined by the functional calculus are invariant relative to E.

We note that the boundedness of T on L2(M), needed for conditions (D)) and
(B) in Theorem [2.1]and in Theorem 2.2] is now replaced by the condition that T is
continuous on D’(M), which explored the additional structure of L?>(M) and allows
application to differential operators.

We call ¢ in Theorem iii) and the matrix symbol of T or simply the
symbol of 7. It is an element of the space £ = X, defined by

4.2) Sy :={0:Ny> € o(f) e Clxdy,

Since the expression for the symbol depends only on the basis e’j? and not on the
operator E itself, this notion coincides with the symbol defined in Theorem
Let us comment on several conditions in Theorem 4.1l in this setting. Condi-
tions (v)) and are stronger than conditions ({)—(iv). On one hand, clearly
encompasses (). On the other hand, as shown in the proof, condition (¥)) implies

(@ without the additional hypothesis that T is continuous on D’(M).
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In analogy to the strong commutativity in @), if T is continuous on D'(M),
so that all the conditions ({)—(ul) are equivalent, we may say that T is strongly
invariant relative to E.

The expressions in make sense, as both sides are defined (and even con-
tinuous) on D'(M).

It is known from the general theory of densily defined operators on Hilbert
spaces that without additional assumptions, conditions (¥) and (vi) are generally
not equivalent; see, e.g., Reed and Simon [RS80, Section VIIL.5]. If T is a dif-
ferential operator, the additional assumption of continuity on D’(M) for parts ([@)
and is satisfied. In [GW7/3| Section 1, Definition 1] Greenfield and Wallach
called a differential operator D an E-invariant operator if ED = DE, which is our
condition (vi). However, Theorem H.Tldescribes more general operators and re-
formulates them in the form of Fourier multipliers that are explored in the sequel.

There are several useful classes of symbols, in particular, the moderate growth
class

(4.3) 8'(X):={o € X : 3N, C such that ||6(£)|l,, < C(1+ 2N VE e Ny},

where ||6(€)|lop = llo(€)|| #@m,) denotes the matrix multiplication operator norm
with respect to £2(C%).

In the case M is a compact Lie group and E is a Laplacian on G, left-invariant
operators on G, i.e., operators commuting with the left action of G, are also in-
variant relative to E in the sense of Theorem this is shown in Proposition
after we investigate in Section [@] the relation between the symbol in Theorem 4.1
and matrix symbols of operators on compact Lie groups. However, we need an
adaptation of the above construction, since the natural decomposition into H;’s in
(2.1) may in general violate the condition (3.1).

As in Section 2] since the notion of the symbol depends only on the basis,
o1(j) = lg; for the identity operator T = I, where I, € C" % is the identity
matrix, and for an operator T = F(E), when it is well-defined by the spectral
calculus,

(4.4) orE)(J) = F(A)l;.

Proof of Theorem 4.1l Once the basis e’;- is fixed, the equivalence of (i),
(@ and (v follows from the equivalence of (Al), (B) and (C)) in Theorem 2.1

@) = (@. We first note that both ET and TE are well-defined on e’j‘.: for
the former, since €5 is smooth, Tef € L*(M), and hence in D'(M), where E is
well-defined as a pseudo-differential operator, while, for the latter, since
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Ee’j‘- =4 je’; € H; c C*(M), which implies that Ee’j? is in the domain of 7.
The rest of the proof is identical to that of (E) = (A) of Theorem 2.2

@ = (@@). This is the same as (A) = (E) of Theorem 2.2l

@) = (@). Wetake f € H;. Then P, f = f € C*°(M), so that, by condition (¥),
we have Tf = TP;f = P;Tf € H;, implying (i).

@ = @@). We now assume that T is continuous on D’(M). First, we show that
(@i implies that (Tg, eflj‘) =0forallg e H i- C L2(M), in the sense of distributions.
We can write g =3, +; S (g, €b)ek with the convergence in L2(M). Hence Tg =
Z# y EZ;I (g, e’g)Te’g with the convergence being in D’'(M). Since Te’g eH, CH jl
for £ # j, we conclude that Tg is orthogonal to H;.

Let now f € C*°(M). Writing f = fi + f> with f; = P;f, so that f; € H; and
fHreH jl are smooth, and P; f> = 0, we have

PiTf =P;TH+P;Th =ThH =TP,f,

since the above property implies that P;Tf, = 0.

= (u). This is trivial.

@ = (). Assume that T is continuous on D’(M). Then let us write
S:=EoT,D:=ToEandlet f € L*(M). We can write f =372, ZZ":l(f, ek
with the series convergent in L>(M). Since both S and D are continuous on D’(M),

N d; N d;
Sf =lim) > (f.€)Sej =lim > (f.¢j)Dej = Df.
j=0 k=1 70 k=1
The limit should be understood in D’(M). Indeed, with fy = Z?]:O ZZ’;] (f, e’j‘- )e’]‘-,
we have fy — f in L?, and hence also fy — f in D'(M), which implies that
Sfy = Sf and Dfy — Df in D'(M). O

We now discuss how invariant operators can be expressed in terms of their

symbols.

Proposition 4.2. An invariant operator T, associated to the symbol o can be

written as
oo dy 00

4.5) Tof @) =Y > (@O fOmef ) = [a(O)f (O] er(x),
=0 m=1 £=0

where [o(€ )fA(é’ )] denotes a column-vector, and [o(£ )]?(5 )T e (x) denotes multipli-
cation (the scalar product) of the column-vector [o(€) f(€)] by the column-vector

er(x) = (e}(x), - -+, €M) . In particular,
dj
(4.6) (To)@) =Y 0(j)mee] ().

m=1
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Moreover, if o € §'(X) and f € C*®(M), then the convergence in (4.39) is uniform.

