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Exploration of Novel Chemical Space: Synthesis and in vitro
Evaluation of N-Functionalized Tertiary Sulfonimidamides

Flavia Izzo,[a] Martina Sch-fer,[b] Philip Lienau,[b] Ursula Ganzer,[b] Robert Stockman,*[a] and
Ulrich Lecking*[b]

Abstract: An unprecedented set of structurally diverse

sulfonimidamides (47 compounds) has been prepared by

various N-functionalization reactions of tertiary =NH
sulfonimidamide 2 aa. These N-functionalization reactions of

model compound 2 aa include arylation, alkylation,
trifluoromethylation, cyanation, sulfonylation, alkoxycarbon-

ylation (carbamate formation) and aminocarbonylation (urea
formation). Small molecule X-ray analyses of selected N-func-

tionalized products are reported. To gain further insight into

the properties of sulfonimidamides relevant to medicinal
chemistry, a variety of structurally diverse reaction products
were tested in selected in vitro assays. The described N-func-

tionalization reactions provide a short and efficient approach
to structurally diverse sulfonimidamides which have been

the subject of recent, growing interest in the life sciences.

Introduction

The sulfonamide group 1 (Figure 1) is an important pharmaco-
phore found in about 200 drugs currently on the market.[1] In

contrast, sulfonimidamides 2, the mono-aza analogues of

sulfonamides 1, have received little interest until recently, de-
spite being first synthesized as early as 1962.[2] The infrequent
take-up of the sulfonimidamide group as a pharmacophore is

surprising since it seems to offer very interesting properties, in-
cluding high stability, favorable physicochemical properties,

multiple hydrogen-bond acceptor/donor functionalities and
structural diversity.[3]

Possible reasons for the neglected use of the sulfonimid-
amide group are the lack of commercial availability and limited

synthetic methods for its preparation,[4] as well as an incom-

plete understanding of its medicinal chemistry properties.
However, as recently pointed out by Arvidsson and co-workers,

the sulfonimidamide group is currently gaining popularity as a
novel pharmacophore in the life sciences.[3] Examples include

the sulfonimidamide analogues 5 and 6 of the clinical sulfon-
amide-containing anticancer agent tasisulam[5] and non-steroidal

anti-inflammatory drug celecoxib,[6] respectively, as well as an in-

creasing number of sulfonimidamides claimed in patent applica-
tions, for instance the sodium channel inhibitor 7 (Figure 2).[7]

However, to the best of our knowledge, a sulfonimidamide
candidate for clinical testing has yet to be disclosed.

This increasing interest in the life sciences is supported by
the very recent advent of new and safe synthetic methods for

the preparation of sulfonimidamides 2. Latest developments
include the copper-catalyzed conversion of sulfoximines 4 into
sulfonimidamides 2,[8] the preparation of trifluoromethylated

sulfonimidamides[9] and the one-pot de novo synthesis of sul-
fonimidamides relying on the stable reagent N-sulfinyltrityl-

amine.[6]

Triggered by our experience that the use of uncommon

functional groups, such as sulfoximines 4,[10] can be crucial for

overcoming hurdles in lead optimization,[11] we also became in-
terested in sulfonimidamides 2 as a neglected but potentially

versatile pharmacophore for drug discovery. Due to the limited
synthetic methodology available, we developed a new, practi-

cal one-pot synthesis of tertiary =NH sulfonimidamides 2 a by
transfer of electrophilic NH to sulfinamides 3 (Scheme 1).[12]

Figure 1. General structures of sulfonamides 1 (18 R2, R3 = H; 28 R2 = H,
R3¼6 H; 38 R2¼6 H, R3¼6 H), sulfonimidamides 2 (18 R2, R3 = H; 28 R2 = H, R3¼6 H;
38 R2¼6 H, R3¼6 H), sulfinamides 3 (18 R2, R3 = H; 28 R2 = H, R3¼6 H; 38 R2¼6 H,
R3¼6 H) and sulfoximines 4.
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The reaction is mediated by commercially available (diacetoxy-

iodo)benzene and ammonium carbamate in methanol at room

temperature and tolerates a wide range of functional groups.
Originally, these reaction conditions had been newly reported

by Bull, Luisi and co-workers[13] for the conversion of sulfoxides
into sulfoximines 4. Moreover, we investigated a variety of in

vitro properties, relevant to medicinal chemistry, of =NH
sulfonimidamide 2 aa in comparison to its matched sulfon-

amide analogue 1 aa and did not identify any intrinsic flaw of

the =NH sulfonimidamide group with respect to its application
in the life sciences.[12]

However, in contrast to sulfonamides 1, =NH sulfonimid-
amides 2 a offer the possibility of exploration of novel chemical

space via the introduction of substituents at the =NH position.
Functionalization of this =NH position would also offer an ad-

ditional handle to modulate the overall properties of the re-
sulting molecules, for example with respect to conformational
behavior, lipophilicity and physicochemical properties.

