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Abstract: We present a detailed discussion of the entanglement structure of vector fields

through canonical quantization. We quantize Maxwell theory in Rindler space in Lorenz

gauge, discuss the Hilbert space structure and analyze the Unruh effect. As a warm-up, in

1+1 dimensions, we compute the spectrum and prove that the theory is thermodynamically

trivial. In d + 1 dimensions, we identify the edge sector as eigenstates of horizon electric

flux or equivalently as states representing large gauge transformations, localized on the

horizon. The edge Hilbert space is generated by inserting a generic combination of Wilson

line punctures in the edge vacuum, and the edge states are identified as Maxwell microstates

of the black hole. This construction is repeated for Proca theory. Extensions to tensor

field theories, and the link with Chern-Simons are discussed.

Keywords: Gauge Symmetry, Black Holes

ar
X

iv
:1

80
1.

09
91

0v
2 

 [
he

p-
th

] 
 2

4 
Se

p 
20

18

mailto:andreas.blommaert@ugent.be
mailto:thomas.mertens@ugent.be
mailto:henri.verschelde@ugent.be
mailto:vzakharov@itep.ru


Contents

1 Introduction 2

2 Edge States 5

2.1 Origin of Edge States 5

2.2 Simplified Structure in Topological Theories 11

3 Bulk Maxwell Theory in 1 + 1 12

3.1 Canonical quantization 13

3.2 Unruh Effect in Maxwell theory 16

3.3 Boundary Conditions 19

3.4 Summary 20

4 Edge Sector in 1 + 1 20

4.1 Canonical Quantization 21

4.2 Gluing Rindler Wedges 22

4.3 Minkowski Vacuum 23

4.4 Summary 27

5 Bulk Maxwell Theory in d+ 1 28

5.1 Implementation of Boundary Conditions 29

5.2 Summary 32

6 Edge Sector in d+ 1 32

6.1 Canonical Quantization 32

6.2 Punctures and Electrostatics 34

6.3 Spectrum and Thermodynamics 36

6.4 Black Hole Microstates and Asymptotic Symmetries 38

6.5 Summary 39

7 Extension to Proca and Tensor Field Theories 39

7.1 Proca Theory 40

7.2 Tensor Fields 43

8 Conclusion 44

A FP Ghost contribution to Unruh effect 46

B Bulk Hilbert Space in d+ 1 Dimensions 49

C Dirichlet vs Neumann Scalar Partition function 50

– 1 –



1 Introduction

One of the most important open problems in black hole physics is to provide for an un-

derstanding of black hole entropy in terms of microscopic degrees of freedom. Assuming

that string theory is the fundamental theory of nature, the microscopic degrees of freedom

responsible for black hole entropy must be of a stringy nature [1]. Within the current

understanding of entropy, it should be understood as arising from stringy entanglement

across the horizon of the black hole.

An explicit calculation of the horizon entanglement entropy in string theory is compli-

cated by two big obstacles.

• One would need to understand the string spectrum in a black hole background, or

its near-horizon Rindler limit. So far the nonlinear nature of the string equations of

motion in Rindler has stood in the way of an explicit quantization.

• Strings do not factorize across the horizon, making it highly nontrivial to define an

entanglement entropy (see however work based on string field theory [2, 3]).

It seems at this point in time next to impossible to quantitatively address this nonfactor-

ization problem directly in string theory (see however [4]). The same complication occurs

in gauge theories and possibly also in generic QFTs. Understanding this feature in gauge

theories has been studied intensively the last few years, mainly from a lattice perspective,

see e.g. [5–22]. In this work we tackle this problem head-on and construct the Hilbert

space of Maxwell and Proca theory in Rindler space. Several aspects of quantization of

Maxwell theory have appeared in the literature before [23–27].

The lattice perspective on the issue gives rise to different possible definitions of entan-

glement. We adopt the most popular definition of entanglement entropy as replica trick

entropy. It is our understanding that Euclidean replica trick calculations should be con-

sidered as guidelines to an unambiguous state counting interpretation of thermodynamics

(i.e. a trace over a yet-to-be-determined Hilbert space). In recent years, many of these

Euclidean calculations have been performed, both in QFT as in string theory [28–37].

For Maxwell theory, Kabat found a contribution to the partition function due to a cou-

pling of non-scalar fields to the conical singularity introduced in the Euclidean calculation:

the contact term. A negative sign in the regularized entropy led him to the statement

that this term cannot come with a state counting interpretation [38–40]. Donnelly and

Wall have shown that there does exist a statistical interpretation for the contact term as

counting classical static backgrounds with nonzero horizon electric flux [41, 42].

As part of this work, we lift this statistical interpretation to a genuine Hilbert space

tracing computation. The classical backgrounds are in fact electric flux edge states created

by large gauge transformations which are (isomorphic to) Wilson line punctures on the

entangling surface. Wilson lines are the non-local gauge invariant observables that make

up the physical algebra of Maxwell theory. Their non-locality is at the foundation of the

non-factorization issues associated with the Maxwell Hilbert space. We find the correct
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algebra by investigating the effect on the canonical structure of inserting a dividing surface

in flat space. At this point a direct link with 3d Chern-Simons theory can be made.

The resulting boundary canonical structure is the same as the asymptotic gauge symmetry

- soft photon construction of Strominger et al. [43–45]; the sole difference being a different

choice of Cauchy surface (we will be working on surfaces of constant time i.e. spatial

Cauchy surfaces), and is also identical to the boundary symplectic potential discussed by

(among others) Donnelly and Freidel [46]. The edge states are identified as the Maxwell

microstates of (large non-extremal) black holes. In explicitly linking these works together

by an edge state quantization, we intend to fill a gap in the existing literature.

The generality of our procedure allows for multiple extensions. We discuss in full Proca

theory and the state counting interpretation of its contact term. Though our procedure

applies equally to Proca as it does to Maxwell, the interpretation of the edge sector is

different: Proca has no gauge freedom and thus the concept of large gauge transformations

creating the edge sector does not uphold here. Extensions to generic tensor fields are dis-

cussed without going into too much detail.

We will find that in quantizing Maxwell, a distinction must be made between 1 + 1 dimen-

sional Rindler and d+1 dimensional Rindler as the respective zero-mode sectors (which we

will show to be the classical origin of the respective edge sectors) behave rather differently.

In 1 + 1, the zero-mode sector of the theory is all that remains in finite spatial volume, and

we study it somewhat further in our framework. In particular we show that the edge states

of the theory in 1 + 1 dimensions are not normalizable, and as such cannot contribute to

thermodynamic quantities. From the Wilson loop perspective this is readily appreciated:

in 1+1 dimensions, at fixed time, there are no non-trivial Wilson loops as they would have

to retrace their steps in order to close. This is in unison with the well-known fact that 1+1

dimensional CFTs have well-known formulae for the entanglement entropy, irrespective of

the possible presence of a gauge symmetry.

Before discussing these important aspects of Maxwell theory in Rindler, we first scru-

tinize an issue that arose in the literature for the 1 + 1 case. Upon quantizing 1 + 1

dimensional Maxwell theory in Rindler space in e.g. Weyl gauge or Coulomb gauge it is

readily found that the theory is trivial due to a lack of degrees of freedom. Canonical

quantization in Lorenz gauge however has proven to be somewhat more subtle. In [47],

Zhitnitsky quantizes a theory similar to gauge-fixed U(1) theory in Lorenz gauge, and finds

that temporal and timelike photon polarizations, instead of canceling out, add up in the

Unruh effect. This idea was later on picked up in [48, 49] in a cosmological context to model

dark energy. This statement is in direct conflict with gauge invariance. We commence this

work by presenting a canonical quantization of Maxwell theory in 1+1 dimensional Rindler

in Lorenz gauge and demonstrate that the Faddeev-Popov ghosts exactly cancel the two

unphysical photon polarizations, as they should by construction.

The concrete objectives of this work are subdivided into two main goals.

• Canonical quantization of Lorenz gauge Maxwell and Proca theory in 1 + 1 dimen-
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sional Rindler space. For Maxwell, discuss the non-physical polarizations and ghosts

and prove that they cancel out thermodynamically, except for the zero-mode sector.

• Canonical quantization of Lorenz gauge Maxwell and Proca theory in d + 1 dimen-

sional Rindler space, construct the Hilbert space, including edge states and give

physical meaning to this sector.

In the sections concerning 1 + 1 dimensional Rindler space, we mainly work in Rindler

tortoise coordinates (t, r). These are related to flat coordinates (X,T ) as

ds2 = −dT 2 + dX2 = −dUdV = e2r
(
−dt2 + dr2

)
. (1.1)

where U = T −X and V = T +X. The Rindler tortoise coordinates are conformally flat

and thus especially convenient for studying wave equations in 1 + 1 dimensions. In the

R-wedge, they are related to the light cone coordinates (U, V ) as U = −er−t and V = er+t,

where U < 0 and V > 0.1 The Rindler horizon is located at V = 0, or r = −∞ in these

coordinates (Figure 1).

X

T

L R

U V

Figure 1: Rindler wedges and coordinate systems. At T = 0, the Minkowski Hilbert

space splits into the left and right Hilbert space. The Rindler observer then evolves these

states using HR along the hyperbolic trajectories. This is one way of making sure the right

observer does not see anything originating from the left wedge. Likewise, the left Hilbert

space evolves upwards with HL.

In the sections concerning d+ 1 dimensional Rindler space, we mostly work in Rindler

coordinates (t, ρ,x). The radial coordinate ρ is related to the tortoise coordinate r as ρ = er.

The d−1 flat directions are parameterized by x. The metric is now ds2 = −ρ2dt2+dρ2+dx2

and the horizon is the hypersurface ρ = 0.

This paper is organized in two main parts. The first part consists of sections 3 to 4

and deals with Maxwell theory in 1 + 1 dimensional Rindler space. In section 3 we discuss

the canonical quantization, including longitudinal and temporal photon polarizations and

1Analogously, one uses U = +er−t and V = −er+t for the region U > 0, V < 0, which is the left Rindler

wedge.
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calculate the Unruh effect. We pay special attention to the ghost sector and resolve an

issue in work by Zhitnitsky. Section 4 is a discussion on the edge sector that arises when

gluing two Rindler wedges. We investigate the Minkowski ground state and conclude that

edge states do not make a contribution to it, nor to thermodynamical quantities.

In the second part (consisting of sections 5 and 6) we present the detailed quantization

of Maxwell theory in d + 1 dimensional Rindler space. We discuss the canonical quanti-

zation of the theory in Lorenz gauge (section 5) including suitable boundary conditions.

Section 6 contains the canonical quantization of the edge sector and the resulting thermo-

dynamic quantities. In section 7 we present generalization to Proca theory and extensions

to tensor field theories. Finally, in 8 we conclude on our findings and look ahead towards

strings.

A complementary path integral perspective on the problem is given in [50], where it is

also generalized beyond the Abelian Rindler set-up.

2 Edge States

This section provides a summary of the main ideas followed in this work concerning the

introduction and quantization of edge states, and the link with the contact term for bosonic

QFTs.

2.1 Origin of Edge States

Consider a generic classical field theory in the Hamiltonian formulation, characterized

by a set of evolution equations (containing second-order time derivatives) and constraint

equations (linking initial data on a Cauchy surface Σ). The latter decrease the number of

independent canonical variables on Σ

Assume now there is a dividing surface separating Σ into Σ1 and Σ2. If the constraints

contain no spatial derivatives, i.e. they are ultralocal, then the Hilbert space factorizes

across this dividing surface. Otherwise, this division introduces a matching constraint

across the boundary, with associated edge degrees of freedom. Moreover, from the point

of view of an observer constrained to data from Σ1 (i.e. observers restricted to Σ1 resp.

Σ2 are causally disconnected), this boundary is an infinite redshift surface. Hence such

an observer has no access to the boundary degrees of freedom. This in turn shows that

the Hilbert space on Σ does not factorize in the Hilbert spaces of observers restricted to

Σ1 resp. Σ2. This ultimately leads to a contact term in the theory. Thus, a theory with

generic, i.e. not ultralocal, constraint equations has edge states.

As an example, consider a scalar field with non-minimal coupling to the Ricci-scalar

L = 1
2∂µφ∂

µφ + ξRφ2, which has a contact term ∼ ξ. From the Lorentzian perspective,

the scalar field is not a constrained Hamiltonian system. Therefore, the scalar has no edge

states. The contact term for the non-minimally coupled scalar field is well known to be

interpreted as a contribution to the generalized entropy, not to the entanglement entropy

(which is manifestly independent of the choice of coupling).
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From hereon we focus of Lorentzian flat space R1,d with a planar dividing surface:

Minkowski is separated into R-and L Rindler wedges. The advantage of investigating this

setup is that it is easy to diagonalize the modular Hamiltonian of either region i.e. the

Lorentz boost generator.

Constraint equations on the initial value formulation are translated into boundary

contributions to δS, resulting in boundary conditions. Indeed, a general local Lagrangian

L(Aµ, ∂µAν) of a spin 1 field Aµ = ALµ + ARµ in Minkowski, splits into left (L) and right

(R) parts only supported on their respective wedges, leads to the matching constraints at

the dividing surface ∂Σ:

nµ
∂L

∂∂µARν
δARν

∣∣∣∣
∂M

(x) = nµ
∂L

∂∂µALν
δALν

∣∣∣∣
∂M

(x) , (2.1)

with ∂M = ∂Σ × time.

Similarly, from the point of view of an observer constrained to either wedge, variation

of the action results in the boundary conditions:

nµ
∂L

∂∂µARν
δARν

∣∣∣∣
∂Σ

(x) = 0. (2.2)

A theory satisfies these boundary conditions if for instance it satisfies perfect electric con-

ductor (PEC) or perfect magnetic conductor (PMC) boundary conditions:

PEC: ARν |∂M(x) = 0, ν = i, t, nµ
∂L

∂∂µARρ

∣∣∣∣
∂M

(x) = 0, (2.3)

PMC: nµ
∂L

∂∂µARν

∣∣∣∣
∂M

(x) = 0, ν = i, t, ARρ |∂M(x) = 0. (2.4)

The R-wedge bulk theory is defined to be a theory that solves the bulk EOM as well as

obeys a consistent set of boundary conditions such as (2.3) or (2.4). Afterwards one sums

over boundary contributions, supplemented with the gluing condition (2.1), to obtain the

general solution of the problem in flat space. It is interesting to compare this to the elec-

tromagnetic membrane paradigm, where boundary contributions are cancelled by horizon

charges and currents [51]. The logic is related, but not precisely the same.

An explicit example and the starting point of our discussion is the gauge-fixed version

of free Maxwell theory in d+ 1 dimensions in Lorenz gauge:

SM =

∫
M
dd+1x

√
−g
(
−1

4
FµνFµν −

1

2
∇µAµ∇νAν − ∂µc̄∂µc

)
, (2.5)

where M can either refer to the full Minkowksi space (with no relevant boundary for our

purposes) or to either one of the Rindler wedges (with boundary the horizon ∂M). This

action is only properly defined on the subspace of field configurations satisfying Lorenz

gauge

∇µAµ = 0. (2.6)
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In a more general context this is referred to as the transversality constraint on A. This

first class constraint equation will be imposed in the Gupta-Bleuler sense as a constraint

on physical states in the theory. Imposing it at a classical level would be inconsistent with

canonical quantization. Note that this transversality constraint appears as a second class

constraint for the massive vector field (see section 7), and is part of the Virasoro constraints

in string theory at each level. For the moment, the Faddeev-Popov ghost action will be

ignored, we come back to it in section 3.2.

