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Abstract

The role of standard likelihood based measures of information and effi ciency is unclear
when regressions involve nonstationary data. Typically the standardized score is not
asymptotically Gaussian and the standardized Hessian has a stochastic, rather than
deterministic limit. Here we consider a time series regression involving a determinis-
tic covariate which can be evaporating, slowly evolving or nonstationary. It is shown
that conditional information, or equivalently, profile Kullback-Leibler and Fisher In-
formation remain informative about both the accuracy, i.e. asymptotic variance, of
profile maximum likelihood estimators, as well as the power of point optimal invari-
ant tests for a unit root. Specifically these information measures indicate fractional,
rather than linear trends may minimize inferential accuracy. Such is confirmed in
numerical experiment.



1 Introduction

Inference in models involving nonstationary variables is challenging in two important

regards. First the standard Cramér-Rao effi ciency theory does not apply. Estimators

are, generally, not asymptotically normal nor do their covariances converge to Fisher

information. Secondly, the asymptotic analysis of such models invariably provides

stochastic representations for estimators and tests, rather than their distributional

properties. Fisher information, as a probability metric, is not applicable in such

models. Some of the asymptotic implications of these issues are explored in Mag-

dalinos [1], while Marsh [2] considers the finite sample properties of Kullback-Leibler

divergence.

This paper considers two standard time series specifications, either

A) yt = dt + ρyt−1 + εt or B) yt = dt + ut ; ut = ρut−1 + εt, (1)

for t = 1, .., T, εt ∼ iidN(0, σ2). In these models dt represents a deterministic compo-

nent that will be employed to capture the effect of both stationary or ergodic as well

as nonstationary covariates. Typically, interest is in inference on ρ, i.e. testing for a

unit root, while if dt = α′xt for some choice of xt, then α will be nuisance. In such

circumstances conditional information, Bhapkar and Srinivasan [3] and Zhu and Reid

[4], ought be employed as a probability metric (see also Gibbs and Su [5] for different

choices of such metrics) for inference about the interest parameter. Conditional in-

formation is defined for a log-likelihood l (θ1, θ2) depending on an interest parameter

θ1 and nuisance parameter θ2 by

CIθ1|θ2 = Iθ1θ1 − I ′θ1θ2I
−1
θ2θ2

Iθ1θ2 , (2)

where Iθ1θ2 = E [−∂2l (θ1, θ2) /∂θ1∂θ2] .
Since standard information theory does not apply in nonstationary models, here an

analogue is defined via expectation of the stochastic limit of the scaled log-likelihood

Hessian. This limit is found by first imposing the unit root, giving a preferred point

(see Critchley, Marriott and Salmon [6]) probability metric analogue. It is shown that

conditional information about ρ in specification A corresponds to profile Kullback-

Leibler and profile Fisher information in specification B. Although this metric neither

bounds nor equals the asymptotic variance of an unbiased estimator for ρ, it remains

informative about inferential accuracy. Specifically, it is found that these can be

convex functions: when dt = αtβ they attain a unique minimum at a value of β∗ =(√
6− 1

)
/2 and at β+ =

(√
10− 1

)
/2, when dt = α0 + α1t

β. The prediction that
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inferential accuracy is therefore minimized at these points is supported by numerical

experiment.

The analysis of unit root tests began in the context of specification A. More

recently, the set-up of specification B has dominated the literature, as it permits

straightforward construction of invariant tests, having distributions free of nuisance

parameters. In the context of the impact of covariates in unit root testing, Elliott,

Rothenberg and Stock [7] characterize the asymptotic power envelope for both a gen-

eral dt = o
(
T 1/2

)
, as well as the linear trend case. Marsh [8] shows that Fisher

Information in the maximal invariant (to a linear trend) vanishes under a unit root,

while Phillips [9] considers the impact of nonlinear and slowly evolving trends. On the

other hand, Hansen [10] (see also Elliott and Jansson [11] and Chrystalleni, Harvey

and Leybourne [12]) explores the impact of stationary stochastic regressors in speci-

fication A. The results of this paper help shed some light on some of these findings.

The plan for the paper is as follows. Motivation for the results is provided in

Section 2 via consideration of the original Dickey-Fuller [13] formulation (i.e. specifi-

cation A) and the effect of stationary covariates as in Hansen [10]. The main results

of the paper are provided for specification B in Section 3 while Section 4 discusses

these results and Section 5 concludes. An appendix provides the proofs of the main

results as well as tables and graphs for the numerical analysis.