Proof. Formula (@.3) follows from Theorem (4. 1lfiv), with uniform conver-
gence for f € C*®(M) in view of @3). Then, using @.3) and (3.6), we can
calculate

o d[ Y x d[
(Toe)@) =D (@O Omer(x) =D (Z(a(f))m,ekuf ,>> €/ (x)
=0 m=1 =0 m=1
o d[ d('
=3 3> (@(O)midjcouef (x) = Z(oo))mke (),
=0 m=1 i=1 m=1
yielding (&.6)). U

Theorem which characterises invariant operators bounded on L*(M), now
becomes the following theorem.

Theorem 4.3. An invariant linear operator T : C*(M) — L*>(M) extends to
a bounded operator from L>(M) to L>*(M) if and only if its symbol ¢ satisfies

sup [lo(£)llop < 00,
fGNO

where |loc(O)|lop = 0O 2@, is the matrix multiplication operator norm with
respect to Hy ~ ¢ 2(C%). Moreover,

I Tl 22any = sup llo(@)lop-
4 ENO
Theorem can be extended to Sobolev spaces. We use the multiplication
property for Fourier multipliers, which is a direct consequence of Proposition

Proposition 4.4. Let S, T : C*(M) — L*>(M) be invariant operators with
respect to E such that the domain of S o T contains C>*(M). Then the operator
SoT :C®M)— L*(M) is also invariant with respect to E. Moreover

O0SoT = 0SOT,

where os denotes the symbol of S and ot denotes the symbols of T with respect to
the same orthonormal basis, i.e., os.7(j) = os(j)or(j) forall j € Ny.

Recalling Sobolev spaces H*(M) in (3.8)) we have the following corollary.

Corollary 4.5. Let an invariant linear operator T : C*°(M) — C*(M) have
symbol o for which there exist C > 0 and m € R such that

lor(O)llop < C(1+ Ap)™"

forall ¢ € Nyg. Then T extends to a bounded operator from H*(M) to H* ™" (M)
forevery s € R.
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Proof. We note that by (3.8)), the condition that T : H*(M) — H*"™(M) is
bounded is equivalent to the condition that the operator

S:=(U+E)" oTo(I+E)™>

is bounded on L?>(M). By Proposition 4] and the fact that the powers of E are
pseudo-differential operators with diagonal symbols (see (£.4)), we have

as(€) = (1+ L) vor().

But then ||og(£)]|,, < C for all £ in view of the assumption on o7, so the statement
follows from Theorem O

5 Schatten classes of operators on compact manifolds

In this section, we apply the constructions in the previous section to determine the
membership of operators in Schatten classes and then apply them to a particular
family of operators on L*(M).

As a consequence of Theorem we can now characterise invariant opera-
tors in Schatten classes on compact manifolds. We note that this characterisation

does not assume any regularity of the kernel or of the symbol. Observing that the

k

conditions for the membership in the Schatten classes depend only on the basis ¢}

and not on the operator E, we immediately obtain the following theorem.

Theorem 5.1. Let 0 < r < oco. An invariant operator T : L>(M) — L*>(M)
is in S,(L*>(M)) if and only iy 7% lor(Olls, < oo. Moreover,

o0
TS 2y = D lor(Olls,.
£=0
If an invariant operator T : L*(M) — L>(M) is in the trace class S{(L*(M)), then

o0
TH(T) = Y Tr(or(L)).
£=0
Remark 5.2. In Section [6] we establish a relation between the symbol intro-
duced in Theorem 4. J]and the corresponding symbol in the setting of compact Lie
groups (cf. [RT10, RT13]]). In particular, the characterisation above extends the
one obtained in [DR13), Theorem 3.7].

We now apply Theorem[3.1]to a determination of which powers of E belong to
which Schatten classes. But first we record a useful relation between the sequences
{4} and {d;} of eigenvalues of E and their respective multiplicities.
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Proposition 5.3. Let M be a closed manifold of dimension n, and let
E e Y, (M), withv > 0. Then there exists a constant C > 0 such that

(5.1) di < C(1+4))"

forall j > 1. Moreover,

= - . ) n
(5.2) Zdj(1+/1j)q<oo ifand only if q > "

j=1

Proof. Since (1 + 1 j)l/ v are the eigenvalues of the first-order elliptic positive
operator (I +E)!/" with multiplicities d ;, the Weyl eigenvalue counting formula for
the operator (I + E)'/" gives 3. (14, ywe; dj = CoA" + O(2"~") as 2 — oo. This
implies d; < C(1 + 4;)"" for sufficiently large 4;, implying the estimate (5.1).

To prove (5.2), let us set T := (I + E)~%/2. Then the eigenvalues of T are
(1+ 2;)7%* with multiplicities d;. This implies

(5.3) S di 1+ 27 = ITIE = 1K 2
j=0

By the functional calculus of pseudo-differential operators, T € W™"9/?>(M), and
so the integral kernel K (x, y) of T is smooth for x # y, and identifying points with
their local coordinates, near the diagonal x = y, we have |K(x, y)| < Cylx — y|™*
for all & > n — vg/2; see, e.g., [Duill] or [RT10, Theorem 2.3.1]. Thus order is
sharp with respect to the order of the operator. Therefore, K € L>(M x M) if and
only if there exists a such that n > 2a > 2n — vg. Together with (3.3)) this implies
(5.2). g

Proposition 5.4. Let M be a closed manifold of dimension n, and let
E e Y\ (M) be a positive elliptic pseudo-differential operator of order v > O.
Let 0 < p < oco. Then

a

(5.4) (I +E)"% e S,(LXM)) ifand only if o > g.

