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Abstract 

The aim of this research is to develop a framework to allow efficient Human Robot, HR, 

collaboration on manufacturing assembly tasks based on cost functions that quantify 

capabilities and performance of each element in a system and enable their efficient 

evaluation. A proposed cost function format is developed along with initial development 

of two example cost function variables, completion time and fatigue, obtained as each 

worker is completing assembly tasks. The cost function format and example variables 

were tested with two example tasks utilizing an ABB YuMi Robot in addition to a 

simulated human worker under various levels of fatigue. The total costs produced clearly 

identified the best worker to complete each task with these costs also clearly indicating 

when a human worker is fatigued to a greater or lesser degree than expected. 
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1. Introduction: 

The development of human-safe robots over the past decade has allowed the 

possibility of collaborative work between humans and robots in an industrial environment 

to be considered more realistic than ever [1], [2], [3]. Human Robot, HR, collaboration 

on tasks combines the benefits of the strength, repeatability and accuracy of a robot with 

the intelligence and adaptability of a human worker. This enables automation to be 

introduced into sectors of modern manufacturing with a relatively low volume of 

production with a high degree of customization where a robot would lack the adaptability 

to be implemented alone. HR collaboration can range from robot workers being indirectly 

involved in the task by acting as assistants to a human worker, to full involvement where 

robots are treated as peers to human workers and directly influence the outcome of tasks 

[4].   

Research has been carried out into using human-safe robots as assistants to human 

workers in assembly tasks with examples seen in [5] and [6]. In such research the human 

worker directs the assembly process and completes the majority of critical tasks to the 

assembly with the robot worker performing basic assistive actions such as handing 

components to the human worker. Although such methods of HR collaboration assist the 

human worker, in cases such as this the capabilities of the robot worker are underutilized 

since they are not performing actions critical to the assembly. In addition to this, such 

methods are dependent on either human action recognition or direct instruction by the 

human worker to inform the robot worker what to do as well as completing their own 

work. 



To date, little research has been carried out into autonomously controlling task 

allocation over full complex assembly tasks in work cells utilizing both human and robot 

workers that are considered as peers to each other. Some methods, such as that proposed 

by Riedelbauch et al [7], dictate task allocation for robot workers by observing the world 

state of the current working environment. Observation of the world state allows the robot 

to identify which assembly operations are available for it to complete, then select one to 

execute. Such a method has the advantage that the work cell can consist of flexible 

human robot teams that change during the task, allowing human workers to leave the 

work cell with the remainder of the task being executed by the robot worker. The 

disadvantage of such methods is that the robot worker is allocated tasks on a task by task 

basis, rather than evaluating the assembly as a whole, which can hinder optimization of 

the task. In addition to this, the system is heavily dependent on sensors monitoring the 

workspace which may not be usable in all manufacturing environments, for example this 

system uses robot mounted cameras which may struggle to detect objects in low light 

conditions.  

In the research presented in [8] and [9], the full assembly task is planned and 

assigned before task execution has begun. In the case of [8], assembly tasks are classified 

by suitability for execution by human or robot workers and then assigned to be competed 

collaboratively or individually by the workers with a Gantt chart of the assembly process 

being produced. In the case of [9] the effect of human fatigue on the dynamics of 

manufacturing processes is modeled and used along with statistical methods to generate 

an optimal task assignment. Such methods are advantageous as this allows the assembly 



task to be considered as a whole, with worker assignment being planned to best utilize 

their capabilities rather than assigning a worker to a task if they are available. 

For the purposes of this paper, we treat the current state of the art of task 

allocation in industrial HR collaboration tasks is represented by the work developed by 

Johannsmeier et al [10]. Their planning framework presents the idea of using cost 

functions based on the abilities of each worker to dictate task assignment in a human 

robot collaborative assembly task. Whilst this provides a novel method for assigning 

tasks between human and robot workers, the specific design and implementation of the 

cost functions in [10] pose several fundamental limitations for use in a real world 

industrial environment. One such limitation is that the cost functions are rigid and 

predefined because weightings for cost function variables must be manually reassigned 

by a human. This is disadvantageous as reassigning the framework to a new assembly 

task or changing production requirements would require significant human involvement 

and this is not desirable for a system designed to operate autonomously. In addition to 

this, the high-level task planner operates offline, generating a task plan before assembly 

begins. This operating principle severely restricts the variables that can be used in cost 

functions for a human worker compared to those for a robot worker due to their highly 

variable performance over time. This is evidenced in [10], where completion times are 

highlighted as an obvious choice of cost function variable for a human worker but are not 

used since a human would not be able to adhere to a stated completion time. 