2 Motivation via specification A

The original Dickey-Fuller [13] unit root testing framework considered a model as in

specification A. And it is within this context that the power enhancement of stationary

covariates, see Hansen [10], is explored. In the simplest possible set-up, suppose that(
yt − ρyt−1

wt

)
=

(
ut

vt

)
, ut ∼ iid

(
0, σ2

)
, t = 1, .., T

and let R2 = corr2 [ut, vt] . In Hansen [10], and also Chrystalleni, Harvey and Ley-

bourne [11], Dickey-Fuller tests of H0 : ρ = 1 in

yt = ρyt−1 + γwt + εt,

are demonstrated to have powers increasing in R2. Since in the limit of R2 → 1 we

could, in fact, observe the errors (yt − ρyt−1)T1 , this result is to be expected, as well
as having empirical importance.
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Here we explore the effect of the degree of covariate trending in the context of

testing H0 : ρ = 1 in the context of the fitted model,

yt = ρyt−1 + αtβ + ut, t = 1, .., T, (3)

with y0 = 0 and where we will assume β ≥ −0.5 and that data is generated via

the pure random walk, ∆yt = ut. In (3) we attempt to capture the effect of the

covariate via the proxy variable
{
tβ
}T
t=1

, i.e. we put dt = αtβ. The aim is to capture

the influence of different asymptotic covariate behaviour, i.e. whether the sequence

{dt}Tt=1 diverges or converges and at what rate, on measures of inferential accuracy
for the interest parameter ρ.

Specifically, when −0.5 ≤ β < 0 then
{
tβ
}
is an ‘evaporating’trend, and captures

the effect of an ergodic regressor, in that when H0 is true E [∆yt] converges to a

constant (zero, in the simplest case). Instead, when β > 0, E [∆yt] diverges. For

0 < β < 0.5 Elliott, Rothenberg and Stock [7] term the trend as being ‘slowly

evolving’, although non-stationary. Since a pure random walk has stochastic order

O
(
T 1/2

)
we might view the covariate trend being dominant if β > 0.5, and the

stochastic trend being dominant if β < 0.5. The purpose of the following analysis is

to detail the effect of the rate of divergence/convergence of the covariate on inference

about ρ.

Consider the Score and Hessian for model (3), initially assuming σ2 = 1 for

simplicity:

S (ρ, α) =

( ∑T
t=1 yt−1ut∑T
t=1 t

βut

)
& H (ρ, α) = −

( ∑T
t=1 y

2
t−1

∑T
t=1 t

βyt−1∑T
t=1 t

βyt−1
∑T

t=1 t
2β

)
.

(4)

Imposing ∆yt = ut and y0 = 0 then E [yt−1] = 0 and Fisher information is

I (ρ, α) = E [−H (ρ, α)] =

(
T (T−1)

2
0

0
∑T

t=1 t
2β

)
.

Using this as an inferential metric would be misleading since it would imply no impact

of the covariate on inference on ρ.

Instead, note the standard results,

T−1
T∑
t=1

yt−1ut ⇒
∫ 1

0

W (r)dW (r) =d

(
χ21 − 1

)
/2, and

T−β−1/2
T∑
t=1

tβut ⇒
∫ 1

0

rβdW (r) =d N

(
0,

∫ 1

0

r2βdr

)
,
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where W (r) is standard Brownian motion, χ21 denotes a chi-square random variable

with one degree of freedom, ⇒ denotes weak convergence and =d denotes equality in

distribution. The Score then obeys the following limit,

D−1T S (ρ, α)⇒
∫ 1

0

(
W (r)

rβ

)
dW (r) ,

where DT = diag
{
T, T β+1/2

}
. Expansion of the Score in the Gaussian case yields,

S (ρ, α) = S (ρ̂MLE, α̂MLE) +H (ρ, α)

(
ρ̂MLE − 1

α̂MLE

)
,

so that,

DT

(
ρ̂MLE − 1

α̂MLE

)
= −

(
D−1T H (ρ, α)D−1T

)−1
D−1T S (ρ, α) .

Now

−
(
D−1T H (ρ, α)D−1T

)−1
= σ2

(
T−2

∑T
t=1 y

2
t−1 T−β−3/2

∑T
t=1 t

βyt−1

T−β−3/2
∑T

t=1 t
βyt−1 T (2β+1)

∑T
t=1 t

2β

)−1

⇒ σ2

(
σ2
∫ 1
0
W (r)2 dr σ

∫ 1
0
rβW (r) dr

σ
∫ 1
0
rβW (r) dr

∫ 1
0
r2βdr

)−1
,

and hence,

T (ρ̂MLE − 1)⇒

∫ 1

0

W (r)2 dr −

(∫ 1
0
rβW (r) dr

)2
∫ 1
0
r2βdr


−1(∫ 1

0

W (r) dW (r)

)
(5)

and

T (α̂MLE)⇒

∫ 1

0

r2βdr −

(∫ 1
0
rβW (r) dr

)2
∫ 1
0
W (r)2 dr


−1(∫ 1

0

rβdW (r)

)
. (6)

Note that if we define the limit of the scaled Hessian by,

D−1T H (ρ, α)D−1T ⇒ H̄ (ρ, α) =

(
H̄ρρ H̄ρα

H̄ρα H̄αα

)

then the quantities scaling the limit distribution of the components of the Score in

(5) and (6) are:

H̄ρ|α =

(
H̄ρρ −

(
H̄ρα

)2
H̄αα

)
& H̄α|ρ =

(
H̄αα −

(
H̄ρα

)2
H̄ρρ

)
,
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so that H̄ρ|α and H̄α|ρ are the stochastic analogues of Conditional Information1.