Proof. The operator (I + E)~+ is positive definite, and its singular values are
(1+4 j)_"‘/ ¥ with respective multiplicities d;. Therefore,

I+ EY NG = di(+ a7,
i =0

which is finite if and only if ap > n by (3.2)), implying the statement. O
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6 Relation to the setting of compact Lie groups

In the recent work [DR13]], the authors studied Schatten classes of operators on
compact Lie groups. We now explore how the notion of the symbol from Theo-
rem M. Tl corresponds to the matrix-valued symbols on compact Lie groups and how
the results for Schatten classes correspond to each other when M = G is a com-
pact Lie group. In this and the following sections, we assume that all operators are
continuous on D’(G), so that their integral kernels are distributions.

We give two types of decompositions of L*(G) into H;’s as in Z.1). First we
choose H;’s determined by unitary irreducible representations of G. However, in
this case the condition (3.1) may fail. Consequently, to view this analysis as a
special case of the construction on manifolds in Section 4] with condition (3.1)),
we group representations corresponding to the same eigenvalue of the Laplacian
together, to form a coarser decomposition of L?>(G) into a direct sum of finite-
dimensional subspaces. The example of this types of partitions is given in Re-
mark 2.6]in the case of the torus T".

Now we recall some basic definitions. Let G be a compact Lie group of
dimension n, equipped with the normalised Haar measure. Let G denote the
set of equivalence classes of continuous irreducible unitary representations of
G. Since G is compact, the set G is discrete. For [£] € G, by choosing a
basis in the representation space of £, we can view ¢ as a matrix-valued function
&: G — C%xd_ where d; is the dimension of the representation space of ¢. By
the Peter-Weyl theorem, the collection {\/d:¢&; : 1 < i,j < dz, [£] € G}
is an orthonormal basis of L>(G). We define the group Fourier transform of
f e L'(G) at & by

(6.1) Fef (&) = (&) := /Gf(X)f(X)*dx,

where dx is the normalised Haar measure on G. If £ is a matrix representation,
we have f(f) e C%*d: We note that this Fourier transform is different from the
one we considered on manifolds in (3.3)), which produced vector-valued Fourier
coefficients instead of the matrix-valued ones obtained in (6.1)).

The Fourier inversion formula is a consequence of the Peter-Weyl theorem, so
we have

(6.2) ) =Y de TrE@F ).
[£1eG

For each [£] € G, the matrix elements of ¢ are the eigenfunctions for the
Laplacian L (or the Casimir element of the universal enveloping algebra), with
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the same eigenvalues, which we denote by —/1[251, so we have
(6.3) — Lgéij(x) = l[z.flfij(x)

forall 1 < i, j < ds. For a thorough discussion of Laplacians on compact Lie
groups, we refer to [Ste70].

The weight for measuring the decay or growth of Fourier coefficients in this
setting is (&) := (1 + i%gv])l/ 2, the eigenvalues of the elliptic first-order pseudo-
differential operator (I — L¢)!/2. Parseval’s identity takes the form

R 1/2
£l 2c6) = ( > dgllf(f)llﬁs> ,

[£1eG

where ||]?(§)||fIS = Tr(f(f)f(f)*), which defines the norm on ¢ 2((A?).
We define matrix-valued symbol 74(x, &) € C%*“ for a linear continuous op-
erator A from C*°(G) to D'(G) by

(6.4) 7a(x, &) 1= ()" (AS)(x) € CHx%.
Then we have (see [RT10], [RT13]]) the global quantization

(6.5) Af() =Y d: TrE@)Talx, O F(E))
[€1eG

in the sense of distributions, and the sum is independent of the choice of a rep-
resentation ¢ from each equivalence class [] € G. If A is a linear continuous
operator from C*(G) to C*°(G), the series (6.3) is absolutely convergent and can
be interpreted in the pointwise sense. We also write A = Op(z4) for the oper-
ator A given by the formula (6.3). We refer to [RT10, [RT13] for the consistent
development of this quantization and the corresponding symbolic calculus.

In the case of a left-invariant operator A, its symbol 7,4 is independent of x, and
formula (6.4) reduces to

(6.6) (&) =) AHK) =Al(e),

where e is the unit element of the group.

We can now establish a correspondence between the two frameworks; the one
in this paper and the one given in [DR13]]. In the setting of compact Lie groups,
the unitary dual being discrete, we can enumerate the representations as ¢; for
0 < j < oo. We enumerate the indices (i, ) of each matrix £(x) following the
lexicographical order

(G, 0) < (@', 0)ifi <i'or(i =i"and ¢ < ")).
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We then fix the orthonormal basis {e’j‘.}, given by

k = AT
(67) {ej}lgkgdj = { déj(él)lg}lii,fﬁdcj 5
where d; = dgﬁ and k represents an entry of the matrix of the representation fol-
lowing the lexicographical order described above. Then we have the subspaces

(6.8) Hj =Hy,) :=span{(&)ie: 1 < i, < ds).

On a compact Lie group G, we can consider E to be a bi-invariant Laplacian;
see Stein [Ste/0]] for a discussion of such operators. Then, in view of the Peter-
Weyl theorem, eigenfunctions of E are the functions {e’J‘- h<k<a;» with norm 1 in
L*(G) with respect to the normalised Haar measure, and corresponding to the same
eigenvalue A;. However, the condition (3.1)) does not hold in general, since non-
equivalent representations in G may give the same eigenvalues of the Laplacian.

We now observe that there is also a correspondence between the vector-valued
Fourier transform introduced in (3.3)) and the matrix-valued Fourier transform de-
fined in (6.I)). This correspondence can be established by applying once more the
lexicographical order to the matrix-valued Fourier transform (6.1)).

In order to study such correspondence, we define a bijection from the set of in-
dices of the matrix-symbol {1, ..., d}?, d € N, onto the set of indices {1, ..., d?}
and calculate its inverse. For (j, k) € {1, ..., d}?, we define

Ta(j, k)= —1d +k

The function I'y is surjective; indeed, if t € {1, ..., dz}, then j can be obtained
from j = L%J + 1, where |-] denotes the function defined for x > 0 by |x] =
max{y € Ny : y < x}.