Johannsmeier et al [10] instead introduce the concept of a worker profile that would map 

to a cost function, using properties such as attention level, general experience level, and 

reliability. These static variables cannot accurately represent a human worker as their 



abilities are highly dynamic and the contributing factors that could affect these abilities 

are too great to number with some being impossible to predict. 

This highlights the core limitation of current research into HR collaborative task 

planning namely that human abilities are assumed or modelled offline to create a 

collaborative assembly plan. This limits the abilities of task planners to adapt the 

production to unpredictable changes in worker performance to maintain or improve on 

the current production rates. In this paper it is proposed to instead infer the current state 

of human and robot abilities by monitoring them whilst they are working to make task 

allocations based on current worker capabilities in a semi-online manner. This will be 

done by first developing a system inspired by the framework proposed by Johannsmeier 

et al that is capable of dynamically allocating tasks between human and robot workers 

based on the performance of the worker in the current work shift. This system will use 

intelligent dynamic cost functions to accurately represent the current abilities of both 

human and robot workers to assign tasks to the most appropriate workers for a complex 

assembly given by an abstract assembly plan. The variables for this cost function will be 

stored in a worker profile and will continually be updated using data gathered by 

observing worker performance. These cost functions will also be adaptable with the 

weighting for each variable being autonomously recalculated based on the task being 

assessed. These cost functions will be used by an autonomous task planner to reassign 

tasks after a set number of iterations of the complete assembly task the system is being 

applied to ensure that the workers are being utilized optimally in the assembly.  

A high level overview of the system can be seen in Fig.1. In this system an 

abstract assembly plan and worker profile will form the input and pass information to the 



cost function generator. The cost function generator will produce a series of costs for 

each worker to complete each subtask of the assembly, these will be used by the dynamic 

task plan generator along with the abstract assembly plan to optimize the task plan for the 

HR team. This task will be executed by the HR team whilst worker performance is 

monitored and analyzed to update the worker profile. Costs will be updated in the 

background during this process and after a set number of task iterations the task plan will 

be re-evaluated to ensure it remains optimal. 

 

Figure 1: A high level overview of the proposed task planning framework 

The focus of this paper is the development of the dynamic cost functions used as a 

part of the decision making system as highlighted in Fig.1. This will begin with the 

methodology section, detailing the formulation of the dynamic cost functions. Following 

this the testing section will detail test cases in which the cost functions were applied for 

human and robot workers. Next, a results section will detail how the cost functions 

reacted to worker performance in the given test cases, finishing with a conclusion section 
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discussing the behavior of worker’s costs to complete tasks and the implications this has 

on task allocation in the test cases provided. 

2. Methodology: 

2.1. Dynamic Cost Functions: 

The system for human robot collaboration proposed in this paper requires 

dynamic cost functions to adapt to not only the current situation but also to changing 

production requirements and individual human or robot workers. It is proposed to use a 

basic generic format of cost function which can be applied to both human and robot 

workers. This cost function must also be applied to each subtask of a complete assembly 

task over various iterations of it being completed. Due to this the formulation for a cost 𝑐𝑗 

for a subtask 𝑗 is given by 

𝑐𝑗 =  ∑𝑏𝛼,𝑗  ∙ 𝑓𝛼,𝑗

𝛽

𝛼=1

 (1) 

where 𝑓𝛼,𝑗 represents a cost function variable, 𝑏𝛼,𝑗 represents a cost function weighting 

and 𝛽 represents the number of cost function variables being used. This formulation has 

been used to allow one generic subsystem of the overall system proposed in this research 

to handle the generation of costs for workers to complete each subtask of the assembly. 