Bhapkar and Srinivasan [3] and Zhu and Reid [4] argue that conditional infor-

mation (2) should form the basis of any effi ciency theory, e.g. application of the

Cramér-Rao lower bound to any estimator of ρ. In the current context this would fail

since Iρα = 0 would wrongly imply that the value of β does not affect the limit dis-

tribution of ρ̂MLE. On the other hand the stochastic quantity H̄ρ|α depends explicitly

on β and should therefore prove informative about inference on ρ, as a function of β.

Indeed, here the limit in (5) can be interpreted as;

T (ρ̂MLE − 1)⇒ H̄−1ρ|αZ,

where Z ∼ (χ21 − 1) . Only H̄ρ|α contains any information on the impact of the covari-

ate on the asymptotic distribution of ρ̂MLE. It does not however measure its variance

directly, since it is correlated with Z.

Specification A is extremely useful in two regards. First, as in Hansen [10], it

exposes the effects of even stationary covariates on tests for nonstationarity. Second,

here, a sensible stochastic analogue of conditional information arises naturally and

its role in the limit distribution is clear. However, the latter applies only by imposing

α = 0, while generally the distribution of ρ̂MLE will depend explicitly upon α, and

any other value will produce different, as well as quickly intractable, limit theory.

Specification B, on the other hand, allows construction of invariant statistics and in

the next Section it will be shown that H̄ρ|α has far wider applicability, in that context.

3 Profile likelihood and information measures

In the context of specification B, suppose that a process (ut)
T
1 is generated according

to

ut = ρut−1 + εt ; εt ∼ iid(0, σ2), (7)

and we are interested in testing the null hypothesis H0 : ρ = 1, against H1 : ρ =

1− c/T, for c > 0. In the simplest case we assume that the observed time series data

(yt)
T
1 is given by yt = ut, however we explicitly ‘de-trend’the observations according

to two non-linear trend models;

M1 : yt = αtβ + ut & M2 : yt = α0 + α1t
β + ut, (8)

with β ≥ −0.5.

1The author is grateful to an anonymous referee for steps leading to this interpretation.
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The purpose is to measure the influence of β on our ability to determine whether

or not (ut)
T
1 has a unit root. Let α̂, α̂0 and α̂1 denote the OLS estimators for α,

α0 and α1 in (8), respectively. Unit root tests are constructed from detrended data,

(u∗t )
T
1 for M1 and

(
u+t
)T
1
for M2, where

M1 : u∗t = yt − α̂tβ ; M2 : u+t = yt − α̂0 − α̂1tβ.

The hypotheses H0 and H1 are invariant with respect to the groups of transfor-

mations defined, respectively, by

G1 : y → y + αtβ ; G2 : y → y + α0 + α1t
β. (9)

Similar to King [14] and Nielsen [15], the maximal invariants underG1 andG2 are v1 =

C1y and v2 = C2y, where Cj satisfies C ′jCj = IT−j, CjC ′j = Mj = IT−Xj

(
X ′jXj

)−1
X ′j

and X1 =
(
tβ
)T
t=1

and X2 =
(
1, tβ

)T
t=1

. Defining the vectors U∗ = (u∗t )
T
t=1 = M1v1

and U+ =
(
u+t
)T
t=1

= M2v2, then all statistics constructed only from u∗t
(
u+t
)
are

invariant, having distributions not depending on α or α0 and α1, respectively. In

particular, any quantity derived via the imposition of α = α0 = α1 = 0 will, in the

context of specification B, still apply more generally, unlike with specification A.

To measure the effect of the trend parameter β on asymptotic inference we will

focus upon likelihood based measures constructed from the Gaussian Profile Likeli-

hood:

L̃(ρ, σ2) =
exp

{
− 1
2σ2

∑T
t=1 (ũt − ρũt−1)2

}
(2πσ2)T/2

, (10)

where ũt = u∗t for M1 and ũt = u+t for M2, with likelihood profiled with respect to

the nuisance parameters α or (α0, α1) , respectively, via OLS. Accordingly, define the

following profile measures:

Kullback-Leibler divergence
Define the log-likelihood ratio by

LR(ρ) = ln

[
L̃(1, σ2)

L̃(ρ, σ2)

]
=

1

2σ2

[(
ρ2 − 1

) T∑
t=1

(ũt)
2 − 2 (ρ− 1)

T∑
t=1

ũtũt−1

]
,

then the asymptotic profile Kullback-Leibler divergence is given by

KL(ρ) = lim
T→∞

EH0 [LR(ρ)] .
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Fisher and conditional information
For specification B the profile Score and Hessian are,

S
(
ρ, σ2

)
=

(
1
σ2

∑T
t=1 ũt−1 (ũt − ρũt−1)

1
2σ4

∑T
t=1 (ũt − ρũt−1)2 − T

2σ2

)

−H
(
ρ, σ2

)
=

(
1
σ2

∑T
t=1 ũ

2
t−1

1
σ4

∑T
t=1 ũt−1 (ũt − ρũt−1)

1
σ4

∑T
t=1 ũt−1 (ũt − ρũt−1) 1

σ6

∑T
t=1 ε̃

2
t − T

2σ4

)
.