For the term k, we observe that j — 1 = [%J, hence k =t — L%J d. Since we
are dealing with finite sets with the same number of elements, the injectivity of '
follows.

We can now establish correspondences between the Fourier transforms on G =
M for M viewed both as compact manifold and as a compact Lie group. Taking
into account (6.1 and (6.7)), we obtain

69)  Fuh)i) = (frede = VA (TN ED (| o1y, ja. Lot 1)

fori e No,1 <t<d; =d:.
In the another direction, we have

1
(6.10) (Fe i = NZh
g

14

(?Mf)(fa rd,;l, (.]9 l))
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forl <i,j <ds.
For the sake of simplicity, we introduce the notation

r—1 r—1
t,d):=|—— | +1 t,d)y:=t—|——1|d
w(t, d) { d J , ¢t d) { p J ,
where f € {1, ..., d?}. Formula (6.9) then becomes
(6.11) Fm ), m) = \/de,(F6 S pim.dz,), wim.de,))-

Also,
k _
€ = (\/de; $yikds,).pikds, )-

In the calculations below, we use the following basic relations for the Fourier

transform on a compact Lie group G:
— 1
oty = [ 1 = b
G n

which means that F5(7,,)(n) is the matrix of dimension d, x d, with the only
entry different from 0, 1/d, in the position (s, 7). We denote this matrix by
d%(é(i,j),(s,r))ij- We have also

5 1 ifi =sandr =,
G, ), (s,r) = .
0 otherwise.

Thus, for an invariant operator, we obtain

1
(6.12) Fe(TENQ) = 1DTFe(Er) ) = 7). .r)i

In other words, (Fg(T (&5)))(&) is a matrix of dimension ds x dg, all of whose
columms equal O except for the r-column, which equals the s-column of digr(f).

We denote by ¢ the symbol corresponding to 7', and consider the orthonormal
basis {e’j‘- } defined in (6.7)) in the sense of (4.1)) on manifolds. We denote the symbol
introduced in (6.4) in the sense of groups by 7. We now can find formulas relating
the symbols 7 and o.

We begin by finding a formula for ¢ in terms of z. By (6.11), #.I) and (6.12),
we obtain

o Omi = (T, m) =/ dg?((?G(Teé))(fl’))@(m,dg[),y/(m,dq))
=\ de,(Fo(T(\Vde.Co)yiide,),pti,de,) NSO pom. e, ), wim.dz, )
= dg,(F6(T () i,z )i dep) DO Gim,dz, ), wim. e, )
= di, dZ (T p.gp.tide, ). yid,)Dpgplom.de ) ym.d, )

= TS (pmdz, ) plisd, ) Oylindey ), pim,ds, ) -
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Therefore,

(C)pimde). ey 1 wlm, dg,) = (i, dg,),

otherwise.

(6.13) o(Omi =

Both functions ¢ and y are periodic with respect to the first parameters i and
m, implying a periodic structure in the “big” manifold-symbol ¢ composed of
some copies of the “small” group-symbol . The matrix below givew a graphical
description of the relations (6.13). In it, the entries of z(&,) are distributed inside
the matrix-symbol ¢ according to (6.13)) and d : = d,.

dff dfr +1 dé
|’ N N’ N
Con e o W& 0 0 e 0 0 0 0
S () 0 T 0 0 K 0 0 0 0
T(‘f;)dl T(f;)dz e T(f;)dd 0 0 e 0 0 0 0
0 0 s 0 (€ (@I (17 0 0 0
0 0 e 0 S € - o) 0 0 0
0 0 0 wa W& o WEa O 0 0

0 0 - 0 0 0 0 WCon e @

0 0 “e 0 0 0 - 0 SRR 4 (7 YR { (42 > SRR { (Y3 LY

0 0 e 0 0 0 B 0 e w@dar tCdar o WSe)aa

On the other hand, given the symbol o, an application of equations (6.13) for
1 <m,i < dg gives

(6.14) (Cmi = 0(O)mi, for 1 <m,i < dg.

Proposition [6.1] below shows that the Schatten quasi-norms || - ||s, of the sym-
bols 7 and ¢ are in agreement when M = G is a compact Lie group. Thus, our re-
sults in Section [5are an extension of those in [DR13]] concerning Schatten classes.
In particular, Theorem [5.1] extents [DR13, Theorem 3.7], as announced in Re-
mark [5.2]

We recall that on a compact Lie group G, we take E to be a bi-invariant
Laplacian.

Proposition 6.1. Let G be a compact Lie group, T : C*(G) — L*(G) left-
invariant, and o be the symbol of T in the sense of Theorem[2.1] and t its symbol
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in the sense of groups as in (6.6). Then the these symbols are related by formu-
las (6.13)—-(6.14). Furthermore, if T continuous on D'(G), then it also invariant
relative to the family of H;’s as in (6.8) in the sense of Theorem|2.1l (in fact, it is
also strongly invariant). Consequently, for every bounded left-invariant operator
T :L*G) - L*(G)and0 < r < oo,

la(Dls, = dz Iz,

and

D el = de Tl -
4 14

Proof. The invariance in the sense of groups as in (6.6) of the group-left-
invariant operators follows from the relation (6.13) between symbols and from the
characterisation in Theorem 2.1

For the other statements, since ||Bl|s, = |||B]||s, for Schatten quasi-norms, we
can assume that o, t are symmetric, and hence diagonal. On the other hand, using
the relation between o and 7 in (6.13) and (6.14) and by examining the diagonal
elements of ¢ in (6.13]), we obtain

d? d-
(94 <t
ol = > 10@mml” = dz, Y N1(EDmml” = de, 17O, -
m=1 m=1

Thus [[a(O)ls, = de, 17(&) I, and therefore, 3, a5, = >, dz lI(Colls,. O

We finish this section by describing an adaptation of the above construction,
putting it in the framework of manifolds as described in Theorem 4.1l In the case
of the torus T”, this is indicated in Remark Recalling the definition of Hjg
in (6.8) for each [¢] € G and the notation A1z for the eigenvalues as in (6.3) for
the sequence 0 = A3 < A7 < 43 < ... of eigenvalues of —L¢ counted without
multiplicities, we set

(6.15) He:= P Hey = € span{&y: 1 <ik <d:}, ¢eNo.