Variation of the action on M results in

δSM =

∫
M
dd+1x

√
−g (∇µ∇µAν)δAν +

∫
∂M

ddx
√
−hnµ (Fµν + gµν∇σAσ) δAν , (2.7)

with nµ the inward pointing vector on ∂M, and hµν the induced metric on ∂M. Setting

the variation of the action to zero, the first term in (2.7) results in the set of coupled

equations:

∇µ∇µAν = 0. (2.8)

The boundary term is set to zero by choosing the boundary condition (2.2). Within this

gauge-fixed formulation, the Lorenz gauge (2.6) is a constraint on the initial data of the

system (as in the beginning of this section). On solutions to the equations of motion, the

Lorenz gauge constraint is equivalent to Gauss’ law

∇µFµt = 0, (2.9)

which is usually stated as the constraint on the Maxwell system.

On the horizon ∂M, the constraints (2.6) and (2.9) become matching conditions from

the Minkowski perspective:

nµARµ |∂M(x) = nµALµ |∂M(x), and nµFRµt|∂M(x) = nµFLµt|∂M(x). (2.10)

From the point of view of an R-wedge observer however, the constraints (2.6) and (2.9) fix

nµARµ |∂M(x) and nµFRµt|∂M(x) to a fixed value. The bulk R-wedge theory does not include

the edge degrees of freedom (2.10). These edge DOF are responsible for entanglement

across the horizon that is not captured by the bulk R-wedge theory.

The natural way to implement these matching boundary conditions is to first set them

to zero: nµARµ |∂M(x) = 0 and nµFRµt|∂M(x) = 0, and then sum over the different boundary

contributions with the gluing condition (2.10). This becomes especially manifest for the

PMC-bulk theory: equation (2.4) contains the boundary conditions nµARµ |∂M(x) = 0 and

nµFRµt|∂M(x) = 0. This shows PMC boundary conditions on the bulk R-wedge theory are

the most natural to discuss entanglement.

The nature and implications of the boundary conditions ν = i in (2.4) are discussed

in sections 5 and 6. For now it suffices to know that these do not generate additional

entanglement.
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There are two compelling reasons to look for edge modes in the static sector of the

R-wedge theory:2

• It is a general statement that static modes of a quadratic Lagrangian contribute to

the Hamiltonian as boundary degrees of freedom. E.g. for a scalar field φ in flat

space, specialized to the static solutions:

H =
1

2

∫
Σ
ddx

(
(−∂tφ)2 + (∇φ)2 +m2φ2

)
=

1

2

∫
Σ
ddx∂i(φ∂

iφ), (2.11)

which is a total derivative and hence reduces to a boundary term. This also holds for

the improved Maxwell Hamiltonian in Rindler. For a boundary ∂Σ : ρ = ε in Rindler

coordinates, we have:

H =

∫
Σ
dd−1xdρρ

(
1

4
FµνFµν − F0µF

0µ

)
= −1

2

∫
∂Σ
dd−1xρ

(
F ρiAi − F ρ0A0

)
.

(2.12)

Furthermore, as discussed below, the static solutions do not satisfy the boundary

conditions (2.2), regardless of the regularization procedure, and hence these solutions

do not appear in the respective bulk theories.

• The horizon is an infinite redshift hypersurface. This implies that from the Rindler

perspective there is no horizon dynamics and the horizon degrees of freedom are

necessarily static. Mathematically, this follows from regularity of the field solution

at Rindler radial coordinate ρ = ε → 0+, just as happens with the origin in polar

coordinates. A different but equally important consequence of the infinite redshift

property of the horizon is that the fields associated with finite horizon charges (edge

modes) have no radial extent away from the horizon. This also follows intuitively

from the fact that there is no suitable scale in the theory with which they should

decay away from the horizon. Note that these boundary-localized features of edge

states are very explicit in Chern-Simons theory, as discussed below.

From the quantum point of view the need for edge states originates from an incom-

pleteness of the R-and L-wedge bulk algebras in the Minkowski algebra.

Let us elaborate. The Maxwell theory is quantized by imposing the canonical commu-

tation relations (CCR) on the Maxwell field A:[
Aµ(ρ,x),Πν(ρ′,y)

]
= iδνµδ(ρ− ρ′)δ(x− y), (2.13)

where

Πν =
∂L

∂∂tAν
(2.14)

is the conjugate field of A. Formula (2.13) includes quantization of the longitudinal and

temporal polarization, whose DOF are projected out of the Hilbert space of the theory

by the Gupta-Bleuler procedure. The physical Hilbert space of the theory, obtained by

2For an example where the zero-mode sector for a scalar field becomes important, see [52].
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quotienting out the nullspace, is completely generated by the manifestly gauge-invariant

algebra:

[ΦΩ,WC ] =WCθ(Ω ∩ C), ∀Ω, C , (2.15)

where ΦΩ represents the flux of Π through a spatial co-dimension one surface Ω

ΦΩ =

∫
Ω
nΩ
ν Πν (2.16)

and WC is the Wilson line along the closed curve C:

WC = ei
∫
C A. (2.17)

The θ-function introduced here evaluates to ±1 if the surface and line intersect, including

a sign for their relative orientation: it is the intersection number. The angle of intersection

is not important (figure 2).

W

C
nW

Figure 2: Wilson line along C piercing a surface Ω. The normal on the surface nΩ and

the orientation of the curve C determine whether the θ-function evaluates to +1 or −1.

The boundary conditions (2.1) destroy the possibility of flux through the horizon:

ΦΩ = 0, Ω ∈ ∂Σ. From the Rindler point of view this is not an issue: the horizon data is

not accessible to the bulk Rindler observer and the entire bulk Hilbert space describing an

arbitrary bulk EM-field configuration is generated by Wilson lines that reside entirely in

the R-wedge. However, the Minkowski theory should cover the entire algebra (2.15) and in

particular should thus contain configurations with nonzero horizon flux ΦΩ, or equivalently

the Minkowski Hilbert space contains states created by inserting Wilson lines through the

horizon. This identifies edge states as configurations of horizon electric flux created by

Wilson lines through the horizon. This is, of course, in complete agreement with the iden-

tification of constraint DOF on the boundary as the edge freedom in (2.10).

As an alternative perspective, consider again a Wilson line along a curve C. When re-

stricting to closed curves, or curves that extend to infinity, this is invariant under small

gauge transformations.3

3Indeed, performing the gauge transformation A→ A+ dφ, the Wilson line (2.17) transforms as

WC → WCei
∫
C dφ = WC. (2.18)
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Consider now a Wilson line piercing the horizon. When embedding Rindler space

into Minkowski space, there is no reason to assume the gauge parameter φ(x) vanishes

on the Rindler horizon, which means this operator is not gauge-invariant from a Rindler

perspective; it transforms under such a large gauge transformation as

WC → WCe−iφ(C∩∂Σ). (2.19)

The most general R-wedge theory thus naturally decouples into two separate theories.

The first consists of the bulk R-wedge Hilbert space Hbulk,R of states satisfying the bound-

ary conditions (2.2). The second consists of states associated with the horizon degrees of

freedom, generalizing the constraint conditions to (2.10) and accounting for horizon pierc-

ing Wilson lines. Labeling the states associated with these edge degrees of freedom as |q〉
(they can be thought of as horizon charges, see section 6), one can extend both left and

right Hilbert spaces as:4

HL =
⊕

q∈Hedge,L

|q〉L ⊗Hbulk,L, HR =
⊕

q∈Hedge,R

|q〉R ⊗Hbulk,R, (2.20)

or

HL = Hedge,L ⊗Hbulk,L, HR = Hedge,R ⊗Hbulk,R. (2.21)

The most general Minkowski state then lives in the factorizable extended Hilbert space:

Hext = HL ⊗HR. (2.22)

The matching conditions (2.1) imply that the physical Minkowski Hilbert space consists of

the diagonal subspace of this extended Hilbert space:

Hbulk =
⊕

q∈Hedge

(|q〉L ⊗Hbulk,L)⊗ (|q〉R ⊗Hbulk,R) . (2.23)

The Minkowski vacuum state lives in this space as a state that is also diagonal in Hbulk,L⊗
Hbulk,R. As the latter decouple completely from the spaces Hedge,L/R, the total entan-

glement entropy in the Minkowski vacuum is simply the sum of the bulk entropy due to

Hbulk,L/R and the edge entropy due to Hedge,L/R:

S = Sedge + Sbulk. (2.24)

Both contributions are calculated in this paper from the canonical spectrum of the theory,

for arbitrary d.

4Note that the actions of the R-wedge observer are limited to Hbulk,R. He will not be able to observe

the presence of the fields associated with states in the Hilbert space Hedge,R nor will he be able to change

them or interact with them using his physical operators. This means |q〉 labels a superselection sector from

the R-wedge perspective.
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2.2 Simplified Structure in Topological Theories

Topological theories have no local bulk degrees of freedom. Introducing a boundary surface

leads to an edge sector as the only DOF of the theory. In such a simplified situation, it

is instructive to understand the intuitive picture of Wilson lines attached to the boundary

surface in more detail. For Chern-Simons (CS) theories it can be made very explicit, see

also [53–55]. CS theory with a boundary reduces to chiral Wess-Zumino-Witten (WZW)

theory on the boundary. For a cylindrical boundary, and focusing on the Abelian case, the

U(1) WZW Hilbert space consists of a primary of fixed charge |q〉 and all WZW descendants

obtained by acting with J−n, n > 0:

H = {J−n...J−m |q〉 , q ∈ R} , (2.25)

and this for all values of the charge q, possibly discretized. This is the Fourier transform

of states obtained by acting with local current operators, at a fixed timeslice:

H = {J(w1)...J(wm) |q〉 , q ∈ R} , (2.26)

for any choice of locations wi along the spatial circle.5 Thus the edge sector Hilbert space

is identified as the space of all punctures on the WZW plane. A more convenient basis is

found by setting J = ∂φ, and using the local vertex operators eiqφ:

H =
{
eiq1φ(w1)...eiqmφ(wm) |q〉 , q ∈ R

}
, (2.27)

which creates a state that has fixed charge density at the locations wi, as measured by

J0 =
∮
dzJ(z). In U(1) Chern-Simons, the equations of motion imply A is flat: A = ∂φ,

which is identified with J itself. A Wilson line that is anchored at the boundary at both

endpoints, is then evaluated as

eiQ
∫
A = eiQφ(x2)−iQφ(x1), (2.28)

and is precisely found in (2.27), as a state with additional charge +Q at x2 and −Q at x1.

Thus one can think of the Hilbert space as consisting of Wilson line endpoints.

The edge sector is insensitive to the specific shape of the Wilson line. In CS this is so

due to the topological nature of the theory, but this is true more generally, and in particular

also in Maxwell theory. The difference between two Wilson lines connected at the same

boundary points is a closed Wilson loop in the bulk theory, and is part of the bulk sector

(Figure 3). Explicitly, as the Hilbert space factorizes, and due to linearity, any Wilson loop

operator acts only on the bulk part:

W1 (|0〉 ⊗ |bulk〉) =WoW2 (|0〉 ⊗ |bulk〉) =W2 (|0〉 ⊗Wo |bulk〉) =W2 (|0〉 ⊗ |bulk〉) ,
(2.29)

5One can extend this construction to the WZW theory on the infinite line (instead of a circle) to reach

the standard situation of an extended entangling surface. This requires quantizing the CFT on the infinite

line, which leads to continuous generalizations of the modes Jω, which satisfy a continuous version of

the Kac-Moody algebra and Sugawara construction. Local operator insertions on the line can be Fourier

transformed to the modes J(x) =
∫ +∞
−∞ dxeiωxJω.
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W1 W2

W0

Figure 3: Left: Two Wilson linesW1 andW2 at the same boundary point. Right: Closed

Wilson loop Wo =W1W−1
2 .

where |bulk〉 is short for the entire bulk Hilbert space. We make this identification of the

edge sector as the set of punctures of Wilson lines very explicit in section 6.2.

This picture is expected to generalize to other topological gauge theories, such as BF

theories. As a first piece of evidence, dimensionally reducing 3d CS leads to 2d BF theory

with a specific boundary term. This corresponds on the boundary surface to a dimensional

reduction of 2d WZW to its zero-mode sector, reducing the Kac-Moody algebra to its

zero-grade Lie algebra. The Hilbert space of 2d BF theory consists of the irreps of this

underlying algebra.

As a remark, note that the standard holographic dictionary for 3d CS states:

δSon-shell

δAbdy
µ

= 〈Jµ〉bdy . (2.30)

Integrating by parts and keeping track of the boundary contributions, we find:

δS =

∫
M
dd+1x

(
∂L
∂Aν

− ∂µ
∂L

∂∂µAν

)
δAν +

∫
∂M

ddx (nνΠνµ) δAµ, (2.31)

where nν points outwards. Using the Euler-Lagrange equations and the dictionary (2.30),

we find:
δSon-shell

δAbdy
µ

= nνΠνµ|bdy = 〈Jµ〉bdy . (2.32)

This is the QFT analogue of ∂Son-shell
∂qi

= pi, familiar from the Hamilton-Jacobi method.

The timelike component becomes:

nνΠν0|bdy =
〈
J0
〉

bdy
. (2.33)

The radial canonical momentum of the U(1) bulk theory evaluated at the boundary is a

U(1) charge in the holographic boundary theory. For CS, where the conjugate momentum

is a component of the gauge field A itself, this means that the bulk gauge field A is sourced

by J(w) on the boundary (2.27). For Maxwell, we interpret (2.33) as the jump condition

in Gauss’ law, where nνΠν0 becomes the radial electric flux (2.16) (see also section 6).

3 Bulk Maxwell Theory in 1 + 1

We focus first on the special case d = 1.
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3.1 Canonical quantization

The first step in the canonical quantization of the theory is to find the complete set of bulk

modes which span the solution space of the bulk EOM (2.8). In tortoise coordinates and

written out in components, the bulk EOM read:

(∂2
r − ∂2

t )Ar + 2(∂tAt − ∂rAr) = 0, (3.1)

(∂2
r − ∂2

t )At + 2(∂tAr − ∂rAt) = 0. (3.2)

The field is decomposed in the basis of positive frequency Rindler modes:

∂tAµ = −iωAµ. (3.3)

In order to determine an orthogonal set of solutions, an inner product must be de-

fined on the solution space. We use the generalized KG inner product which in a general

background reads

(A,B) = i

∫
dΣµJ

µ. (3.4)

Σ is a spacelike hypersurface and J is defined as

Jµ =
1√
−g
(
BνΠµν

A∗ −Aν
∗Πµν

B

)
. (3.5)

We introduced the notation

Πµν
A =

∂L
∂∂µAν

. (3.6)

This represents a conserved current in the sense that ∇µJµ = 0,as can be explicitly checked

using (3.6), such that the inner product independent of the chosen hypersurface Σ. If one

chooses a fixed time slice to evaluate this inner product, the conjugate momenta of the

gauge field enters in (3.5):

Πµ
A := Πtµ

A =
√
−g
(
Fµt − gtµ∇σAσ

)
. (3.7)

Defining for notational convenience two scalar functions

φRk =
1√

16πk
e−ik(t−r), φLk =

1√
16πk

e−ik(t+r), (3.8)

for ω = k > 0, which describe right- and left-moving massless scalar modes solving �φ = 0,

and a complex energy variable

ε = ω + i, (3.9)

we find that the solution space of the sourceless Maxwell equations (3.1) for each value of

ω = k > 0 is spanned by the 4 sets of modes:6(
1

−1

)
φRk ,

(
1

1

)
e2rφRk ,

(
1

1

)
φLk ,

(
1

−1

)
e2rφLk , (3.10)

6The equations decouple in tortoise light-cone components. This can be generalized to higher spin and

to higher dimensions. Alternatively, the coupled differential equations can be reformed into a single fourth

order ODE.
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which can be reorganized into the modes

A
(1)
µ,k =

ε

|ε|

((
1

1

)
e2r +

(
1

−1

))
φRk , A

(2)
µ,k =

1

|ε|

(
ε

(
1

1

)
e2r − ε̄

(
1

−1

))
φRk ,

A
(3)
µ,k = − ε̄

|ε|

((
1

1

)
+

(
1

−1

)
e2r

)
φLk , A

(4)
µ,k =

1

|ε|

(
ε

(
1

1

)
− ε̄

(
1

−1

)
e2r

)
φLk . (3.11)

These are mutually orthogonal w.r.t. the inner product (3.5). The only non-zero inner

products are (
A

(2)
k , A

(2)
k′

)
=
(
A

(4)
k , A

(4)
k′

)
= δ(k − k′),(

A
(1)
k , A

(1)
k′

)
=
(
A

(3)
k , A

(3)
k′

)
= −δ(k − k′).

