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Abstract. The notion of invariant operators, or Fourier multipliers, is dis-
cussed for densely defined operators on Hilbert spaces, with respect to a fixed
partition of the space into a direct sum of finite-dimensional subspaces. As a
consequence, given a compact manifold M endowed with a positive measure, we
introduce a notion of the operator’s full symbol adapted to the Fourier analysis
relative to a fixed elliptic operator E . We give a description of Fourier multipliers,
or of operators invariant relative to E . We apply these concepts to study Schatten
classes of operators on L2(M ) and to obtain a formula for the trace of trace class
operators. We also apply it to provide conditions for operators between Lp-spaces
to be r-nuclear in the sense of Grothendieck.

1 Introduction

Let M be a closed manifold (i.e., a compact smooth manifold without boundary)

of dimension n endowed with a positive measure dx. Given an elliptic positive

pseudo-differential operator E of order ν on M , by considering an orthonormal

basis consisting of eigenfunctions of E , we associate a discrete Fourier analysis to

the operator E in the sense introduced by Seeley [See65], [See69]. This analysis

allows us to introduce further a notion of invariant operators and of matrix-symbols

corresponding to those operators. The operators on M are then analysed in terms

of the corresponding symbols relative to the operator E .

As a general framework, we first discuss invariant operators, or Fourier multi-

pliers, in a general Hilbert space H. This notion is based on a partition of H into a

direct sum of finite-dimensional subspaces, so that a densely defined operator on

H can be decomposed as acting in these subspaces. There are two main examples

of this construction discussed in the paper: operators on H = L2(M ) for a compact
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manifold M as well as operators on H = L2(G) for a compact Lie group G. The

difference in approaches to these settings is in the choice of partitions of H into

direct sums of subspaces: in the former case, they are chosen as eigenspaces of a

fixed elliptic pseudo-differential operator on M , while, in the latter case, they are

chosen as linear spans of matrix coefficients of inequivalent irreducible unitary

representations of G.

We note that for some results, the assumptions of self-adjointness and elliptic-

ity of E can be dropped; see [RT15].

We give applications of these notions to the derivation of conditions charac-

terising those invariant operators on L2(M ) that belong to Schatten classes. We

also give conditions for nuclearity on Lp-spaces and, more generally, for the r-

nuclearity of operators. While the theory of r-nuclear operators in general Banach

spaces has been developed by Grothendieck [Gro55] with numerous further ad-

vances (e.g., in [HP10, Kön78, Olo72, Pie84, RL13]), in this paper we give condi-

tions in terms of symbols for operators to be r-nuclear from Lp1(M ) to Lp2(M ) for

1 ≤ p1, p2 < ∞ and 0 < r ≤ 1. Consequently, we determine relations between

p1, p2, r and α, ensuring that the powers (I + E)−α are r-nuclear. Trace formulas

are also obtained relating operator traces to expressions involving their symbols.

In the recent work [DR14c], the authors found sufficient conditions for op-

erators to belong to Schatten classes Sp on compact manifolds in terms of their

Schwartz integral kernels. For p < 2, it is customary to impose regularity con-

ditions on the kernel because there are counterexamples to conditions formu-

lated only in terms of the integrability of kernels. Such examples go back to

Carleman’s work [Car16], and their relevance to Schatten classes has been dis-

cussed in [DR14b]. A characteristic feature of conditions of this paper is that no

regularity is assumed either on the symbol or on the kernel. In the case of com-

pact Lie groups, our results extend results on Schatten classes and on r-nuclear

operators on Lp spaces that have been obtained in [DR13] and [DR14b]. We show

this by relating the symbols introduced in this paper to matrix-valued symbols on

compact Lie groups developed in [RT13] and in [RT10].

Schatten classes of pseudo-differential operators in the setting of the Weyl-

Hörmander calculus have been considered in [Tof06], [Tof08], [BN04], [BN07],

[BT10]. Conditions for symbols of lower regularity are given in [Sob14]. For

the global analysis of pseudo-differential operators on Rn, see [BBR96]; see also

[NR10, Chapter 4] for a basic general introduction to Schatten classes.

To formulate the notions more precisely, let H be a complex Hilbert space, and

let T : H → H be a linear compact operator. Denote by T ∗ : H → H the adjoint

of T . Then the linear operator (T ∗T )
1
2 : H → H is positive and compact. Let
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(ψk)k be an orthonormal basis for H consisting of eigenvectors of |T | = (T ∗T )1/2,

and let sk(T ) be the eigenvalue corresponding to the eigenvector ψk, k = 1, 2, . . . .

The non-negative numbers sk(T ), k = 1, 2, . . ., are called the singular values of

T : H → H. If 0 < p < ∞ and the sequence of singular values is p-summable,

then T is said to belong to the Schatten class Sp(H). It is well known that each

Sp(H) is an ideal in L (H). If 1 ≤ p < ∞, a norm is associated to Sp(H) and is

given by ‖T ‖Sp
=
(∑∞

k =1(sk(T ))p
)1/p

. If 1 ≤ p < ∞, the class Sp(H), endowed

with the norm ‖T ‖Sp
, becomes a Banach space. If p = ∞, we define S∞(H) as

the class of bounded linear operators on H, with operator norm ‖T ‖S∞
:= ‖T ‖op.

For the Schatten class S2, we sometimes write ‖T ‖HS instead of ‖T ‖S2
. In the

case 0 < p < 1, the quantity ‖T ‖Sp
defines only a quasi-norm, and Sp(H) is also

complete. The space S1(H) is known as the trace class, and an element of S2(H)

is usually called a Hilbert-Schmidt operator. For the basic theory of Schatten

classes, we refer the reader to [GK69], [RS75], [Sim79], and [Sch70].

It is well known that the class S2(L2) is characterised by the square integrabil-

ity of the corresponding integral kernels. However, kernel estimates of this type

are not effective for classes Sp(L2) with p < 2. This is explained by a classical

Carleman’s example [Car16] on the summability of Fourier coefficients of con-

tinuous functions; see [DR14b] for a complete explanation of this fact. This ob-

struction explains the relevance of symbolic Schatten criteria, and here we clarify

the advantage of the symbol approach with respect to this obstruction. With this

approach, no regularity of the kernel need be assumed.

In Section 6, we discuss the relation of our approach to that of the global anal-

ysis on compact Lie groups. In particular, in the case of compact Lie groups, the

Fourier coefficients can be arranged into a (square) matrix rather than in a column,

and this leads to several simplifications. On general compact manifolds, this is not

possible since the multiplicities d j need not all be squares of integers.

We introduce ℓp-style norms on the space of symbols 6, yielding discrete

spaces ℓp(6) for 0 < p ≤ ∞, normed for p ≥ 1. Denoting by σT the matrix

symbol of an invariant operator T provided by Theorem 4.1, we can characterise

Schatten classes of invariant operators on L2(M ) concisely by conditions

(1.1) T ∈ L (L2(M )) ⇐⇒ σT ∈ ℓ∞(6),

and for 0 < p < ∞,

(1.2) T ∈ Sp(L2(M )) ⇐⇒ σT ∈ ℓp(6);

see (7.4) and (7.5). Here, the condition that T is invariant means that T is strongly

commuting with E ; see Theorem 4.1. On the level of the Fourier transform, this
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means that T̂ f (ℓ) = σ(ℓ) f̂ (ℓ) for a family of matrices σ(ℓ), i.e., T assumes the

familiar form of a Fourier multiplier.

In Theorem 2.1 below, we discuss the abstract notion of symbol for operators

densely defined in a general Hilbert space H and give several alternative formula-

tions for invariant operators, or for Fourier multipliers, relative to a fixed partition

of H into a direct sum H =
⊕

j H j of finite-dimensional subspaces. Consequently,

in Theorem 2.3, we give the necessary and sufficient condition for bounded ex-

tendability of an invariant operator to L (H) in terms of its symbol, and, in Theo-

rem 2.5, the necessary and sufficient condition for the operator to be in Schatten

classes Sr(H) for 0 < r < ∞, as well as the trace formula for operators in the

trace class S1(H) in terms of their symbols.

As our subsequent analysis relies to a large extent on properties of elliptic

pseudo-differential operators on M , in Sections 3 and 4, we specify this abstract

analysis to the setting of operators densely defined on L2(M ). The main differ-

ence is that we now adopt the Fourier analysis to a fixed elliptic positive pseudo-

differential operator E on M , contrary to the case of an operator Eo ∈ L (H) in

Theorem 2.2.

The notion of invariance depends on the choice of the spaces H j . Thus, in

the analysis of operators on M , we take H j ’s to be the eigenspaces of E . How-

ever, other choices are possible. For example, for H = L2(G) for a compact Lie

group G, choosing H j ’s as linear spans of representation coefficients for inequiv-

alent irreducible unitary representations of G, we make a link to the quantization

of pseudo-differential operator on compact Lie groups as in [RT10]. These two

partitions coincide when inequivalent representations of G produce distinct eigen-

values of the Laplacian; for example, this is the case for G = SO(3). However, the

partitions are different when inequivalent representations produce equal eigenval-

ues, which is the case, for example, for G = SO(4). For the more explicit example

on H = L2(Tn) on the torus, see Remark 2.6. A similar choice could be made in

other settings, producing a discrete spectrum and finite-dimensional eigenspaces,

for example for operators in Shubin classes on Rn; see Chodosh [Cho11] for the

case n = 1.

The concept analogous to Schatten classes in the setting of Banach spaces is the

notion of r-nuclearity, introduced by Grothendieck [Gro55]. It has applications to

questions of the distribution of eigenvalues of operators in Banach spaces. In the

setting of compact Lie groups, these applications have been discussed in [DR14b],

and they include conclusions on the distribution or summability of eigenvalues of

operators acting on Lp-spaces. Another application is the Grothendieck-Lidskii

formula, which is the formula for the trace of operators on Lp(M ). Once we have
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r-nuclearity, most of our further arguments are then purely functional analytic, so

they apply equally well in the present setting of closed manifolds. Because of this,

we omit the repetition of statements and refer the reader to [DR14b] for further

such applications.

Some results of this paper have been announced in [DR14a]. Here we provide

their proofs. We also include, given by Theorem 4.1(iv), a correction to the for-

mulation of [DR14a, Theorem 3.1(iv)].

The paper is organised as follows. In Section 2, we discuss Fourier multipliers

and their symbols in general Hilbert spaces. In Section 3, we associate a global

Fourier analysis to an elliptic positive pseudo-differential operator E on a closed

manifold M . In Section 4, we introduce the class of operators invariant relative

to E as well as their matrix-valued symbols, and use this to characterise invariant

operators in Schatten classes in Section 5. In Section 6, we relate the analysis

developed so far to the analysis on compact Lie groups from [RT13], [RT10], and

establish formula relating their matrix symbols in the case when M is a compact

Lie group. In particular, we show that left-invariant operators on compact Lie

groups are invariant in our sense. In Section 7, we analyse the integral kernels of

invariant operators on general closed manifolds. Finally, in Section 8, we apply

our analysis to study r-nuclear operators on Lp-spaces.

Throughout the paper, N0 = N∪{0}. Also δ jℓ denotes the Kronecker delta, i.e.,

δ jℓ =





1 for j = ℓ,

0 for j 6= ℓ.

2 Fourier multipliers in Hilbert spaces

In this section, we present an abstract set up to describe what we call invariant

operators, or Fourier multipliers, acting on a general Hilbert space H. We give

several characterisations of such operators and their symbols. Subsequently, we

apply these notions to describe several properties of the operators, in particular,

their boundedness on H, as well as the Schatten properties.

We note that direct integrals (sums in our case) of Hilbert spaces have been in-

vestigated in a much greater generality; see, e.g., Bruhat [Bru68], Dixmier [Dix96,

Ch 2., §2], [Dix77, Appendix]. The setting required for our analysis is much sim-

pler, so we prefer to adapt it specifically for consequent applications, also provid-

ing short proofs for our statements.

The main application of the constructions below is in the setting when M is

a compact manifold without boundary, H = L2(M ), and H∞ = C∞(M ), which
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is described in detail in Section 3. However, several facts can be more clearly

interpreted in the setting of abstract Hilbert spaces, which is our set up in this

section. With this particular example in mind, in the following theorem, we can

think of {ek
j } as being an orthonormal basis given by eigenfunctions of an elliptic

operator on M , and d j as being the corresponding multiplicities. However, we

allow flexibility in grouping the eigenfunctions in order to be able to cover also

the case of operators on compact Lie groups.

Theorem 2.1. Let H be a complex Hilbert space, and let H∞ ⊂ H be a dense

linear subspace of H. Let {d j } j∈N0
⊂ N, and let {ek

j } j∈N0,1≤k≤d j
be an orthonormal

basis of H such that ek
j ∈ H∞ for all j and k. Let H j := span{ek

j }
d j

k =1, and let

P j : H → H j be the orthogonal projection. For f ∈ H, we set f̂ ( j, k) := ( f, ek
j )H

and denote by f̂ ( j) ∈ Cd j the column of f̂ ( j, k), 1 ≤ k ≤ d j . Let T : H∞ → H be

a linear operator. Then the following conditions are equivalent:

(A) T (H j ) ⊂ H j for each j ∈ N0;

(B) for each ℓ ∈ N0 there exists a matrix σ(ℓ) ∈ Cdℓ×dℓ such that

T̂ek
j (ℓ,m) = σ(ℓ)mkδ jℓ.

for all ek
j ;

(C) if, in addition, ek
j are in the domain of T ∗ for all j and k, then for each

ℓ ∈ N0, there exists a matrix σ(ℓ) ∈ Cdℓ×dℓ such that

T̂ f (ℓ) = σ(ℓ) f̂ (ℓ)

for all f ∈ H∞.