The family of H,’s is the collection of eigenspaces of the elliptic differential
operator L for which the condition is satisfied. The symbols ¢ and & of an
invariant operator 7" with respect to the partitions H;’s and H;’s, respectively, are
related by

(6.16) 5 = Q) o(j).

[¢1G
MejThe
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with 5(¢) € C4*d and

7= — 2
dp =Y dj= > d2.
[¢i1eG [£i1eG
Hej1=he g1

Recalling the relation (6.13]) between the symbol o in the sense of Theorem 2.1
and the group symbol 7 as in (6.6)), given by

(&) 0 0
, 0 &) - 0

(6.17) oH=o&)=| . . |
0 0 PR ()

we see that the formula (6.16) provides the further relation between the symbol &
in the sense of manifolds (in Theorem 1)) and the group symbol 7. Therefore,

if A7 = ... = 4¢,] = 4, for non-equivalent representations [&(], ..., [&,] € G
then
a&) 0 - 0
_ 0 o&) - 0
(6.18) a(l) = ) ) .
0 0 - o(ém)

In particular, we obtain the following corollary.

Corollary 6.2. Let G be a compact Lie group, and let T : C*°(G) — L*(G)
be a linear operator, continuous on D'(G). If T is left-invariant then it is also

invariant relative to the operator Lg (in the sense of Theoremd.1). The corre-
sponding symbols are related by formulas (6.16)—(6.18).

7 Kernels of invariant operators on compact manifolds

In this section, we describe invariant operators relative to E in terms of their ker-
nels. We first observe that if T = T, with symbol ¢ is invariant, by expanding (4.3)
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we can write

oo dg co d; dr
T f) =3 (@O f el @) =33 0O (Oref ()
=0 m=1 =0 m=1 k=1
oo dy d
=> D> 0Ol ) / FOek()dy
=0 m=1 k=1
oo dy d
/ (Z > o} Wef (y)) FO)dy.
=0 m=1 k=1

Hence, the integral kernel K (x, y) of 7, is given by

o0 d[ d[

(7.1) Ko,y =33 o(Omel (0)ef ().

€=0 m=1 k=1
On the other hand, we note that {¢}' ® e}, 515" 1=m'<dv s an orthonormal basis
of L>(M x M). If T is Hilbert-Schmidt on L?>(M), not necessarily invariant, then
its kernel K is square-integrable, and we can write its decomposition in this basis
as

o0 o0 d( d[/

(7.2) K@,y => 3 >3 (Fu @ Fa)K)C, m, ', m)e} (el (v),

=0 '=0m=1m'=1

where (Fy @F ) K) (€, m, €', m") denote the Fourier coefficients of K with respect
to the basis { €' ® €'} given by

(Tu @ Fw)K)E,m, ', m') = (K, e (X)ep )iz sy

_ / K(x, y)er@oel (y)dxdy.
MxM

We observe from (7.1) and (Z.2) that T is invariant relative to (E, { e}’ (1;6" sdey if
and only if

oy € =0,

0 otherwise.

(7.3) (Fm @ Fa)K)(C,m, €', m') = {
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For example, from (Z.1)), we obtain

o di d
(K, €} (el 02y = /M B (ZZZa(j)kie’;u)e;(y)) 7)€ (v)dxdy

0 k=1 i=1

<
<

d; d;

>0t [ eoereids | e orefody

0 k=1 i=1

<

o
J=
(O ifE =0,

0 otherwise.

Il
——

We now introduce some notation which is useful for defining a suitable set-
ting to study the above Fourier coefficients and the relation between an operator’s
kernel and symbol. Let

=M x M) :={5= G, m, ¢, Z 0 e, m O mh =0if e # 0}
K :={K € D'(M x M) : K defines an invariant operator relative to E}.

We now consider the mapping K — (Fy; ® Fy)K from K into (M x M). We
can identify the family of symbols (M x M) with the matrices |J, C%*% by
letting & = o be such that o(€),,,y = 6(£, m, £, m’). In this way, we also get the
identification (M x M) ~ Xy = X with X from (@.2).

For 1 < p < oo, we define

() = {o €X: Z (O, }

=0

On ¢7(X), we define the norm

00 1/p
lollercs) := (Z ||a<€)||§,,> , 1<p<oo.

=0

For p = 0o, we define {*°(X) = {0 € Z : sup,y, llo(£)[lop < oo}, and we endow
¢>°(X) with the norm || ||¢=(x) : = sup,cy, |6(O)|lop. We still sometimes denote the
integral operator with kernel K by Tx.

In terms of the norms ¢”(ZX), for invariant operators, Theorem [4.3] can be for-
mulated as

(7.4) T € Z(L*(M)) & o1 € {(2),
and Theorem [3.1] can be formulated as

(7.5) T € S,(L*(M)) & o1 € £°(X)
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for0 < p < oo.

For the formulation of the following theorem, we use the mixed-norm L? spaces
LR L2 on the manifold M for 1 < p;, p» < co. A measurable function K(x, y) is
said to belong to LY L2 (M x M) if ||[|K (x, y)IIng < oo. On LE'LR2(M x M),
we consider the norm || - ||L§‘L§>_2 = - ||L/32 |21 We also define

LPP(M x M) := LRI (M x M) O LDV (M x M),

and endow LP P2 (M x M) with norm | - || ;o0 := max{]| - gz, I Mgz} In
general, LP1-P2) # [(P2:P0)

The basic properties of mixed-norm LP spaces for many variables were first
studied by Benedek and Panzone in [BP61]]. In particular, they proved a version of
Stein’s interpolation of operators theorem and, as a consequence, the Riesz-Thorin
theorem in that setting. A slight modification allows us to apply the Riesz-Thorin
theorem when the operator T acts from a mixed-norm L? space to an £”(X)-space.