The Gaussian profile MLEs satisfy,

D̃T

(
ρ̂PMLE − ρ
σ̂2PMLE − σ2

)
=
(
−D̃−1T H

(
ρ, σ2

)
D̃−1T

)−1
D̃−1T S

(
ρ, σ2

)
. (11)

Imposing ρ = 1, noting ũT = Op

(
T 1/2

)
and ε̃T = ∆ũT = Op (1) , then the limit of the

scaled Hessian, H̄ (ρ, σ2) = limT→∞ D̃
−1
T H (ρ, σ2) D̃−1T , where D̃T = diag

{
T, T 1/2

}
,

is diagonal, since T−3/2
∑T

t=1 ũt−1ε̃t = op (1) , as is its expectation. Asymptotic Fisher

information in (ũt)
T
t=1 about ρ when ∆yt = εt, is

Ĩ1 (β) = lim
T→∞

E

[
T−2

σ2

T∑
t=1

ũ2t−1

]
,

and conditional information in ρ given σ2 is equal to Fisher information, in this case,

i.e. CIρ|σ2 = Ĩ1 (β) .

Before proceeding we will require limiting forms for the OLS estimators of the

nuisance parameters α̂ and (α̂0, α̂1) when ∆ut = εt. These generalize results found in

Durlauf and Phillips [16] and are given in the following Lemma, proved in Appendix

I.

Lemma 1: Let yt := ut = ut−1 + εt, εt ∼ iid(0, σ2),

T β−1/2α̂ ⇒ (2β + 1)

∫ 1

0

rβWσ(r)dr

T β−1/2α̂1 ⇒ Q1(β) =
(2β + 1) (β + 1)2

β2

[∫ 1

0

(
rβ − 1

β + 1

)
Wσ(r)dr

]
T−1/2α̂0 ⇒ Q0(β) =

− (2β + 1) (β + 1)

β2
×[∫ 1

0

(
rβ −

(
β4 − (2β + 1)2 (β + 1)

)
β2 (2β + 1) (β + 1)

)
Wσ(r)dr

]
,

where Wσ(r) =d σW (r).
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Note that, as is well known, α̂0 is never consistent, while neither of α̂ or α̂1 are

if β < 0.5. This, for α̂, contrasts with the limit for α̂MLE implied by (6) and which

could be generalized for α 6= 0, if α were the interest parameter, for instance.

Applying the results of Lemma 1 to the appropriate profile likelihood yields ex-

plicit expressions for the profile Kullback-Leibler, Fisher and conditional information

as given below. For each model we find that these are all asymptotically equivalent

and depend upon the degree of trending, β, in exactly the same way. The findings

are summarized in the following theorem, which is also proved in Appendix I.

Theorem 1: Part I) Let yt := ut = ut−1 + εt and suppose that we de-trend yt

according to M1, with u∗t = yt − α̂tβ, then:
(a)

T−2
T∑
1

(
u∗t−1

)2 ⇒ ∫ 1

0

W 2
σ (r)dr − (2β + 1)

(∫ 1

0

rβWσ(r)dr

)2
T−2

T∑
1

u∗tu
∗
t−1 ⇒

∫ 1

0

W 2
σ (r)dr − (2β + 1)

(∫ 1

0

rβWσ(r)dr

)2
.

(b) Letting ρ = 1− c/T, for c > 0, we have

I∗1 (β) = CI∗1|σ2 =
1

2

[
2β2 − β + 2

(2β + 3) (β + 2)

]
KL∗ (β) =

c2

4

[
2β2 − β + 2

(2β + 3) (β + 2)

]
.

(c) In model M1 Kullback-Leibler divergence and, therefore both information

measures, are minimized for trends of the form tβ
∗
, where β∗ =

(√
6− 1

)
/2.

Part II) Now let yt := ut = ut−1 + εt and suppose that we de-trend yt according to

M2, with u+t = yt − α̂0 − α̂1tβ, then:
(a) Both T−2

∑T
1

(
u+t−1

)2
and T−2

∑T
1 u

+
t u

+
t−1 have the same asymptotic sto-

chastic representation, with

T−2
T∑
1

(
u+t−1

)2 ⇒ ∫ 1

0

Wσ(r)2dr −
(∫ 1

0

Wσ(r)dr

)2
−(2β + 1) (β + 1)2

β2

[∫ 1

0

rβWσ(r)dr − 1

β + 1

∫ 1

0

Wσ(r)dr

]2
.
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(b) Letting ρ = 1− c/T, for c > 0, we have

I+1 (β) = CI+1|σ2 =
1

6

[ (
2β2 + β + 5

)
(2β + 3) (β + 3)

]

KL+ (β) =
c2

12

[ (
2β2 + β + 5

)
(2β + 3) (β + 3)

]
.