The matrices σ(ℓ) in (B) and (C) coincide. The equivalent properties (A)–(C)

follow from the condition

(D) For each j ∈ N0, we have TP j = P j T on H∞.

If, in addition, T extends to a bounded operator T ∈ L (H), then (D) is equivalent

to (A)–(C).

Under the assumptions of Theorem 2.1, we have the direct sum decomposition

(2.1) H =

∞⊕

j =0

H j , H j = span{ek
j }

d j

k =1

and d j = dim H j . The two applications that we consider are with H = L2(M )

for a compact manifold M with H j being the eigenspaces of an elliptic pseudo-

differential operator E , or with H = L2(G) for a compact Lie group G with H j =

span{ξkm}1≤k,m≤dξ for a unitary irreducible representation ξ ∈ [ξ j ] ∈ Ĝ. The
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difference is that in the first case, the eigenvalues of E corresponding to H j ’s are

all distinct, while in the second case, the eigenvalues of the Laplacian on G for

which H j ’s are the eigenspaces, may coincide. In Remark 2.6, we give an example

of this difference for operators on the torus Tn.

In view of properties (A) and (C), respectively, an operator T satisfying any

of the equivalent properties (A)–(C) in Theorem 2.1 is called an invariant op-

erator, or a Fourier multiplier relative to the decomposition {H j } j∈N0
in

(2.1). If the collection {H j } j∈N0
is fixed once and for all, we can just say that T is

invariant or a Fourier multiplier.

The family of matrices σ is called the matrix symbol of T relative to the

partition {H j } and to the basis {ek
j }. It is an element of the space 6 defined

by

(2.2) 6 = {σ : N0 ∋ ℓ 7→ σ(ℓ) ∈ C
dℓ×dℓ}.

A criterion for the extendability of T to L (H) in terms of its symbol is given in

Theorem 2.3.

For f ∈ H, in the notation of Theorem 2.1, by definition we have

(2.3) f =

∞∑

j =0

d j∑

k =1

f̂ ( j, k)ek
j

with convergence of the series in H. Since {ek
j }

1≤k≤d j

j≥0 is a complete orthonormal

system on H, for all f ∈ H, we have the Plancherel formula

(2.4) ‖ f ‖2
H

=

∞∑

j =0

d j∑

k =1

|( f, ek
j )|

2 =

∞∑

j =0

d j∑

k =1

| f̂ ( j, k)|2 = ‖ f̂ ‖2
ℓ2(N0,6),

where we interpret f̂ ∈ 6 as an element of the space

(2.5) ℓ2(N0,6) =

{
h : N0 →

∏

d

C
d : h( j) ∈ C

d j and

∞∑

j =0

d j∑

k =1

|h( j, k)|2 < ∞

}
,

and where we have written h( j, k) = h( j)k. In other words, ℓ2(N0,6) is the space

of all h ∈ 6 such that
∑∞

j =0

∑d j

k =1 |h( j, k)|2 < ∞. We endow ℓ2(N0,6) with the

norm

(2.6) ‖h‖ℓ2(N0,6) :=

( ∞∑

j =0

d j∑

k =1

|h( j, k)|2
)1/2

.

We note that the matrix symbol σ(ℓ) depends not only on the partition (2.1) but

also on the choice of the orthonormal basis. Whenever necessary, we indicate the
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dependance of σ on the orthonormal basis by writing
(
σ, {ek

j }
1≤k≤d j

j≥0

)
; we also refer

to (σ, {ek
j }

1≤k≤d j

j≥0 ) as the symbol of T . Throughout this section, the orthonormal

basis is fixed, and, unless there is some risk of confusion, the symbols are denoted

simply by σ. In the invariant language, as is clear from the proof of Theorem 2.1,

the transpose σ( j)⊤ = T |H j
of the symbol σ is just the restriction of T to H j , which

is well-defined in view of the property (A).

We also sometimes write Tσ to indicate that Tσ is an operator corresponding to

the symbol σ. It is cl,ear from the definition that invariant operators are uniquely

determined by their symbols. Indeed, if T = 0, then σ = 0 for every choice of

orthonormal basis. Moreover, by taking j = ℓ in Theorem 2.1(B), we obtain the

following formula for the symbol:

(2.7) σ( j)mk = T̂ek
j ( j,m),

for all 1 ≤ k,m ≤ d j . The formula (2.7) furnishes an explicit formula for the sym-

bol in terms of the operator and the orthonormal basis. The definition of Fourier

coefficients tells us that for an invariant operators T ,

(2.8) σ( j)mk = (Tek
j , em

j )L2(M ).

In particular, σI ( j) = Id j
, where I is the identity operator and Id j

∈ Cd j ×d j is the

identity matrix.

Before proving Theorem 2.1, let us establish a formula relating symbols with

respect to different orthonormal basis. For orthonormal bases {eα} and { fα} of H,

we consider the unitary operator U determined by U(eα) = fα. Then

(Teα, eβ)H = (UTeα,Ueβ)H = (UTU∗Ueα,Ueβ)H = (UTU∗ fα, fβ)H.

Denoting by (σT , {eα}) the symbol of T with respect to the orthonormal basis {eα}

and by (σUTU∗, { fα}) the symbol of UTU∗ with respect to the orthonormal basis

{ fα}, we have

(2.9) (σT , {eα}) = (σUTU∗, { fα}).

Thus, the equivalence relation of basis {eα} ∼ { fα} given by a unitary operator U

induces the equivalence relation on the set 6 of symbols given by (2.9). In view

of this, we can also think of the symbol as an element of the space 6/ ∼ with the

equivalence relation given by (2.9).

We make another remark concerning Theorem 2.1(C). We use the condition

that ek
j are in the domain Dom(T ∗) of T ∗ in showing the implication (B) ⇒(C).

Since ek
j ’s give a basis in H, and are all the ek

j are contained in Dom(T ∗), Dom(T ∗)
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is dense in H. In particular, by [RS80, Theorem VIII.1], T must be closable (in

part (C)). These conditions are not restrictive for the further analysis since they

are satisfied in the natural applications of this paper.

The principal application of the notions above are as follows, except for in the

sequel we need more general operators E unbounded on H. In order to distinguish

from this general case, in the following theorem, we use the notation Eo.

Theorem 2.2. With the notation of Theorem 2.1, let Eo ∈ L (H) be a linear

continuous operator with H j as its eigenspaces: Eoek
j = λ j e

k
j for each j ∈ N0 and

all 1 ≤ k ≤ d j . Then equivalent conditions (A)–(C) imply

(E) T Eoek
j = EoTek

j for each j ∈ N0 and 1 ≤ k ≤ j ,

and if λ j 6= λℓ for j 6= ℓ, then (E) is equivalent to Theorem 2.1(A)–(C). Moreover,

if T extends to a bounded operator T ∈ L (H) then the equivalent properties

(A)–(D) imply

(F) T Eo = EoT on H,

and if also λ j 6= λℓ for j 6= ℓ, then (F) is equivalent to (A)–(E).

For an operator T = F (Eo), when it is well-defined by the spectral calculus,

(2.10) σF (Eo)( j) = F (λ j )Id j
.

In fact, this is also then well-defined for a function F defined on λ j , with finite

values which are, e.g., j-uniformly bounded (also for non self-adjoint Eo). We

first prove Theorem 2.1.

Proof of Theorem 2.1. (A) ⇒ (B). If T satisfies condition (A), we

consider the matrix of T |H j
: H j → H j with respect to the orthonormal basis

{ei
j : 1 ≤ i ≤ d j } of H j and denote it by β( j). Then Tek

j =
∑d j

i =1 β( j)kie
i
j .

Consequently,

T̂ek
j (ℓ,m) = (Tek

j , em
ℓ ) = β( j)kmδ jℓ = β(ℓ)kmδ jℓ.

We take then σ(ℓ) := β(ℓ)⊤; it belongs to Cdℓ×dℓ and satisfies (B).

(B) ⇒ (A). Since ek
j ∈ H∞, writing the series (2.3) for Tek

j ∈ H, we have

(2.11) Tek
j =

∑

ℓ

dℓ∑

m =1

T̂ek
j (ℓ,m)em

ℓ =
∑

ℓ

dℓ∑

m =1

σ(ℓ)mkδ jℓe
m
ℓ =

dℓ∑

m =1

σ( j)mkem
j ∈ H j .

Since {em
j : 1 ≤ m ≤ d j } spans H j , we obtain (A).

(B) ⇒ (C). We assume in addition that ek
j are in the domain of T ∗ for all j and

k. We also assume that for each ℓ ∈ N0, there exists a matrix σ(ℓ) ∈ Cdℓ×dℓ such

that

(2.12) T̂ek
j (ℓ,m) = σ(ℓ)mkδ jℓ.
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Now, if f ∈ H∞, then T f ∈ H; and, by the inversion formula (2.3), we have

f =

∞∑

j =0

d j∑

k =1

f̂ ( j, k)ek
j .

Now, using this and the fact that all em
ℓ are in the domain of T ∗, we have

T̂ f (ℓ,m) = (T f, em
ℓ ) = ( f,T ∗em

ℓ ) =

( ∞∑

j =0

d j∑

k =1

f̂ ( j, k)ek
j ,T ∗em

ℓ

)

=

∞∑

j =0

d j∑

k =1

f̂ ( j, k)
(

Tek
j , em

ℓ

)
=

∞∑

j =0

d j∑

k =1

f̂ ( j, k)T̂ek
j (ℓ,m)

=

∞∑

j =0

d j∑

k =1

f̂ ( j, k)σ(ℓ)mkδ jℓ =

d j∑

k =1

σ(ℓ)mk f̂ (ℓ, k),

where we have also used (2.12). Hence T̂ f (ℓ) = σ(ℓ) f̂ (ℓ), yielding (C).

(C) ⇒ (B). If T̂ f (ℓ) = σ(ℓ) f̂ (ℓ), then

T̂ek
j (ℓ,m) =

(
σ(ℓ)êk

j (ℓ)
)

m
=

d j∑

i =1

σ(ℓ)mi ê
k
j (ℓ, i) =

d j∑

i =1

σ(ℓ)miδ jℓδki = σ(ℓ)mkδ jℓ,

which gives (B), even without any assumptions on T ∗.

(D) ⇒ (A). We take f ∈ H j . Then P j f ∈ H j since P j f = f , so that by

assumption (D), we have T f = TP j f = P j T f ∈ H j , implying (A).

(A) ⇒ (D). For this part, we assume, in addition, that T extends to a bounded

operator T ∈ L (H). First we show that this together with (A) implies that T (H⊥
j )

is orthogonal to H j . For g ∈ H⊥
j , we can write g =

∑
ℓ6= j

∑dℓ
k =1(g, ek

ℓ)e
k
ℓ with the

convergence in H, so that Tg =
∑
ℓ6= j

∑dℓ
k =1(g, ek

ℓ)Tek
ℓ with the convergence in H,

due to the boundedness of T on H. Since, by (A), Tek
ℓ ∈ Hℓ ⊂ H⊥

j for ℓ 6= j , we

conclude that Tg is orthogonal to H j .

Let now f ∈ H∞. Writing f = f1 + f2 with f1 := P j f so that f1 ∈ H j and

f2 ∈ H⊥
j are both in H∞, we have P j T f = P j T f1 + P j T f2 = T f1 = TP j f , since

the proved claim P j f2 = 0 implies that P j T f2 = 0. �

We now continue with the proof of Theorem 2.2 when the basis ek
j corresponds

to the eigenvectors of an operator Eo ∈ L(H).

Proof of Theorem 2.2. (A) ⇒ (E). Let us fix some ek
j . By (A), we can

write Tek
j =

∑d j

i =1 αie
i
j for some constants αi . Then

EoTek
j = Eo

d j∑

i =1

αie
i
j =

d j∑

i =1

αiλ j e
i
j = λ j

d j∑

i =1

αie
i
j = λ j Tek

j = Tλ j e
k
j = T Eoek

j ,
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which shows (E).

(E) ⇒ (A). It suffices to prove that Tek
j ∈ H j , since {ek

j : 1 ≤ k ≤ d j }

forms a basis of the finite-dimensional space H j . We can assume that Tek
j 6= 0,

since otherwise there is nothing to prove. We recall that Eoek
j = λ j e

k
j . Using (E),

we have λ j Tek
j = T Eoek

j = EoT ek
j . Hence Tek

j ∈ H is a non-zero eigenvector

of Eo corresponding to the eigenvalue λ j . Consequently, since H j are maximal

eigenspaces corresponding to λ j , we must have Tek
j ∈ H j .

(E) ⇒ (F). Since we have already shown that (A)–(C) imply (E), it suffices to

prove that (E) implies (F) under the additional assumption that T ∈ L (H). Let us

write S := Eo ◦ T,D := T ◦ Eo and let f ∈ H. Under the assumptions, both S and

D are bounded on H; hence (2.3) implies

S f = lim
N

N∑

j =0

d j∑

k =1

( f, ek
j )Sek

j = lim
N

N∑

j =0

d j∑

k =1

( f, ek
j )Dek

j = D f,

with the convergent series in H.