(3.12)

Notice that the modes A(2) and A(4) have positive δ-norm and the modes A(1) and A(3)

have negative norm. The quantum field is expanded in the complete set of modes (3.11)

as

Aµ =

∫ +∞

0
dk
(
a

(1)
k A

(1)
µ,k + a

(2)
k A

(2)
µ,k + a

(3)
k A

(3)
µ,k + a

(4)
k A

(4)
µ,k + h.c.

)
. (3.13)

As usual, the coefficients a
(i)
k of the individual modes become the quantum oscillators in

the quantum theory such that we naturally impose the oscillator commutation relations7[
a

(1)
k , a

(1)†
k′
]

= −δ(k − k′),
[
a

(2)
k , a

(2)†
k′
]

= δ(k − k′),[
a

(3)
k , a

(3)†
k′
]

= −δ(k − k′),
[
a

(4)
k , a

(4)†
k′
]

= δ(k − k′).
(3.14)

If the normalization of the modes is defined in a consistent manner using the Klein-Gordon

inner product (3.5), the oscillator commutation relations ought to imply the canonical

equal time commutation relations and vice versa. Indeed, we find

[Aµ(t, r),Πν(t, r′)] =

∫ +∞

0
dk
(
A

(2)
µ,kΠ

(2)ν
k

∗
−A(1)

µ,kΠ
(1)ν
k

∗
+ ((1, 2)↔ (3, 4))− c.c.

)
= iδµν δ(r − r′), (3.15)

which proves the consistency of normalizing modes with the Klein-Gordon inner product

(3.5).

Physical Hilbert Space

Having established the nature of the expansion of the most general quantum field (3.13)

satisfying the sourceless Maxwell equations (3.1) in the bulk of spacetime, we investigate

the influence of the Lorenz gauge constraint (2.6) on the Hilbert space of the quantum

theory. The states that survive this constraint make up the physical Hilbert space:

∇µA(+)
µ |ψ〉 = 0. (3.16)

7Note the minus signs which are appropriate for the oscillators of modes with negative norm.
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Using the explicit mode expansion of the field (3.13), this translates to∫ +∞

0
dk|ε|

[
φRk (x)

(
a

(1)
k + a

(2)
k

)
|ψ〉 − φLk (x)

(
a

(3)
k + a

(4)
k

)]
|ψ〉 = 0. (3.17)

Considering the fact that φRk and φLk represent mutually orthogonal sets, Lorenz gauge

constrains the physical space to states |ψ〉 satisfying

a
(2)
k |ψ〉 = −a(1)

k |ψ〉 , a
(4)
k |ψ〉 = −a(3)

k |ψ〉 . (3.18)

Introducing occupation numbers as n
(i)
k = a

(i)
k

†
a

(i)
k , the Lorenz gauge constraint imposes

〈φ|n(2)
k − n

(1)
k |ψ〉 = 0, 〈φ|n(4)

k − n
(3)
k |ψ〉 = 0. (3.19)

These constraints are solved by states of the form

|ψ〉 =
∏
k

(
a

(2)
k

†
+ a

(1)
k

†
)nk (

a
(4)
k

†
+ a

(3)
k

†
)mk

|0〉 . (3.20)

All of these states are null and are hence pure gauge which can be checked explicitly. In

terms of the field Aµ, the physical field configurations associated with the null Hilbert space

(3.20) are (residual) pure gauge:

Aµ = ∂µφ ∼ 0, (3.21)

with �φ = 0. The result is that in 1 + 1d Rindler Maxwell theory, the only state is the

vacuum state.

Hamiltonian

The Hamiltonian of the theory is

H =

∫
drH =

∫
dr

(
∂tAµ

δL
δ∂tAµ

− L
)
. (3.22)

Inserting the Lagrangian (2.5), this can be rewritten in the convenient form:

H =
1

2

∫
dre−2r [(∂tAr − ∂rAt) (∂tAr + ∂rAt) + (∂rAr − ∂tAt) (∂tAt + ∂rAr)] . (3.23)

Plugging in the field expansion (3.13) and using the normalization of the scalar modes∫
drφRk φ

R
k′
∗

=
1

8k
δ(k − k′),

∫
drφRk φ

L
k′
∗

= 0,

∫
drφLkφ

L
k′
∗

=
1

8k
δ(k − k′), (3.24)

we find

H =

∫ +∞

0
dkk

(
n

(2)
k − n

(1)
k + n

(4)
k − n

(3)
k

)
, (3.25)

which is the expected result. The Lorenz gauge constraint (3.16) directly implies the

vanishing of the Rindler Hamiltonian between physical states via (3.19): 〈ψ|H |ψ〉 = 0.

This is obviously the only possible result for a theory which only consists of the vacuum.
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3.2 Unruh Effect in Maxwell theory

In this subsection we derive the Unruh modes in 1 + 1 dimensional Maxwell theory and

calculate the Bogoliubov transformations linking the modes (3.11) to these Unruh modes.8

Introducing Minkowski light cone coordinates U = T − X and V = T + X, and

paying attention to the tensorial transformation of Aµ, the modes (3.11) are rewritten in

Minkowski coordinates as:

A
(1)R
µ,k =

ε

|ε|
√

16πω

(
−U

(
1

1

)
+

1

−U

(
1

−1

))
(−U)iωθ(−U),

A
(2)R
µ,k =

1

|ε|
√

16πω

(
−εU

(
1

1

)
− ε̄

−U

(
1

−1

))
(−U)iωθ(−U),

A
(3)R
µ,k = − ε̄

|ε|
√

16πω

(
1

V

(
1

1

)
+ V

(
1

−1

))
V −iωθ(V ),

A
(4)R
µ,k =

1

|ε|
√

16πω

(
ε

V

(
1

1

)
− ε̄V

(
1

−1

))
V −iωθ(V ),

(3.30)

where we introduced appropriate Heaviside functions to reflect the limited support of the

modes. The L-wedge modes are rewritten in a similar fashion. Following the standard

argument from scalar QFT, one can combine L- and R-modes in such a way that they only

8In the left Rindler wedge, the energy of a mode is defined as the eigenvalue of i∂τ , where τ is the proper

time of the Rindler observer. The relation between proper time τ and coordinate time t in the left wedge

is τ = −t. Consequently, the modes (as solutions of the equation of motion) are proportional to eiωt. From

the modes in the R-wedge (3.11), one finds the L-wedge modes as:

A
(i)L
k = A

(i)R
k

∗
. (3.26)

This results for example in:

A
(1)L
µ,k =

ε

|ε|
√

16πω

((
1

1

)
e2r +

(
1

−1

))
eiω(t−r). (3.27)

The inner product used in the L-wedge is defined as minus the R-wedge inner product. Indeed, the minus

sign is requires to account for the complex conjugation in (3.26) in order to obtain e.g.(
A

(1)L
µ,k , A

(1)L

µ,k′

)
= −δ(k − k′), (3.28)

which implies the correct oscillator algebra:[
a

(1)L
k , a

(1)L

k′
†]

= −δ(k − k′). (3.29)

In deriving this result we used the fact that in the left wedge the canonical conjugate momentum is defined

as Πµ = δL
δ∂τAµ

, where crucially τ is used instead of t.
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contain positive frequency Minkowski modes:9

U
(1)R
µ,k =

e
πω
2

√
2 sinhπω

(
A

(1)R
µ,k + e−πωA

(1)L
µ,k

∗)
, U

(1)L
µ,k =

e
πω
2

√
2 sinhπω

(
A

(1)L
µ,k + e−πωA

(1)R
µ,k

∗)
,

U
(2)R
µ,k =

e
πω
2

√
2 sinhπω

(
A

(2)R
µ,k + e−πωA

(2)L
µ,k

∗)
, U

(2)L
µ,k =

e
πω
2

√
2 sinhπω

(
A

(2)L
µ,k + e−πωA

(2)R
µ,k

∗)
.

(3.31)

We now associate oscillators u
(i)R
k and u

(i)L
k with these Unruh modes. The lowering op-

erators will annihilate the Minkowski vacuum. The relation between the Rindler and the

Unruh oscillators are the Bogoliubov transformations:

a
(1)R
k =

e
πω
2

√
2 sinhπω

(
u

(1)R
k + e−πωu

(1)L
k

†
)
, a

(1)L
k =

e
πω
2

√
2 sinhπω

(
u

(1)L
k + e−πωu

(1)R
k

†
)
,

a
(2)R
k =

e
πω
2

√
2 sinhπω

(
u

(2)R
k + e−πωu

(2)L
k

†
)
, a

(2)L
k =

e
πω
2

√
2 sinhπω

(
u

(2)L
k + e−πωu

(2)R
k

†
)
.

(3.32)

The Minkowski vacuum state is defined as the state that is annihilated by all Minkowski

annihilation operators. Since the Unruh modes are complete in the Minkowski Hilbert space

and since they have a well-defined sign of Minkowski frequency, the Minkowski vacuum is

equivalently defined as being annihilated by all Unruh annihilation operators:

u
(i)R
k |M〉 = 0, u

(i)L
k |M〉 = 0, i = 1, 2. (3.33)

The Unruh effect entails a thermal population of the Minkowski vacuum state, as per-

ceived by an accelerating observer. One way to make this statement explicit is to calcu-

late the Minkowski vacuum expectation value of the Rindler Hamiltonian. The R-wedge

Hamiltonian (3.25) decomposes into a U -dependent contribution (polarizations 1,2) and a

V -dependent contribution (polarizations 3,4). Using the oscillator commutation relations

for the Unruh creators and the definition (3.33) of the Minkowski vacuum we find:10

〈M |n(2)R
k − n(1)R

k |M〉 =
V

2π

2

e2πω − 1
. (3.34)

Adding the (3) and (4) contributions, the definition of the Rindler Hamiltonian (3.25)

implies

〈M |H |M〉 = 2
V

2π

∫ +∞

−∞
dk

ω

e2πω − 1
, (3.35)

where ω = |k|. This is twice the expectation value of the scalar Hamiltonian in the

Minkowski ground state discovered when deriving the scalar Unruh effect. The disturb-

ing feature is that this arises from the contributions of the nonphysical longitudinal and

timelike photon polarizations. In [47] it was demonstrated that the energy (3.35) does not

9We focus for simplicity on the (1)- and (2)-polarizations (the other polarizations are treated in exactly

the same way).
10V is the entire spatial Minkowski volume.
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represent a thermal particle density in Rindler (which is the interpretation of the scalar

Unruh effect) but instead is an addition to the Casimir energy. As mentioned in the In-

troduction, no such contribution is found when working e.g. in Weyl gauge or Coulomb

gauge. We conclude that the Casimir energy contribution (3.35) must be canceled by an-

other effect. Fortunately, as we demonstrate in Section 3.2, such a cancellation does happen

on account of a correct treatment of the Faddeev-Popov ghost fields. This restores gauge

invariance of the theory.

We argued in subsection 3.1 that the Lorentz gauge constraint (3.16) implies the van-

ishing of the expectation value of the Rindler Hamiltonian in physical states. The fact

that formula (3.35) does not satisfy this constraint is not a contradiction, as this is only a

constraint in the physical Rindler Hilbert space Hbulk,R ⊂ HR constructed by the R-wedge

observer, whereas the Minkowski vacuum in general contains states from the extended

Hilbert space HR.11 In [47], it was likewise demonstrated that |M〉 is not annihilated by

the R-wedge’s BRST operator, which represents only half of the Minkowski BRST operator.

Ghost Sector

The ghost fields arising in the gauge fixed action are irrelevant for a description of any

theory living only in a single Rindler wedge, as their presence was effectively taken into

account by imposing the Gupta-Bleuler constraint (3.16). What is less clear, is to what

extent this is true once we go to Minkowski coordinates that cover both Rindler wedges.

Recall that in the previous section we found a Casimir energy contribution due to non-

physical polarizations only. If we consider such effects, then there is a priori no reason for

us to rule out similar effects for the ghost fields. And indeed, in Appendix A we compute

the Casimir contribution of the ghost sector in the Minkowski vacuum to be

〈M |Hgh |M〉 = −2
V

2π

∫
dk

ω

e2πω − 1
. (3.37)

As anticipated, the ghost contribution looks thermal and exactly cancels the two bosonic

contributions due to the bosonic nonphysical and pure gauge modes. So we finally end up

with

〈M |H |M〉 = 0. (3.38)

Due to a total lack of any degrees of freedom, it immediately follows that the bulk en-

tanglement entropy across the horizon vanishes in the 1 + 1 dimensional Rindler theory:

SE = 0.

11To illustrate this, we can write down an expression for the squeezed state (i.e. the Minkowski vacuum

as an entangled state of L and R states):

|M〉 =
1√
Z(β)

∏
ω

∑
m,l

e−
β
2
ω(n(2)−n(1)) (−1)m

m! l!

(
a

(1)R
k

†)m (
a

(2)R
k

†)l
|R〉 ⊗

(
a

(1)L
k

†)m (
a

(2)L
k

†)l
|L〉 . (3.36)

Just as in scalar QFT, the Minkowski vacuum is a diagonally entangled state of L-and R-wedge states. The

entangling states on their own are nonphysical in the sense of (3.16).
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3.3 Boundary Conditions

In section 2 we discussed the importance of boundary conditions in Rindler space. Let us

therefore briefly reflect on the effect of imposing boundary conditions (2.2) on both the

gauge and ghost sector.

Maxwell Theory

The PMC horizon boundary conditions (2.4) in 1+1 dimensional Maxwell theory in tortoise

coordinates reduce to:

F t
r |∂M = 0, Ar|∂M = 0. (3.39)

Using the modes (3.11) we find

e−2rF
(1)
rt = e−2rF

(2)
rt = 2i|ε|φR,

e−2rF
(3)
rt = e−2rF

(4)
rt = 2i|ε|φL.

(3.40)

Again using the modes (3.11), and appreciating that the terms proportional to e2r drop out

on ∂M : r = −∞, the second boundary condition in (3.39) is observed to be redundant

to the first. This is by construction; an additional effective constraint on the modes at

the horizon would destroy polarizations, and as such would not be acceptable boundary

conditions: away from the horizon, the R-wedge theory is to be identical to the Minkowski

theory i.e. insensitive to the boundary. This is an explicit check that in 1 + 1 dimensions

the PMC (2.4) represents a good set of boundary conditions.