(c) In model M2 Kullback-Leibler divergence and, therefore both information

measures, are minimized for trends of the form tβ
+
, where β+ =

(√
10− 1

)
/2.

4 Discussion and Analysis

1) Returning to the original Dickey-Fuller [13] Model (i.e. specification A in (1)),

then we find that the expectation of the limit of the Conditional Hessian is

E
[

lim
T→∞

Hρ|α

]
= E

[∫ 1

0

W 2 (r) dr − (2β + 1)

(∫ 1

0

rβW (r) dr

)]2
=

1

2

[
2β2 − β + 2

(2β + 3) (β + 2)

]
= I∗1 (β) .

That is the measure of conditional information derived for specification A is identical

to profile Fisher information in specification B. This finding can generalized, at some

considerable algebraic cost, to the case of dt = α0 + αtβ.

2) In all cases it is clear that the covariate is relevant for inference on ρ, whether

it is evaporating or nonstationary, whether slowly evolving or explosive. For instance,

inM1 with β = 0, we have I∗1 (0) = CI∗1|σ2 = 1/6, andKL∗ (0) = c2/12. The outcomes

can also be compared with the benchmark of a pure random walk (i.e. the likelihood

does not need profiling), in which case we find I1 = 1/2 and KL = c2/4. In the

case of M1, I∗1 (β) < 1/2 for all −0.5 < β < ∞, although I∗1 (−0.5) = 1/2 and

limβ→∞ I
∗
1 (β) = 1/2. That is, profiling with respect to the limiting evaporating or

explosive covariate has, effectively, no effect on information. For M2 the benchmark

case can be taken as M1 with β = 0. Once again we find I+1 (β) < 1/6 for all

−0.5 < β <∞, but I+1 (−0.5) = 1/6 and limβ→∞ I
+
1 (β) = 1/6.

3) In order to demonstrate that these findings are genuinely informative about

the effect of regressing out tβ on unit root inference we examine the power envelope.

Adding scale invariance to the groups of transformations G1 and G2 defined above,

then from King [14] the maximal invariant (under (9)) for testing H0 : ρ = 1 in (7) is

vj = C ′jy/
√
y′Mjy, where Cj and Mj are defined above. The statistic vj has density
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(up to normalized Haar measure on the surface of the unit T − j sphere), as

f(vj; ρ) = |Aj,ρ|−1/2
(
v′A−1j,ρv

)− (T−j)
2 ; Aj,ρ = C ′j

(
∆−1ρ

) (
∆−1ρ

)′
Cj,

where ∆ρ = I − ρL, and L is the lag-operator matrix. The Neyman-Pearson tests for
H0 against the alternative H1 : ρ 6= 1 are to reject H0 if

NPj =
v′jA

−1
j,ρvj

v′jA
−1
j,1vj

< kδ, (12)

where kδ is chosen so that the size is δ.

In Table 1 (in Appendix II) the resulting power envelope was simulated for T =

250, for ρ = 1− c/T with c = 1, 2, .., 10 and for different values of β. The simulations

were carried out with 2 million replications. Note that β = T is used to approximate

the limiting case of β →∞. In Table 1 a clear prediction is supported; in M1 power

is not maximized when β = 0, detrending with respect to an evaporating trend

can imply as much or even more power. It is not quite possible, in this context,

to confirm the prediction that β∗and β+ minimize power. This is for two reasons.

Firstly the powers are clearly very close and insignificantly different even with two

million replications. Second the properties of the power envelope are determined by

behavior of tests under both the null and alternative, whereas Theorem 1 applies only

under the null.

4) Instead, consider the profile maximum likelihood estimators for ρ in M1 and

M2,

ρ̂1 =

∑T
t=2 u

∗
tu
∗
t−1∑T

t=2

(
u∗t−1

)2 & ρ̂2 =

∑T
t=2 u

+
t u

+
t−1∑T

t=2

(
u+t−1

)2 ,
where u∗t and u

+
t are defined above. Figures 1 and 2, in Appendix II, plot the simulated

(with T = 250 and two million replications) variances of T (ρ̂1 − 1)and T (ρ̂2 − 1) ,

respectively, for different values of the trend parameter β. Plotted also are vertical

lines at β∗ and β+. These figures help confirm, finally, the third prediction that there

is a value which minimizes the inferential accuracy and, crucially, this value is not

equal to 1.