(F) ⇒ (A). We note that we require T ∈ L (H) in order for T Eo and EoT

to make sense on H. It is clear that (F) implies (E); and, under the additional

assumption that λ j 6= λℓ for j 6= ℓ, we already know that (A)–(C) and (E) are

equivalent. If T is bounded on H, then they are also equivalent to (D). �

We have the following criterion for the extendability of a densely defined in-

variant operator T : H∞ → H to L (H), which was an additional hypothesis for

properties (D) and (F). In the statements below, we fix a partition into H j ’s as in

(2.1), and the invariance refers to it.

Theorem 2.3. An invariant linear operator T : H∞ → H extends to a

bounded operator from H to H if and only if its symbol σ satisfies

sup
ℓ∈N0

‖σ(ℓ)‖L (Hℓ) < ∞.

Moreover,

‖T ‖L (H) = sup
ℓ∈N0

‖σ(ℓ)‖L (Hℓ),

where T also denotes the extended operator.
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Proof. We often abbreviate ‖σ(ℓ)‖L (Hℓ) to ‖σ(ℓ)‖op. Let us first suppose that

‖σ(ℓ)‖op ≤ C for all ℓ ∈ N0. By the Plancherel formula (2.4), we have

‖T f ‖2
H

= ‖T̂ f ‖2
ℓ2(N0,6) =

∑

ℓ

‖T̂ f (ℓ)‖2
ℓ2(Cdℓ )

=
∑

ℓ

‖σ(ℓ) f̂ (ℓ)‖2
ℓ2(Cdℓ )

≤
∑

ℓ

‖σ(ℓ)‖2
op‖ f̂ (ℓ)‖2

ℓ2(Cdℓ )
≤ sup

ℓ

‖σ(ℓ)‖2
op

∑

ℓ

‖ f̂ (ℓ)‖2
ℓ2(Cdℓ )

=
(

sup
ℓ

‖σ(ℓ)‖op

)2

‖ f ‖2
H
.

Conversely, let us suppose that T is bounded on H. Then there exists a con-

stant C > 0 such that ‖T f ‖H ≤ C for all f such that ‖ f ‖H = 1. We can take

C := ‖T ‖L (H). Hence T |H j
: H j → H j is bounded, and ‖T |H j

‖L (H j ) ≤ C. On

the other hand, let β( j) denote the matrix of T |H j
: H j → H j with respect to

the orthonormal basis {ei
j : 1 ≤ i ≤ d j } of H j , as in the proof of (A) implies

(B) in Theorem 2.1. We consider an unitary operator U : H j → Cd j , which de-

fines coordinates in Cd j of vectors in H j with respect to the orthonormal basis

{ek
j : 1 ≤ k ≤ d j } of H j . We also consider the operator A( j) : Cd j → Cd j induced

by the matrix β( j). Then T |H j
= U∗A( j)U and

‖σ( j)‖op = ‖β( j)‖op = ‖A( j)‖op = ‖T |H j
‖L (H j ) ≤ C,

completing the proof. �

We also record the formula for the symbol of the composition of two invariant

operators.

Proposition 2.4. If S,T : H∞ → H are invariant operators with respect to

the same orthonormal partition and such that the domain of S ◦ T contains H∞,

then S ◦ T : H∞ → H is also invariant with respect to the same partition. More-

over, if σS denotes the symbol of S and σT denotes the symbols of T with respect

to the same orthonormal basis, then σS◦T = σSσT , i.e., σS◦T ( j) = σS( j)σT ( j) for

all j ∈ N0.

Proof. Recalling the definition of the composition of densely defined opera-

tors, we see that the domain of S ◦ T is the space of functions f in the domain of

T such that T f is in the domain of S, in which case we set (S ◦ T ) f = S(T f ). The

hyothesis says that we are in the position to use Theorem 2.1. Applying Theo-

rem 2.1(C) repeatedly, we have

̂(S ◦ T ) f ( j) = Ŝ(T f )( j) = σS( j)T̂ f ( j) = σS( j)σT ( j) f̂ ( j),

so S ◦ T is invariant by Theorem 2.1(C). �
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We now apply the above notions to give a characterisation of Schatten classes

of invariant operators in terms of their symbols.

Theorem 2.5. Let 0 < r < ∞. An invariant operator T ∈ L (H) with symbol

σ is in the Schatten class Sr(H) if and only if
∑∞
ℓ=0 ‖σ(ℓ)‖r

Sr (Hℓ)
< ∞. Moreover,

(2.13) ‖T ‖Sr (H) =

( ∞∑

ℓ=0

‖σ(ℓ)‖r
Sr (Hℓ)

)1/r

.

In particular, if T is in the trace class S1(H), then

(2.14) Tr(T ) =

∞∑

ℓ=0

Tr(σ(ℓ)).

Proof. First, we claim that Schatten classes of invariant operators can be char-

acterised in terms of the projections to the eigenspaces Hℓ:

(2.15) ‖T ‖r
Sr (H) =

∞∑

ℓ=0

‖T |Hℓ
‖r

Sr (Hℓ)
.

Let us prove (2.15). Since ‖T ‖Sr
= ‖|T |‖Sr

, we can assume without loss of gen-

erality that T is positive definite. We first observe that λ is an eigenvalue (sin-

gular value) of T if and only if λ is an eigenvalue (singular value) of T |Hℓ(λ)
for

some ℓ(λ). Indeed, if λ is an eigenvalue of T , there exists ϕλ ∈ H\{0} such that

Tϕλ = λϕλ. Using Theorem 2.1(D), we obtain TPℓϕλ = λPℓϕλ for every ℓ. Since

ϕλ 6= 0, there exists ℓ(λ) such that Pℓ(λ)ϕλ 6= 0. Consequently, λ is the eigenvalue

of T |Hℓ(λ)
= TPℓ(λ).

Conversely, since T (Hℓ(λ)) ⊂ Hℓ(λ), an eigenvalue of T |Hℓ(λ)
is also an eigen-

value of T . Therefore, we obtain (2.15).

Now, given (2.15), to prove (2.13), it suffices to check that

(2.16) ‖σ(ℓ)‖Sr (Hℓ) = ‖T |Hℓ
‖Sr (Hℓ).

To prove (2.16), we consider an unitary operator U : Hℓ → Cdℓ , which de-

fines coordinates in Cdℓ of functions in Hℓ with respect to the orthonormal basis

{ek
ℓ : 1 ≤ k ≤ dℓ} of Hℓ. We also consider the operator A(ℓ) : Cdℓ → Cdℓ induced

by the matrix (σT (ℓ))⊤. Then T |Hℓ
= U∗A(ℓ)U , and basic properties of Schatten

quasinorms imply that

‖T |Hℓ
‖Sr (Hℓ) = ‖A(ℓ)‖Sr (Cdℓ ) = ‖σ(ℓ)‖Sr

,

completing the proof of (2.16) and of (2.13).
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Finally, let us prove (2.14) for operators in the trace class S1(H). Since the

trace Tr(T ) does not depend on the choice of the orthonormal basis in H, using

property (C) and (2.11), we can write

Tr(T ) =
∑

ℓ

dℓ∑

k =1

(Tek
ℓ, ek

ℓ) =
∑

ℓ

dℓ∑

k =1

dℓ∑

m =1

σ(ℓ)mk(em
ℓ , ek

ℓ) =
∑

ℓ

dℓ∑

k =1

dℓ∑

m =1

σ(ℓ)mkδmk

=
∑

ℓ

dℓ∑

k =1

σ(ℓ)kk =
∑

ℓ

Tr(σ(ℓ)),

completing the proof. �

Remark 2.6. Membership in L (H) and in the Schatten classes Sr(H) does

not depend on the decomposition of H into subspaces H j as in (2.1). However,

the notion of invariance does depend on it. For example, let H = L2(Tn) for

the n-torus Tn = Rn/Zn. Choosing H j = span{e2πi j ·x}, j ∈ Zn, we recover the

construction of Section 6 on compact Lie groups. Moreover, invariant operators

with respect to {H j } j∈Zn are the translation invariant operators on the torus Tn.

However, to recover the construction of Section 4 on manifolds, we take H̃ℓ to be

the eigenspaces of the Laplacian E on Tn, so that

H̃ℓ =
⊕

| j |2 =ℓ

H j = span{e2πi j ·x : j ∈ Z
n and | j |2 = ℓ}, ℓ ∈ N0.

Then translation invariant operators on Tn, i.e., operators invariant relative to the

partition {H j } j∈Zn , are also invariant relative to the partition {H̃ℓ}ℓ∈N0
(or relative

to the Laplacian, in terminology of Section 4). If we have information on the

eigenvalues of E , like we do on the torus, we may sometimes also recover invariant

operators relative to the partition {H̃ℓ}ℓ∈N0
as linear combinations of translation

invariant operators composed with phase shifts and complex conjugation.

3 Fourier analysis associated to an elliptic operator

Our main application is the study of operators on compact manifolds, so we start

this section by describing the discrete Fourier series associated to an elliptic posi-

tive pseudo-differential operator as an adaptation of the construction in Section 2.

In order to fix the notation for the rest of the paper, we give some explicit expres-

sions for notions of Section 2 in the present setting.

Let M be a compact smooth manifold of dimension n without boundary, en-

dowed with a fixed volume element dx. We denote by9ν(M ) the Hörmander class

of pseudo-differential operators of order ν ∈ R, i.e., operators which, in every
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coordinate chart, are operators in Hörmander classes on Rn with symbols in Sν1,0;

see, e.g., [Shu01] or [RT10]. In this paper, we use the class 9νcl(M ) of classical

operators, i.e., operators with symbols having (in all local coordinates) an asymp-

totic expansion of the symbol in positively homogeneous components; see, e.g.,

[Dui11]. Furthermore, we denote by 9ν+(M ) the class of positive definite opera-

tors in 9νcl(M ), and by 9νe(M ) the class of elliptic operators in 9νcl(M ). Finally,

9ν+e(M ) := 9ν+(M ) ∩9νe(M ) denotes the class of classical positive elliptic pseudo-

differential operators of order ν. We note that complex powers of such operators

are well-defined; see, e.g., Seeley [See67]. In fact, all pseudo-differential opera-

tors considered in this paper are classical, so we may omit explicitly mentioning

this every time. But we note that we could equally well work with general opera-

tors in 9ν(M ), since their powers have similar properties; see, e.g., [Str72].

Inspired by constructions considered by Seeley ([See65], [See69], see also

Greenfield and Wallach [GW73]), we now associate a discrete Fourier analysis

to the operator E ∈ 9ν+e(M ) However, we adapt the construction to our purposes

and, in the sequel, also prove several auxiliary statements concerning the eigen-

values of E and their multiplicities that are useful to us in the subsequent analysis.

In general, the construction below is exactly the one appearing in Theorem 2.1.

The eigenvalues of E (counted without multiplicities) form a sequence {λ j },

which we order so that

(3.1) 0 = λ0 < λ1 < λ2 < · · · .

To each eigenvalue λ j corresponds the finite-dimensional eigenspace H j of func-

tions on M , which are smooth due to the ellipticity of E . We set d j := dim H j , and

H0 := ker E , λ0 := 0. We also set d0 := dim H0. Since the operator E is elliptic, it

is Fredholm, hence also d0 < ∞; see [Ati68], [Hör85a] for various properties of

H0 and d0.

We fix an orthonormal basis of L2(M ) consisting of eigenfunctions of E :

(3.2) {ek
j }

1≤k≤d j

j≥0 ,

where {ek
j }

1≤k≤d j is an orthonormal basis of H j . Let P j : L2(M ) → H j be the

corresponding projection. We denote by (·, ·) the inner product of L2(M ). Observe

that

P j f =

d j∑

k =1

( f, ek
j )e

k
j ,

for f ∈ L2(M ). The “Fourier” series takes the form

f =

∞∑

j =0

d j∑

k =1

( f, ek
j )e

k
j ,
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for each f ∈ L2(M ). The Fourier coefficients of f ∈ L2(M ) with respect to the

orthonormal basis {ek
j } is denoted by

(3.3) (F f )( j, k) := f̂ ( j, k) := ( f, ek
j ).

We call the collection of f̂ ( j, k) the Fourier coefficients of f relative to E , or

simply the Fourier coefficients of f .

Since {ek
j }

1≤k≤d j

j≥0 forms a complete orthonormal system in L2(M ), we have the

Plancherel formula (2.4), namely,

(3.4) ‖ f ‖2
L2(M ) =

∞∑

j =0

d j∑

k =1

|( f, ek
j )|

2 =

∞∑

j =0

d j∑

k =1

| f̂ ( j, k)|2 = ‖ f̂ ‖2
ℓ2(N0,6)

for all f ∈ L2(M ), where the space ℓ2(N0,6) and its norm are given, respectively,

in (2.5) and (2.6).

We can interpret F = FM as saying that the Fourier transform is an isometry

from L2(M ) into ℓ2(N0,6). The inverse of this Fourier transform can be then

expressed by

(3.5) (F−1h)(x) =

∞∑

j =0

d j∑

k =1

h( j, k)ek
j (x).

If f ∈ L2(M ), we also write

f̂ ( j) =




f̂ ( j, 1)
...

f̂ ( j, d j )


 ∈ C

d j ,

thus expressing the Fourier transform always as a column vector. In particular, we

interpret êk
j (ℓ) =

(
êk

j (ℓ,m)
)dℓ

m =1
as of a column and notice that

(3.6) êk
j (ℓ,m) = δ jℓδkm.