Theorem 7.1. Let1 < p < 2and K € XNLP"P. Then (T @Fy)K € P (%),
where 11) + é =1.

Proof. If p =2, thenp’ =2. FromK € KX NLIL; NLIL =X NL:, C L},
we get a Hilbert-Schmidt operator Tx. On the other hand, by Theorem [5.1] with
r=2,weget), ||a(€)||L2gz < 00, where ¢ is the symbol of Tx. Hence, by (Z.3),
we obtain (Fy ® Fy)K € £*(X).

If p =1, thenp’ = co. If K € X NLPL; N LFL;, by Schur’s Lemma we
get Ty € L(L"(M)) for all 1 < r < oo. In particular, Tx € .Z(L*>(M)), and, by
Theorem[.3] the symbol o of Tk satisfies sup, ||o(£)||,p, < co. By (Z.3),

1(Fur @ Fa)K |l e=(s) = Slzp (D]l op-

Hence (Fy @ Fy)K € £°(2).
‘We have shown that

Fu @Fn) : KNL*Y — £2(%)

and
(Fayr @ Fap) : KN LD —5 £2°(%).

By the Riesz-Thorin interpolation theorem between L"*) and £”(X) spaces (see
[BP61, Theorem 2]), we obtain

(Om ®E) <K N LPr) 9(3),
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with
1 1-6 0 1 1-¢ 0 1 1-6 0
- = +—, - = + -, - = + —
D 2 oo P, 2 1 q 2 00

for0 < @ < 1. Hence

2 2 2
pl_l_eap2_1+9’q_l_e'
Ifp = 1+6,then6’ = % and 13—6 =5 =p'. Thus
Fu @ Ta) : KO LYY — ¢7(),
which completes the proof. (]

The following corollary is an immediate consequence of Theorems[ZIland[5.11
It furnishes a sufficient kernel condition for Schatten classes with index p’ > 2.

Corollary 7.2. If 1 < p < 2and K € XN LYP(M x M) then Tx €
Sy (L*(M)).

We recall that sufficient conditions of the type above in terms of kernels are
not possible for 0 < p’ < 2, as a consequence of a Carleman’s example. Corol-
lary [7.2] is known for general integral operators (cf. [Rus74, Theorem 3]). Here
we have deduced a particular version for invariant operators with a simple proof
by applying the notion of symbol.

We now describe another representation of the kernel as the “generalised”
Fourier transform of the symbol. From formula (ZI)), we have

oo dy dy [e9)
K@xy) =Y 33 a(Omel®)ek(y) =Y Tr(ec(x) a(O)ec(y))
(=0 m=1 k=1 =0

Tr(ﬂ(é’)ee(y)ef(X) ) = ZTr(U(f)Qf(x )

€= =0

where Q/(x, y) = e;(y)ec(x)T € Cé>xd,

We notice that the matrix-valued function (Q¢(x, y) ik = €} (x)ef (y) is of rank 1
for every £. Indeed, (Q(x, y))ux is nothing other the tensor product of the vectors
ec(x), e;(y) € C%. Since on a normed space F, ||u ®vll,p = |lullrllv|lF, we get

1QcCx, Mlop = llecOlp2(caey lee N 2y

By (7.2),
o(0) = /M K 3)Qu(r ' ddy:
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Hence
lellop < 1K 1ar xary SUP Qe (X, ) lop
X,y

= 1K1 v emry Sup llec @Ol 2y lee | 2 cory-
X,y

Remark 7.3. The condition K € L'(M x M) alone does not guarantee the L>
boundedness of the corresponding integral operator 7. Indeed, consider M = T!,
g € LY(TY\L*(T"), h=1 € L'(T"), and the kernel

KO, ¢) := g@h(¢) € L'(T' x T").

It is easy to see that the kernel K (0, ¢) does not define an operator from L*(T")
into L>(T"). For example, with f =1 € L*(T"), we have

(TDO) = 0) [ h@xip = 0) ¢ 13T

8 Applications to the nuclearity of operators in L”(M)

We now turn to the study of nuclearity in L”-spaces on closed manifolds. Sufficient
conditions for r-nuclearity on L” on compact Lie groups have been established
in [DR14b]. The study of nuclearity on L” in this section relies on the analysis
of suitable kernel decompositions and the relation between kernels and symbols
described in Section [7}

Let E and F be Banach spaces and 0 < r < 1. A linear operator T from E into
F is called r-nuclear if there exist sequences {x},} in £’ and {y,} in F such that

(8.1) Tx =Y (6, x)ye and > X115 lyallf < oo
n n
1-nuclear operators are known as nuclear operators. In that case, this definition
agrees with the concept of trace class operator in the setting of Hilbert spaces
(E = F = H). More generally, Oloff proved in [Olo72] that the class of r-
nuclear operators coincides with the Schatten class S,(H) when E = F = H and
O<r<l.

The concept of r-nuclearity was introduced by Grothendieck [[Gro55], and has
application to questions of the distribution of eigenvalues of operators in Banach
spaces via, e.g., the Grothendieck-Lidskii formula. We refer to [DR14b] for sev-
eral conclusions in the setting of compact Lie groups concerning summability and
distribution of eigenvalues of operators on L”-spaces using information on their
r-nuclearity. Since these arguments are then purely functional analytic, they apply
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equally well in the present setting of closed manifolds; hence we omit the argu-
ments but instead refer the reader to [DR14b] for several relevant applications.