Therefore, we set course to investigate the N-functionaliza-
tion of tertiary =NH sulfonimidamides 2 a. To test the desired

transformations, we selected =NH sulfonimidamide 2 aa as a
model compound, which had been prepared from the corre-

sponding sulfinamide 3 on a gram scale by the one-pot NH-

transfer method (Scheme 1).[12]

With respect to the reactivity of the =NH position, we ex-

pected a certain similarity of sulfonimidamides and sulfoxi-
mines. Therefore, we elected to probe reaction conditions for

the desired N-functionalizations of =NH sulfonimidamides that
we had already successfully employed for the analogous reac-

tions of =NH sulfoximines, even on complex, drug-like mole-
cules.[14]

Results and Discussion

The palladium-catalyzed coupling of =NH sulfoximines with
aryl bromides was first described in 1998 by Bolm and Hilde-

brand who used catalytic amounts of Pd(OAc)2 and a chelating

bisphosphine (e.g. , BINAP) in the presence of Cs2CO3 as a
base.[15] In the meantime, a variety of modified reaction condi-

tions and reagents have been described by both academic and
industrial groups.[16] In our drug discovery efforts, we had

relied on the catalyst system Pd2(dba)3/BINAP[14e, i] or Pd2(dba)3/
Xantphos[17] in toluene in the presence of Cs2CO3 for this type

of reaction. However, in an ongoing lead optimization ap-

proach, we recently switched to the combination of Pd(OAc)2

and Xantphos as a catalyst since the use of Pd2(dba)3 resulted

in purification issues.[18] In contrast to the broad variety of N-ar-
ylation methods available for =NH sulfoximines, as far as we

are aware there is only one report of the analogous palladium-
catalyzed coupling reaction of =NH sulfonimidamides. Thus,

Arvidsson and co-workers used RuPhos and 2nd generation

RuPhos precatalyst in THF in the presence of NaOtBu under
microwave conditions; nevertheless, only four structurally

simple products, having no substituents at the aryl group,
were described.[19] The same research group also successfully
investigated the copper-catalyzed coupling of =NH sulfonimid-
amides with boronic acids.[20] However, we were mainly inter-

ested in the N-arylation of =NH sulfonimidamides using aryl
halides, due to better availability and reduced costs. Hence,

conditions that we had successfully applied for the analogous
functionalization of =NH sulfoximines were tested. As a model
reaction, tertiary =NH sulfonimidamide 2 aa (100 mg,
0.45 mmol, 1.1 equiv) was treated with bromobenzene (8 a,
1 equiv) in the presence of catalytic amounts of Pd(OAc)2

(5 mol %) and Xantphos (10 mol %), along with Cs2CO3

(1.5 equiv), in toluene at 100 8C overnight. To our delight, the

desired coupling product 2 ba was isolated in 86 % yield after

column chromatography (Table 1). Given the clean reaction
and very good yield, we then elected to explore the substrate

scope of this new process. A variety of substituted aryl bro-
mides 8 b–l were subjected to the standard reaction condi-

tions. Gratifyingly, the desired products 2 bb–2 bl were afford-
ed in all cases, the majority in good to excellent yields

Figure 2. Structures of the sulfonimidamide analogues 5 and 6 of the clinical sulfonamide-containing anticancer agent tasisulam[5] and non-steroidal anti-in-
flammatory drug celecoxib,[6] as well as of the sodium channel inhibitor 7[7] disclosed in a recent patent application.

Scheme 1. Synthesis of N-functionalized tertiary sulfonimidamides by various
methods using =NH sulfonimidamide 2 aa as a model compound.
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(Table 1). The exception was the reaction of 2-bromo-1,3,5-tri-

methylbenzene (8 h) which gave the coupling product 2 bh in
very low yield (3 %). This is probably due to steric hindrance re-

sulting from the two methyl groups at the positions ortho to

the bromine, since the monosubstituted bromotoluenes 8 e–g
all resulted in very good yields. Coupling product 2 bk was suc-

cessfully recrystallized and the structure confirmed by X-ray
analysis (Figure 3) [for additional X-ray analyses (com-

pounds 2 bg, 2 bj and 2 bm), see the Supporting Information] .
The reaction of various heteroaryl bromides 8 m–q also gave

the desired heteroaromatic products 2 bm–2 bq in good yields.

Another important option for the N-functionalization of =NH
sulfoximines and =NH sulfonimidamides is the corresponding

N-alkylation reaction. It is noteworthy that all recent sulfox-
imine clinical candidates, the kinase inhibitors roniciclib (BAY

1000394),[11a, 21] atuveciclib (BAY 1143572),[22] AZD 6738
(Figure 4)[23] and BAY 1251152 (Figure 4),[24] contain an unsub-

stituted =NH group. However, since for instance low Caco2

permeability and high efflux can be an issue with =NH sulfox-
imines,[10e] N-alkylation may be a means of improving the per-

meability properties.[10d] Moreover, N-alkylation is an interesting
option for drug design to explore novel chemical space. Sat-

zinger and Stoss, who pioneered the use of the sulfoximine

group in drug discovery, were originally attracted to this func-
tional group by this possibility of introducing substituents at the

=NH position. Their lead optimization efforts led to the identifi-
cation of the first sulfoximine clinical candidate suloxifen, which

is an N-alkylated diphenyl sulfoximine (Figure 4).[10c, 25]

Direct N-alkylation of =NH sulfoximines is not a trivial task

since the nucleophilicity of the nitrogen is dramatically re-

duced due to steric and electronic effects of the adjacent tetra-
coordinated sulfur.[26] N-Methylation of =NH sulfoximines has

usually been achieved under Eschweiler–Clarke conditions or
by the use of a strong methyl-transfer agent.[27] Introduction of

more complex alkyl groups, however, remained difficult until
Bolm and co-workers introduced a new method employing
alkyl bromides and KOH as a base in DMSO at room tempera-

ture.[28]

So far, there have been scant reports of the corresponding

direct N-alkylation of =NH sulfonimidamides, the first from
Johnson and Lavergne.[26, 29] They discovered that while Es-

chweiler–Clarke conditions resulted in degradation of the =NH
sulfonimidamide starting materials, the use of primary alkyl

bromides in combination with KH and the phase-transfer cata-
lyst Bu4NBr in 1,2-dimethoxyethane gave the desired N-alkyla-
tion products in good to excellent yields. In contrast, second-

ary bromides did not provide the N-alkylated products under
these conditions.