Smooth functions on M can be characterised by

f ∈ C∞(M ) ⇐⇒ ∀N ∃CN : | f̂ ( j, k)| ≤ CN (1 + λ j )
−N for all j, k

⇐⇒ ∀N ∃CN : | f̂ ( j)| ≤ CN (1 + λ j )
−N for all j,

(3.7)

where | f̂ ( j)| is the norm of the vector f̂ ( j) ∈ Cd j . The implication “⇐” here is

immediate, while the implication “⇒” follows from the Plancherel formula (2.4)

and the fact that for f ∈ C∞(M ), we have (I + E)N f ∈ L2(M ) for all N .
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For u ∈ D′(M ), we denote its Fourier coefficient by û( j, k) := u(ek
j ). By

duality, the space of distributions can be characterised by

f ∈ D
′(M ) ⇐⇒ ∃M ∃C : |û( j, k)| ≤ C(1 + λ j )

M for all j, k.

We denote by H s(M ) the usual Sobolev space over L2 on M . This space can be

defined in local coordinates or, by the fact that E ∈ 9ν+e(M ) is positive and elliptic

with ν > 0, can be characterised by

f ∈ H s(M ) ⇐⇒ (I + E)s/ν f ∈ L2(M ) ⇐⇒ {(1 + λ j )
s/ν f̂ ( j)} j ∈ ℓ2(N0,6)

⇐⇒

∞∑

j =0

d j∑

k =1

(1 + λ j )
2s/ν| f̂ ( j, k)|2 < ∞.

(3.8)

the last equivalence following from the Plancherel formula (2.4). For the char-

acterisation of analytic functions (on compact manifolds M ) we refer to Seeley

[See69].

4 Invariant operators and symbols on compact

manifolds

We now discuss an application of a notion of an invariant operator and of its sym-

bol from Theorem 2.1 in the case H = L2(M ) and H∞ = C∞(M ) and describe its

basic properties. We consider operators T densely defined on L2(M ) and make a

natural assumption that their domain contains C∞(M ). We also note that while in

Theorem 2.2 it was assumed that the operator Eo is bounded on H, this is no longer

the case for the operator E here. Indeed, an elliptic pseudo-differential operator

E ∈ 9ν+e(M ) of order ν > 0 is not bounded on L2(M ).

Moreover, we do not assume that T extends to a bounded operator on L2(M )

to obtain analogues of properties (D) and (F) in Section 2, because this is too

restrictive from the point of view of differential operators. Instead, we show that,

in the present setting, it suffices to assume that T extends to a continuous operator

on D′(M ) to reach the same conclusions.

So we combine the statement of Theorem 2.1 and the necessary modification

of Theorem 2.2 to the setting of Section 3 as follows. We also remark that con-

dition (iv) of the following theorem provides a correct formulation for a missing

assumption in [DR14a, Theorem 3.1,(iv)].

Theorem 4.1. Let M be a closed manifold, and let T : C∞(M ) → L2(M ) be

a linear operator. Then the following conditions are equivalent:

(i) T (H j ) ⊂ H j for each j ∈ N0;
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(ii) TEek
j = ETek

j for each j ∈ N0 and 1 ≤ k ≤ j ;

(iii) for each ℓ ∈ N0, there exists a matrix σ(ℓ) ∈ Cdℓ×dℓ such that

(4.1) T̂ek
j (ℓ,m) = σ(ℓ)mkδ jℓ

for all ek
j .

If, in addition, the domain of T ∗ contains C∞(M ), then for each ℓ ∈ N0, then the

above conditions are equivalent to the condition

(iv) there exists a matrix σ(ℓ) ∈ Cdℓ×dℓ such that T̂ f (ℓ) = σ(ℓ) f̂ (ℓ) for all

f ∈ C∞(M ).

The matrices σ(ℓ) in (iii) and (iv) coincide.

If T extends to a linear continuous operator T : D′(M ) → D′(M ), then the

above conditions are equivalent to the following conditions:

(v) TP j = P j T on C∞(M )for each j ∈ N0.

(vi) TE = ET on L2(M ).

If any of the equivalent conditions (i)–(iv) of Theorem 4.1 is satisfied, we say

that the operator T : C∞(M ) → L2(M ) is invariant (or is a Fourier multiplier)

relative to E . We also say that T is E-invariant or is an E-multiplier. This

recovers the notion of invariant operators given by Theorem 2.1, with respect to

the partitions H j ’s in (2.1) which are fixed, being the eigenspaces of E . When

there is no risk of confusion, we refer to such kind of operators as just invariant

operators or as multipliers. It is clear from (i) that the operator E itself or functions

of E defined by the functional calculus are invariant relative to E .

We note that the boundedness of T on L2(M ), needed for conditions (D) and

(F) in Theorem 2.1 and in Theorem 2.2, is now replaced by the condition that T is

continuous on D′(M ), which explored the additional structure of L2(M ) and allows

application to differential operators.

We call σ in Theorem 4.1(iii) and (iv) the matrix symbol of T or simply the

symbol of T . It is an element of the space 6 = 6M defined by

(4.2) 6M := {σ : N0 ∋ ℓ 7→ σ(ℓ) ∈ C
dℓ×dℓ}.

Since the expression for the symbol depends only on the basis ek
j and not on the

operator E itself, this notion coincides with the symbol defined in Theorem 2.1.

Let us comment on several conditions in Theorem 4.1 in this setting. Condi-

tions (v) and (vi) are stronger than conditions (i)–(iv). On one hand, clearly (vi)

encompasses (ii). On the other hand, as shown in the proof, condition (v) implies

(i) without the additional hypothesis that T is continuous on D′(M ).
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In analogy to the strong commutativity in (v), if T is continuous on D′(M ),

so that all the conditions (i)–(vi) are equivalent, we may say that T is strongly

invariant relative to E .

The expressions in (vi) make sense, as both sides are defined (and even con-

tinuous) on D′(M ).

It is known from the general theory of densily defined operators on Hilbert

spaces that without additional assumptions, conditions (v) and (vi) are generally

not equivalent; see, e.g., Reed and Simon [RS80, Section VIII.5]. If T is a dif-

ferential operator, the additional assumption of continuity on D′(M ) for parts (v)

and (vi) is satisfied. In [GW73, Section 1, Definition 1] Greenfield and Wallach

called a differential operator D an E-invariant operator if ED = DE , which is our

condition (vi). However, Theorem 4.1 describes more general operators and re-

formulates them in the form of Fourier multipliers that are explored in the sequel.

There are several useful classes of symbols, in particular, the moderate growth

class

(4.3) S
′(6) := {σ ∈ 6 : ∃N,C such that ‖σ(ℓ)‖op ≤ C(1 + λℓ)

N ∀ℓ ∈ N0},

where ‖σ(ℓ)‖op = ‖σ(ℓ)‖L (Hℓ) denotes the matrix multiplication operator norm

with respect to ℓ2(Cdℓ).

In the case M is a compact Lie group and E is a Laplacian on G, left-invariant

operators on G, i.e., operators commuting with the left action of G, are also in-

variant relative to E in the sense of Theorem 4.1; this is shown in Proposition 6.1

after we investigate in Section 6 the relation between the symbol in Theorem 4.1

and matrix symbols of operators on compact Lie groups. However, we need an

adaptation of the above construction, since the natural decomposition into H j ’s in

(2.1) may in general violate the condition (3.1).

As in Section 2, since the notion of the symbol depends only on the basis,

σI ( j) = Id j
for the identity operator T = I , where Id j

∈ C
Id j

×Id j is the identity

matrix, and for an operator T = F (E), when it is well-defined by the spectral

calculus,

(4.4) σF (E)( j) = F (λ j )Id j
.

Proof of Theorem 4.1. Once the basis ek
j is fixed, the equivalence of (i),

(ii) and (iv) follows from the equivalence of (A), (B) and (C) in Theorem 2.1.

(ii) ⇒ (i). We first note that both ET and TE are well-defined on ek
j : for

the former, since ek
j is smooth, Tek

j ∈ L2(M ), and hence in D′(M ), where E is

well-defined as a pseudo-differential operator, while, for the latter, since
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Eek
j = λ j e

k
j ∈ H j ⊂ C∞(M ), which implies that Eek

j is in the domain of T .

The rest of the proof is identical to that of (E) ⇒ (A) of Theorem 2.2.

(i) ⇒ (ii). This is the same as (A) ⇒ (E) of Theorem 2.2.

(v) ⇒ (i). We take f ∈ H j . Then P j f = f ∈ C∞(M ), so that, by condition (v),

we have T f = TP j f = P j T f ∈ H j , implying (i).

(i) ⇒ (v). We now assume that T is continuous on D′(M ). First, we show that

(i) implies that 〈Tg, ek
j 〉 = 0 for all g ∈ H⊥

j ⊂ L2(M ), in the sense of distributions.

We can write g =
∑
ℓ6= j

∑dℓ
k =1(g, ek

ℓ)e
k
ℓ with the convergence in L2(M ). Hence Tg =∑

ℓ6= j

∑dℓ
k =1(g, ek

ℓ)Tek
ℓ with the convergence being in D′(M ). Since Tek

ℓ ∈ Hℓ ⊂ H⊥
j

for ℓ 6= j , we conclude that Tg is orthogonal to H j .

Let now f ∈ C∞(M ). Writing f = f1 + f2 with f1 = P j f , so that f1 ∈ H j and

f2 ∈ H⊥
j are smooth, and P j f2 = 0, we have

P j T f = P j T f1 + P j T f2 = T f1 = TP j f,

since the above property implies that P j T f2 = 0.

(vi) ⇒ (ii). This is trivial.

(ii) ⇒ (vi). Assume that T is continuous on D′(M ). Then let us write

S := E ◦ T,D := T ◦ E and let f ∈ L2(M ). We can write f =
∑∞

j =0

∑d j

k =1( f, ek
j )e

k
j

with the series convergent in L2(M ). Since both S and D are continuous on D′(M ),

S f = lim
N

N∑

j =0

d j∑

k =1

( f, ek
j )Sek

j = lim
N

N∑

j =0

d j∑

k =1

( f, ek
j )Dek

j = D f.

The limit should be understood in D′(M ). Indeed, with fN =
∑N

j =0

∑d j

k =1( f, ek
j )e

k
j ,

we have fN → f in L2, and hence also fN → f in D′(M ), which implies that

S fN → S f and D fN → D f in D′(M ). �

We now discuss how invariant operators can be expressed in terms of their

symbols.

Proposition 4.2. An invariant operator Tσ associated to the symbol σ can be

written as

(4.5) Tσ f (x) =

∞∑

ℓ=0

dℓ∑

m =1

(σ(ℓ) f̂ (ℓ))mem
ℓ (x) =

∞∑

ℓ=0

[σ(ℓ) f̂ (ℓ)]⊤eℓ(x),

where [σ(ℓ) f̂ (ℓ)] denotes a column-vector, and [σ(ℓ) f̂ (ℓ)]⊤eℓ(x) denotes multipli-

cation (the scalar product) of the column-vector [σ(ℓ) f̂ (ℓ)] by the column-vector

eℓ(x) = (e1
ℓ(x), · · · , em

ℓ (x))⊤. In particular,

(4.6) (Tσe
k
j )(x) =

d j∑

m =1

σ( j)mkem
j (x).
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Moreover, if σ ∈ S′(6) and f ∈ C∞(M ), then the convergence in (4.5) is uniform.

Proof. Formula (4.5) follows from Theorem 4.1(iv), with uniform conver-

gence for f ∈ C∞(M ) in view of (4.3). Then, using (4.5) and (3.6), we can

calculate

(Tσe
k
j )(x) =

∞∑

ℓ=0

dℓ∑

m =1

(σ(ℓ)êk
j (ℓ))mem

ℓ (x) =

∞∑

ℓ=0

dℓ∑

m =1

(
dℓ∑

i =1

(σ(ℓ))mi ê
k
j (ℓ, i)

)
em
ℓ (x)

=

∞∑

ℓ=0

dℓ∑

m =1

dℓ∑

i =1

(σ(ℓ))miδ jℓδkie
m
ℓ (x) =

d j∑

m =1

(σ( j))mkem
j (x),

yielding (4.6). �

Theorem 2.3, which characterises invariant operators bounded on L2(M ), now

becomes the following theorem.

Theorem 4.3. An invariant linear operator T : C∞(M ) → L2(M ) extends to

a bounded operator from L2(M ) to L2(M ) if and only if its symbol σ satisfies

sup
ℓ∈N0

‖σ(ℓ)‖op < ∞,

where ‖σ(ℓ)‖op = ‖σ(ℓ)‖L (Hℓ) is the matrix multiplication operator norm with

respect to Hℓ ≃ ℓ2(Cdℓ). Moreover,

‖T ‖L (L2(M )) = sup
ℓ∈N0

‖σ(ℓ)‖op.

Theorem 2.3 can be extended to Sobolev spaces. We use the multiplication

property for Fourier multipliers, which is a direct consequence of Proposition 2.4.