As subtasks of an overall assembly can normally be broken down into primitive tasks, it 

is proposed to associate commonly used primitive tasks with related cost function 

variables. For the purposes of these cost functions, primitive tasks consist of assembly 

skills such as tighten bolt or move a component in position rather than individual 

movements or instructions. These associations allow the use of a method analogous to a 

keyword search to determine cost function weightings for each subtask autonomously. 



For each subtask, the system will search through the abstract assembly plan for the 

primitive tasks it is composed of to provide the number of occurrences of each primitive 

in the subtask. This enables the system to define the total number of primitive tasks that a 

cost function variable will affect for a subtask as represented by 𝑑𝛼,𝑗. Given this it is 

possible to define the cost function weightings as  

𝑏𝛼,𝑗 =  
𝑑𝛼,𝑗

∑ 𝑑𝜎,𝑗 
𝛽
𝜎=1

. (2)  

This will ensure that for each worker the cost function weightings will sum to one but 

will also be normalized between zero and one. 

Examples of the dynamic cost function variables used will be outlined over the 

following section and will include a variable that is capable of accommodating human 

fatigue along with a variable for assessing completion times for human and robot 

workers. Fatigue was chosen as a cost function variable as it represents an important 

factor that can affect human performance during assembly tasks, and shows the 

importance of observing worker performance. Additionally, completion time was chosen 

as a variable since it allows performance comparison between human and robot workers. 

But also because it enables the evaluation of the assembly tasks based on a typical 

manufacturer’s requirements. These two variables together allow comparison of work 

performance, in addition to reacting to dynamic changes in worker capabilities, which is 

vital for dynamic task planning in HR collaborative tasks.  

The generalized formulation of the cost functions described in this section enable 

them to be expandable to include additional cost function variables such as those used to 

monitor the quality in which the assembly subtasks are being completed. An example of 

this is sealant application, where the application by the worker is compared to the task 



specification to give a cost for the completion of the task. However, these are not 

considered within the scope of this paper.  

2.2. Fatigue Cost Function Variable: 

One of the cost function variables proposed in this research is a variable to 

identify when a human is becoming fatigued and their work performance is being 

affected. Fatigue is widely acknowledged to be one of the key factors affecting human 

performance when working over long periods of time and needs to be represented within 

the cost function to identify the human workers current abilities. Previous research has 

attempted to model fatigue using factors such as workload and the length of time spent 

working [11], [12]. However, these often cannot take into account unexpected events in a 

human workers life that are completely unpredictable and yet still affect their 

performance. 

In this paper, it is proposed instead to attempt to detect fatigue as it is occurring to 

autonomously handle an uncharacteristic performance change in the human worker. For 

our case, the fatigue variable will be defined by inferring the level of fatigue from the 

difference between completion times observed from the human worker and their nominal 

expected performance. Due to this the Fatigue variable will not represent the absolute 

levels of fatigue of a human worker but instead a relative measure of fatigue for each 

subtask.  

To define the variable in this way, a frame of reference is required to define 

nominal human performance and quantify a difference in completion times that is 

considered significant enough to infer an increase in human fatigue levels. In previous 



research, models have been identified that relate the effect of fatigue on the completion 

times for a repetitive task to the number of iterations of the task completed validating the 

inference made by the cost function variable [11]. One such model presented by Digiesi 

et al [11] is capable of modelling the effects of fatigue and learning on completion times 

of a repetitive task over numerous iterations of the task. This model was validated against 

worker data from a real world automotive assembly plant, where it was found that in 

cognitive tasks that the fatigue phenomenon prevailed over the learning phenomenon 

[11]. This model was also approximated in [11] to remove the learning factor and it was 

decided here to also ignore this learning aspect as it is assumed that the human workers 

will be skilled trained professionals. 