5 Conclusions

This paper argues that likelihood based measures of information and effi ciency remain

informative about inferential accuracy even in regressions involving nonstationary

data. This, even though such models obey none of the required assumptions for

consistent and effi cient, asymptotically normal estimation.
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The equivalency of conditional information in a lagged dependent variable justifies

use of the simpler Kullback-Leibler, or Fisher information applied to profile likelihood

in the case of unit root inference in the presence of a general covariate. These are

informative, in that clear predictions including maximum inferential effi ciency for

‘evaporating’ trends and minimum effi ciency for fractional, not linear, trends are

clearly supported through numerical experiment.
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Appendix I
Proof of Lemma 1:
Since ut =

∑t
1 εj, then first note first the following standard results T

−3/2∑T
1 ut ⇒∫ 1

0
Wσ(r)dr, T−(β+3/2)

∑T
1 t

βut ⇒
∫ 1
0
rβWσ(r)dr and T−(β+1)

∑T
1 t

β →
∫ 1
0
rβdr = 1

β+1
,

which can then be immediately applied to the OLS estimators. Immediately, therefore

we have,

T β−1/2α̂ =
T−(β+3/2)

∑T
1 ytt

β

T−(2β+1)
∑T

1 t
2β
⇒
∫ 1
0
rβWσ(r)dr∫ 1
0
r2β+1dr

= (2β + 1)

∫ 1

0

rβWσ(r)dr.

Then,

T β−1/2α̂1 =
T−(β+3/2)

∑T
1 ytt

β − T−3/2
∑T

1 ytT
−(β+1)∑T

1 t
β

T−(2β+1)
∑T

1 t
2β − T−2(β+1)

(∑T
1 t

β
)2

⇒
∫ 1
0
rβWσ(r)dr −

∫ 1
0
Wσ(r)dr

∫ 1
0
rβdr∫ 1

0
r2β+1dr −

(∫ 1
0
rβdr

)2
≡ (2β + 1) (β + 1)2

β2

[∫ 1

0

rβWσ(r)dr − 1

β + 1

∫ 1

0

Wσ(r)dr

]
≡ (2β + 1) (β + 1)2

β2

∫ 1

0

(
rβ − 1

β + 1

)
Wσ(r)dr ≡ Q1(β)

as required and finally,

T−1/2α̂0 = T−3/2
T∑
1

ut − T β−1/2α̂1T−(β+1)
T∑
1

tβ

⇒
∫ 1

0

Wσ(r)dr −Q1(β)

∫ 1

0

rβdr

≡
∫ 1

0

Wσ(r)dr − (2β + 1) (β + 1)

β2

∫ 1

0

(
rβ − 1

β + 1

)
Wσ(r)dr

≡ − (2β + 1) (β + 1)

β2

[∫ 1

0

(
rβ −

(
β4 − (2β + 1)2 (β + 1)

)
β2 (2β + 1) (β + 1)

)
Wσ(r)dr

]
.
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Proof of Theorem 1:
Part I): a) The OLS detrended data is

u∗t = yt − α̂tβ = yt −
∑T

1 ytt
β∑T

1 t
2β
tβ,

so that when yt := ut = ut−1 + εt

T∑
1

(
u∗t−1

)2
=

T∑
1

(
ut−1 −

∑T
1 ut−1(t− 1)β∑T
1 (t− 1)2β

(t− 1)β

)2

=

T∑
1

u2t−1 −

(∑T
1 ut−1(t− 1)β

)2
∑T

1 (t− 1)2β
.

Since, T−2
∑T

1 u
2
t−1 ⇒

∫ 1
0
W 2
σ (r)dr, limT→∞ T

−(2β+1)∑T
1 (t − 1)2β → (2β + 1)−1

and T−(β+3/2)
∑T

1 ut−1(t− 1)β ⇒
∫ 1
0
rβWσ(r)dr then

T−2
T∑
1

(
u∗t−1

)2 ⇒ ∫ 1

0

W 2
σ (r)dr − (2β + 1)

(∫ 1

0

rβWσ(r)dr

)2
.

Similarly, we have

T∑
1

u∗tu
∗
t−1 =

T∑
1

(
ut −

∑T
1 utt

β∑T
1 t

2β
tβ

)(
ut−1 −

∑T
1 ut−1(t− 1)β∑T
1 (t− 1)2β

(t− 1)β

)

=
T∑
1

utut−1 +

(∑T
1 utt

β
)(∑T

1 ut−1(t− 1)β
)∑T

1 t
β(t− 1)β∑T

1 t
2β
∑T

1 (t− 1)2β

−

(∑T
1 ut(t− 1)β

)(∑T
1 ut−1(t− 1)β

)
∑T

1 (t− 1)2β
−

(∑T
1 ut−1t

β
)(∑T

1 utt
β
)

∑T
1 t

2β
.

Consequently, using

T−2
T∑
1

utut−1 = T−2

(
T∑
1

u2t−1 +

T∑
1

εtut−1

)
= T−2

T∑
1

u2t−1 + op(1)

⇒
∫ 1

0

W 2
σ (r)dr, (13)

as well as

T−(β+3/2)
T∑
1

ut(t− 1)β = T−(β+3/2)
T∑
1

ut−1(t− 1)β + op(1)

⇒
∫ 1

0

rβWσ(r)dr, (14)
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and similar for T−(β+3/2)
∑T

1 ut−1t
β, and limT→∞ T

−(2β+1)∑T
1 t

β(t−1)β = (2β + 1)−1 ,

then we have,

T−2
T∑
1

u∗tu
∗
t−1 ⇒

∫ 1

0

W 2
σ (r)dr − (2β + 1)

(∫ 1

0

rβWσ(r)dr

)2
.