Proposition 4.4. Let S,T : C∞(M ) → L2(M ) be invariant operators with

respect to E such that the domain of S ◦ T contains C∞(M ). Then the operator

S ◦ T : C∞(M ) → L2(M ) is also invariant with respect to E. Moreover,

σS◦T = σSσT ,

where σS denotes the symbol of S and σT denotes the symbols of T with respect to

the same orthonormal basis, i.e., σS◦T ( j) = σS( j)σT ( j) for all j ∈ N0.

Recalling Sobolev spaces H s(M ) in (3.8) we have the following corollary.

Corollary 4.5. Let an invariant linear operator T : C∞(M ) → C∞(M ) have

symbol σT for which there exist C > 0 and m ∈ R such that

‖σT (ℓ)‖op ≤ C(1 + λℓ)
m/ν

for all ℓ ∈ N0. Then T extends to a bounded operator from H s(M ) to H s−m(M )

for every s ∈ R.
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Proof. We note that by (3.8), the condition that T : H s(M ) → H s−m(M ) is

bounded is equivalent to the condition that the operator

S := (I + E)
s−m
ν ◦ T ◦ (I + E)−

s
ν

is bounded on L2(M ). By Proposition 4.4 and the fact that the powers of E are

pseudo-differential operators with diagonal symbols (see (4.4)), we have

σS(ℓ) = (1 + λℓ)
− m

ν σT (ℓ).

But then ‖σS(ℓ)‖op ≤ C for all ℓ in view of the assumption on σT , so the statement

follows from Theorem 4.3. �

5 Schatten classes of operators on compact manifolds

In this section, we apply the constructions in the previous section to determine the

membership of operators in Schatten classes and then apply them to a particular

family of operators on L2(M ).

As a consequence of Theorem 2.5, we can now characterise invariant opera-

tors in Schatten classes on compact manifolds. We note that this characterisation

does not assume any regularity of the kernel or of the symbol. Observing that the

conditions for the membership in the Schatten classes depend only on the basis ek
j

and not on the operator E , we immediately obtain the following theorem.

Theorem 5.1. Let 0 < r < ∞. An invariant operator T : L2(M ) → L2(M )

is in Sr(L2(M )) if and only if
∑∞
ℓ=0 ‖σT (ℓ)‖r

Sr
< ∞. Moreover,

‖T ‖r
Sr (L2(M )) =

∞∑

ℓ=0

‖σT (ℓ)‖r
Sr
.

If an invariant operator T : L2(M ) → L2(M ) is in the trace class S1(L2(M )), then

Tr(T ) =

∞∑

ℓ=0

Tr(σT (ℓ)).

Remark 5.2. In Section 6 we establish a relation between the symbol intro-

duced in Theorem 4.1 and the corresponding symbol in the setting of compact Lie

groups (cf. [RT10, RT13]). In particular, the characterisation above extends the

one obtained in [DR13, Theorem 3.7].

We now apply Theorem 5.1 to a determination of which powers of E belong to

which Schatten classes. But first we record a useful relation between the sequences

{λ j } and {d j } of eigenvalues of E and their respective multiplicities.
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Proposition 5.3. Let M be a closed manifold of dimension n, and let

E ∈ 9ν+e(M ), with ν > 0. Then there exists a constant C > 0 such that

(5.1) d j ≤ C(1 + λ j )
n
ν

for all j ≥ 1. Moreover,

(5.2)

∞∑

j =1

d j (1 + λ j )
−q < ∞ if and only if q >

n

ν
.

Proof. Since (1 + λ j )
1/ν are the eigenvalues of the first-order elliptic positive

operator (I +E)1/ν with multiplicities d j , the Weyl eigenvalue counting formula for

the operator (I + E)1/ν gives
∑

j : (1+λ j )1/ν≤λ d j = C0λ
n + O(λn−1) as λ → ∞. This

implies d j ≤ C(1 + λ j )
n/ν for sufficiently large λ j , implying the estimate (5.1).

To prove (5.2), let us set T := (I + E)−q/2. Then the eigenvalues of T are

(1 + λ j )
−q/2 with multiplicities d j . This implies

(5.3)

∞∑

j =0

d j (1 + λ j )
−q = ‖T ‖2

S2
≍ ‖K‖2

L2(M×M ).

By the functional calculus of pseudo-differential operators, T ∈ 9−νq/2(M ), and

so the integral kernel K (x, y) of T is smooth for x 6= y, and identifying points with

their local coordinates, near the diagonal x = y, we have |K (x, y)| ≤ Cα|x − y|−α

for all α > n − νq/2; see, e.g., [Dui11] or [RT10, Theorem 2.3.1]. Thus order is

sharp with respect to the order of the operator. Therefore, K ∈ L2(M × M ) if and

only if there exists α such that n > 2α > 2n − νq. Together with (5.3) this implies

(5.2). �

Proposition 5.4. Let M be a closed manifold of dimension n, and let

E ∈ 9ν+e(M ) be a positive elliptic pseudo-differential operator of order ν > 0.

Let 0 < p < ∞. Then

(5.4) (I + E)−
α
ν ∈ Sp(L2(M )) if and only if α >

n

p
.

Proof. The operator (I + E)−
α
ν is positive definite, and its singular values are

(1 + λ j )
−α/ν with respective multiplicities d j . Therefore,

‖(I + E)−
α
ν ‖

p
Sp

=

∞∑

j =0

d j (1 + λ j )
−
αp

ν ,

which is finite if and only if αp > n by (5.2), implying the statement. �
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6 Relation to the setting of compact Lie groups

In the recent work [DR13], the authors studied Schatten classes of operators on

compact Lie groups. We now explore how the notion of the symbol from Theo-

rem 4.1 corresponds to the matrix-valued symbols on compact Lie groups and how

the results for Schatten classes correspond to each other when M = G is a com-

pact Lie group. In this and the following sections, we assume that all operators are

continuous on D′(G), so that their integral kernels are distributions.

We give two types of decompositions of L2(G) into H j ’s as in (2.1). First we

choose H j ’s determined by unitary irreducible representations of G. However, in

this case the condition (3.1) may fail. Consequently, to view this analysis as a

special case of the construction on manifolds in Section 4 with condition (3.1),

we group representations corresponding to the same eigenvalue of the Laplacian

together, to form a coarser decomposition of L2(G) into a direct sum of finite-

dimensional subspaces. The example of this types of partitions is given in Re-

mark 2.6 in the case of the torus Tn.

Now we recall some basic definitions. Let G be a compact Lie group of

dimension n, equipped with the normalised Haar measure. Let Ĝ denote the

set of equivalence classes of continuous irreducible unitary representations of

G. Since G is compact, the set Ĝ is discrete. For [ξ ] ∈ Ĝ, by choosing a

basis in the representation space of ξ , we can view ξ as a matrix-valued function

ξ : G → Cdξ×dξ , where dξ is the dimension of the representation space of ξ . By

the Peter-Weyl theorem, the collection
{√

dξ ξi j : 1 ≤ i, j ≤ dξ , [ξ ] ∈ Ĝ
}

is an orthonormal basis of L2(G). We define the group Fourier transform of

f ∈ L1(G) at ξ by

(6.1) FG f (ξ ) ≡ f̂ (ξ ) :=

∫

G

f (x)ξ (x)∗dx,

where dx is the normalised Haar measure on G. If ξ is a matrix representation,

we have f̂ (ξ ) ∈ Cdξ×dξ . We note that this Fourier transform is different from the

one we considered on manifolds in (3.3), which produced vector-valued Fourier

coefficients instead of the matrix-valued ones obtained in (6.1).

The Fourier inversion formula is a consequence of the Peter-Weyl theorem, so

we have

(6.2) f (x) =
∑

[ξ ]∈Ĝ

dξ Tr(ξ (x) f̂ (ξ )).

For each [ξ ] ∈ Ĝ, the matrix elements of ξ are the eigenfunctions for the

Laplacian LG (or the Casimir element of the universal enveloping algebra), with
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the same eigenvalues, which we denote by −λ2
[ξ ], so we have

(6.3) − LGξi j (x) = λ2
[ξ ]ξi j (x)

for all 1 ≤ i, j ≤ dξ . For a thorough discussion of Laplacians on compact Lie

groups, we refer to [Ste70].

The weight for measuring the decay or growth of Fourier coefficients in this

setting is 〈ξ〉 := (1 + λ2
[ξ ])

1/2, the eigenvalues of the elliptic first-order pseudo-

differential operator (I − LG)1/2. Parseval’s identity takes the form

‖ f ‖L2(G) =

( ∑

[ξ ]∈Ĝ

dξ‖ f̂ (ξ )‖2
HS

)1/2

,

where ‖ f̂ (ξ )‖2
HS

= Tr( f̂ (ξ ) f̂ (ξ )∗), which defines the norm on ℓ2(Ĝ).

We define matrix-valued symbol τA(x, ξ ) ∈ Cdξ×dξ for a linear continuous op-

erator A from C∞(G) to D′(G) by

(6.4) τA(x, ξ ) := ξ (x)∗(Aξ )(x) ∈ C
dξ×dξ .

Then we have (see [RT10], [RT13]) the global quantization

(6.5) A f (x) =
∑

[ξ ]∈Ĝ

dξ Tr(ξ (x)τA(x, ξ ) f̂ (ξ ))

in the sense of distributions, and the sum is independent of the choice of a rep-

resentation ξ from each equivalence class [ξ ] ∈ Ĝ. If A is a linear continuous

operator from C∞(G) to C∞(G), the series (6.5) is absolutely convergent and can

be interpreted in the pointwise sense. We also write A = Op(τA) for the oper-

ator A given by the formula (6.5). We refer to [RT10, RT13] for the consistent

development of this quantization and the corresponding symbolic calculus.

In the case of a left-invariant operator A, its symbol τA is independent of x, and

formula (6.4) reduces to

(6.6) τA(ξ ) = ξ (x)∗(Aξ )(x) = Aξ (e),

where e is the unit element of the group.

We can now establish a correspondence between the two frameworks; the one

in this paper and the one given in [DR13]. In the setting of compact Lie groups,

the unitary dual being discrete, we can enumerate the representations as ξ j for

0 ≤ j < ∞. We enumerate the indices (i, ℓ) of each matrix ξ (x) following the

lexicographical order

((i, ℓ) ≤ (i ′, ℓ′) if i < i ′ or (i = i ′ and ℓ ≤ ℓ′)).
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We then fix the orthonormal basis {ek
j }, given by

(6.7) {ek
j }1≤k≤d j

=
{√

dξ j
(ξ j )iℓ

}
1≤i,ℓ≤dξ j

,

where d j = d2
ξ j

and k represents an entry of the matrix of the representation fol-

lowing the lexicographical order described above. Then we have the subspaces

(6.8) H j ≡ H[ξ j ] := span{(ξ j )iℓ : 1 ≤ i, ℓ ≤ dξ j
}.

On a compact Lie group G, we can consider E to be a bi-invariant Laplacian;

see Stein [Ste70] for a discussion of such operators. Then, in view of the Peter-

Weyl theorem, eigenfunctions of E are the functions {ek
j }1≤k≤d j

, with norm 1 in

L2(G) with respect to the normalised Haar measure, and corresponding to the same

eigenvalue λ j . However, the condition (3.1) does not hold in general, since non-

equivalent representations in Ĝ may give the same eigenvalues of the Laplacian.

We now observe that there is also a correspondence between the vector-valued

Fourier transform introduced in (3.3) and the matrix-valued Fourier transform de-

fined in (6.1). This correspondence can be established by applying once more the

lexicographical order to the matrix-valued Fourier transform (6.1).

In order to study such correspondence, we define a bijection from the set of in-

dices of the matrix-symbol {1, . . . , d}2, d ∈ N, onto the set of indices {1, . . . , d2}

and calculate its inverse. For ( j, k) ∈ {1, . . . , d}2, we define

Ŵd ( j, k) := ( j − 1)d + k.

The function Ŵd is surjective; indeed, if t ∈ {1, . . . , d2}, then j can be obtained

from j =
⌊

t−1
d

⌋
+ 1, where ⌊·⌋ denotes the function defined for x ≥ 0 by ⌊x⌋ =

max{y ∈ N0 : y ≤ x}.

For the term k, we observe that j − 1 =
⌊

t−1
d

⌋
, hence k = t −

⌊
t−1
d

⌋
d . Since we

are dealing with finite sets with the same number of elements, the injectivity of Ŵ

follows.

We can now establish correspondences between the Fourier transforms on G =

M for M viewed both as compact manifold and as a compact Lie group. Taking

into account (6.1) and (6.7), we obtain

(6.9) (FM f )(i, t) = ( f, et
i)L2 =

√
dξi

((FG f )(ξi))
(

t−⌊(t−1)/dξi ⌋dξi ,⌊(t−1)(dξi )⌋+1
)

for i ∈ N0, 1 ≤ t ≤ di = d2
ξi

.

In the another direction, we have

(6.10) ((FG f )(ξℓ))i, j =
1√
dξℓ

(FM f )(ℓ, Ŵdξℓ
( j, i))
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for 1 ≤ i, j ≤ dξℓ .

For the sake of simplicity, we introduce the notation

ψ(t, d) :=

⌊
t − 1

d

⌋
+ 1, φ(t, d) := t −

⌊
t − 1

d

⌋
d,

where t ∈ {1, . . . , d2}. Formula (6.9) then becomes

(6.11) (FM f )(ℓ,m) =
√

dξℓ((FG f )(ξℓ)(φ(m,dξℓ ),ψ(m,dξℓ )).

Also,

ek
j = (

√
dξ j
ξ j )(ψ(k,dξ j

),φ(k,dξ j
)).