The boundary condition (3.39) forces us to recombine the exponentials φR/L into sines

and cosines. For this purpose modes on the same row can be recombined into the orthonor-

mal sets

A
(I)
µ,k =

1√
2

(
A

(1)
µ,k +A

(3)
µ,k

)
, A

(II)
µ,k =

1√
2

(
A

(2)
µ,k +A

(4)
µ,k

)
, (3.41)

A
(III)
µ,k =

1√
2

(
A

(1)
µ,k −A

(3)
µ,k

)
, A

(IV )
µ,k =

1√
2

(
A

(2)
µ,k −A

(4)
µ,k

)
. (3.42)

All results of sections 3.1 and 3.2 hold equally for these modes. Imposing (3.39) at r = r∗
discretizes the spectrum of the theory to

σD :=

{
k|k =

π(n+ 1/2)

r∗
, n ∈ Z

}
, (3.43)

for the modes A
(II)
µ,k and A

(III)
µ,k , and to

σN :=

{
k|k =

πn

r∗
, n ∈ Z

}
, (3.44)

for the modes A
(I)
µ,k and A

(IV )
µ,k . The quantum field subject to the boundary conditions

(3.38) is thus expanded as

Aµ =
∑
k∈σD

(
a

(II)
k A

(II)
µ,k + a

(III)
k A

(III)
µ,k + h.c

)
+
∑
k∈σN

(
a

(I)
k A

(I)
µ,k + a

(IV )
k A

(IV )
µ,k + h.c

)
.

(3.45)
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Thus, the effect of imposing boundary conditions is a discretization of the spectrum, which

turns the integrals in for example (3.35) into a sum. Eventually we will only be interested

in taking the physical limit r∗ → −∞ where the discrete spectrum becomes a continuum

with a well-defined measure. This will be discussed in the more relevant case d > 1 in

section 5.1.

Ghost Theory

Horizon boundary conditions in Rindler (2.2) are to be imposed on any theory, including

the FP ghosts. The horizon boundary conditions on the FP ghost fields read:

∂rc|∂M = 0, ∂r c̄|∂M = 0. (3.46)

Comparing with the above discussion, the expansion of the ghost fields (A.3) in orthogonal

modes shows that a similar recombination of the ghost modes into sines and cosines is

required by the boundary conditions (3.46). Consequently, exactly the same spectra (3.43)

and (3.44) appear in the ghost field expansion.

This shows the integral over k in (3.37) is discretized in exactly the same way as is

the integral over k in (3.35), such that the vanishing of the total Rindler Hamiltonian in

the Minkowski vacuum state (3.38) remains exact after including the effect of the horizon

boundary conditions (2.2).

3.4 Summary

We have analyzed Maxwell theory in 1 + 1 dimensional Rindler spacetime in Lorenz gauge.

After presenting the canonical structure of the theory, we discussed the Unruh effect. Upon

scrutinizing the ghost sector, it was found that a perfect cancellation between FP ghosts

and two unphysical polarizations of the Maxwell field takes place, even when the horizon

boundary conditions in Rindler are taken into account.

4 Edge Sector in 1 + 1

After analyzing the bulk sector in 1 + 1 dimensions we turn to an analysis of the edge

sector. As explained in section 2, edge states are associated with the horizon DOF (2.10).

In this section, we work in Rindler coordinates.

The R-wedge bulk theory which saturates the CCR (3.15) in the R-wedge, violates through

the constraints (2.2) the horizon algebra (2.15):[∫
C
A,Φ∂Σ

]
= iθ(C ∩ ∂Σ), (4.1)

or in local fields

[Aρ(ρ),Πρ|∂Σ] = iδ(ρ). (4.2)

As discussed in section 2.1, it is natural to expect that the edge mode sector is contained

in the ω = 0 static sector of the theory. To confirm this we impose (4.1) on the zero-mode

sector and investigate the resulting Hilbert space.
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4.1 Canonical Quantization

The ω = 0 sector of the solution space of the EOM (2.8) and the transversality condition

(2.6) is:

At = ctρ
2 + dt, Aρ =

dρ
ρ
. (4.3)

The field strength is F ρt = −2ct
ρ , hence:

Πρ = −2ct. (4.4)

The Minkowski electric field is denoted as q and equals q := FTX = −2ct. Thus the

zero-modes sector contains constant electric field solutions, in line with (2.10).

For future convenience we redefine the expansion coefficient in (4.3):

Aρ =
dρ
ρ

= −a∂ρ
(

ln ρ

ln ε

)
. (4.5)

Clearly, a labels the pure gauge zero mode sector. In the limit ε→ 0+ the function between

brackets behaves as

lim
ε→0+

ln ρ

ln ε
=

{
1, ρ = 0,

0, ρ 6= 0.
(4.6)

This shows that the ε→ 0+ limit of (4.9) is

Aρ = aδ(ρ). (4.7)

The quantity a =
∫
dρAρ represents the expansion coefficient of a pure gauge mode which

exponentiates to the radial Wilson line sourced, and localized, on the horizon. The zero

mode sector is thus:

Φ = q,

∫
C
A = a. (4.8)

Edge quantization is performed by imposing the horizon algebra (4.1) on (4.8):

[a, q] = i. (4.9)

The Wilson line in 1 + 1 dimensions is WE = eiEa, this agrees with (2.15):

[Φ,WE ] = EWE . (4.10)

A state with constant electric flux E is obtained by inserting a Wilson line WE in the

vacuum

|E〉 =WE |0〉 . (4.11)

Indeed, q |E〉 = E |E〉. These are the edge states of the 1 + 1 dimensional theory. This is

the first explicit example of the discussion on edge states in section 2.
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The boundary Hamiltonian is:12

H =

∫
dρ
√
−g
(
−1

2
FρtF

ρt

)
=

(∫
ρdρ

)
E2

2
= V
E2

2
, (4.12)

such that

Ĥ |E〉 = V
E2

2
|E〉 . (4.13)

The constant nature of the edge state electric flux profile in 1 + 1 dimensions implies a

volume divergence in their energy. This shows that the edge state configurations do not

contribute to thermodynamic quantities in Rindler, as their thermodynamic weight e−βH =

e−βV
E2

2 vanishes identically. Note that equivalently we can construct the eigenspace of the

a operator by working on the vacuum |a = 0〉 as:

|χ〉 := e−iχq |a = 0〉 , a |χ〉 = χ |χ〉 . (4.14)

The q eigenspace is more natural in the present context since it diagonalizes the boundary

Hamiltonian. Since a and q do not commute, summing over one of the sets of boundary

DOF in (2.10) implies a summation over the other set. This is a manifestation of the

on-shell equivalence of the transversality condition and Gauss’ law.

4.2 Gluing Rindler Wedges

We discussed in section 2 how both Rindler wedges are glued together in general. Here we

apply this to our specific example. Transforming the R-wedge zero mode expansion (4.3)

to Minkowski coordinates, one obtains

AT = ctX +
1

ρ2
(dtX − dρT ) ,

AX = −ctT +
1

ρ2
(dρX − dtT ) ,

(4.15)

for |X| > |T | and X > 0.

In the (a priori completely independent) L wedge, there is a similar expansion, with

similar operators

Φ = q̄,

∫
C
A = ā. (4.16)

that can be analogously transformed to Minkowski coordinates resulting in identically the

same expressions (4.15), but this time valid in the region |X| > |T | and X < 0.

12The canonical Noether Rindler Hamiltonian is H = −V E
2

2
, with the opposite sign. This wrong sign is

cured by defining the stress tensor directly from the Maxwell action S as

Tµν ≡ − 2√
−g

δS

δgµν
,

The improved Hamiltonian receives an additional contribution +V E2 to result in (4.12).
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The most general combination of L-wedge and R-wedge zero-modes does not result in

a valid solution of the free Maxwell equations in Minkowski, as the electric field and the

pure gauge mode is constrained by (2.10) to match on the horizon:

q = q̄, a = ā. (4.17)

In other words, imposing Gauss’ law on physical states constrains the expansion of a general

physical Minkowski edge state to the form:

|ψ〉 =
∑
E
f(E) |E〉L ⊗ |E〉R =

∑
χ

g(χ) |χ〉L ⊗ |χ〉R , (4.18)

such that Hbulk ⊂ Hedge,L ⊗ Hedge,R is the diagonal combination, introducing maximal

entanglement between L-and R-wedge edge states, conform (2.23).

The elementary operators are extended trivially into the full Hilbert space, as e.g.

q̄ → q̄ ⊗ 1, q → 1⊗ q. Electric fields are created by the continuous Wilson line operator

WE :=WE ⊗WE (4.19)

and measured by either q or q̄. Due to the matching, the latter is a gauge invariant operator.

Note that the boost operator B = HR −HL
13 commutes with the Wilson line operator on

physical states

[B,WE ] = (q − q̄)V EWE = 0, (4.20)

such that adding electric flux retains the boost-invariance of the state, thus making these

flux states admissible states for construction of the Minkowski vacuum.

4.3 Minkowski Vacuum

Next we explore the option of entanglement in the Minkowski vacuum due to the edge

states with Hamiltonian (4.16).

Path Integrals

We will use the Euclidean path integral formalism to define wavefunctionals and the rele-

vant states in the theory. Let us first remind the reader how path integrals in this (free)

theory are computed. We present the results using electromagnetic duality, which leads to

an immediate final answer for path integrals with possible Wilson loop insertions.

13τ = −t in the L-wedge.

– 23 –



For Abelian gauge theory, in D dimensions, the path integral on a compact manifold

(without insertions) can be dualized as follows

Z =

∫
[DA] e−

1
2

∫
dA∧∗dA

=

∫
[DA] [DF ] [Dλ] e−

∫
1
2
F∧∗F+λ∧(F−dA)

=

∫
[DF ] [Dλ] δ(dλ)e−

∫
1
2
F∧∗F+λ∧F

= det(d)−1
∫

[DF ] [Df ] e−
∫

1
2
F∧∗F+df∧F

∼
∫

[Df ] e−
∫

1
2
df∧∗df . (4.21)

In the first line, a Lagrange multiplier λ is introduced. In the second line, A is integrated

out. In the third line, λ = df is used, and in the final line F is integrated out, and a field-

independent determinant factor is dropped. If A is a p- form, F is a p+ 1-form, and λ is a

D− p− 1-form. This is EM duality exchanging a p+ 1-form field strength for a D− p− 1-

form field strength. The situation we are interested in is a 1-form in 2 dimensions. For

D = 2 and p = 1 the last line should be changed; λ is now a scalar (0-form) that satisfies

∂µλ = 0. On a compact manifold this is solved by λ = E , a constant, the electric field. So

Z =

∫
dEe−

1
2

∫ √
gE2

=

∫
dEe−A

E2

2 . (4.22)

The area-preserving diffeomorphism invariance of 2d Yang-Mills (see e.g. [56][57]) is very

explicit here, and the path integral over A has been traded into one over the electric field

E , which turns out to be an ordinary integral.14

Note immediately that, in terms of the spectrum discussed so far, the partition function

reduces to an integral over only the zero mode sector.

When cutting open the path integral, and specifying a fixed value of E on the boundary

curve (as will be done in the next subsection), one uses the same expression (4.22), but

without the E-integral (Figure 4). On a non-compact manifold, there is no non-trivial so-

=S
E EA1

A2

A

Figure 4: Cutting open a path integral along a curve, requires summing over the interme-

diate value of E . In formulas: Z =
∫
dEe−A1

E2

2 e−A2
E2

2 . Fixing the value of E for a manifold

with boundary gives Z(E) ∼ e−
A1
2
E2

.

14Note that this is the solution for any topology of the 2d manifold, we are not restricting to e.g. a disk

or a sphere.
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lution, and E = 0. The path integral becomes trivial. In a theory with matter, this integral

will turn into a sum due to the index theorem (cocycle condition on the wavefunction).

When including Wilson loop operators in the path integral, the modification arises

when integrating out A. The scalar λ now is determined by

∂µλ =
∑
i

e

∮
Ci
dzµδ(z − x), (4.23)

which is solved by setting λ = E + e
∑

i θ(Ci), where the θ is a loose notation for being

either outside or inside the loop. The electric field jumps when crossing the loop by an

amount equal to e. A simple example is a purely spatial Wilson line threading the entire

spatial axis (as discussed in (4.24)). Insertion of such a Wilson lineWe in the path integral

that generates a certain state, adds e to the electric flux in said state. E.g. on the thermal

state:

We |Ψ〉 =We
1

Z

∑
E
e−A

E2

2 |E〉L ⊗ |E〉R =
1

Z

∑
E
e−A

E2

2 |E + e〉L ⊗ |E + e〉R . (4.24)

Minkowski Wavefunctionals

Next, we construct the wavefunctionals of the relevant states. Consider the path integral

on a strip of total Euclidean time T , evolving from an initial field Ei(x) to the field Ef (x)

(see Fig. 5 left). This is written as

T

X

REf(x)

T

X

REf(x)

Ei(x)

-T

Figure 5: Volume-regularized path integral. The blue semi-disk and the red rectangle

have equal area, and hence the final state can be constructed using both regions.

Z [Ei, Ef ;T ] = 〈Ef , 0| Ei,−T 〉 =
∑
n

Ψn [Ei(x)]∗Ψn [Ef (x)] e−EnT , (4.25)

where {Ψn} forms a complete set of eigenfunctionals of the Hamiltonian. The wavefunc-

tionals Ψ are constrained by Gauss’ law such that Ei(x) = Ei and Ef (x) = Ef . The

Hamiltonian for those field configurations is that of a free particle H =
∫
dx E(x)2/2 such

that the eigenbasis is simply the electric field basis Ψn [E(x)] ∼
∏
x δ(E(x) − En), with a
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proportionality factor independent of n. To prepare the wavefunctional for the field E at

T = 0 one (path) integrates (4.25) over the initial field configurations Ei

ΨT [E ] =

∫
[DEi]Z [Ei, E ;T ] , (4.26)

such that

ΨT [E ] =
∑
n

Ψn [E ] e−EnT ∼ e−
E2

2
LT = e−A

E2

2 , (4.27)

where the normalization was left out. The result is a Gaussian distribution centered around

E = 0, or a thermal superposition of wavefunctionals that have a fixed electric field E . Tak-

ing T to infinity, (4.27) reduces to the ground state wavefunctional which has vanishing

electric field. Indeed, Ψ∞[E ] = δ(E).

It is possible to describe this same wavefunctional from the perspective of entanglement be-

tween L- and R-states. We thereto deform the integration region using the area-preserving

diffeomorphism into a circular region,15 which for convenience is chosen to be just as wide:

L = 2R (see Fig. 5 right). The wavefunctional (4.27), which is due to the area preserving

diffeomorphism unaltered in this process, can now alternatively be written as

ΨT [E ] = (〈E|L ⊗ 〈E|R) |Ψ〉 ∼ 〈E| e−πH |E〉 , (4.28)

where angular evolution is generated by the zero-mode Rindler Hamiltonian (4.12). This

Hamiltonian generates a thermal sum at inverse temperature 2π, in the sense that the

reduced density matrix of the state |Ψ〉 defined as ρR = TrL |Ψ〉 〈Ψ| has the property

〈E| ρR
∣∣E ′〉 = 〈E| e−2πH

∣∣E ′〉 = δEE ′e
−πR

2

2
E2

2 . (4.29)

The state associated with the wavefunctional (4.27) can thus be expanded as

|Ψ〉 =
1

Z

∑
E
e−

πR2

2
E2

2 |E〉L ⊗ |E〉R , (4.30)

and is a diagonally entangled state of L-and R-wedge zero mode states.

One might naively argue that the procedure described above prepares the finite volume

Minkowski vacuum. However, the Minkowski vacuum is only obtained in the limit T →
∞ of (4.27). The area over which one needs to path integrate to obtain this vacuum

wavefunctional is shown in figure 6. The total area of this path integral diverges, even

when preparing the vacuum of a volume-regularized theory.