Along the lines of our concept to apply successful reaction
conditions from our experience with =NH sulfoximines in drug

discovery to =NH sulfonimidamides, we investigated the N-al-

kylation of model compound 2 aa using alkyl bromides in the
presence of KOH in DMSO. In the first reaction, tertiary =NH

sulfonimidamide 2 aa (100 mg, 0.45 mmol, 1 equiv) was treated
with bromoethane (9 a, 1.5 equiv) in DMSO in the presence of

KOH (2 equiv) for 4 hours at room temperature, to give the de-
sired N-ethyl derivative 2 ca in 99 % isolated yield (Table 2).

Table 1. Exploration of the substrate scope of the palladium-catalyzed N-
arylation of tertiary =NH sulfonimidamide 2 aa : Variation of aryl bromide
8.

Aryl bromide (R4Br) Isolated yield [%]

8 a : bromobenzene 2 ba : 86
8 b : 1-bromo-2-fluorobenzene 2 bb : 46
8 c : 1-bromo-3-fluorobenzene 2 bc : 97
8 d : 1-bromo-4-fluorobenzene 2 bd : 72
8 e : 2-bromotoluene 2 be : 97
8 f : 3-bromotoluene 2 bf : 84
8 g : 4-bromotoluene 2 bg : 99
8 h : 2-bromo-1,3,5-trimethylbenzene 2 bh : 3
8 i : 3-bromoanisole 2 bi : 65
8 j : 4-bromobenzonitrile 2 bj : 88
8 k : methyl 4-bromobenzoate 2 bk : 99
8 l : 4-bromobenzotrifluoride 2 bl : quant.
8 m : 2-bromopyridine 2 bm : 71
8 n : 3-bromopyridine 2 bn : 77
8 o : 4-bromopyridine 2 bo : 72
8 p : 2-bromopyrimidine 2 bp : 77
8 q : 2-bromo-1,3-thiazole 2 bq : 45

Figure 3. ORTEP plot (50 % thermal ellipsoids) of the crystal structure of N-
arylated sulfonimidamide 2 bk.

Figure 4. Examples of clinical and commercial sulfoximines: BAY 1251152,
AZD 6738, suloxifen and sulfoxaflor.
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After this initial success, the substrate scope of this new pro-

cess was explored using alkyl bromides 9 b–l. In contrast to
Johnson and Lavergne’s method,[26] reaction of the secondary
alkyl bromide 2-bromopropane (9 b) also gave the desired pro-
duct 2 cb, albeit in a significantly reduced yield of 38 %. Reac-

tion of 2 aa with a variety of more complex alkyl bromides 9 c–
k gave the corresponding N-alkylation products, usually in
good to moderate yields. Similar to the reported results of the
N-alkylation of sulfoximines,[28] the use of N-(2-bromoethyl)-
N,N-diethylamine (9 l) resulted in a low 13 % yield. However,

the corresponding product 2 cl can be considered as a partially
saturated sulfonimidamide analogue of the potent spasmolytic

and antiasthmatic agent suloxifen (Figure 4). Since methyl bro-

mide is a gas, we employed methyl iodide for the desired N-
methylation reaction of 2 aa to isolate the methylated pro-

duct 2 cm in 59 % yield. Benzyl bromide (9 n) reacted with 2 aa
in a similar yield of 57 % (2 cn), and product 2 co was isolated

from the reaction with heterocyclic 3-(bromomethyl)-5-methyl-
isoxazole (9 o) in good yield. Moreover, the reactions of allyl

bromide (9 p) and propargylic bromides 9 q,r also gave the cor-
responding products 2 cp–2 cr in good yields.

Bolm and co-workers recently achieved the first N-trifluoro-
methylation of =NH sulfoximines.[30] This radical process relies

on the use of TMSCF3 as a trifluoromethylating agent and cata-
lytic amounts of Ag2CO3 and 1,10-phenanthroline under an

oxygen atmosphere. The introduction of trifluoromethyl sub-
stituents is now a well-accepted strategy in medicinal chemis-
try, since it can significantly alter the properties of the resulting

compounds, for example with respect to lipophilicity, metabol-
ic stability and conformational behavior.[31] Since N-trifluorome-
thylation of =NH sulfonimidamides has not been reported, we
were intrigued to apply the above conditions to model com-

pound 2 aa. To our delight, the desired product 2 cs was
formed and could be isolated in 44 % yield (Scheme 2) without

further optimization.

N-Cyanation of =NH sulfoximines is another interesting

design option in the life sciences. The resulting =N@CN sulfoxi-
mine group is, for instance, present in the only marketed sul-

foximine so far, the insecticide sulfoxaflor (Figure 4).[32] In the

past, we and others have relied on the reaction of =NH sulfoxi-
mines with cyanogen bromide to prepare =N@CN sulfoxi-

mines.[33] There is also one report by Gnamm and co-workers
of the successful application of this method for the prepara-

tion of an =N@CN sulfonimidamide derivative.[34] However,
given the high toxicity of the required cyanogen bromide, a
new, environmentally benign procedure caught our attention.