In the calculations below, we use the following basic relations for the Fourier

transform on a compact Lie group G:

(FG(ηrs)(η))i j =

∫

G

ηrs(x)η ji(x)dx =
1

dη
δ(i, j ),(s,r),

which means that FG(ηrs)(η) is the matrix of dimension dη × dη with the only

entry different from 0, 1/dη in the position (s, r). We denote this matrix by
1
dη

(δ(i, j ),(s,r))i j . We have also

δ(i, j ),(s,r) =





1 if i = s and r = j,

0 otherwise.

Thus, for an invariant operator, we obtain

(6.12) (FG(T (ξrs)))(ξ ) = τ(ξ )(FG(ξrs)(ξ )) = τ(ξ )
1

dξ
(δ(i, j ),(s,r))i j .

In other words, (FG(T (ξrs)))(ξ ) is a matrix of dimension dξ × dξ , all of whose

columms equal 0 except for the r-column, which equals the s-column of 1
dξ
τ(ξ ).

We denote by σ the symbol corresponding to T , and consider the orthonormal

basis {ek
j } defined in (6.7) in the sense of (4.1) on manifolds. We denote the symbol

introduced in (6.4) in the sense of groups by τ. We now can find formulas relating

the symbols τ and σ.

We begin by finding a formula for σ in terms of τ. By (6.11), (4.1) and (6.12),

we obtain

σ(ℓ)mi = (FM (Tei
ℓ))(ℓ,m) =

√
dξℓ((FG(Tei

ℓ))(ξℓ))(φ(m,dξℓ ),ψ(m,dξℓ ))

=
√

dξℓ((FG(T (
√

dξℓξℓ)ψ(i,dξℓ ),φ(i,dξℓ )))(ξℓ))(φ(m,dξℓ ),ψ(m,dξℓ ))

= dξℓ((FG(T (ξℓ)ψ(i,dξℓ ),φ(i,dξℓ )))(ξℓ))(φ(m,dξℓ ),ψ(m,dξℓ ))

= dξℓd
−1
ξℓ

(τ(ξℓ)(δ((p,q),(φ(i,dξℓ ),ψ(i,dξℓ )))pq)(φ(m,dξℓ ),ψ(m,dξℓ ))

= τ(ξℓ)(φ(m,dξℓ ),φ(i,dξℓ ))δψ(i,dξℓ ),ψ(m,dξℓ ).
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Therefore,

(6.13) σ(ℓ)mi =




τ(ξℓ)(φ(m,dξℓ ),φ(i,dξℓ )) if ψ(m, dξℓ) = ψ(i, dξℓ),

0 otherwise.

Both functions φ and ψ are periodic with respect to the first parameters i and

m, implying a periodic structure in the “big” manifold-symbol σ composed of

some copies of the “small” group-symbol τ. The matrix below givew a graphical

description of the relations (6.13). In it, the entries of τ(ξℓ) are distributed inside

the matrix-symbol σ according to (6.13) and d := dξℓ .

i

dξℓ dξℓ + 1 d2
ξℓ

↓ ↓ ↓ ↓
























































































































τ(ξℓ)11 τ(ξℓ)12 · · · τ(ξℓ)1d 0 0 · · · 0 0 0 · · · 0

τ(ξℓ)21 τ(ξℓ)22 · · · τ(ξℓ)2d 0 0 · · · 0 · · · 0 0 · · · 0
...

...
...

...
...

... · · ·
...

...
...

τ(ξℓ)d1 τ(ξℓ)d2 · · · τ(ξℓ)dd 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 τ(ξℓ)11 τ(ξℓ)12 · · · τ(ξℓ)1d 0 0 · · · 0

0 0 · · · 0 τ(ξℓ)21 τ(ξℓ)22 · · · τ(ξℓ)2d · · · 0 0 · · · 0
...

...
...

...
...

... · · ·
...

...
...

0 0 · · · 0 τ(ξℓ)d1 τ(ξℓ)d2 · · · τ(ξℓ)dd · · · 0 0 · · · 0
...

...
...

...
...

... · · ·
...

...
...

...
...

...
...

...
... · · ·

...
...

...

0 0 · · · 0 0 0 · · · 0 τ(ξℓ)11 τ(ξℓ)12 · · · τ(ξℓ)1d

0 0 · · · 0 0 0 · · · 0 · · · τ(ξℓ)21 τ(ξℓ)22 · · · τ(ξℓ)2d

...
...

...
...

...
... · · ·

...
...

...

0 0 · · · 0 0 0 · · · 0 · · · τ(ξℓ)d1 τ(ξℓ)d2 · · · τ(ξℓ)dd

On the other hand, given the symbol σ, an application of equations (6.13) for

1 ≤ m, i ≤ dξℓ gives

(6.14) τ(ξℓ)mi = σ(ℓ)mi, for 1 ≤ m, i ≤ dξℓ .

Proposition 6.1 below shows that the Schatten quasi-norms ‖ · ‖Sr
of the sym-

bols τ and σ are in agreement when M = G is a compact Lie group. Thus, our re-

sults in Section 5 are an extension of those in [DR13] concerning Schatten classes.

In particular, Theorem 5.1 extents [DR13, Theorem 3.7], as announced in Re-

mark 5.2.

We recall that on a compact Lie group G, we take E to be a bi-invariant

Laplacian.

Proposition 6.1. Let G be a compact Lie group, T : C∞(G) → L2(G) left-

invariant, and σ be the symbol of T in the sense of Theorem 2.1 and τ its symbol
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in the sense of groups as in (6.6). Then the these symbols are related by formu-

las (6.13)–(6.14). Furthermore, if T continuous on D′(G), then it also invariant

relative to the family of H j ’s as in (6.8) in the sense of Theorem 2.1 (in fact, it is

also strongly invariant). Consequently, for every bounded left-invariant operator

T : L2(G) → L2(G) and 0 < r < ∞,

‖σ(ℓ)‖r
Sr

= dξℓ‖τ(ξℓ)‖
r
Sr

and ∑

ℓ

‖σ(ℓ)‖r
Sr

=
∑

ℓ

dξℓ‖τ(ξℓ)‖
r
Sr
.

Proof. The invariance in the sense of groups as in (6.6) of the group-left-

invariant operators follows from the relation (6.13) between symbols and from the

characterisation in Theorem 2.1.

For the other statements, since ‖B‖Sr
= ‖|B|‖Sr

for Schatten quasi-norms, we

can assume that σ, τ are symmetric, and hence diagonal. On the other hand, using

the relation between σ and τ in (6.13) and (6.14) and by examining the diagonal

elements of σ in (6.13), we obtain

‖σ(ℓ)‖r
Sr

=

d2
ξℓ∑

m =1

|σ(ℓ)mm|r = dξℓ

dξℓ∑

m =1

|τ(ξℓ)mm|r = dξℓ‖τ(ξℓ)‖
r
Sr
.

Thus ‖σ(ℓ)‖r
Sr

= dξℓ‖τ(ξℓ)‖
r
Sr

, and therefore,
∑
ℓ ‖σ(ℓ)‖r

Sr
=
∑
ℓ dξℓ‖τ(ξℓ)‖

r
Sr

. �

We finish this section by describing an adaptation of the above construction,

putting it in the framework of manifolds as described in Theorem 4.1. In the case

of the torus Tn, this is indicated in Remark 2.6. Recalling the definition of H[ξ ]

in (6.8) for each [ξ ] ∈ Ĝ and the notation λ[ξ ] for the eigenvalues as in (6.3) for

the sequence 0 = λ2
0 < λ2

1 < λ2
2 < . . . of eigenvalues of −LG counted without

multiplicities, we set

(6.15) H̃ℓ :=
⊕

[ξ ]∈Ĝ
λ[ξ ] =λℓ

H[ξ ] =
⊕

[ξ ]∈Ĝ
λ[ξ ] =λℓ

span{ξik : 1 ≤ i, k ≤ dξ }, ℓ ∈ N0.

The family of H̃ℓ’s is the collection of eigenspaces of the elliptic differential

operator LG for which the condition (3.1) is satisfied. The symbols σ and σ̃ of an

invariant operator T with respect to the partitions H j ’s and H̃ℓ’s, respectively, are

related by

(6.16) σ̃(ℓ) =
⊗

[ξ j ]∈Ĝ
λ[ξ j ] =λℓ

σ( j),
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with σ̃(ℓ) ∈ Cd̃ℓ×d̃ℓ and

d̃ℓ =
∑

[ξ j ]∈Ĝ
λ[ξ j ] =λℓ

d j =
∑

[ξ j ]∈Ĝ
λ[ξ j ] =λℓ

d2
ξ j
.

Recalling the relation (6.13) between the symbol σ in the sense of Theorem 2.1

and the group symbol τ as in (6.6), given by

(6.17) σ( j) ≡ σ(ξ j ) =




τ(ξ j ) 0 · · · 0

0 τ(ξ j ) · · · 0
...

... · · ·
...

0 0 · · · τ(ξ j )



,

we see that the formula (6.16) provides the further relation between the symbol σ̃

in the sense of manifolds (in Theorem 4.1) and the group symbol τ. Therefore,

if λ[ξ1] = . . . = λ[ξm] = λℓ for non-equivalent representations [ξ1], . . . , [ξm] ∈ Ĝ,

then

(6.18) σ̃(ℓ) =




σ(ξ1) 0 · · · 0

0 σ(ξ2) · · · 0
...

... · · ·
...

0 0 · · · σ(ξm)



.

In particular, we obtain the following corollary.

Corollary 6.2. Let G be a compact Lie group, and let T : C∞(G) → L2(G)

be a linear operator, continuous on D′(G). If T is left-invariant then it is also

invariant relative to the operator LG (in the sense of Theorem 4.1). The corre-

sponding symbols are related by formulas (6.16)–(6.18).

7 Kernels of invariant operators on compact manifolds

In this section, we describe invariant operators relative to E in terms of their ker-

nels. We first observe that if T = Tσ with symbol σ is invariant, by expanding (4.5)



FOURIER MULTIPLIERS, SYMBOLS, AND NUCLEARITY 787

we can write

Tσ f (x) =

∞∑

ℓ=0

dℓ∑

m =1

(σ(ℓ) f̂ (ℓ))mem
ℓ (x) =

∞∑

ℓ=0

dℓ∑

m =1

dℓ∑

k =1

σ(ℓ)mk f̂ (ℓ)kem
ℓ (x)

=

∞∑

ℓ=0

dℓ∑

m =1

dℓ∑

k =1

σ(ℓ)mkem
ℓ (x)

∫

M

f (y)ek
ℓ(y)dy

=

∫

M

(
∞∑

ℓ=0

dℓ∑

m =1

dℓ∑

k =1

σ(ℓ)mkem
ℓ (x)ek

ℓ(y)

)
f (y)dy.

Hence, the integral kernel K (x, y) of Tσ is given by

(7.1) K (x, y) =

∞∑

ℓ=0

dℓ∑

m =1

dℓ∑

k =1

σ(ℓ)mkem
ℓ (x)ek

ℓ(y).

On the other hand, we note that {em
ℓ ⊗ em′

ℓ′ }
1≤m≤dℓ,1≤m′≤dℓ′
ℓ,ℓ′≥0 is an orthonormal basis

of L2(M × M ). If T is Hilbert-Schmidt on L2(M ), not necessarily invariant, then

its kernel K is square-integrable, and we can write its decomposition in this basis

as

(7.2) K (x, y) =

∞∑

ℓ=0

∞∑

ℓ′ =0

dℓ∑

m =1

dℓ′∑

m′ =1

((FM ⊗ FM )K )(ℓ,m, ℓ′,m′)em
ℓ (x)em′

ℓ′ (y),

where ((FM ⊗FM )K )(ℓ,m, ℓ′,m′) denote the Fourier coefficients of K with respect

to the basis {em
ℓ ⊗ em′

ℓ′ } given by

((FM ⊗ FM )K )(ℓ,m, ℓ′,m′) = (K, em
ℓ (x)em′

ℓ′ (y))L2(M×M )

=

∫

M×M

K (x, y)em
ℓ (x)em′

ℓ′ (y)dxdy.

We observe from (7.1) and (7.2) that T is invariant relative to (E, {em
ℓ }1≤m≤dℓ
ℓ≥0 ) if

and only if

(7.3) ((FM ⊗ FM )K )(ℓ,m, ℓ′,m′) =




σ(ℓ)mm′ if ℓ = ℓ′,

0 otherwise.
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For example, from (7.1), we obtain

(K, em
ℓ (x)em′

ℓ′ (y))L2(M×M ) =

∫

M×M




∞∑

j =0

d j∑

k =1

d j∑

i =1

σ( j)kie
k
j (x)ei

j (y)


 em

ℓ (x)em′

ℓ′ (y)dxdy

=

∞∑

j =0

d j∑

k =1

d j∑

i =1

σ( j)ki

∫

M

ek
j (x)em

ℓ (x)dx

∫

M

em′

ℓ′ (y)ei
j (y)dy

=




σ(ℓ)mm′ if ℓ = ℓ′,

0 otherwise.