Since the area-preserving diffeomorphism ensures the final thermal sum only depends

on this area, the Minkowski state reduces to just the vacuum product state:

|M〉 = |0〉L ⊗ |0〉R , (4.31)

15In this process the total area over which is path integrated in preserved, such that

A = LT =
1

2
πR2.
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T

X

REf(x)

Figure 6: Volume-regularized path inte-

gral. The vertical strip extends all the way

to −∞ making the area also infinitely large.

T

X

RE

We2

We1

A2A1

Figure 7: Example of a general Euclidean

path integral with Wilson loop and line in-

sertions.

independent of any spatial volume regularization. This same argument generalizes imme-

diately to 1 + 1 dimensional non-Abelian Yang-Mills theory, as only the area-preserving

diffeomorphism has been used.16

The simple expression (4.31) for the Minkowski vacuum state (only considering the zero

modes) implies that the zero-mode contribution to the Rindler entropy vanishes. Combin-

ing this with our previous result from section 3.2, we find that the total entanglement

entropy of gauge fields in 1 + 1 dimensional Rindler vanishes SE = 0, even when a volume

regularization is applied to deal with the volume divergence in the zero mode energy (4.13).

Note that the zero mode sector discussed in this section is identical to the k = 0 sector

of the edge mode theory discussed in section 6. As discussed in this section, these constant

flux solutions are non-normalizable and therefore do not contribute to the thermodynam-

ics. In fact, dropping the possibility of volume regularization, they do not even represent

admissible solutions since they do not vanish at spatial infinity.

4.4 Summary

The static sector of 1+1 dimensional Maxwell theory in Rindler spacetime leads to constant

electric field solutions. As these carry infinite energy in infinite space, they are irrelevant

for thermodynamic consideration. If one however regularizes space with periodic boundary

conditions, this sector is present and represents the edge sector. The Minkowski vacuum

has no such fields, and is completely trivial in terms of left and right Rindler wedges.

16For completeness, one can generalize the above construction to arbitrary Wilson loop and Wilson line

insertions to produce other states. An example is given in Figure 7, where the path integral prepares the

wavefunctional:

Ψ [E ] ∼ e−
(E−e1)2

2
A1e−

(E−e1−e2)2

2
A2 (4.32)

Upon taking A1 → +∞, this state becomes an electric field eigenstate:

Ψ [E ] ∼ δ(E − e1). (4.33)
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The main reason for this outcome is the constant electric flux profile associated with

the edge states, pushing us to consider higher dimensions where zero modes with nontrivial

spatial electric flux profiles exist.

5 Bulk Maxwell Theory in d+ 1

In this section we construct the R-wedge physical bulk Hilbert space in d+ 1 dimensions.

Defining elementary scalar modes:17

φω,k =

√
sinh(πω)

(2π)
D−2

2 π
Kiω(kρ)eik·xe−iωt, (5.2)

solving �φ = − 1
ρ2∂

2
t φ+ 1

ρ∂ρ(ρ∂ρφ)− k2φ = 0, and introducing unit vectors along the d+ 1

directions, as

e(0)
µ = (ρ, 0,0) , e(1)

µ = (0, 1,0) , e(k)
µ =

(
0, 0,

k

k

)
, e(a)

µ = (0, 0,na) (5.3)

normalized as e(α) · e(β) = ηαβ = diag(−,+d), one can solve the bulk equations of motion

∇µ∇µAν = 0 by the orthogonal set of modes [24]:

A
(1)
µ,ωk =

1

k

(
ρ∂ρ,

1

ρ
∂t,0

)
φω,k =

1

k

(
e(0)
µ ∂ρφω,k + e(1)

µ

1

ρ
∂tφω,k

)
,

A
(0)
µ,ωk =

1

k
(∂t, ∂ρ,0)φω,k = A

(G)
µ,ωk −A

(k)
µ,ωk,

A
(k)
µ,ωk = ie(k)

µ φω,k,

A
(a)
µ,ωk = ie(a)

µ φω,k.

(5.4)

These span the solution space of the equations of motion, normalizable as ρ → +∞, but

with no boundary conditions imposed at ρ = 0.18 In a more naive treatment, one takes

these modes as is to construct the bulk Rindler Hilbert space. The quantum field where

horizon boundary conditions and constraint equations are neglected can thus be expanded

as:

Aµ =
∑
ω,k

α̂
(1)
ωkA

(1)
µ,ωk + α̂

(0)
ωkA

(0)
µ,ωk + α̂

(k)
ωkA

(k)
µ,ωk + α̂

(a)
ωkA

(a)
µ,ωk + (hc). (5.5)

The continuous modes are normalized in the Klein-Gordon norm, imposing oscillator com-

mutation relations.19 For example:[
α̂

(1)
ωk, α̂

(1)†
ω′k′
]

= δ(ω − ω′)δ(k− k′). (5.6)

17x denotes all coordinates parallel to the horizon. These modes are normalized as∫ +∞

0

dρ

ρ
dxφω,k(ρ,x)φω′,k′(ρ,x) =

1

2ω
δ(ω − ω′)δk,k′ . (5.1)

18The structure of this solution space is made more manifest by working in tortoise light-cone components.

We discuss this for tensor field theories in section 7.2.
19See also appendix B.
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The bulk Rindler Hilbert space is obtained by imposing the boundary conditions (2.2) on

this expansion, which constrains the range of ω in function of k. The range of k depends

on transverse boundary conditions, which will not be specified.

The set of modesA
(G)
µ,ωk = 1

k∇µφω,k are pure gauge and orthogonal to the setsA
(1)
µ,ωk, A

(a)
µ,ωk.

The modes A
(k)
µ,ωk represent longitudinal modes that violate Lorenz gauge:

∇µA(k)
µ = −kφ 6= 0. (5.7)

The other sets of modes do satisfy the transversality constraint. The physical R-wedge

bulk Hilbert space {|ψ〉} is then obtained by imposing α̂
(k)
ωk |ψ〉 = 0 and by quotienting out

the null vectors.

The fact that ω and k are unrelated a priori is a consequence of a symmetry [27]. The

spatial scale transformation ρ → aρ, x⊥ → ax⊥ leads to a scale transformation in the

full Rindler metric: ds2 → a2ds2. It maps a hyperbolic trajectory into another one. This

transformation is a symmetry of the Hamiltonian, provided one transforms the field itself

as well using its standard scaling dimension. An individual mode transforms as:

Kiω(kρ)eik·xe−iωt → Kiω(akρ)eiak·xe−iωt, (5.8)

mapping ψω,k → ψω,ak, with the same frequency. This, combined with rotational invari-

ance, demonstrates that for any given ω, any choice of k is a valid mode solution, leading to

an infinite degeneracy of energy eigenstates, and the lack of a dispersion relation. Written

in tortoise coordinates, this is merely translation invariance in r.

This discussion applies equally to tensor field modes (to be discussed around equation

(7.20)), mapping modes with k into modes with ak. Inserting a brick wall (or any other

boundary condition) at ρ = ε breaks this symmetry and leads to a dispersion relation

ω(k).20

5.1 Implementation of Boundary Conditions

The bulk R-wedge theory is defined to be subject to PMC boundary conditions:

nµ
∂L

∂∂µARν

∣∣∣∣
∂M

(x) = 0, ν = t, i

Aν |∂M(x) = 0, ν = ρ.

To make sense of these boundary conditions, we regularize the boundary surface from ρ = 0

to ρ = ε, and take the ε→ 0 at the very end. In terms of the field strength the boundary

conditions read:

Πρ|∂M(x) = 0, ρFρi|∂M(x) = 0, Aρ|∂M(x) = 0.

20String wave packets spread out in tortoise coordinates (as first argued by Susskind [58], see also [59, 60]),

demonstrating that their dynamics breaks this symmetry. For each higher spin field in the spectrum

however, the symmetry is intact.
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In 3 + 1 dimensions, these reduce to:

E⊥|∂M(x) = 0, ρB‖|∂M(x) = 0, Aρ|∂M(x) = 0 (5.9)

E and B being the local field perceived by fiducial observers. Note the metric factor in the

magnetic boundary condition. On the boundary ∂M : ρ = 0 this merely implies regularity

of the transverse magnetic field. Since regularity is a sensible constraint, this presents

with an intuitive explanation for why there are no edge modes associated with the ν = i

boundary conditions.21

Appendix B shows the mode decomposition of the field strength. It follows that the

boundary conditions (5.9) that modes A
(1)
µ,ωk satisfy the boundary conditions if the associ-

ated Macdonald wavefunctions satisfy Dirichlet boundary conditions:

φω,k|ρ=ε = 0. (5.10)

Likewise modes A
(a)
µ,ωk satisfy the Rindler horizon boundary conditions if the associated

Macdonald wavefunctions satisfy Neumann boundary conditions:

ρ∂ρφω,k|ρ=ε = 0. (5.11)

The same is true for the modes A
(k)
µ,ωk and A

(G)
µ,ωk. The relevant information about the

physical R-wedge bulk Hilbert space is thus captured in the Dirichlet and Neumann spectra:

σD := {ω|Kiω(kε) = 0}, and σN := {ω|ρ∂ρKiω(kε) = 0}. (5.12)

The mode expansion of the physical part of the bulk quantum field Aµ (5.5) becomes:

Aµ(t, ρ,x) =
∑
k

(∑
ω∈σD

α̂
(1)
ωkA

(1)
µ,ωk +

∑
ω∈σN

∑
a

α̂
(a)
ωkA

(a)
µ,ωk

)
+ (hc). (5.13)

Discretization of the spectrum as (5.12) does not affect the orthonormality and com-

pleteness of the solution space. In fact, orthonormality on the solution space of a set of

differential equations requires an appropriate set of boundary conditions on its boundary.

For Maxwell theory, this boils down to choosing for each polarization (0), (1), (a), (k) sep-

arately either Neumann of Dirichlet boundary conditions. The specific choice (5.13) are

the PMC boundary conditions, which we argued in section 2 to be the natural ones. Or-

thonormality and completeness of the discretized sets (5.12) are readily proven from the

continuous relations upon replacing:∫
dω → lim

ε→0

∑
ω

∆ε, δ(ω − ω′)→ lim
ε→0

δωω′

∆ε
, φk,ω →

√
∆εφk,ω, (5.14)

21More explicitly, the statement remains that edge modes are associated with the boundary DOF associ-

ated with constraint equations in the bulk; a claim that is confirmed by matching of the partition function

with the replica trick partition function for various theories, see sections 6 and 7. The absence of edge modes

associated to tangential magnetic fields is explained more rigorously from a path integral perspective in

[50].

– 30 –



where ∆ε is the regularized energy separation between two consecutive modes in the dis-

cretized spectrum. For example, the completeness relation is:

lim
ε→0

∑
ω

∆ε 2ω sinhπω

π2
Kiω(kρ)Kiω(kρ′) = ρδ(ρ− ρ′). (5.15)

The modified Bessel function has the followings asymptotics:

Kiω(x) ≈ 1

2
Γ(iω)e−iω ln x

2 + cc, x� 1, Kiω(x) ≈
√
π

2

e−x√
x
, x� 1 (5.16)

and exhibits uncontrollable oscillations near ρ ≈ 0. For kε� 1 the spectra (5.12) become:

σD := {ωn, |ωn =
πn

ln 2
kε

}, and σN := {ωn|ωn =
π(n− 1/2)

ln 2
kε

}, n ∈ N0. (5.17)

These kε� 1 spectra are equidistant, with energy difference:

0.0 0.2 0.4 0.6 0.8

1

2

3

4

5

Figure 8: K0(x) is a monotonically de-

creasing function.

5 10 15 20
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-2. ´ 10-6

-1. ´ 10-6

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

Figure 9: Kiω(x) oscillates wildly as ∼
eiω ln(x) for small x.

∆ε =
π

ln
(

2
kε

) . (5.18)

Obviously the physics of the system is only accurately described upon taking ε → 0.

In this situation the bulk theory simplifies: the spacing between different solutions goes

to zero limε→0 ∆ε = 0, such that the spectrum behaves effectively as a continuum (Figure

10). All frequencies appear in the ε → 0 spectra (5.17), with the exception of the zero

mode ω = 0. For this zero-mode the small-ε approximation (5.16) is not valid, since K0(x)

displays fundamentally different behavior near the origin compared to Kiω(x). The latter

oscillate out of control whereas the former blows up as K0(x) = ln 2
kx . Such a wavefunc-

tion cannot satisfy the Dirichlet (5.10) nor the Neumann (5.11) boundary condition. The

associated quantum states are therefore not present in the bulk Hilbert space of the theory.

The bulk theory (5.13) consists of one set of Dirichlet scalar field DOF and d − 2 sets

of Neumann scalar field DOF. In terms of partition functions, there is a subtle difference

between a Neumann scalar DOF and a Dirichlet scalar DOF. In appendix C we prove that:

ZD
ZN

=
∏
k

(
β

ln 2
kε

) 1
2

. (5.19)
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Figure 10: Frequency spectrum Kiω(ε) = 0 as ε → 0. The spectrum becomes more and

more dense, with the exception of ω = 0, which is never included in the physical spectrum

with zero electric field on the horizon.

The bulk entropy of Maxwell theory is 22

Sbulk = (d− 1)Sscalar + (∆S)DN . (5.20)

5.2 Summary

The theory splits in a bulk piece with vanishing electric flux on the horizon which is

regularized to ρ = ε, and an edge piece that accounts for the non-zero flux. The edge

theory is accounted for in the zero-mode (ω = 0) sector. The bulk photon behaves for

thermodynamical purposes as d−1 scalars, of which one has Dirichlet boundary conditions

and the other d− 2 have Neumann boundary conditions.

6 Edge Sector in d+ 1

6.1 Canonical Quantization

Quantization of the edge sector is achieved in the same way as in 1 + 1 dimensions. We

introduce the zero mode DOF associated with pure gauge modes and radial electric flux

and impose on the resulting expansion the commutator:[∫
C
A,ΦΩ

]
= iθ(C ∩ Ω), (6.1)

with Ω ⊂ ∂Σ. This ensures the Wilson line algebra (2.15) is valid throughout R1,d.

The field expansion consisting of the pure gauge and radial flux ω = 0 modes is:

A = −
∑
k

(
1

k
qkA

(1)
k + kakA

(G)
k

)
, (6.2)

where A
(1)
k and A

(G)
k are the ω = i∂t = 0 solutions (5.4), with normalization of φk de-

fined below and the expansion coefficients defined in a convenient manner. The relevant

components for the commutator (6.1) are:

Aρ = −
∑
k

ak∂ρφk, Πρ =
∑
k

qkφk (6.3)

22Sscalar := SN , see also the discussion at the end of section 6.
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Hermiticity of these fields implies q−k = q†k and likewise for a−k. The zero-mode scalar

solution is:

φk(ρ,x) =
K0(kρ)

K0(kε)
eik·x, (6.4)

normalized such that |φk(ε)| = 1. In the limit ε→ 0+, one finds

φk(ρ,x) → (1− θ(ρ)) eik·x, (6.5)

∂ρφk(ρ,x) → −δ(ρ)eik·x, (6.6)

localizing this function on the horizon ρ = ε (Figure 11). The radial line integral of A over

a curve entering the R-wedge at position x is:

A(x) :=

∫
C
dxµAµ =

∫ +∞

0
dρAρ =

∑
k

eik·xak, (6.7)

and the radial flux becomes

Πρ(ρ,x) =
∑
k

φk(ρ,x)qk →
∑
k

(1− θ(ρ)) eik·xqk := (1− θ(ρ))Φ(x), (6.8)

and is supported only on the horizon in the ε → 0+ limit, as anticipated in section 2.23

This identifies the operators ak and qk as the Fourier expansion coefficients of respectively

the residual gauge configuration on the horizon, and the electric flux Φ(x) through the

horizon and thus as the edge DOF (2.10).24

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Edge state mode function φk(ρ) as ε → 0+. ε decreases from top to bottom.