Thus, Cheng and co-workers recently reported the direct
copper-catalyzed N-cyanation of =NH sulfoximines using AIBN
as a safe cyanide source.[35] Given the successful N-trifluorome-
thylation of =NH sulfonimidamide 2 aa under radical condi-

tions (Scheme 2), we elected to apply the new radical N-cyana-
tion process of sulfoximines to =NH sulfonimidamide model

compound 2 aa and at once isolated the corresponding pro-
duct 2 da in 43 % yield (Scheme 3).

N-Sulfonylated sulfoximines can be prepared by the reaction

of =NH sulfoximines with sulfonyl chlorides.[36] There are vari-
ous reported N-(sulfonyl)sulfonimidamides,[37] but none ob-

Table 2. Exploration of the substrate scope of the N-alkylation of tertiary
=NH sulfonimidamide 2 aa : Variation of alkyl halide 9.

Alkyl halide (R4Br/I) Isolated yield [%]

9 a : bromoethane 2 ca : 99
9 b : 2-bromopropane 2 cb : 38
9 c : (bromomethyl)cyclobutane 2 cc : 61
9 d : (bromomethyl)cyclopentane 2 cd : 29
9 e : (bromomethyl)cyclohexane 2 ce : 71
9 f : 4-(bromomethyl)tetrahydro-2H-pyran 2 cf : 60

9 g : 2 cg : 35

9 h : 2 ch : 50

9 i : 2 ci : 46

9 j : 1-bromo-2-methoxyethane 2 cj : 80
9 k : ethyl bromoacetate 2 ck : 40

9 l : 2 cl : 13

9 m : methyl iodide 2 cm : 59
9 n : benzyl bromide 2 cn : 57

9 o : 2 co : 62

9 p : allyl bromide 2 cp : 72
9 q : propargyl bromide 2 cq : 63
9 r : 1-bromobut-2-yne 2 cr : 71

Scheme 2. Synthesis of N-trifluoromethylated tertiary sulfonimidamide 2 cs.

Scheme 3. Synthesis of N-cyanated tertiary sulfonimidamide 2 da.

Chem. Eur. J. 2018, 24, 9295 – 9304 www.chemeurj.org T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim9298

Full Paper

http://www.chemeurj.org


tained by the direct reaction of =NH sulfonimidamides with
sulfonyl chlorides. Nevertheless, the reaction of model com-

pound 2 aa with sulfonyl chlorides 10 a,b in pyridine at room
temperature gave the desired coupling products in good

yields (Table 3).

The carbamate group is a key structural motif in many ap-
proved drugs.[38] Sulfoximines and sulfonimidamides also offer

the opportunity to form carbamate-type products by employ-

ing the =NH position. The first N-(sulfoxylidene)carbamate was
described in 1970[25a] and products of this type are usually syn-

thesized by the reaction of =NH sulfoximines with chloroform-
ates.[39] Carbamates based on sulfonimidamides were already

described in 1963[40] but, to the best of our knowledge, there
is only one literature example of a direct coupling of an =NH

sulfonimidamide with a chloroformate.[39b] To gain further in-

sight into this straightforward method, =NH sulfonimidamide
model compound 2 aa was reacted with chloroformates 11 a,b
in pyridine to give the coupling products in good yields
(Table 4).

Like the carbamate group, the urea moiety is a very impor-

tant pharmacophore in the life sciences.[41] The formation of N-

(sulfoxylidene)urea derivatives via reaction of the =NH group
of sulfoximines with isocyanates was described as early as

1965.[42] We have also successfully applied this reaction in a va-
riety of lead optimization programs.[43] In comparison, very few

sulfonimidamide-based ureas have been described as yet.[44] As
far as we are aware, none of these products was obtained by

the direct reaction of an =NH sulfonimidamide with an isocya-
nate. However, the reaction of =NH sulfonimidamide model
compound 2 aa with isocyanates 12 a–f in dichloromethane at
room temperature gave the desired coupling products in good
yields (Table 5).

In a recent, preliminary assessment of the medicinal chemis-
try properties of sulfonimidamides, the behavior of =NH

sulfonimidamide 2 aa was compared to the matched sulfona-
mide analogue 1 aa in selected in vitro assays.[12, 45] The hydro-

lytic stability of both compounds at different pH values was in-

vestigated, along with the metabolic stability in liver micro-
somes (human, rat and mouse) and also rat hepatocytes in

vitro. Furthermore, the Caco2 permeability and logD values
were determined. In vitro, model compound 2 aa did not

reveal any intrinsic flaw of the sulfonimidamide group with re-
spect to its application in the life sciences.

To gain further knowledge of the properties of the neglect-

ed sulfonimidamide group, selected N-functionalized sulfon-
imidamides were evaluated in the same in vitro panel (Table 6

contains selected examples; see the Supporting Information
for additional examples). Similar to =NH sulfonimidamide 2 aa,

the tested N-functionalized sulfonimidamides revealed very
high hydrolytic stabilities after 24 hours with stirring at pH 1, 7

and 10. The only exception was N-trifluoromethylated sulfon-
imidamide 2 cs that revealed signs of hydrolysis at pH 1 and
10.