We now introduce some notation which is useful for defining a suitable set-

ting to study the above Fourier coefficients and the relation between an operator’s

kernel and symbol. Let

6(M × M ) :=
{
σ̃ = (σ̃(ℓ,m, ℓ′,m′))

1≤m≤dℓ,1≤m′≤dℓ′
0≤ℓ,ℓ′<∞ : σ̃(ℓ,m, ℓ′,m′) =0 if ℓ 6= ℓ′

}
,

K := {K ∈ D
′(M × M ) : K defines an invariant operator relative to E}.

We now consider the mapping K 7→ (FM ⊗ FM )K from K into 6(M × M ). We

can identify the family of symbols 6(M × M ) with the matrices
⋃
ℓC

dℓ×dℓ by

letting σ̃ ≡ σ be such that σ(ℓ)mm′ = σ̃(ℓ,m, ℓ,m′). In this way, we also get the

identification 6(M × M ) ≃ 6M = 6 with 6 from (4.2).

For 1 ≤ p < ∞, we define

ℓp(6) =

{
σ ∈ 6 :

∞∑

ℓ=0

‖σ(ℓ)‖
p
Sp
< ∞

}
.

On ℓp(6), we define the norm

‖σ‖ℓp(6) :=

(
∞∑

ℓ=0

‖σ(ℓ)‖
p
Sp

)1/p

, 1 ≤ p < ∞.

For p = ∞, we define ℓ∞(6) = {σ ∈ 6 : supℓ∈N0
‖σ(ℓ)‖op < ∞}, and we endow

ℓ∞(6) with the norm ‖σ‖ℓ∞(6) := supℓ∈N0
‖σ(ℓ)‖op. We still sometimes denote the

integral operator with kernel K by TK .

In terms of the norms ℓp(6), for invariant operators, Theorem 4.3 can be for-

mulated as

(7.4) T ∈ L (L2(M )) ⇐⇒ σT ∈ ℓ∞(6),

and Theorem 5.1 can be formulated as

(7.5) T ∈ Sp(L2(M )) ⇐⇒ σT ∈ ℓp(6)
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for 0 < p < ∞.

For the formulation of the following theorem, we use the mixed-norm Lp spaces

Lp1
x Lp2

y on the manifold M for 1 ≤ p1, p2 ≤ ∞. A measurable function K (x, y) is

said to belong to Lp1
x Lp2

y (M × M ) if ‖‖K (x, y)‖L
p2
y
‖L

p1
x
< ∞. On Lp1

x Lp2
y (M × M ),

we consider the norm ‖ · ‖L
p1
x L

p2
y

:= ‖‖ · ‖L
p2
y
‖L

p1
x

. We also define

L(p1,p2)(M × M ) := Lp1
x Lp2

y (M × M ) ∩ Lp1
y Lp2

x (M × M ),

and endow L(p1,p2)(M × M ) with norm ‖ · ‖L(p1,p2) := max{‖ · ‖L
p1
x L

p2
y
, ‖ · ‖L

p1
y L

p2
x
}. In

general, L(p1,p2) 6= L(p2,p1).

The basic properties of mixed-norm Lp spaces for many variables were first

studied by Benedek and Panzone in [BP61]. In particular, they proved a version of

Stein’s interpolation of operators theorem and, as a consequence, the Riesz-Thorin

theorem in that setting. A slight modification allows us to apply the Riesz-Thorin

theorem when the operator T acts from a mixed-norm Lp space to an ℓp(6)-space.

Theorem 7.1. Let 1 ≤ p ≤ 2 and K ∈ K∩L(p′,p). Then (FM ⊗FM )K ∈ ℓp′

(6),

where 1
p

+ 1
p′ = 1.

Proof. If p = 2, then p′ = 2. From K ∈ K ∩ L2
xL2

y ∩ L2
yL2

x = K ∩ L2
x,y ⊂ L2

x,y,

we get a Hilbert-Schmidt operator TK . On the other hand, by Theorem 5.1 with

r = 2, we get
∑
ℓ ‖σ(ℓ)‖2

S2
< ∞, where σ is the symbol of TK . Hence, by (7.3),

we obtain (FM ⊗ FM )K ∈ ℓ2(6).

If p = 1, then p′ = ∞. If K ∈ K ∩ L∞
x L1

y ∩ L∞
y L1

x , by Schur’s Lemma we

get TK ∈ L (Lr(M )) for all 1 ≤ r ≤ ∞. In particular, TK ∈ L (L2(M )), and, by

Theorem 4.3, the symbol σ of TK satisfies supℓ ‖σ(ℓ)‖op < ∞. By (7.3),

‖(FM ⊗ FM )K‖ℓ∞(6) = sup
ℓ

‖σ(ℓ)‖op.

Hence (FM ⊗ FM )K ∈ ℓ∞(6).

We have shown that

(FM ⊗ FM ) : K ∩ L(2,2) −→ ℓ2(6)

and

(FM ⊗ FM ) : K ∩ L(∞,1) −→ ℓ∞(6).

By the Riesz-Thorin interpolation theorem between L(r,s) and ℓp(6) spaces (see

[BP61, Theorem 2]), we obtain

(FM ⊗ FM ) : K ∩ L(p1,p2) −→ ℓq(6),
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with
1

p 1

=
1 − θ

2
+
θ

∞
,

1

p 2

=
1 − θ

2
+
θ

1
,

1

q
=

1 − θ

2
+
θ

∞

for 0 ≤ θ ≤ 1. Hence

p1 =
2

1 − θ
, p2 =

2

1 + θ
, q =

2

1 − θ
.

If p = 2
1+θ

, then θ = 2−p

p
and 2

1−θ
= p

p−1
= p′. Thus

(FM ⊗ FM ) : K ∩ L(p′,p) −→ ℓp′

(6),

which completes the proof. �

The following corollary is an immediate consequence of Theorems 7.1 and 5.1.

It furnishes a sufficient kernel condition for Schatten classes with index p′ ≥ 2.

Corollary 7.2. If 1 ≤ p ≤ 2 and K ∈ K ∩ L(p′,p)(M × M ) then TK ∈

Sp′(L2(M )).

We recall that sufficient conditions of the type above in terms of kernels are

not possible for 0 < p′ < 2, as a consequence of a Carleman’s example. Corol-

lary 7.2 is known for general integral operators (cf. [Rus74, Theorem 3]). Here

we have deduced a particular version for invariant operators with a simple proof

by applying the notion of symbol.

We now describe another representation of the kernel as the “generalised”

Fourier transform of the symbol. From formula (7.1), we have

K (x, y) =

∞∑

ℓ=0

dℓ∑

m =1

dℓ∑

k =1

σ(ℓ)mkem
ℓ (x)ek

ℓ(y) =

∞∑

ℓ=0

Tr(eℓ(x)⊤σ(ℓ)eℓ(y))

=

∞∑

ℓ=0

Tr(σ(ℓ)eℓ(y)eℓ(x)⊤) =

∞∑

ℓ=0

Tr(σ(ℓ)Qℓ(x, y)),

where Qℓ(x, y) = eℓ(y)eℓ(x)⊤ ∈ Cdℓ×dℓ .

We notice that the matrix-valued function (Qℓ(x, y))mk = em
ℓ (x)ek

ℓ(y) is of rank 1

for every ℓ. Indeed, (Qℓ(x, y))mk is nothing other the tensor product of the vectors

eℓ(x), eℓ(y) ∈ Cdℓ . Since on a normed space F , ‖u ⊗ v‖op = ‖u‖F‖v‖F , we get

‖Qℓ(x, y)‖op = ‖eℓ(x)‖ℓ2(Cdℓ )‖eℓ(y)‖ℓ2(Cdℓ ).

By (7.2),

σ(ℓ) =

∫

M×M

K (x, y)Qℓ(x, y)∗dxdy.
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Hence

‖σ(ℓ)‖op ≤ ‖K‖L1(M×M ) sup
x,y

‖Qℓ(x, y)∗‖op

= ‖K‖L1(M×M ) sup
x,y

‖eℓ(x)‖ℓ2(Cdℓ )‖eℓ(y)‖ℓ2(Cdℓ ).

Remark 7.3. The condition K ∈ L1(M × M ) alone does not guarantee the L2

boundedness of the corresponding integral operator T . Indeed, consider M = T1,

g ∈ L1(T1)\L2(T1), h ≡ 1 ∈ L1(T1), and the kernel

K (θ, φ) := g(θ)h(φ) ∈ L1(T1 × T
1).

It is easy to see that the kernel K (θ, φ) does not define an operator from L2(T1)

into L2(T1). For example, with f = 1 ∈ L2(T1), we have

(T 1)(θ) = g(θ)

∫

T1

h(φ)dφ = g(θ) /∈ L2(T1).

8 Applications to the nuclearity of operators in Lp(M )

We now turn to the study of nuclearity in Lp-spaces on closed manifolds. Sufficient

conditions for r-nuclearity on Lp on compact Lie groups have been established

in [DR14b]. The study of nuclearity on Lp in this section relies on the analysis

of suitable kernel decompositions and the relation between kernels and symbols

described in Section 7.

Let E and F be Banach spaces and 0 < r ≤ 1. A linear operator T from E into

F is called r-nuclear if there exist sequences {x′
n} in E ′ and {yn} in F such that

(8.1) .Tx =
∑

n

〈x, x′
n〉 yn and

∑

n

‖x′
n‖

r
E ′‖yn‖

r
F < ∞.

1-nuclear operators are known as nuclear operators. In that case, this definition

agrees with the concept of trace class operator in the setting of Hilbert spaces

(E = F = H ). More generally, Oloff proved in [Olo72] that the class of r-

nuclear operators coincides with the Schatten class Sr(H ) when E = F = H and

0 < r ≤ 1.

The concept of r-nuclearity was introduced by Grothendieck [Gro55], and has

application to questions of the distribution of eigenvalues of operators in Banach

spaces via, e.g., the Grothendieck-Lidskii formula. We refer to [DR14b] for sev-

eral conclusions in the setting of compact Lie groups concerning summability and

distribution of eigenvalues of operators on Lp-spaces using information on their

r-nuclearity. Since these arguments are then purely functional analytic, they apply
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equally well in the present setting of closed manifolds; hence we omit the argu-

ments but instead refer the reader to [DR14b] for several relevant applications.

The r-nuclear operators on Lebesgue spaces are characterised by the following

theorem; cf. [Del10]. In the statement of it, (�1,M1, µ1) and (�2,M2, µ2) are

σ-finite measure spaces.

Theorem 8.1. Let 1 ≤ p1, p2 < ∞, 0 < r ≤ 1, and q1 be such that
1
p1

+ 1
q1

= 1. An operator T : Lp1(µ1) → Lp2(µ2) is r-nuclear if and only if

there exist sequences {gn}n in Lp2(µ2), and {hn}n in Lq1(µ1) such that

∞∑

n=1

‖gn‖
r
Lp2 ‖hn‖

r
Lq1 < ∞

and

T f (x) =

∫ ( ∞∑

n=1

gn(x)hn(y)

)
f (y)dµ1(y), for a.e. x

for all f ∈ Lp1(µ1).

In order to study nuclearity on Lp(M ) spaces for a given compact manifold

M of dimension n, we introduce a function 3( j, k; n, p) which controls the Lp-

norms of the family of eigenfunctions {ek
j } of the operator E , i.e., we suppose that

3( j, k; n, p) is such that

(8.2) ‖ek
j‖Lp(M ) ≤ 3( j, k; n, p).

In particular, if 3 is such a function, then

‖ek
j‖Lp(M ) ≤ vol(M )1/p3( j, k; n,∞).

When M = G is a compact Lie group, efficient ‖ek
j‖Lp(G) bounds can be ob-

tained; cf. [DR14b]. The estimation of Lp norms for eigenfunctions of differential

elliptic operators on general closed manifolds has been studied extensively; see,

e.g., [SZ02]. Some examples are given at the end of this section. An example can

be also obtained from the following simple lemma.

Lemma 8.2. Let f be such that ‖ f ‖L2(M ) = 1. Then

(i) ‖ f ‖Lp(M ) ≤ (vol(M ))(2−p)/2p if 1 ≤ p ≤ 2;

(ii) ‖ f ‖Lp(M ) ≤ ‖ f ‖
(p−2)/p
L∞(M ) if 2 ≤ p < ∞.

Proof. (i) By Hölder inequality, we have

∫

M

| f (x)|pdx ≤

(∫

M

| f (x)|p
2
p dx

) p

2
(∫

M

|1|p
2

2−p dx

) 2−p

2

= (vol(M ))
2−p

2 .
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(ii) We also have
∫

M

| f (x)|pdx =

∫

M

| f (x)|p−2| f (x)|2dx ≤ ‖ f ‖
p−2
L∞(M ). �

We now formulate a sufficient condition for the r-nuclearity on Lp(M ) spaces

as an application of the notion of the matrix-symbol on closed manifolds. Inspired

by Lemma 8.2, we use the following function p̃ for 1 ≤ p ≤ ∞:

(8.3) p̃ :=





0 if 1 ≤ p ≤ 2,

(p − 2)/p if 2 < p < ∞,

1 if p = ∞.

We denote the dual indices of p1, p2, respectively, by q1 := p′
1 and q2 := p′

2.

Theorem 8.3. Let 1 ≤ p1, p2 < ∞ and 0 < r ≤ 1. Let T : Lp1(M ) → Lp2(M )

be a strongly invariant linear continuous operator whose matrix-valued symbol

σ(ℓ) satisfies

∞∑

ℓ=0

dℓ∑

m,k =1

|σ(ℓ)mk|
r3(ℓ,m; n,∞)p̃2r3(ℓ, k; n,∞)q̃1r < ∞.