The r-nuclear operators on Lebesgue spaces are characterised by the following
theorem; cf. [Dell0]. In the statement of it, (Q;, M, @) and (Q;, My, u,) are
o-finite measure spaces.

Theorem 8.1. Let 1 < p;,pr < 00, 0 < r < 1, and q; be such that

pil + qi] = 1. An operator T : LP'(u) — LP2(u») is r-nuclear if and only if

there exist sequences { g,}n in LP*(uz), and { h,}, in L9 (u 1) such that

oo
> lgallip Nnll < oo

n=1
and

Tf(x) = / (Zgn(X)hn(y)>f(y)dﬂ1(y), fora.e. x
n=1

forall f € LP'(uy).

In order to study nuclearity on LP(M) spaces for a given compact manifold
M of dimension n, we introduce a function A(J, k; n, p) which controls the L”-
norms of the family of eigenfunctions {e’;} of the operator E, i.e., we suppose that
A(J, k; n, p) is such that

(8.2) les lrany < AG, ks n, p).
In particular, if A is such a function, then
b | oary < vol(M)'P A(j, ks n, 00).

When M = G is a compact Lie group, efficient ||e’]‘- llzr¢c) bounds can be ob-
tained; cf. [DR14b]]. The estimation of L” norms for eigenfunctions of differential
elliptic operators on general closed manifolds has been studied extensively; see,
e.g., [SZ02]. Some examples are given at the end of this section. An example can
be also obtained from the following simple lemma.

Lemma 8.2. Let f be such that || f || ;2r) = 1. Then
@ N ey < ol(M)) P/ if 1 < p < 2;
i) I lran < IFIS=G if 2 < p < o

Proof. (i) By Holder inequality, we have

2—p

/ P < ( / |f<x)|1’3dx>2 ( / |1|1’22vdx>2 = (vol(M)) .
M M M
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(i1) We also have
[ 1rwrds = [ 1eriswr < 1715, =
M M
We now formulate a sufficient condition for the r-nuclearity on LP(M) spaces

as an application of the notion of the matrix-symbol on closed manifolds. Inspired
by Lemmal[8.2] we use the following function p for 1 < p < oo:

0 ifl <p<2,
(8.3) pP:=q(@—-2)/p if2 <p<oo,
1 if p = o0.

We denote the dual indices of p;, pa, respectively, by g := p) and ¢ : = p5.

Theorem 8.3. Letl < p,p» <ococand0 <r < 1. LetT : [P"(M) - LP>(M)
be a strongly invariant linear continuous operator whose matrix-valued symbol
o(€) satisfies

o0 d{;

DD 16wl A, m;n, 0¥ AL, ks n, 00)T < o0,
=0 m.k=1

Then the operator T : [P'(M) — LP>(M) is r-nuclear.

Proof. By (Z), the kernel of T is given by
o0 tl[ d/

K,y =Y 3" aOmel (el ().

£=0 m=1 k=1
We set
8emi(X) 1= o (Ot (), he i (y) = €f().
Now, by Lemma[8.2]
lef I < CoA(L, m;n, co),
where C, = max{(vol(M ))zz;p,, , 1}. We next observe that

[e9) dr

> lgeamillirn lhealin = D lo@me; I llefllza
,m,k €=0 m,k=1
00 dr
=3 10Ol € 172 llef 1o
=0 m,k=1
o0 d[
< (CuCa)' Y D 10(Omil AL, min, 00)™ AL, kim, 00)T7,
£=0 m,k=1

finishing the proof in view of Theorem [8.11 O
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In particular, for formally self-adjoint invariant operators, we can diagonalise
each matrix o(£), yielding the following corollary.

Corollary 8.4. Let 1 < p1,pp < coand 0 < r < 1. Suppose that
T : IP"(M) — LP>(M) is a strongly invariant formally self-adjoint continuous
operator whose matrix-valued symbol o(€) satisfies

oo dy

Z Z |O-(€)mm|rA(f, m;n, oo)(P~2+q~l)r < 00.

=0 m=1

Then the operator T : LP*(M) — LP*(M) is r-nuclear.

In some cases, it is possible to simplify the sufficient condition above when the
control function A(¢, m; n, 00) is independent of m. For instance, a classical result
(local Weyl law) of Hormander ([HOr68, Theorem 5.1], [Hor85b, Chapter XXIX])
implies the following estimate.

Lemma 8.5. Let M be a closed manifold of dimension n. Let E € W) (M).
Then

(8.4) el < CA> .

Proof. We first consider the family of eigenvalues { A,} of E in the increasing
order
O=Ag< 1 < A <-ne

and counted with multiplicity. For the projection P,(f) onto H,, the kernel of the
associated partial sum operators E; f := ), _; P¢(f) is given by

dr
Ex(x,y) = Y > ef W)

Ae<im=1

By [H6r68l, Theorem 5.1],

dy
(8.5) Ex(x,x) = Y > lf@P =Qn)™" / dé + R(x, 1)
Ae<im=1 px,$)<4
with [R(x, 1)| < CA"=V/V x € M, where p(x, &) is the principal symbol of E.
Since E, (x, x) is increasing right-continuous with respect to u, by the fact that the
spectrum of E is discrete by the continuity of | b d¢ with respect to u, and by

taking left-hand limit in (8.3), we obtain

(x,$)<p

de
ﬂli)nili E,x,x)=> Y |l = (27r)_"/ dé + R(x, A7).

Ae<im=1 px,&)<A
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Hence

de
E; (6, %) — Ep-(x, ) = Y _ |/ (0 =R(x, A) — R(x, 7).
m=1
In particular,

€701 < 20V/RGx, 20+ \[RGx, i) < 2C2,7 .

Thus A(£;n, 00) = C/lg,"_])/ % furnishes an example of A independent of m.
For controls of type A(£;n, 00), we have a basis-independent condition.