As expected, introduction of a substituent at the =NH posi-
tion significantly influences the lipophilicity of the resulting

compounds. Depending on the nature of the substituent, logD
values in the range of 1.9 (2 cl) up to 4.3 (2 bc) were recorded.

Introduction of a methyl group at the =NH position, for in-
stance, resulted in an increased logD value from 1.9 (2 aa) to
2.4 (2 cm), whereas the introduction of a trifluoromethyl group

raised the logD value to 3.7 (2 cs).
All compounds were tested in a Caco2 screening assay and

revealed high permeability coefficients (Papp A–B) and no evi-
dence of drug efflux. This behavior can be attributed to the

Table 3. N-Sulfonylation of tertiary =NH sulfonimidamide 2 aa with sulfo-
nyl chlorides 10 a,b.

Sulfonyl chloride (R5SO2Cl) Isolated yield [%]

10 a : methanesulfonyl chloride 2 ea : 62
10 b : p-toluenesulfonyl chloride 2 eb : 58

Table 4. N-Alkoxycarbonylation of tertiary =NH sulfonimidamide 2 aa
with chloroformates 11 a,b (carbamate formation).

Chloroformate [R6OC(O)Cl] Isolated yield [%]

11 a : phenyl chloroformate 2 fa : 60
11 b : ethyl chloroformate 2 fb : 69

Table 5. N-Aminocarbonylation of tertiary =NH sulfonimidamide 2 aa
with isocyanates 12 a–f (urea formation).

Isocyanate (R7N = C=O) Isolated yield [%]

12 a : n-propyl isocyanate 2 ga : 65
12 b : phenyl isocyanate 2 gb : 79
12 c : 4-nitrophenyl isocyanate 2 gc : 82
12 d : 2,5-dimethoxyphenyl isocyanate 2 gd : 75
12 e : 4-methoxyphenyl isocyanate 2 ge : 82

12 f : 2 gf : 49
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low molecular weight and the rather lipophilic nature of these
small and fragment-like compounds (see logD values at pH 7.5,

Table 6).
In vitro pharmacokinetic studies in liver microsomes of

human, rat and mouse origin, and rat hepatocytes, with select-
ed N-functionalized sulfonimidamides revealed a clear species

dependence of the predicted metabolic stabilities, given as the

maximum oral bioavailability Fmax
[46] (Table 6 and Supporting In-

formation). From the studies with rat hepatocytes, low meta-

bolic stabilities (Fmax<30 %) were observed for all tested
sulfonimidamides as well as sulfonamide 1 aa. Similar instabili-

ties were also observed with rat liver microsomes, which is
well in line with the unrestricted membrane permeability ob-
served in Caco2 cells and hints at a major involvement of

Phase I metabolism for these compounds in rats. Based on
liver microsomes from humans, however, the metabolic stabili-
ties cover the whole range, from high (Fmax>70 %; e.g. , 2 cl,
2 ea) to low (Fmax<30 %; e.g. , 2 bc). This range of metabolic

stabilities in human liver microsomes correlates nicely with the
corresponding logD values of the test compounds (see the

Supporting Information), which is in line with the general
trend for many chemical series in the life sciences.[47] However,
it is noteworthy that the main sites of metabolism and the in-

volved metabolic enzymes were not determined in these in
vitro studies.

Conclusions

Although overlooked in the life sciences for a long time, the
sulfonimidamide functional group has recently been the sub-

ject of a growing interest as a versatile pharmacophore. Based
on the premise that the =NH position of tertiary sulfonimid-

amides should show a similar reactivity as the =NH position of
sulfoximines, we have successfully applied various reported re-

Table 6. Comparison of the in vitro properties of sulfonamide 1 aa and
the analogous =NH sulfonimidamide 2 aa with a structural variety of N-
functionalized sulfonimidamides.

Compound Recovery
[%][a]

(pH)

Fmax

(h/r/
m)-
LMs
[%][b]

Fmax

rHep
[%][b]

Papp A-B
[nm s@1][c]

Efflux
ratio[c]

logD
pH 7.5[d]

100 (1)
100 (7)
100 (10)

69 (h)
10 (r)
26
(m)

4.3 393 0.64 2.6

100 (1)
100 (7)
100 (10)

97 (h)
30 (r)
79
(m)

14 378 0.59 1.9

100 (1)
100 (7)
100 (10)

100
(h)
3.4 (r)
8.2
(m)

3.3 164 1.5 1.9

100 (1)
100 (7)
100 (10)

100
(h)
33 (r)
83
(m)

20 363 0.67 2.0

100 (1)
100 (7)
100 (10)

87 (h)
11 (r)
47
(m)

7.8 256 0.73 2.2

100 (1)
100 (7)
100 (10)

84 (h)
18 (r)
47
(m)

19 404 0.57 2.4

100 (1)
100 (7)
100 (10)

82 (h)
18 (r)
67
(m)

26 400 0.61 2.6

100 (1)
100 (7)
100 (10)

65 (h)
26 (r)
28
(m)

11 404 0.57 3.0

56 (1)
100 (7)
91 (10)

19 (h)
10 (r)
9.3
(m)

6.8 192 0.70 3.7

Table 6. (Continued)

Compound Recovery
[%][a]

(pH)

Fmax

(h/r/
m)-
LMs
[%][b]

Fmax

rHep
[%][b]

Papp A-B
[nm s@1][c]

Efflux
ratio[c]

logD
pH 7.5[d]