The profile gets squeezed on the horizon as ε decreases.

From (6.1) we find

[A(x),Φ(y)] = iδ(x− y) =
∑
kk′

eik·xe−ik
′·y[ak, q−k′ ], (6.9)

such that:

[ak, q−k′ ] = iδk,k′ . (6.10)

23Φ(x) is the local flux density through the horizon and integrates over Σ to ΦΣ.
24This motivates the choice of normalization in (6.2).
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A state with horizon electric flux Φ(x) =
∑

k εke
ik·x is defined as

|Φ〉 =
∏
k

eiεka−k |0〉 . (6.11)

Indeed,

Φ̂(x) |Φ〉 =
∑
k

qke
ik·x |Φ〉 = Φ(x) |Φ〉 . (6.12)

Reality of the flux profile requires ε∗k = ε−k. This also sets the normalization 〈Φ| Φ〉 = 1.

Equivalently we can write qk |εk〉 = εk |εk〉.
Again, analogously, one could work with the conjugate operators, and write a state

with holonomy profile:

|χ〉 =
∏
k

e−iχkq−k |ak = 0〉 , χ(x) =
∑
k

χke
ik·x. (6.13)

This makes contact with the description of edge states as specified by Wilson line punctures

on the entangling surface: one effectively integrates over all such profiles. This description

is similar to the interpretation in Chern-Simons theory given in the Introduction.

It is instructive to compare our treatment of edge states with the general framework

of Donnelly and Freidel [46]. There it was proposed to extend the canonical variables of

Yang-Mills theory by the boundary gauge transformations and their conjugates: the normal

electric field on the boundary, both of which are only supported on the boundary surface.

This was deduced by demanding gauge invariance of the presymplectic potential. In our

discussion, we imposed Lorenz gauge throughout the bulk. Time-independent residual

gauge transformations are of the form A
(G)
µ = ∂µχ with χ(ρ,x) = limε→0

∑
k χk

K0(kρ)
K0(kε) e

ik·x

such that �χ = 0. These gauge transformations are localized only on the horizon: χ(ρ,x) =

(1 − θ(ρ))χ(x). Thus we reach the same conclusion: we introduce pure gauge degrees of

freedom on the boundary ak as new canonical variables, conjugate to the horizon electric

flux.

6.2 Punctures and Electrostatics

The total radial electric field in the R-wedge in Rindler coordinates, measured by both

fiducial and inertial observers is:

E(t, ρ,x) = (1− θ(ρ− 0+))Φ(x) + Ebulk(t, ρ,x)

=
∑
k

qkφk(ρ,x)−
∑
k

kα
(1)
ω,kφω,k (6.14)

=
∑
k

qk
K0(kρ)

K0(kε)
eik·x −

∑
ω∈σD,k

αIω,kk

√
sinh(πω)

(2π)
D−2

2 π
Kiω(kρ)eik·xe−iωt.

The second term satisfies Ebulk|∂M(x) = 0, while the first term describes the (Rindler time-

independent) electric flux through the horizon (Figure 12). Upon including the zero-mode

piece, an arbitrary Minkowski field with E(0) 6= 0 can be produced by combining both
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Figure 12: Electric field profile in

Minkowski space producible by Rindler

bulk modes only. The Rindler bulk modes

are only able to generate a profile with

E(0) = 0.

EE

E E

EE

X=0

Figure 13: Electric field on the horizon

due to insertion of a singe Wilson line punc-

ture from the L-wedge and R-wedge per-

spective. From Minkowski perspective, only

the transverse flux exists.

Rindler wedges. This lack of continuity of E(0) when described using Rindler modes is

explained by the pathological nature of Kiω(kρ) near ρ ≈ 0.

Analogously, the radial line integral of Aµ on a curve C piercing the horizon only at

x ∈ ∂Σ is:

AC(x) = A(x) +Abulk
C (x). (6.15)

with A(x) the edge contribution defined in (6.7). More generally, denote the set of point

where a generic curve C goes out of the R-wedge as {xout}, and similarly define {xin}.
Define the puncture operator

Vq(x) := eiqA(x). (6.16)

From the R-wedge perspective this operator acts as the insertion of a finite U(1) charge q

at position x. This can be further illustrated by comparing (6.14) and (6.15) with the field

of a point charge on the horizon as calculated in [61]. We can now decompose the product

of Wilson lines along Ci, WCi , as

WCi =

 ∏
x∈{xout}

∏
y∈{xin}

Vq(x)V−q(y)

WCibulk, (6.17)

where WCbulk is constructed using Abulk
C (x).

The expression (6.17) allows us to prove (2.29) explicitly for Maxwell theory. Indeed,

if WCi and WC̃i have the same set of oriented punctures, we get:

WCi(|0〉⊗|bulk〉) =

 ∏
x∈{xout}

∏
y∈{xin}

Vq(x)V−q(y) |0〉

⊗|bulk〉 =WC̃i(|0〉⊗|bulk〉). (6.18)

This expression proves that the edge sector - a generic configuration of U(1) charges on the

boundary - is generated by inserting all possible Wilson line punctures in the edge vacuum.

This is precisely the same feature as encountered in the CS edge sector discussed in section

2.
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The horizon punctures also create electric flux tangential to the horizon from an R-

wedge perspective. This can be concluded directly from the sourced Maxwell equations,

or from the zero mode expansion Ei =
∑

k i
ki
k2 qk∂ρφω,k. From the Minkowski perspective,

there is no such tangential electric flux, due to an equal but opposite L-wedge contribution.

This can be appreciated from the definition f(0) := f(0+)+f(0−)
2 for the value of a function

on a dividing surface. The situation is shown in figure 13. The edge states only represent

transverse horizon flux Φ(x), as they should: the vanishing of tangential horizon electric flux

created by horizon punctures is required for consistency with (2.15), which says essentially

that a Wilson line creates an electric field line.

6.3 Spectrum and Thermodynamics

In this final subsection concerning the edge sector, we calculate the energy spectrum and

partition function. The computation we present is very similar to the one in [41][42], but

done here in an operator context.

The starting point is the edge mode Hamiltonian. The improved Hamiltonian is:

Hedge =

∫
dxdρρ

(
1

4
FµνFµν − F tµFtµ

)
. (6.19)

Retaining only the relevant part, this simplifies to

Hedge =
1

2

(∫
dx

∫
dρ

ρ
(Ftρ)

2 +
∑
i

∫
dx

∫
dρ

ρ
(Fti)

2

)
. (6.20)

Plugging in the expansion (6.2), one obtains:

Hedge =
1

2

∑
k

qkq−k
1

k2K0(kε)2

(
k2

∫
dρρK2

0 (kρ) +

∫
dρρ (∂ρK0(kρ))2

)
. (6.21)

Using the equations of motion, this reduces to the ρ = 0 boundary term (2.12), and one

finds the edge Hamiltonian

Hedge =
∑
k

qkq−k
1

2k2K0(kε)
=
∑
k

qkq−k
1

2k2 ln 2
kε

. (6.22)

This is consistent: the Hamiltonian generates the correct classical EOM ȧk = 0 and q̇k = 0

for the static solutions in the physical situation where the cutoff is taken to zero:

q̇k = −i[Hedge, qk] = 0, ȧk = −i[Hedge, ak] = lim
ε→0

1

2k2 ln 2
kε

qk = 0. (6.23)

Knowing both the edge Hilbert space (6.13) and the edge Hamiltonian (6.22), it is

possible to write down the edge spectrum. An electric flux eigenstate (6.11) is also an

energy eigenstate:

Hedge |Φ〉 =
∑
k

Ek |Φ〉 = E(Φ) |Φ〉 (6.24)
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with

Ek =
|εk|2

2k2 ln 2
kε

, (6.25)

which can be interpreted as the electrostatic energy of a charge distrubtion, including the

redshift effect. Due to linearity of the Maxwell equations, this sector adds to the bulk sector

to give the total Hamiltonian H = Hedge +Hbulk. This is the boost operator in Minkowski

space. Upon using the standard Euclidean evolution argument, one finds the entanglement

structure of the Minkowski vacuum state in terms of Rindler eigenstates as:25

|M〉 =

∫
[DΦ(x)] e−πE(Φ)

∑
n

e−πωn |n,Φ〉L ⊗ |n,Φ〉R . (6.26)

The quantum number n labels states in the bulk Hilbert spacesHbulk,L/R. As usual, tracing

over the left wedge yields a thermal partition function Z = ZbulkZedge, whose edge part is

Zedge = TrHedge
e−βHedge =

∫
[DΦ(x)] e−βE(Φ). (6.27)

With the probability distribution p(Φ) = e−2πE(Φ)/Zedge, the edge entanglement entropy

can be written as

Sedge = −
∫

[DΦ(x)] p(Φ) ln p(Φ). (6.28)

Evaluating the Gaussian path integral, the edge mode partition function (6.27) is:

Zedge = A
1
2
⊥

(∏
k

(
β

2π ln 2
kε

)
1

k2

)− 1
2

, (6.29)

The full partition function of Maxwell theory, including the edge sector is:

Z = Zd−1
N

(
ZD
ZN

Zedge

)
, (6.30)

using (5.19) this becomes:

Z = Zd−1
N

(
A⊥
∏
k

k2

) 1
2

. (6.31)

The second factor is exactly the contact term found in the replica trick calculation.

• Note that this construction is rather sensitive to the choice of bulk boundary con-

ditions. Had we chosen to adopt the PEC boundary conditions (2.3) for instance,

the partition function would become instead Z = Zd−1
N

((
ZD
ZN

)d−2
Zedge

)
. This de-

pendence on (d − 2) in the bulk partition function is unavoidably transfered to the

total partition function, regardless of the prescription for Zedge, such that the correct

25The flux path integral can be written in Fourier components as
∫

[DΦ(x)] ∼
√
A⊥

∏
k

∫
dεk. The

precise prefactors in this transition are determined by Donnelly and Wall in [42].
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contact term (6.31) cannot be recovered. This is related to the duality anomaly in-

vestigated in [62]. Thus, the PMC boundary conditions on the bulk theory are not

only natural as pointed out in section 2, they are enforced by the equality of the

entanglement entropy and the replica trick entropy.

• The contact piece can be regularized using the Schwinger proper time in the well-

known heat kernel form:

lnZcontact ∼
1

2
ln
∏
k

k2 = −1

2

∫ +∞

0

ds

s

(
Tr es∆⊥ − e−s

)
= −1

2

∫ +∞

ε̃

ds

s
Tr es∆⊥ + . . . ,

(6.32)

with the famous minus sign a heat kernel regularization artifact as explained in

[41, 42]. The factor 1/2 represents the single degree of freedom contributing to the

contact piece.

• Although both the edge sector and the bulk sector contribute to the entanglement

entropy, there is a sense in which both are different. The former can be shown not

to be part of the distillable entanglement whereas the latter is. For more details on

this lattice concept, we refer the reader to [20][21].

6.4 Black Hole Microstates and Asymptotic Symmetries

The ε-regularization has allowed us to make sense of boundary conditions at the horizon,

and to identify a proper state counting for entanglement purposes (6.31). At this point we

set ε = 0: (6.25) shows that E(Φ) = 0, in agreement with the presumed static nature of the

solutions. The Rindler ground state becomes infinitely degenerate due to the edge sector.

This degeneracy suggests a natural interpretation of edge states as black hole microstates:

the total energy in a generic state is not affected by the edge configuration, and for the

Rindler observer the edge configurations are indistinguishable.

In quantum gravity, one expects that one cannot resolve the flux profile Φ(x) any

smaller than the Planck scale `p, reducing the infinite number of horizon degrees of freedom

to only A
`d−1
p

, and directly leading to an entanglement entropy of the Bekenstein-Hawking

form:

S ∼ A

GN
. (6.33)

Such an interpretation has an obvious species problem, as we chose to study Maxwell fields

in the vicinity of the black hole. One could add any number of theories to the action, each

with their own edge sector resulting in a different prefactor in (6.33). The only rescue to

this issue seems to be string theory, where the field content is universally fixed. In the

above argumentation, one has to ad hoc reintroduce a UV cutoff parameter ε ∼ lp. Such a

procedure can only be made rigorous in a UV-complete theory such as string theory, where

the range of integration in the would-be-divergent integral is naturally and unambiguously

constrained by consistency requirements on the theory, i.e. modular invariance.

For a different interpretation of the edge sector, consider the basis (6.13). Transferring
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to coordinate space and define Q̂(χ̃) =
∫
∂Σ d

d−1x Q̂(x) χ̃(x), where

Q̂(x) = Φ̂(x). (6.34)

We find:

eiQ̂(χ̃) |χ〉 = |χ+ χ̃〉 . (6.35)

For χ̃ = ε infinitesimal this becomes:

i
[
χ(x), Q̂(ε)

]
= ε(x) = δχ(x). (6.36)

Since χ(x) labels the on-shell large gauge DOF of the theory, (6.36) proves that Q̂ generates

a gauge transformation on the boundary, identifying it as a genuine U(1) charge in the

boundary theory. The identification (6.34) of the radial canonical momentum Φ(x) of

Maxwell theory evaluated at the boundary as a U(1) charge in the boundary theory is the

equivalent of the holographic statement (2.33) in Chern-Simons theory.

Summarizing, large gauge transformations generate the edge sector which consists of

static photons. With the sole difference being a choice of Cauchy surface (null instead of

timelike), these are the asymptotic symmetries and soft photons argued by Hawking, Perry

and Strominger [43, 44] to provide electromagnetic hair to black holes, and open a path to

black hole microstate counting and information restoration.26 This further solidifies our

identification of edge states as Maxwell black hole microstates.

6.5 Summary

The edge sector of Maxwell theory is found by quantizing (part of) the zero-mode sector of

the theory, resulting in additional states living on the edges of the system. The partition

function of these zero energy states accounts for the contact term. Depending on the

choice of basis, these edge states represent U(1) charge configurations, or large gauge

transformations on the boundary (the horizon). We have derived the need for this term

directly from the canonical algebra of Maxwell theory in Minkowski, as discussed in section

2. The interpretation of edge states as black hole microstates in QFT naturally emerges.

7 Extension to Proca and Tensor Field Theories

The main message of this work is that edge states appear in all theories that have constraint

equations. This implies a natural extension of the above discussion to Proca theory and

to tensor field theories. Lorenz-gauge Maxwell theory is particularly suitable to generalize

to the Proca field, or to tensor fields, since the Lorenz gauge constraint generalizes to the

transversality condition in these theories. Even in the absence of gauge symmetry, a con-

straint on the initial value problem that includes spatial derivatives causes non-factorization

across the entangling surface and a contact term. This is manifestly present in all general-

izations that we discuss here.

26For a similar discussion on gravitational edge DOF see e.g. [44, 45].
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7.1 Proca Theory

The massive vector field is an important example to validate our conjecture that constraint

equations are the telltale for contact terms in a theory. And indeed, Euclidean conical

computations demonstrate that a contact term is present (see e.g. [34]). The bulk sector

of the Proca field has been studied before [63]. Explicitly, the Proca Lagrangian is:

1√
−g
L = −1

4
FµνF

µν − 1

2
m2AµAµ, (7.1)

with equations of motion:

∇µFµν −m2Aν =
(
∇µ∇µ −m2

)
Aν −∇µ∇νAµ = 0. (7.2)

If Rµνρσ = 0, one obtains (m 6= 0):(
∇µ∇µ −m2

)
Aν = 0, ∇µAµ = 0. (7.3)

When formulated in this way, the initial value problem has the transversality constraint

∇µAµ = 0 which leads to a non-factorization of the Hilbert space when splitting the

Cauchy surface in half. Note that in the original form (7.2), the constraint is Gauss’ law:

∇ · E = −m2A0. Both formulations are equivalent. We conclude that edge states will be

present, in spite of the absence of gauge symmetry. This is confirmed from the Euclidean

perspective: the Proca field has a contact term contribution to the entanglement entropy

and hence must have an edge mode sector.