Corollary 8.6. Let 1 < p;,pp < coand 0 < r < 1. Suppose that
T : LP"(M) — LP>(M) is a strongly invariant formally self-adjoint continuous
operator whose matrix-valued symbol o(€) satisfies

o0
Z a5, AL n, 00)PHI < o0,
=0

Then the operator T : LP*(M) — LP*(M) is r-nuclear. In particular, if its matrix-
valued symbol o({) satisfies

el =D (5 4
(8.6) S el 2,7 T < oo,
=0

then the operator T : LP'(M) — LP*(M) is r-nuclear.

Proof. Since T is E-invariant and formally self-adjoint, each matrix o(£) can
be assumed diagonal. The result then follows from Corollary since

de
Z [0 mm|” = Tr(la(O)]") = oD,
m=1
The r-nuclearity under condition (8.6) follows from Lemmal[8.3with A(¢;n, c0) =
C l([n— /20 0

Remark 8.7. If M is a compact Lie group, with E taken to be the Laplacian
and the family of eigenfunctions {ef} as in (6.7), Corollary encompasses
1

[DR14b, Theorem 3.4]. Indeed, since |dg Eijx0| < dfl/ 2, one can choose
A(¢;00) = d:/*. Then, taking into account that [|a(€)||5 = dz, |7(&)||5 by Lem-

mal6.1] we obtain

r G r L+3 (Fat+q)r r
Z a5, AL; 00) P2 = Zd§[+2(ﬂz+q1) B
l t



796 JULIO DELGADO AND MICHAEL RUZHANSKY

with a right-hand side equivalent to the term giving the sufficient condition in
[DR14b, Theorem 3.4]. Indeed,

D 2 2
=02+ q1) =<1—+1—>
2 2 max{2, p»} max{2, g}
1 1
max{2,q;} max{2, ps}
1 1

min{2, p1} max{2, p>}’

which is the order obtained in [DR14b, Theorem 3.4] on compact Lie groups.

In order to give another example, we recall Proposition with useful rela-
tions between the eigenvalues A; and their multiplicities d;. As a consequence of
Corollary and Proposition[3.3] for the negative powers of the operator E itself
we obtain the following corollary.

Corollary 8.8. Letl <p,p» <ooand0 <r < 1. Let E € Y| ,(M). If

n . _.n—1
a>—+(P2+q1) ,
r 2

then the operator (I + E)™5 : LP"(M) — LP*(M) is r-nuclear.

Note that if p;y = p = 2, then p» = ¢ = 0; and, since Schatten class S,
and r-nuclear class coincide on L?>(M), Proposition [5.4] shows that the statement
of Corollary 8.8 is sharp in this case of indices. However, it does depend on
the bounds for eigenvalues, which can be improved in the presence of additional
structures, as discussed in Remark [8.9]

Proof of Corollary Denote by A, the eigenvalues of E, Then, for
a> 0,0, p-4() =(1+2)" "Iy Thus

1o opy-5 (Ol =1+ 207" dy.

Now, applying Corollary by Proposition we obtain

(n—Dr

2D (g, r ar ~ o~
> ol A~ e o CY di(1+ )™V (14 2P0
¢ ¢

(n—1)

=C > dp(1+ )" P < oo,
4

if

—1
C]=<a—(152+fil)(n2 )>r> n

v v
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But this is equivalent to the condition

n n—1
—+ (B +q .
a>- P>+ 4q1) 5 -

Remark 8.9. As pointed out in Remark [8.7] on compact Lie groups, we can
always choose E to be a Laplacian with an orthonormal basis given by rescaled
matrix elements of representations, for which we can take A(£; c0) = dg/ z - a'gl /4.
At the same time, if E is an operator of second order (so that v = 2), the best
we can hope for on closed manifolds in general is A({;n, 00) = C/I(K”_l)/ 4 given
by Lemma[8.3 In view of (5.I)), we always have a’€1 /4 < /12'/ 8, so that this choice
on compact Lie groups is better than the general bound A(¢;n, co) = C/IE;"_D/ 4
above. This is explained partly by the presence of the additional (group) structure
in this case. The other point is that there is a difference in finding L°°-estimates
for elements of any orthonormal basis as opposed to estimates for a favourable one
that may exist due to additional assumptions or structures. However, the latter one
seems to be the question much less studied in the literature; see [SZ02| or [TZ02]]
for some partial discussions.

We now give an example of the above remark in the case of the the sphere
S? ~ SU(2). We consider the Laplacian (the Casimir element) E = —Lg. We
apply the condition given by Theorem [8.6] along with the control A(¢, co) = dg1 /4,
For the symbol of (I + E )~%, since the eigenvalues of I + E are of the form (1 +¢)¢,
we obtain

16,5 ON5 = (1 + 0O Fdp ~ (1 + 00752 ~ (1+63)'7%.

Therefore, using d, &~ {2, we have

> 1 4gy-4 Ol AL, 00) P <N (1 + £2)1=% g3 Prrdnr
¢ t

~ Z(l + 5)2—ar+%(ﬁ2+q~1)r.
¢

The series on the right-hand side converges if and only if 2—ar+ %(pa +gr < —1.
Thus, the condition

a > % + %(172 +41)
ensures the membership of (I+E)~%? in the Schatten class of order r. In summary,
we have proved the following corollary.
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Corollary 8.10. If o > % + %(p} +41), 0 < r < 1, the operator (I — Lg3)™ 2
is r-nuclear from LP(S?) into LP>(S®).

Corollary gives a direct proof of [DR14b, Corollary 3.19], which was
proved there in the group setting.

Remark 8.11. It is clear that the sharpness of the sufficient conditions ob-
tained in this section depends on the sharpness in the A-function we can choose.
For instance, the best situation for A(£, o©) is when it can be chosen to be con-
stant, i.e., when the eigenfunctions are uniformly bounded. This is the case for the
torus T" which, unfortunately may be essentially the only case; see [TZ02].
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