(b) Since Kullback-Leibler divergence is defined as KL = E [LR] , where

LR =
1

2σ2

[(
ρ2 − 1

) T∑
1

(u∗t )
2 − 2 (ρ− 1)

T∑
1

u∗tu
∗
t−1

]
,

and expectations are taken under the unit root null. Consequently, since T−2
∑T

1 (u∗t )
2

and T−2
∑T

1 u
∗
tu
∗
t−1 have the same asymptotic representation, then we have

T−2LR⇒ 1

2

[
(1− ρ)2

(∫ 1

0

W 2(r)dr − (2β + 1)

(∫ 1

0

rβW (r)dr

)2)]
,

or letting ρ = 1− c/T,

LR⇒ c2

2

[∫ 1

0

W 2(r)dr − (2β + 1)

(∫ 1

0

rβW (r)dr

)2]
.

Since,

E

[∫ 1

0

W 2(r)dr

]
=

1

2
,

and

E

[(∫ 1

0

rβW (r)dr

)2]
= E

[∫ 1

0

rβW (r)dr

∫ 1

0

rsW (s)ds

]
= E

[∫ 1

0

∫ 1

0

rβsβW (r)W (s) dsdr

]
=

∫ 1

0

rβ
∫ r

0

sβ+1dsdr +

∫ 1

0

rβ+1
∫ r

0

sβdsdr

=
2

(β + 2) (2β + 3)
,

since E [W (r)W (s)] = min[r, s], and so,

KL =
c2

2

[
1

2
− 2 (2β + 1)

(2β + 3) (β + 2)

]
,

which when rearranged gives the expression as in the statement of the Theorem.
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For the information measures, we have, immediately that Fisher information is

I1 = CI1|σ2 = lim
T→∞

E

[
1

2
T−2

T∑
1

(
u∗t−1

)2]

= E

[∫ 1

0

W 2(r)dr − (2β + 1)

(∫ 1

0

rβW (r)dr

)2]
=

[
1

2
− 2 (2β + 1)

(2β + 3) (β + 2)

]
.

(c) Immediate from the definition of KL∗.

Part II)
a) For M2 and with yt = ut we have

u+t = ut − α̂0 − α̂1tβ,

where α̂0 and α̂0 are defined above. Using well known results for the simplest OLS

regression, we define

ũt = ut − T−1
T∑
1

ut and t̃ = tβ − T−1
T∑
1

tβ,

so that we can write

α̂1 =

∑T
1 ũtt̃∑T
1 t̃

2
and u+t = ũt −

∑T
1 ũtt̃∑T
1 t̃

2
t̃,

so that
T∑
1

(
u+t
)2

=
T∑
1

(
ũt −

∑T
1 ũtt̃∑T
1 t̃

2
t̃

)2
=

T∑
1

ũ2t −

(∑T
1 ũtt̃

)2
∑T

1 t̃
2

.

Using results found in the proof of (a), we first find

T−2
T∑
1

ũ2t = T−2
T∑
1

u2t − T−3
(

T∑
1

ut

)2

⇒
∫ 1

0

Wσ(r)2dr −
(∫ 1

0

Wσ(r)dr

)2
. (15)

Also we have

T−(β+3/2)
T∑
1

ũtt̃ = T−(β+3/2)
T∑
1

(
ut − T−1

T∑
1

ut

)(
tβ − T−1

T∑
1

tβ

)

= T−(β+3/2)
T∑
1

tβut − T−(β+1)
T∑
1

tβT−3/2
T∑
1

ut

⇒
∫ 1

0

rβWσ(r)dr − 1

β + 1

∫ 1

0

Wσ(r)dr, (16)
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while

T−(2β+1)
T∑
1

t̃2 = T−(2β+1)
T∑
1

(
tβ − T−1

T∑
1

tβ

)2
→ (2β + 1) (β + 1)2

β2
. (17)

Consequently, combining (15), (16) and (17), we have

T−2
T∑
1

(
u+t
)2 ⇒ ∫ 1

0

Wσ(r)2dr −
(∫ 1

0

Wσ(r)dr

)2
−(2β + 1) (β + 1)2

β2

[∫ 1

0

rβWσ(r)dr − 1

β + 1

∫ 1

0

Wσ(r)dr

]2
=

{∫ 1

0

Wσ(r)2dr −
(

1 +
2β + 1

β2

)(∫ 1

0

Wσ(r)dr

)2
(18)

−(2β + 1) (β + 1)2

β2

(∫ 1

0

rβWσ(r)dr

)2
+

2 (2β + 1) (β + 1)

β2

∫ 1

0

rβWσ(r)dr

∫ 1

0

Wσ(r)dr

}
.