The equation (∇µ∇µ −m2)Aν = 0 is solved by the following set of generalizations of

the Maxwell modes:

A
(1)
µ,ωk =

(
1 +

m2

k2

)− 1
2 1

k

(
ρ∂ρ,

1

ρ
∂t,0

)
φω,k

A
(0)
µ,ωk =

(
1 +

m2

k2

)− 1
2 1

k
(∂t, ∂ρ,0)φω,k := A

(G)
µ,ωk −A

(k)
µ,ωk,

A
(k)
µ,ωk =

(
1 +

m2

k2

)− 1
2

ie(k)
µ φω,k,

A
(a)
µ,ωk =

(
1 +

m2

k2

)− 1
2

ie(a)
µ φω,k.

(7.4)

Define now the massive extension of the pure gauge mode as A
(2̃)
ωk = A

(G)
ωk + m2

k2 A
(k)
ωk . This is

the combination that satisfies the transversality constraint ∇µAµ = 0. These modes A
(2̃)
ωk

are Klein-Gordon normalized to m2

k2 , such that in the limit m2

k2 → 0 they reproduce the null

pure gauge solutions of Maxwell theory. Defining A
(2̃)
ωk = m

k A
(2)
ωk, we obtain the orthonor-

mal solution space of bulk Proca theory as the set of modes A
(1)
ωk, A

(2)
ωk, A

(a)
ωk. Following the

same reasoning as for Maxwell theory we find that the set A
(1)
ωk obeys Dirichlet boundary

conditions, and the other d− 1 sets obey Neumann boundary conditions.
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The edge algebra (6.1) is identical for Proca theory. The realization in terms of edge

states, and the associated interpretation is different. Proca has no gauge symmetry and

there are no null states, therefore we will not recover the interpretation that edge states rep-

resent large gauge transformations. The interpretation of edge states as boundary charges

of (massive) electromagnetism does uphold, and we are again able to choose a basis of

radial canonical momentum, as is obvious from (6.1). These charges now do not generate

a boundary gauge transformation. In the following we explicitly construct the edge sector

of Proca theory.

The improved static boundary Hamiltonian for Proca theory is identical to the Maxwell

boundary Hamiltonian (2.12):

Hedge =
1

2

∫
∂Σ
dd−1x

√
−gnµ

(
Fµ0A0 − FµiAi

)
. (7.5)

In Maxwell theory the contribution to the boundary Hamiltonian from the pure gauge

modes vanishes, resulting in Hedge(qk) in (6.22): the electric flux modes diagonalize the

energy. In Proca theory though, it is clear the modes A
(2)
k do contribute to the boundary

Hamiltonian (7.5). Along the lines of (6.10), one could try to quantize the Proca edge

sector by imposing a commutator between q
(1)
k and q

(2)
k , but this turns out to be incorrect

as it does not result in the correct counting of edge DOF.

One way to quantize the edge sector that results in the correct final partition function

(7.13) is as follows: we further extend the Hilbert space of the theory to allow states

associated with a radial canonical flux that varies linear in time, which is still a solution of

the classical scalar equations of motion of the field φω,k composing the vector field (7.4).

In the quantum theory this results in the introduction of two sets of operators: q0
k and

q̇0
k, normalized as in (6.2) but with k →

√
k2 +m2. Classically they represent the solution

qk → qk(t) = q0
k + q̇0

kt. The canonical algebra (6.1) is now readily shown to determine the

canonical conjugate to qk as:

pk =
ln 2√

k2+m2ε

2(k2 +m2)
q̇0
−k, (7.6)

with

[qk, pk′ ] =
[
q0
k, pk′

]
= iδkk′ . (7.7)

This is consistent: the Hamiltonian generates the correct classical EOM d
dtqk = q̇0

k, and (in

the physical situation where the cutoff is taken to zero) d
dtpk = 0. The Proca Hamiltonian in

general depends on both sets of canonical variables Hedge(qk, pk) = Hedge(qk) +Hedge(pk),

and is thus non-diagonal in either the (generalized) coordinate or the momentum basis.

An important point is to realize that states with pk 6= 0 are nonphysical: they represent

configurations for which the radial canonical flux grows linear in time (this is in conflict

with energy conservation). The physical edge sector of the theory is thus obtained by

imposing

pk |ψ〉 = 0 (7.8)

on states in the physical edge Hilbert space. This construction is very similar to the (bulk)

Gupta-Bleuler construction employed in Maxwell theory. In the edge theory, the physical
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spectrum (7.8) consists of only one state: |pk = 0〉. The edge partition function written as

a trace over the edge Hilbert space is:

Zedge = 〈pk = 0| e−βHedge(qk,pk) |pk = 0〉 = 〈pk = 0| e−βHedge(qk) |pk = 0〉 , (7.9)

where Hedge(qk) is identical to the Maxwell edge Hamiltonian (6.22) with k →
√
k2 +m2.

Introducing twice the completeness relation in the coordinate basis, using 〈pk = 0|qk〉 ∼ 1

and gathering the coordinates qk in the field Φ(x) results in:

Zedge =

∫
[DΦ(x)] e−βE(Φ), (7.10)

with again k →
√
k2 +m2 in (6.25). Evaluating this, one gets:

Zedge = A
1
2
⊥

(∏
k

(
β

2π ln 2√
k2+m2ε

)
1

k2 +m2

)− 1
2

. (7.11)

Retracing the steps of appendix C, one readily finds

ZD
ZN

=
∏
k

(
β

ln 2√
k2+m2ε

) 1
2

. (7.12)

The total Proca partition function in d+ 1 dimensional Rindler now becomes:

Z = ZdN

(
A⊥
∏
k

(k2 +m2)

) 1
2

, (7.13)

from which we read off the correct contact term for Proca theory:

lnZcontact ∼
1

2
ln
∏
k

(k2 +m2) = −1

2

∫ +∞

ε̃

ds

s
Tr e−s(−∆⊥+m2) + . . . , (7.14)

of an almost identical form as Maxwell, except for the additional factor e−sm
2

in the heat

kernel regularization (6.32). Note that taking the limit m2 → 0 in Proca theory is smooth

in the final formulas, except for the fact that one bulk polarization becomes pure gauge

and is quotiented out of the bulk Hilbert space, replacing d → d − 1 in (7.13). Again we

emphasize that the Proca edge sector cannot be interpreted as large gauge transformations

at the boundary, simply because Proca has no null states.

As a nice extra, investigation of Proca theory explains the origin of the alleged contact

term in 1 + 1 dimensions for Maxwell theory. Indeed, looking back at section 4, it is seen

that a non-zero mass will cause the electric field to decay away from the horizon, effectively

replacing ln 1/ρ→ K0(mρ) and ln 1/ε→ K0(mε) everywhere in that section. So the Proca

zero-mode in 1 + 1 dimensions decays infinitely fast away from the horizon as in figure 11.
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This removes the volume divergence in the Hamiltonian (4.12) and instead results in the

spectrum (7.13), restricted to k = 0. The Proca partition function in 1 + 1 dimensions is:

Z = ZN
(
m2
) 1

2 , (7.15)

so there is a contact term ∼ m reminiscent of the d + 1 dimensional contact term. In

Kabat’s contact term calculation [38], a mass regulator is used; the above suggests that in

doing so, one effectively changes the edge sector of the Maxwell field into that of the Proca

field: it is most likely the Proca contact term that is recovered in [38] and not the one

from Maxwell, which is trivial in 1 + 1 dimensions as captured in (4.31). Alternatively, the

Maxwell contact term in 1 + 1 dimensional compact space is non-zero and, using (4.12),

behaves as ∼ 1/
√
V . The IR mass regulator effectively plays the role of a volume cutoff

and reintroduces edge states in a theory that would ordinarily not have them.

We note that the logic of [46] to deduce edge states for theories with a gauge symme-

try (demanding gauge invariance of the presymplectic potential) is not straightforwardly

extended to this case.

7.2 Tensor Fields

Generic tensor fields φµνρ... are used to model general higher spin fields. A bosonic higher

spin s > 1 field is a symmetric tensor field that is divergenceless, traceless, and satisfies an

equation of the form: (
∇µ∇µ −m2

)
φ(νρσ...) = 0. (7.16)

It satisfies the constraint:

∇µφµ(ρσ..) = 0, (7.17)

and is traceless:

φµµ(σ..) = 0. (7.18)

A completely antisymmetric tensor field (p-form field) satisfies these same equations, now

obviously with anti-symmetrization of the indexes.

In the special case m2 = 0 the transversality constraint (7.17) is to be interpreted as

a gauge choice that generalizes Lorenz gauge and is known as de Donder gauge. In string

theory, this constraint arises as part of the Virasoro constraints at level n = s. The bosonic

higher spin theory is thus described by a constrained Hamiltonian system with associated

edge states and a contact term. This is confirmed by the replica trick calculations: massive

s > 1 bosonic field theories are known to have contact terms [34], demonstrating an edge

sector must indeed exist in these theories.

Surprisingly, the equation of motion (7.16) is readily solved generically, so the Rindler

modes for any tensor field can be written down immediately. Defining x± = t ± r, and

diagonalizing the tensor components in SO(2) spin of the t − r plane as sα = ±1 for a

± tensor index α and zero otherwise, the equations decouple in the tortoise light-cone

components:(
e−2r∂2

r − 2

(∑
α

|sα|

)
e−2r∂r − e−2r∂2

t + 2

(∑
α

sα

)
e−2r∂t + ∂2

i −m2

)
φνρσ... = 0,

(7.19)
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with explicit mode solutions:27

φ
(sα)
νρσ...,ωk = ρ

∑
α|sα|Kiω+

∑
α sα

(
√
m2 + k2ρ)eik·xe−iωt. (7.20)

Each such tensor component has an independent oscillator and the full field is just the

most general linear combination of these:

φνρσ... =
∑
sα,ω,k

α̂
(sα)
ωk φ

(sα)
νρσ...,ωk + (hc). (7.21)

As before, part of the zero-mode sector is expected to be associated with the edge sector. It

would be interesting to expand the construction of this work to these theories and explicitly

write down the edge sector and partition function. We leave this to future work.

8 Conclusion

Throughout this paper we have highlighted different aspects of the thermodynamic prop-

erties of vector fields in Rindler space. In particular we have studied the structure of the

Hilbert space contributing to the entanglement entropy across the black hole horizon.

In 1 + 1 dimensional Lorenz gauge Maxwell theory, a puzzle appeared in the literature

[47] concerning an apparent addition (instead of cancellation) of unphysical polarizations

when making the transition from Minkowski to Rindler coordinates, which is not present

in Weyl gauge. Explicitly performing Lorenz gauge canonical quantization, we proved

that the Faddeev-Popov ghost fields cancel exactly the thermodynamic contributions of

the longitudinal and temporal photon polarizations. In doing so, the conflict with gauge

invariance is resolved.

The contact term in 1+1d is subtle, and dependent on possible choice of regularization [7].

Combining the results from previous sections, we can summarize the situation as follows.

• Maxwell in infinite volume.

As we remarked in section 4: there is no vacuum entanglement in this case: SE = 0,

or

|M〉 = |0〉L ⊗ |0〉R (8.1)

The thermal Rindler edge partition function Zth = Tre−βH = 1 in this case, with H

given in (4.12), because H ∼ V → +∞, the spatial volume, and only the vacuum

contributes. The thermal entropy vanishes as well Sth = 0.

• Maxwell in finite spatial volume regularization.

Again SE = 0, but now Zth =
∑

E e
−βH > 1, which contains contributions from

non-zero electric fields. There is accordingly a mismatch between the vacuum en-

tanglement entropy SE and the thermal entropy Sth in this case. The argument in

section 4 explains why this is so: one needs infinite spatial volume V to be able to

generate the Minkowski wavefunctional for these modes. The modes discussed in

27The labels sα have to match with the spacetime SO(2) spin indices corresponding to the indexes νρσ....
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higher dimensions with k 6= 0 or m 6= 0 in other sections do not feel the extent of

space all the way to the boundary and hence the standard Euclidean path integral

rotation argument does apply for those modes.

• Maxwell with a mass regulator.

As studied in section 7.1, the contact contribution is in effect that of Proca theory,

and SE = Sth as determined by the Proca edge partition function.

In comparing scalars, Maxwell, Proca and bosonic tensor field theories, we observed

that any bosonic theory with non-ultralocal constraint equations has a contact term. This

contact term has a statistical interpretation as counting edge states. These DOF account

for the matching condition that accompanies the non-ultralocal constraint equations.

From the action principle, a theory on a space with a boundary comes with a set

of boundary conditions. Correct implementation of these boundary conditions from the

Rindler perspective requires the introduction of a regularization. Comparison with the

replica trick partition function is the guideline throughout: it determines the appropriate

set of boundary conditions on each independent polarization, as well as identifies the correct

counting of edge DOF. In this work we have presented the canonical quantization of this

edge sector from first principles: the canonical commutation relations (2.15) in R1,d.

For Maxwell in d + 1 Rindler we find a bulk photon and an edge sector representing

U(1) charges on the boundary or alternatively large gauge transformations. This was in-

ferred from the canonical algebra (2.15). To reconstruct the Minkowski vacuum from the

R-wedge perspective, the surface charge is not fixed and is in fact thermally populated

with the Hawking temperature (6.26). This is the edge sector equivalent of the bulk Unruh

effect.

The edge states are the Maxwell microstates of the black hole or equivalently the soft hair

of Hawking, Perry and Strominger labeling inequivalent Rindler vacua. The bulk photon is

subject to PMC boundary conditions at the horizon. The latter being an infinite redshift

surface, the bulk observer is unaware of these boundary conditions (and of the edge sector).

The introduction of edge states in Maxwell theory and the transition to an extended Hilbert

space formulation solves the problem of factorizing a U(1) Wilson line across an entangling

surface. See also [64, 65].

As discussed in the introduction, the nonfactorization problem is also present in string

theory. By analogy, the stringy edge states are related to punctures of string endpoints on

the horizon. A direct quantization of strings in Rindler would be invaluable if one wants

to understand the nature of black hole entropy. In the context of this work, one could

try to obtain information about string thermodynamics in Rindler space in a less direct

manner by treating string theory as an infinite sum of higher spin theories and applying

the reasoning of this work to all those higher spin theories, and then sum over the string

spectrum. The Euclidean perspective on this idea was explored in [35, 36]. To understand

the limitations of such a procedure, a concrete avenue would be to further investigate

strings on the SL(2,R)/U(1) cigar background, which has Rindler space as a parametric

limit (see e.g. [37, 66–74]).
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When treating strings in curved space, we are assuming a classical geometry, which

might not be a good approximation. It would therefore be interesting to investigate the

nonfactorization problem and the notion of edge states holographically, in CFTs that are

dual to string theory in a black hole background. It is noteworthy though, that if one

defines the entangling surface in string theory as a sharp surface (i.e. not smoothed out

on the string scale `−1
s ), then the standard argument of defining accelerated point-like

observers to cover the R-wedge, still applies here. And hence one needs to study quantum

strings in a classical Rindler geometry.
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A FP Ghost contribution to Unruh effect

The Faddeev-Popov (FP) ghost Lagrangian is of the form

L =
√
−g (−∂µc̄∂µc) (A.1)

for two anticommuting scalar ghost fields c and c̄, where we take the convention of left-

derivation for Grassmann variables. As the ghost fields are Grassmann fields, hermiticity

of the Lagrangian requires c to be Hermitian and c̄ to be anti-Hermitian. Indeed(
L√
−g

)†
= −(∂µc̄∂µc)

† = −∂µc†∂µc̄† = ∂µc∂µc̄ =
L√
−g

. (A.2)

The equation of motion for both fields is solved by

c(t, r) =

∫
dk
(
ckuk + c†ku

∗
k

)
,

c̄(t, r) =

∫
dk
(
c̄kuk − c̄†ku

∗
k

)
,

(A.3)

– 46 –



with uk = 1√
4πE

e−iωt+ikr and ω = |k|. The conjugate momenta are πc = −∂tc̄ and πc̄ = ∂tc.