Then the operator T : Lp1(M ) → Lp2(M ) is r-nuclear.

Proof. By (7.1), the kernel of T is given by

K (x, y) =

∞∑

ℓ=0

dℓ∑

m =1

dℓ∑

k =1

σ(ℓ)mkem
ℓ (x)ek

ℓ(y).

We set

gℓ,m,k(x) := σ(ℓ)mkem
ℓ (x), hℓ,k(y) := ek

ℓ(y).

Now, by Lemma 8.2,

‖em
ℓ ‖Lp ≤ Cp3(ℓ,m; n,∞)p̃,

where Cp = max{(vol(M ))
2−p

2p , 1}. We next observe that

∑

ℓ,m,k

‖gℓ,m,k‖
r
Lp2 ‖hℓ,k‖

r
Lq1 =

∞∑

ℓ=0

dℓ∑

m,k =1

‖σ(ℓ)mkem
ℓ ‖r

Lp2 ‖ek
ℓ‖

r
Lq1

=

∞∑

ℓ=0

dℓ∑

m,k =1

|σ(ℓ)mk|
r‖em

ℓ ‖r
Lp2 ‖ek

ℓ‖
r
Lq1

≤ (Cp2
Cq1

)r
∞∑

ℓ=0

dℓ∑

m,k =1

|σ(ℓ)mk|
r3(ℓ,m; n,∞)p̃2r3(ℓ, k; n,∞)q̃1r,

finishing the proof in view of Theorem 8.1. �
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In particular, for formally self-adjoint invariant operators, we can diagonalise

each matrix σ(ℓ), yielding the following corollary.

Corollary 8.4. Let 1 ≤ p1, p2 < ∞ and 0 < r ≤ 1. Suppose that

T : Lp1(M ) → Lp2(M ) is a strongly invariant formally self-adjoint continuous

operator whose matrix-valued symbol σ(ℓ) satisfies

∞∑

ℓ=0

dℓ∑

m =1

|σ(ℓ)mm|r3(ℓ,m; n,∞)(p̃2+q̃1)r < ∞.

Then the operator T : Lp1(M ) → Lp2(M ) is r-nuclear.

In some cases, it is possible to simplify the sufficient condition above when the

control function3(ℓ,m; n,∞) is independent of m. For instance, a classical result

(local Weyl law) of Hörmander ([Hör68, Theorem 5.1], [Hör85b, Chapter XXIX])

implies the following estimate.

Lemma 8.5. Let M be a closed manifold of dimension n. Let E ∈ 9ν+e(M ).

Then

(8.4) ‖em
ℓ ‖L∞ ≤ Cλ

n−1
2ν

ℓ .

Proof. We first consider the family of eigenvalues {λℓ} of E in the increasing

order

0 = λ0 ≤ λ1 ≤ · · ·λℓ ≤ · · ·

and counted with multiplicity. For the projection Pℓ( f ) onto Hℓ, the kernel of the

associated partial sum operators Eλ f :=
∑
λℓ≤λ

Pℓ( f ) is given by

Eλ(x, y) =
∑

λℓ≤λ

dℓ∑

m =1

em
ℓ (x)em

ℓ (y).

By [Hör68, Theorem 5.1],

(8.5) Eλ(x, x) =
∑

λℓ≤λ

dℓ∑

m =1

|em
ℓ (x)|2 = (2π)−n

∫

p(x,ξ )≤λ

dξ + R(x, λ)

with |R(x, λ)| ≤ Cλ(n−1)/ν, x ∈ M , where p(x, ξ ) is the principal symbol of E .

Since Eµ(x, x) is increasing right-continuous with respect to µ, by the fact that the

spectrum of E is discrete by the continuity of
∫

p(x,ξ )≤µ dξ with respect to µ, and by

taking left-hand limit in (8.5), we obtain

lim
µ→λ−

Eµ(x, x) =
∑

λℓ<λ

dℓ∑

m =1

|em
ℓ (x)|2 = (2π)−n

∫

p(x,ξ )≤λ

dξ + R(x, λ−).
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Hence

Eλℓ(x, x) − Eλ−
ℓ
(x, x) =

dℓ∑

m =1

|em
ℓ (x)|2 = R(x, λℓ) − R(x, λ−

ℓ ).

In particular,

|em
ℓ (x)| ≤ 2(

√
R(x, λℓ) +

√
R(x, λ−

ℓ ) ) ≤ 2Cλ
n−1
2ν

ℓ .
�

Thus 3(ℓ; n,∞) = Cλ
(n−1)/2ν
ℓ furnishes an example of 3 independent of m.

For controls of type 3(ℓ; n,∞), we have a basis-independent condition.

Corollary 8.6. Let 1 ≤ p1, p2 < ∞ and 0 < r ≤ 1. Suppose that

T : Lp1(M ) → Lp2(M ) is a strongly invariant formally self-adjoint continuous

operator whose matrix-valued symbol σ(ℓ) satisfies

∞∑

ℓ=0

‖σ(ℓ)‖r
Sr
3(ℓ; n,∞)(p̃2+q̃1)r < ∞.

Then the operator T : Lp1(M ) → Lp2(M ) is r-nuclear. In particular, if its matrix-

valued symbol σ(ℓ) satisfies

(8.6)

∞∑

ℓ=0

‖σ(ℓ)‖r
Sr
λ

(n−1)
2ν

(p̃2+q̃1)r

ℓ < ∞,

then the operator T : Lp1(M ) → Lp2(M ) is r-nuclear.

Proof. Since T is E-invariant and formally self-adjoint, each matrix σ(ℓ) can

be assumed diagonal. The result then follows from Corollary 8.4, since

dℓ∑

m =1

|σ(ℓ)mm|r = Tr(|σ(ℓ)|r) = ‖σ(ℓ)‖r
Sr
.

The r-nuclearity under condition (8.6) follows from Lemma 8.5 with3(ℓ; n,∞) =

Cλ
(n−1)/2ν
ℓ . �

Remark 8.7. If M is a compact Lie group, with E taken to be the Laplacian

and the family of eigenfunctions {ek
ℓ} as in (6.7), Corollary 8.6 encompasses

[DR14b, Theorem 3.4]. Indeed, since |d
1
2

ξℓ
(ξℓ)i j (x)| ≤ d

1/2
ξℓ

, one can choose

3(ℓ; ∞) = d
1/2
ξℓ

. Then, taking into account that ‖σ(ℓ)‖r
Sr

= dξℓ‖τ(ξℓ)‖
r
Sr

by Lem-

ma 6.1, we obtain

∑

ℓ

‖σ(ℓ)‖r
Sr
3(ℓ; ∞)(p̃2+q̃1)r =

∑

ℓ

d
1+ 1

2
(p̃2+q̃1)r

ξℓ
‖τ(ξℓ)‖

r
Sr
,
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with a right-hand side equivalent to the term giving the sufficient condition in

[DR14b, Theorem 3.4]. Indeed,

1

2
(p̃2 + q̃1) =

1

2

(
1 −

2

max{2, p2}
+ 1 −

2

max{2, q1}

)

= 1 −
1

max{2, q1}
−

1

max{2, p2}

=
1

min{2, p1}
−

1

max{2, p2}
,

which is the order obtained in [DR14b, Theorem 3.4] on compact Lie groups.

In order to give another example, we recall Proposition 5.3 with useful rela-

tions between the eigenvalues λ j and their multiplicities d j . As a consequence of

Corollary 8.6 and Proposition 5.3, for the negative powers of the operator E itself

we obtain the following corollary.

Corollary 8.8. Let 1 ≤ p1, p2 < ∞ and 0 < r ≤ 1. Let E ∈ 9ν+e(M ). If

α >
n

r
+ (p̃2 + q̃1)

n − 1

2
,

then the operator (I + E)−
α
ν : Lp1(M ) → Lp2(M ) is r-nuclear.

Note that if p1 = p2 = 2, then p̃2 = q̃1 = 0; and, since Schatten class Sr

and r-nuclear class coincide on L2(M ), Proposition 5.4 shows that the statement

of Corollary 8.8 is sharp in this case of indices. However, it does depend on

the bounds for eigenvalues, which can be improved in the presence of additional

structures, as discussed in Remark 8.9.

Proof of Corollary 8.8. Denote by λℓ the eigenvalues of E , Then, for

α > 0, σ
(I+E)−

α
ν
(ℓ) = (1 + λℓ)

− α
ν Idℓ . Thus

‖σ
(I+E)−

α
ν
(ℓ)‖r

Sr
= (1 + λℓ)

− αr
ν dℓ.

Now, applying Corollary 8.6, by Proposition 5.3, we obtain

∑

ℓ

‖σ(ℓ)‖r
Sr
λ

(n−1)
2ν

(p̃2+q̃1)r

ℓ ≤ C
∑

ℓ

dℓ(1 + λℓ)
− αr

ν (1 + λℓ)
(p̃2+q̃1) (n−1)r

2ν

= C
∑

ℓ

dℓ(1 + λℓ)
(−α+(p̃2+q̃1) (n−1)

2
) r
ν < ∞,

if

q =

(
α− (p̃2 + q̃1)

(n − 1)

2

)
r

ν
>

n

ν
.
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But this is equivalent to the condition

α >
n

r
+ (p̃2 + q̃1)

n − 1

2
.

�

Remark 8.9. As pointed out in Remark 8.7, on compact Lie groups, we can

always choose E to be a Laplacian with an orthonormal basis given by rescaled

matrix elements of representations, for which we can take3(ℓ; ∞) = d
1/2
ξℓ

= d
1/4
ℓ .

At the same time, if E is an operator of second order (so that ν = 2), the best

we can hope for on closed manifolds in general is 3(ℓ; n,∞) = Cλ
(n−1)/4
ℓ , given

by Lemma 8.5. In view of (5.1), we always have d
1/4
ℓ . λ

n/8
ℓ , so that this choice

on compact Lie groups is better than the general bound 3(ℓ; n,∞) = Cλ
(n−1)/4
ℓ

above. This is explained partly by the presence of the additional (group) structure

in this case. The other point is that there is a difference in finding L∞-estimates

for elements of any orthonormal basis as opposed to estimates for a favourable one

that may exist due to additional assumptions or structures. However, the latter one

seems to be the question much less studied in the literature; see [SZ02] or [TZ02]

for some partial discussions.

We now give an example of the above remark in the case of the the sphere

S3 ≃ SU(2). We consider the Laplacian (the Casimir element) E = −LS3 . We

apply the condition given by Theorem 8.6, along with the control3(ℓ,∞) = d
1/4
ℓ .

For the symbol of (I + E)−
α
2 , since the eigenvalues of I + E are of the form (1 +ℓ)ℓ,

we obtain

‖σ
(I+E)

− α
2
(ℓ)‖r

Sr = ((1 + ℓ)ℓ)−
αr
2 dℓ ≈ ((1 + ℓ)ℓ)−

αr
2 ℓ2 ≈ (1 + ℓ2)1− αr

2 .

Therefore, using dℓ ≈ ℓ2, we have

∑

ℓ

‖σ
(I+E)

− α
2
(ℓ)‖r

Sr3(ℓ,∞)(p̃2+q̃1)r ≤
∑

ℓ

(1 + ℓ2)1− αr
2 ℓ

1
2

(p̃2+q̃1)r

≈
∑

ℓ

(1 + ℓ)2−αr+ 1
2

(p̃2+q̃1)r .

The series on the right-hand side converges if and only if 2−αr + 1
2
(p̃2 +q̃1)r < −1.

Thus, the condition

α >
3

r
+

1

2
(p̃2 + q̃1)

ensures the membership of (I +E)−α/2 in the Schatten class of order r. In summary,

we have proved the following corollary.
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Corollary 8.10. If α > 3
r

+ 1
2
(p̃2 + q̃1), 0 < r ≤ 1, the operator (I − LS3)−

α
2

is r-nuclear from Lp1(S3) into Lp2(S3).

Corollary 8.10 gives a direct proof of [DR14b, Corollary 3.19], which was

proved there in the group setting.

Remark 8.11. It is clear that the sharpness of the sufficient conditions ob-

tained in this section depends on the sharpness in the 3-function we can choose.

For instance, the best situation for 3(ℓ,∞) is when it can be chosen to be con-

stant, i.e., when the eigenfunctions are uniformly bounded. This is the case for the

torus Tn which, unfortunately may be essentially the only case; see [TZ02].
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Éditions Jacques Gabay, Paris, 1996. Reprint of the second (1969) edition.

[DR14a] J. Delgado and M. Ruzhansky, Kernel and symbol criteria for Schatten classes and r-
nuclearity on compact manifolds, C. R. Math. Acad. Sci. Paris 352 (2014), 779–784.

[DR14b] J. Delgado and M. Ruzhansky, Lp-nuclearity, traces, and Grothendieck-Lidskii formula on

compact Lie groups, J. Math. Pures Appl. (9) 102 (2014), 153–172.

[DR14c] J. Delgado and M. Ruzhansky, Schatten classes on compact manifolds: kernel conditions, J.
Funct. Anal. 267 (2014), 772–798.

[DR13] J. Delgado and M. Ruzhansky, Schatten classes and traces on compact groups, Math. Res.
Lett. 24 (2017), 979–1003.

[Dui11] J. J. Duistermaat, Fourier Integral Operators. Birkhäuser/Springer, New York, 2011.
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