Once again it is straight forward to show that T−2
∑T

1 u
+
t u

+
t−1 has the same as-

ymptotic limit, via

T∑
1

u+t u
+
t−1 =

T∑
1

(
ũt −

∑T
1 ũtt̃

β∑T
1 t̃

2β
t̃β

)(
ũt−1 −

∑T
1 ũt−1(t̃−1)

β∑T
1 (t̃−1)2β

(t̃−1)
β

)
,

where t̃−1 = (t − 1)β − T−1
∑T

1 t
β, and using the results in equations (13) and (14),

above.

Again, to calculate Kullback-Leibler divergence, we require limT→∞E
[
T−2

σ2

∑T
1

(
u+t
)2]

.

As above, we have

E

[∫ 1

0

W (r)2dr

]
=

1

2
, E

[(∫ 1

0

rβW (r)dr

)2]
=

2

(2β + 3)(β + 2)
and also

E

[(∫ 1

0

W (r)dr

)2]
=

1

3
.

For the remaining expectation, consider

lim
T→∞

E

[(
T−(β+3/2)

T∑
1

tβut

)(
T−(γ+3/2)

T∑
1

tγut

)]
= E

[∫ 1

0

rβW (r)dr

∫ 1

0

rγW (r)dr

]
.

(19)

16



We can write
∑T

1 t
βut
∑T

1 t
γut =

∑T
t,s=1 t

βsγutus, so that noting that E [utus] =

min[s, t], we have

T−(β+γ+3)E

[
T∑
1

tβut

T∑
1

tγut

]
= T−(β+γ+3)

(
T∑
t=1

t∑
s=1

tβsγ+1 +

T∑
t=1

T∑
s=t+1

tβ+1sγ

)

= T−(β+γ+3)

(
T∑
t=1

tβ+γ+2

γ + 2
+

T∑
t=1

tβ+1

γ + 1

[
T γ+1 − tγ+1

])
,

and then

lim
T→∞

T−(β+γ+3)E

[
T∑
1

tβut

T∑
1

tγut

]
=

γ + β + 4

(β + 2) (γ + 2) (β + γ + 3)
. (20)

Consequently, we have

KL+ = lim
T→∞

E

[
1

2σ2

[(
ρ2 − 1

) T∑
t=1

(
u+t
)2 − 2 (ρ− 1)

T∑
t=1

u+t u
+
t−1

]]
,

so that with ρ = (1− c/T ), and using both (19) and (20) in (18) we have

KL+ =
c2

2
E

[∫ 1

0

W (r)2dr −
(

1 +
2β + 1

β2

)(∫ 1

0

W (r)dr

)2(∫ 1

0

W (r)dr

)2
−(2β + 1) (β + 1)2

β2

(∫ 1

0

rβWσ(r)dr

)2
−2 (2β + 1) (β + 1)

β2

∫ 1

0

rβWσ(r)dr

∫ 1

0

Wσ(r)dr

]
=

c2

2

(
1

2
− 1

3

(
1 +

2β + 1

β2

)
− 2 (2β + 1) (β + 1)2

β2(2β + 3)(β + 2)

)

+
c2

2

(
2 (2β + 1) (β + 1)

β2
β + 4

2 (β + 2) (β + 3)

)
=

c2
(
2β2 + β + 5

)
12 (β + 3) (2β + 3)

.

Moreover, by arguments almost identical to those given above in the proof of Part

I; for M2 we have

I+1 = CI1|σ2 = lim
T→∞

E

[
T−2

T∑
t=1

(
u+t−1

)2]
=

(
2β2 + β + 5

)
6 (β + 3) (2β + 3)

.

(c) Immediate from the definition of KL+.
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Appendix II

Table 1: Power Envelopes for Models M1and M2 with different trends

M1 M2

Pure

AR(1)

β

c
0 −0.5 T 1 β∗ 0 −0.5 T 1 β+

1 .080 .080 .080 .052 .053 .079 .077 .076 .054 .054 .080

2 .121 .122 .121 .062 .062 .119 .115 .116 .061 .061 .122

3 .172 .178 .174 .074 .075 .169 .154 .167 .073 .073 .178

4 .234 .244 .236 .095 .094 .225 .198 .226 .093 .093 .246

5 .300 .321 .317 .114 .115 .298 .258 .289 .109 .109 .323

6 .365 .416 .406 .143 .145 .365 .311 .353 .141 .141 .417

7 .457 .520 .508 .178 .178 .448 .373 .434 .169 .169 .520

8 .528 .611 .596 .219 .217 .521 .450 .515 .214 .214 .610

9 .591 .687 .673 .262 .258 .579 .512 .593 .260 .259 .687

10 .668 .770 .754 .326 .317 .658 .569 .654 .296 .297 .771

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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25

Figure 1: Plot of V [ρ̂1]× 10000 vs. β. Vertical line at β∗ =
(√

6− 1
)
/2.
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Figure 2: Plot of V [ρ̂2]× 10000 vs. β. Vertical line at β+ =
(√

10− 1
)
/2
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