100 (1)
100 (7)
100 (10)

8.3
(h)
0.5 (r)
16
(m)

2.1 252 0.45 4.3

[a] Hydrolytic stability measured as recovery of test compound after
24 hours with stirring at pH 1 (HCl buffer), pH 7 (phosphate-buffered
saline) and pH 10 (sodium borate buffer).[48] [b] Predicted hepatic meta-
bolic first pass given as the maximum oral bioavailability Fmax based on a
metabolic stability assay using (i) pooled human liver microsomes (hLMs),
(ii) pooled rat liver microsomes (rLMs), (iii) pooled mouse liver microsomes
(mLMs) and (iv) freshly harvested rat hepatocytes (rHep).[49] [c] Papp A-B
(apical to basolateral) and efflux ratio (ER) data were generated in a bidir-
ectionally performed Caco2 permeability assay in a 24-well format; ER
was calculated as Papp B-A/Papp A-B.[49] [d] Determined by reversed-phase
HPLC.[50]
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action conditions for the N-functionalization of sulfoximines to
the tertiary =NH sulfonimidamide model compound 2 aa.

Using this methodology, we have synthesized an unprecedent-
ed set of structurally diverse sulfonimidamides (47 com-

pounds). The described N-functionalization reactions include
arylation, alkylation, trifluoromethylation, cyanation, sulfonyla-

tion, alkoxycarbonylation (carbamate formation) and aminocar-
bonylation (urea formation). Generally, only isolated examples

of these transformations have been reported previously, and

we have utilized many of the described reactions for the first
time for the N-functionalization of =NH sulfonimidamides. In

vitro studies of selected, structurally diverse N-functionalized
sulfonimidamides from our set of compounds have not re-

vealed any intrinsic flaw of the sulfonimidamide group with re-
spect to its application as a versatile pharmacophore in drug
discovery. The combination of our recently reported one-pot

synthesis of tertiary =NH sulfonimidamides by NH transfer to
simple sulfinamides and the subsequent N-functionalization of

the newly formed =NH position employing the now-outlined
set of reactions offers rapid access to highly complex and
structurally diverse molecules, addressing novel chemical
space with properties suitable for application in the life scien-

ces.

Experimental Section

N-Arylation of sulfonimidamide 2 aa: General procedure A

In a dry MW vial flushed with Ar, sulfonimidamide 2 aa (100 mg,
0.45 mmol, 1.1 equiv) and an aryl bromide (0.40 mmol, 1.0 equiv)
were dissolved in toluene (6.8 mL). The mixture was then degassed
for 10 min and Pd(OAc)2 (4.5 mg, 0.02 mmol, 5 mol %), Xantphos
(23 mg, 0.04 mmol, 10 mol %) and Cs2CO3 (200 mg, 0.60 mmol,
1.5 equiv) were added at RT. The reaction mixture was heated to
100 8C and stirred overnight. Once the starting material had been
consumed (monitored by TLC), the mixture was cooled, diluted
with methyl tert-butyl ether, filtered through a pad of Celite under
reduced pressure and washed with methyl tert-butyl ether. Solvent
was removed under reduced pressure and the crude product was
purified by flash column chromatography.

1-(N,S-Diphenylsulfonimidoyl)piperidine (2 ba)

Prepared according to general procedure A, from bromobenzene;
crude purified by flash column chromatography (KP-Sil, 0–30 %
EtOAc in PE) to give 2 ba as a white solid (104 mg, 86 %): m.p. 118–
120 8C; 1H NMR (400 MHz, CDCl3): d= 8.01–7.96 (m, 2 H), 7.62–7.52
(m, 3 H), 7.27 (d, J = 6.1 Hz, 2 H), 7.25 (d, J = 2.4 Hz, 2 H), 6.98 (tt, J =
5.70, 2.91 Hz, 1 H), 3.10–2.99 (m, 4 H), 1.58–1.49 (m, 4 H), 1.37 ppm
(quin, J = 6.08 Hz, 2 H); 13C NMR (101 MHz, CDCl3): d= 143.9, 136.6,
132.3, 129.9, 128.9, 127.9, 123.9, 121.8, 47.6, 25.4, 23.7 ppm; IR
(KBr): ñ= 3074, 2939, 2849, 1585, 1485, 1306, 1219, 931, 781,
694 cm@1; HRMS (ESI-TOF) m/z [M++H]+ calcd for C17H21N2OS:
301.1375, found: 301.1378.

N-Alkylation of sulfonimidamide 2 aa: General procedure
B[28]

In a dry MW vial flushed with Ar, sulfonimidamide 2 aa (100 mg,
0.45 mmol, 1.0 equiv) and KOH (50 mg, 0.89 mmol, 2.0 equiv) were
stirred in DMSO (0.7 mL) at RT for 15 min. Then, an alkyl bromide/

iodide (0.67 mmol, 1.5 equiv) was added and the mixture was
stirred at RT for 4–16 h. Once the starting material had been con-
sumed (monitored by TLC), H2O was added and the aqueous layer
was extracted with DCM (3 V 10 mL). The combined organic phases
were filtered through water-repellent filter paper. Solvent was re-
moved under reduced pressure and the crude product was puri-
fied by flash column chromatography or preparative HPLC.