The non-vanishing canonical anticommutation relations read

{
c(t, r), πc(t, r

′)
}

= −
∫
dkdk′

−{ck, c̄†k′}︸ ︷︷ ︸
−δ(k−k′)

(iω)
eikr−ik

′r′

4πω
+
{
c†k, c̄k′

}
︸ ︷︷ ︸
−δ(k−k′)

(−iω)
e−ikr+ik

′r′

4πω


= −iδ(r − r′),

{
c̄(t, r), πc̄(t, r

′)
}

=

∫
dkdk′

{c̄k, c†k′}︸ ︷︷ ︸
−δ(k−k′)

(iω)
eikr−ik

′r′

4πω
−
{
c̄†k, ck′

}
︸ ︷︷ ︸
−δ(k−k′)

(−iω)
e−ikr+ik

′r′

4πω


= −iδ(r − r′).

(A.4)

Note that due to the anti-hermiticity of c̄, these commutation relations are consistent with

taking the Hermitian conjugate.

This assignment of the sign of the anticommutation relations might seem non-standard,

but it is in fact required for a consistent quantization of the ghosts [75]. The sign is fixed

by the choice of left-differentiation for products of Grassmann variables, together with the

ordering in the Hamiltonian below. This occurs for any system of Grassmann variables,

physical or not.28

The canonical Hamiltonian density is defined conventionally as H = φ̇π − L (the

ordering of the first term is fixed by the convention of left-differentiation) and in terms of

the ghost fields reads

H = −ċ ˙̄c+ ˙̄cċ+ ∂µc̄∂µc = ˙̄cċ+ ∂r c̄∂rc. (A.7)

Plugging in the mode expansions and integrating the Hamiltonian density over a spatial

Cauchy surface, one finds

H = −
∫
dkω

(
c̄†kck + c†k c̄k

)
− 2

∫
dk

1

2
ω, (A.8)

which is manifestly Hermitian. The vacuum energy (the second term in (A.8)) is negative

and cancels two positive bosonic contributions. Indeed, the vacuum energy of both the

28The textbook canonical quantization of the Dirac action uses right-differentiation convention, which

therefore requires the opposite sign choice of the anti-commutation relation. Changing conventions, causes

a sign flip in the conjugate momenta and hence in the canonical anticommutation relations, and requires a

different ordering in the equation for H.

As an alternative argument, the evolution equation for c is:

iċ = [c,H] , (A.5)

while the standard anticommutation relations would imply

[c,H] = [c,−πcċ] = −{c, πc} ċ = −iċ, (A.6)

leading to the wrong-sign evolution equation.
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longitudinal and the timelike polarization is positive and is thus canceled by the ghost

contributions, leaving only the D− 2 transverse polarizations to contribute to the vacuum

energy. From here on we focus only on the first contribution in (A.8).

The Hilbert space is constructed by applying the creation operators c† and c̄† to the

ghost vacuum |M〉. Due to the anticommutation relations, the resulting space is of indefi-

nite metric signature, as implied by the spin-statistics theorem.29

Following the flow of section 3, we construct the Unruh modes and write down the

Bogoliubov transformation. The only important difference with the scalar QFT treatment

is a change in sign in the oscillator expansion of c̄ due to its anti-hermiticity, which results

in the Bogoliubov transformations of the R-wedge annihilators cR in terms of the Unruh

operators c1 and c2:

cRk =
1√

2 sinh(πω)

(
e−πω/2c2†

−k + eπω/2c1
k

)
,

c̄Rk =
1√

2 sinh(πω)

(
−e−πω/2c̄2†

−k + eπω/2c̄1
k

)
,

(A.9)

with similar formulas for the L-wedge oscillators.30 The Minkowski vacuum is defined to

be annihilated by all positive frequency Unruh annihilators c and c̄ leading to the set of

conditions

cRk |M〉 = e−πωcL†k |M〉 , c̄Rk |M〉 = −e−πω c̄L†k |M〉 , (A.10)

cLk |M〉 = e−πωcR†k |M〉 , c̄Lk |M〉 = −e−πω c̄R†k |M〉 , (A.11)

which completely determine the Minkowski ground state. Indeed, after integrating we find

the squeezed state expression (ghost part) for the Minkowski vacuum:

|M〉 = N
∏
k

exp
[
e−πω

(
cR†k c̄L†−k − c̄

R†
−kc

L†
k

)]
|R〉 ⊗ |L〉

= N
(
|R〉 ⊗ |L〉+ e−πω

(
cR†k c̄L†−k − c̄

R†
−kc

L†
k

)
|R〉 ⊗ |L〉+ e−2πω

(
cR†k c̄R†c̄L†cL†

)
|R〉 ⊗ |L〉

)
,

(A.12)

with the normalization N = 1
1−e−2πω .

Using the explicit form of the Bogoliubov transformations, the expectation value of

the R-wedge ghost modes in the Minkowski ghost vacuum is found as

〈M | c̄R†k cRk + cR†k c̄Rk |M〉 =
−1

e2πω − 1
〈M |

{
c̄2
−k, c

2†
−k

}
+
{
c2
−k, c̄

2†
−k

}
|M〉

=
V

2π

2

e2πω − 1
, (A.13)

such that the expectation value of the ghost Hamiltonian reads

〈M |H |M〉 = −2
V

2π

∫
dk

ω

e2πω − 1
. (A.14)

29Note that the above discussion concerning the construction of the ghost Hilbert space is valid both

in the Minkowski frame, and in the Rindler frame in tortoise coordinates as the 1 + 1 dimensional scalar

Klein-Gordon action is independent of the metric conformal factor.
30A consistency check for the minus sign is provides by the fact that the Bogoliubov transformation

preserve the oscillator anticommutation relations. Consistency also requires
{
cL, cR

}
= 0.
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B Bulk Hilbert Space in d+ 1 Dimensions

With the scalar mode φ defined in (5.2), a set of orthonormal modes (for ω 6= 0) is found

as:

A(0)
µ =

1

k
(−iωφ, ∂ρφ, 0) ≡ A(G)

µ −A(k)
µ , (B.1)

A(1)
µ =

1

k
(ρ∂ρφ,−iω/ρφ, 0), (B.2)

A(k)
µ =

1

k
(0, 0, ikiφ), (B.3)

A(a)
µ = (0, 0, inai φ), (B.4)

with ∇µA(k)
µ = −kφ = −∇µA(0)

µ , giving:

Ai =
∑
ω,k

i
ki
k
φα

(k)
ωk + inai φα

(a)
ωk + (hc), (B.5)

At =
∑
ω,k

− iω
k
φα

(0)
ωk +

1

k
ρ∂ρφα

(1)
ωk + (hc), (B.6)

Aρ =
∑
ω,k

1

k
∂ρφα

(0)
ωk −

iω

kρ
φα

(1)
ωk + (hc), (B.7)

and

Πi =
∑
ω,k

−ω ki
kρ
φα

(0)
ωk − i

ki
k
∂ρφα

(1)
ωk +

ki
kρ
ωφα

(k)
ωk +

nai
ρ
ωφα

(a)
ωk + (hc), (B.8)

Πt =
∑
ω,k

1

ρ
kφ(α

(0)
ωk − α

(k)
ωk) + (hc), (B.9)

Πρ =
∑
ω,k

−kφα(1)
ωk + (hc). (B.10)

One proves that these satisfy the correct canonical commutation relations if one imposes:[
α

(0)
ωk, α

(0)†
ω′k′
]

= −δωω′δ(k− k′), (B.11)[
α

(1)
ωk, α

(1)†
ω′k′
]

= δωω′δ(k− k′), (B.12)[
α

(k)
ωk , α

(k)†
ω′k′
]

= δωω′δ(k− k′), (B.13)[
α

(a)
ωk , α

(b)†
ω′k′
]

= δabδωω′δ(k− k′), (B.14)

and all other combinations vanish. One also defines α
(0)
ωk = α

(G)
ωk − α

(k)
ωk .

The magnetic field components are:

Fρi =
∑
ω,k

i
ki
k
∂ρφ(α

(k)
ωk − α

(0)
ωk) + inai ∂ρφα

(a)
ωk +

ωki
kρ

φα
(1)
ωk, (B.15)

Fij =
∑
ω,k

(nai kj − najki)φα
(a)
ωk . (B.16)
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After applying the nρ
δL

δ∂ρAµ
|∂M = 0 boundary condition, the expansion of the quantum

field in modes is

Aµ(t, ρ,x) =
∑
k

( ∑
ω∈σD

α̂
(1)
ωkA

(1)
µ,ωk +

∑
ω∈σN

(∑
a

α̂
(a)
ωkA

(a)
µ,ωk +

∑
L

α̂
(k)
ωkA

(k)
µ,ωk +

∑
0

α̂
(0)
ωkA

(0)
µ,ωk

))
+(hc).

(B.17)

The boundary conditions impose Dirichlet boundary conditions φ|∂M = 0 on the modes

AIµ,ωk and Neumann boundary conditions ∂ρφ|∂M = 0 on all other sets of modes.

C Dirichlet vs Neumann Scalar Partition function

We discuss the ratio of the partition functions of a Dirichlet and a Neumann scalar field in

Rindler.

Direct Calculation of Functional Determinants

To compute the partition function of a scalar field, we transform the scalar Lagrangian

on the thermal manifold to tortoise coordinates. One needs the functional determinant

associated to the eigenvalue problem(
−∂2

τ − ∂2
r + (k2 +m2)e2r

)
ψ(t, r) = λψ(t, r). (C.1)

We set m = 0 here, but its dependence is readily restored as usual. The following are func-

tional determinants of operators defined on the interval r ∈ [ln ε, lnR], with either Neumann

(N) or Dirichlet (D) boundary conditions on the end points. The notation det(O)AB refers

to the functional determinant of the operator O with A boundary conditions at r = ln ε

and B boundary conditions at r = lnR.

First setting ∂t = 0, the ratio of determinants with different boundary conditions at the

horizon r = ln ε is given by:

det
(
−∂2

r + k2e2r
)ND

det(−∂2
r + k2e2r)DD

=
ψ(1)(lnR)

ψ(2)(lnR)
, (C.2)

which is evaluated as the ratio of two solutions, ψ(1) and ψ(2), to the initial value problem

(−∂2
r + k2e2r)ψ(i)(r) = 0, defined by

ψ(1)(ln ε) = 1, ψ′(1)(ln ε) = 0,

ψ(2)(ln ε) = 0, ψ′(2)(ln ε) = 1. (C.3)

This can be interpreted as a generalization of the Gelfand-Yaglom theorem (see e.g. [76])

to determinants of the same operator with different boundary conditions.31 Explicitly:

ψ(1)(lnR) = −kε
(
K ′0(kε)I0(kR)− I ′0(kε)K0(kR)

)
, (C.6)

ψ(2)(lnR) = K0(kε)I0(kR)− I0(kε)K0(kR). (C.7)

31This formula can be proven by writing

det
(
−∂2

x + V (x)
)ND

det(−∂2
x + V (x))DD

=
det
(
−∂2

x + V (x)
)ND

det(−∂2
x)ND

det
(
−∂2

x

)DD
det(−∂2

x + V (x))DD
det
(
−∂2

x

)ND
det(−∂2

x)DD
, (C.4)
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In the limit kε→ 0 with R fixed, (C.2) thus becomes

det
(
−∂2

r + k2e2r
)ND

det(−∂2
r + k2e2r)DD

= ln 2/kε. (C.8)

Generalizing to include discrete momentum n ∈ Z along the thermal circle, we find analo-

gously

det

(
−∂2

r + k2e2r +
(

2πn
β

)2
)ND

det

(
−∂2

r + k2e2r +
(

2πn
β

)2
)DD =

δn,0
ln 2/kε

+
2π|n|
β

, (C.9)

or using zeta-regularization for the infinite product
∏
n∈Z0

2π|n|
β = β:

∏
n∈Z

det

(
−∂2

r + k2e2r +
(

2πn
β

)2
)ND

det

(
−∂2

r + k2e2r +
(

2πn
β

)2
)DD =

β

ln 2/kε
. (C.10)

This results in
ZD
ZN

=
∏
k

(
β

ln 2/kε

) 1
2

, (C.11)

which is the result mentioned in (5.19).32

Radial Path Integration

An alternative perspective on this difference was given by Donnelly and Wall [42]. The

thermal partition function is a trace on a cylinder in the tortoise near-horizon region.

Generally, we can describe the thermal trace via channel duality as a matrix element

between boundary states. We work here in the very near-horizon region, where we can also

neglect the exponential potential in (C.1). This identifies the (new) IR cut-off R∗ ∼ 1
k . For

the zero-mode contribution (∂t = 0), we then find, setting η = lnR∗/ε:

Z = Tre−βηT00 = 〈ψf | e−ηβTrr |ψi〉 , (C.12)

between suitable boundary states. The zero-mode sector is found by considering ∂2
rφ = 0,

solved by φ = pr+q, for conjugate operators p and q. One propagates the state in between

where the first two factors are directly evaluated using the standard Gelfand-Yaglom theorem. The last

factor is evaluated explictly as

det
(
−∂2

x

)ND
det(−∂2

x)DD
=

π

2 lnR/ε

∏
n≥1

(
1− 1

(2n)2

)
=

1

lnR/ε
=
ψV=0

(1) (lnR)

ψV=0
(2) (lnR)

, (C.5)

and hence is the same as a naive application of GY again.
32Note that in fact this is only the exact result for kε � 1, whereas the partition function in general

gets contributions from arbitrarily high k. The same is true for the edge partition function (6.29). The

cancellation of the explicit ε dependence in the total partition function (6.31) however, holds for arbitrary

k.
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in the r-direction using Trr = p2/2. We leave ψf arbitrary and consider the ratio between

Dirichlet and Neumann boundary states:

ZD/N =
〈ψf | e−ηβTrr |ψD〉
〈ψf | e−ηβTrr |ψN 〉

. (C.13)

Using that ψD(p) =
√

1
2π and ψN (p) = δ(p), one finds

e−ηβp
2
ψD(p) =

1√
ηβ
δ(p), e−ηβp

2
ψN (p) = δ(p), (C.14)

and finally:

ZD
ZN
→ 1√

ηβ
=

(
β

lnR∗/ε

)− 1
2

, (C.15)

which agrees with the previous computation, provided we replace R∗ ∼ 1/k. Alternatively,

to compute (C.13), one can perform a Gaussian saddle point integration as:

Dirichlet:

∫ +∞

−∞
dpψf (p)∗e−

βη
2
p2 1√

2π
≈ ψ∗f (0)

√
1

βη
, (C.16)

Neumann:

∫ +∞

−∞
dpψf (p)∗e−

βη
2
p2
δ(p) ≈ ψ∗f (0). (C.17)
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