1-(N-Ethyl-S-phenylsulfonimidoyl)piperidine (2 ca)

Prepared according to general procedure B, from bromoethane;
crude purified by flash column chromatography (KP-Sil, 0–50 %
EtOAc in hexane) to give 2 ca as a colorless oil (111 mg, 99 %):
1H NMR (400 MHz, CDCl3): d= 7.66–7.63 (m, 2 H), 7.33–7.24 (m, 3 H),
3.10 (dq, J = 12.3, 7.2 Hz, 1 H), 2.93 (dq, J = 12.3, 7.2 Hz, 1 H), 2.71
(qt, J = 11.7, 5.4 Hz, 4 H), 1.39 (quin, J = 5.6 Hz, 4 H), 1.17 (tt, J = 8.3,
4.7 Hz, 2 H), 1.06 ppm (t, J = 7.2 Hz, 3 H); 13C NMR (101 MHz, CDCl3):
d= 136.1, 131.8, 128.5, 127.7, 47.7, 36.8, 25.5, 23.7, 18.3 ppm; IR
(KBr): ñ= 3063, 2934, 2853, 1254, 1153, 914 cm@1; HRMS (ESI-TOF)
m/z [M++H]+ calcd for C13H21N2OS: 253.1375, found: 253.1379.

N-Trifluoromethylation of sulfonimidamide 2 aa[30]

1-[S-Phenyl-N-(trifluoromethyl)sulfonimidoyl]piperidine (2 cs)

In a MW vial charged with sulfonimidamide 2 aa (100 mg,
0.45 mmol, 1.0 equiv), TMSCF3 (4.44 mL, 2.22 mmol, 5.0 equiv; 0.5 m
solution in THF), Ag2CO3 (24 mg, 0.09 mmol, 0.2 equiv), 1,10-phe-
nanthroline (32 mg, 0.18 mmol, 0.4 equiv) and 1,4-dioxane (8.9 mL)
were added. Then, a balloon charged with O2 was attached to the
MW vial and the solution was degassed for 10 min. The mixture
was stirred and heated in an oil bath at 60 8C for 16 h. Then, the
solution was cooled, solvent removed in vacuo and the crude
product purified by flash column chromatography (KP-Sil, 0–50 %
EtOAc in PE) to give 2 cs as a yellow oil (57 mg, 44 %): 1H NMR
(400 MHz, CDCl3): d= 7.89–7.86 (m, 2 H), 7.65–7.60 (m, 1 H), 7.57–
7.53 (m, 2 H), 3.11–3.00 (m, 4 H), 1.68–1.62 (m, 4 H), 1.48–1.42 ppm
(m, 2 H); 13C NMR (101 MHz, CDCl3): d= 135.6, 133.3, 129.2, 127.5,
121.6 (q, J = 255 Hz), 47.5, 25.3, 23.7 ppm; IR (neat): ñ= 3069, 2944,
2856, 1256, 1077, 921 cm@1; HRMS (ESI-TOF) m/z [M++H]+ calcd for
C12H16N2OF3S: 293.0930, found: 293.0935.

N-Cyanation of sulfonimidamide 2 aa[35]

N-[Oxo(phenyl)(piperidin-1-yl)-l6-sulfanylidene]cyanamide
(2 da)

In a MW vial charged with sulfonimidamide 2 aa (100 mg,
0.45 mmol, 1.0 equiv), AIBN (108 mg, 0.66 mmol, 1.5 equiv), CuI
(16 mg, 0.09 mmol, 0.2 equiv), K2CO3 (122 mg, 0.88 mmol,
2.0 equiv) and MeCN (6.7 mL) were added. Then, a balloon charged
with O2 was attached to the MW vial and the solution was de-
gassed for 10 min. The mixture was stirred and heated in an oil
bath at 75 8C for 16 h. Then, the solution was cooled, filtered and
the solids washed with MeCN. The liquid phase was collected, sol-
vent removed in vacuo and the crude product purified by flash
column chromatography (KP-Sil, 0–100 % EtOAc in PE) to give 2 da
as a brown oil (47 mg, 43 %): 1H NMR (400 MHz, CDCl3): d= 7.87–
7.84 (m, 2 H), 7.72–7.67 (m, 1 H), 7.62–7.57 (m, 2 H), 3.14 (td, J = 5.6,
2.2 Hz, 4 H), 1.77–1.63 (m, 4 H), 1.54–1.46 ppm (m, 2 H); 13C NMR
(101 MHz, CDCl3): d= 134.4, 133.6, 129.7, 127.8, 111.2, 47.4, 25.1,
23.4 ppm; IR (neat): ñ= 3063, 2924, 2853, 2151, 1268, 1200,
924 cm@1; HRMS (ESI-TOF) m/z [M++H]+ calcd for C12H16N3OS:
250.1009, found: 250.1011.
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N-Sulfonylation of sulfonimidamide 2 aa: General procedure
C

Sulfonimidamide 2 aa (100 mg, 0.45 mmol, 1.0 equiv) was dissolved
in pyridine (3.0 mL) under Ar atmosphere; then, the appropriate
sulfonyl chloride (0.71 mmol, 1.6 equiv) was added. The reaction
mixture was stirred at RT overnight; then, the reaction was
quenched with aqueous NaHCO3 and diluted with EtOAc (3 mL).
The mixture was transferred to a separating funnel, the aqueous
layer was extracted with EtOAc (3 V 10 mL), and the combined or-
ganic phases were washed with brine (3 V 10 mL), then filtered
through water-repellent filter paper. Solvent was removed in vacuo
and the crude product purified (when needed).

N-[Oxo(phenyl)(piperidin-1-yl)-l6-sulfanylidene]methanesul-
fonamide (2 ea)

Prepared according to general procedure C, from methanesulfonyl
chloride; crude purified by preparative HPLC to give 2 ea as a
white solid (83 mg, 62 %): m.p. 93–95 8C; 1H NMR (400 MHz, CDCl3):
d= 7.92–7.90 (m, 2 H), 7.67–7.63 (m, 1 H), 7.59–7.54 (m, 2 H), 3.23
(ddd, J = 11.4, 7.1, 4.0 Hz, 2 H), 3.18 (s, 3 H), 3.10 (ddd, J = 11.5, 6.9,
3.9 Hz, 2 H), 1.74–1.60 (m, 4 H), 1.49 ppm (quin, J = 5.9 Hz, 2 H);
13C NMR (101 MHz, CDCl3): d= 136.1, 133.7, 129.4, 127.6, 47.2, 45.0,
25.1, 23.5 ppm; IR (KBr): ñ= 2939, 2856, 1311, 1246, 1099,
918 cm@1; HRMS (ESI-TOF) m/z [M++H]+ calcd for C12H19N2O3S2 :
303.0837, found: 303.0838.

N-Alkoxycarbonylation of sulfonimidamide 2 aa (carbamate
formation): General procedure D[51]

To a solution of sulfonimidamide 2 aa (100 mg, 0.45 mmol,
1.0 equiv) and pyridine (54 mL, 0.67 mmol, 1.5 equiv) in THF
(0.9 mL) under Ar atmosphere at 0 8C, the corresponding chloro-
formate (0.67 mmol, 1.5 equiv) was added. As soon as the chloro-
formate was in solution, a white precipitate formed. The tempera-
ture was allowed to rise to RT and the mixture was stirred over-
night. The reaction was quenched with H2O and diluted with Et2O
(3 mL). The mixture was transferred to a separating funnel, the
aqueous layer was extracted with Et2O (3 V 10 mL), and the com-
bined organic phases were washed with 1 m HCl (3 V 10 mL) and
brine (3 V 10 mL), then filtered through water-repellent filter paper.
Solvent was removed in vacuo and the crude product purified
(when needed).

Phenyl [oxo(phenyl)(piperidin-1-yl)-l6-sulfanylidene]carba-
mate (2 fa)

Prepared according to general procedure D, from phenyl chloro-
formate; crude purified by flash column chromatography (KP-Sil,
0–50 % EtOAc in PE) to give 2 fa as a white solid (90 mg, 60 %):
m.p. 114–117 8C; 1H NMR (400 MHz, CDCl3): d= 7.94–7.91 (m, 2 H),
7.65–7.60 (m, 1 H), 7.58–7.53 (m, 2 H), 7.34–7.29 (m, 2 H), 7.17–7.11
(m, 3 H), 3.25–3.15 (m, 4 H), 1.66 (quin, J = 5.6 Hz, 4 H), 1.53–
1.47 ppm (m, 2 H); 13C NMR (101 MHz, CDCl3): d= 156.1, 151.8,
136.2, 133.4, 129.3, 129.2, 127.9, 125.3, 121.8, 46.7, 25.3, 23.7 ppm;
IR (neat): ñ= 3068, 2945, 2856, 1687, 1274, 1248, 1194, 877 cm@1;
HRMS (ESI-TOF) m/z [M++H]+ calcd for C18H21N2O3S: 345.1267,
found: 345.1275.

N-Aminocarbonylation of sulfonimidamide 2 aa (urea forma-
tion): General procedure E[52]

To a solution of sulfonimidamide 2 aa (100 mg, 0.45 mmol,
1.0 equiv) in anhydrous DCM (0.9 mL), the corresponding isocya-
nate (0.66 mmol, 1.5 equiv) was added dropwise at RT under Ar at-
mosphere. The reaction mixture was stirred until a precipitate
formed (3–16 h) and starting material had been consumed (TLC
analysis). Et2O was added, and the precipitate was collected by fil-
tration under reduced pressure and washed with Et2O. The solid
was purified by flash column chromatography (when needed).

1-[Oxo(phenyl)(piperidin-1-yl)-l6-sulfanylidene]-3-propylurea
(2 ga)

Prepared according to general procedure E, from n-propyl isocya-
nate; crude purified by flash column chromatography (KP-Sil, 0–
100 % EtOAc in PE) to give 2 ga as a colorless oil (89 mg, 65 %):
1H NMR (400 MHz, CDCl3): d= 7.87 (dt, J = 8.4, 1.3 Hz, 2 H), 7.59–
7.55 (m, 1 H), 7.51 (ddd, J = 8.3, 6.5, 1.2 Hz, 2 H), 5.16 (brs, 1 H),
3.17–3.06 (m, 6 H), 1.63 (quin, J = 5.4 Hz, 4 H), 1.55–1.42 (m, 4 H),
0.92–0.88 ppm (m, 3 H); 13C NMR (101 MHz, CDCl3): d= 158.4, 137.1,
132.7, 129.0, 127.7, 46.9, 42.4, 25.4, 23.7, 23.3, 11.5 ppm; IR (neat):
ñ= 3252, 2931, 2855, 1617, 1520, 1244, 931 cm@1; HRMS (ESI-TOF)
m/z [M++H]+ calcd for C15H24N3O2S: 310.1584, found: 310.1602.
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