The approximated model given by [11] for task iteration 𝑖 gives the completion 

time 𝑀𝑖,𝑗 as 

𝑀𝑖,𝑗 = 𝑡𝑃,𝑗 + 𝜏
′
𝑗 ∙ ln(𝑖) . (3) 

For this to be calculated historic data for the worker is required. Firstly an initial 

completion time 𝑡𝑃,𝑗 is required from the first completed iteration of the task from the 

current task assignment period from which the model evolves. Since a task can be taken 

away from a worker and later reassigned to them in this research, we must specify the 

initial completion time as the completion time from task iteration 𝑃 where 

𝑃 = {
1   𝑖𝑓  𝑡𝑖 ≠ 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 ∈  ℤ∗ 

𝑎 + 1         𝑖𝑓 𝑎 = max(𝑖) |𝑡𝑖 = 0
 (4) 

to ensure the initial completion time, 𝑡𝑃,𝑗, is from the current assignment period of 

subtask 𝑗 to a human worker. Next historic data from previous task assignment periods 

for a human worker is required to calculate the variable 𝜏′𝑗 that provides a synthetic 



measure of the fatigue phenomenon for a human worker. This variable is defined by the 

limit 

𝜏′𝑗 ≤
𝑇𝑗 − 𝑁𝑗 ∙ 𝑡𝑃,𝑗

𝑁𝑗 ∙ ln(𝑁𝑗) − 𝑁𝑗
 (5) 

where 𝑁𝑗 is the number of task iterations completed in an assignment period of length 𝑇𝑗 

however in this research the upper limit will be taken for the variable 𝜏′𝑗.  

In this paper, the assumption is made that the level of fatigue presented by this 

model is unavoidable and represents the natural way in which a human will become 

fatigued as they complete a repetitive task. This is reasonable to assume because a human 

worker’s performance will naturally decline over a work shift despite the level of fatigue 

they are experiencing. Therefore Digiesi’s approximated model will represent a baseline 

performance of how a human worker should vary over a task assignment period, and 

when completion times vary from this prediction, the cost function variable, 𝑓1,𝑗, will 

change. This baseline performance model will be calculated using the mean values of the 

historic data collected over previous task assignment periods to ensure their expected 

performance reflects their actual capabilities.  

It is widely recognized that human completion times are not consistently the 

same, and in reality, would have a natural variance that will increase in magnitude with 

the length of the completion times. To allow for this a difference tolerance between the 

model and actual completion times is set before the cost function variable is affected. 

This tolerance will have to be set for each specific task based on the task length and in 

this paper is hand selected. If a worker’s completion times change so they are outside this 

tolerance the cost function variable will change to signify that the worker is over fatigued 



if the completion times are higher than expected, or underutilized if the completion times 

are lower than expected. Given these defined boundaries the fatigue cost function 

variable, 𝑓1,𝑗, is given by  

𝑓1,𝑗(𝑥𝑖,𝑗) =

{
 
 
 

 
 
 

1   𝑖𝑓  𝑥𝑖,𝑗 >  𝐹+
𝑥𝑖,𝑗 −𝑀𝑇+
𝐹+ −𝑀𝑇+

  𝑖𝑓  𝐹+ ≥ 𝑥𝑖,𝑗 ≥ 𝑀𝑇+

0    𝑖𝑓   𝑀𝑇+ ≥ 𝑥𝑖,𝑗 ≥ 𝑀𝑇−

−(
𝑀𝑇− − 𝑥𝑖,𝑗
𝑀𝑇− − 𝐹−

)   𝑖𝑓   𝑀𝑇− ≥ 𝑥𝑖,𝑗 ≥   𝐹−

−1   𝑖𝑓  𝑥𝑖,𝑗 <  𝐹−

(6) 

where 𝑥𝑖,𝑗 is the moving average for a set number of the most recent completion times for 

subtask 𝑗. It was decided to use a moving average, instead of individual completion 

times, due to the inconsistency of human completion times mentioned previously which 

would result in the fatigue variable, 𝑓1,𝑗, changing far too rapidly. This would unfairly 

represent the human worker for unusually high or low completion times due to singular 

outliers over a production period. 

In this definition of the cost function 𝑀𝑇+ and 𝑀𝑇− represent the upper and lower 

limits of the tolerance of the cost function variable to variation in human completion 

times, given by  

𝑀𝑇+ =   𝑀𝑖,𝑗 +  𝑙 (7) 
𝑀𝑇− =   𝑀𝑖,𝑗 −  𝑙 (8) 

where 𝑙 is the tolerance of the cost function variable in seconds. This tolerance, as 

previously described, factors in for the variable nature of human completion times as they 

will naturally deviate from the model. Due to this, the cost function variable remains zero 

if the moving average of completion times falls within these limits.  



Outside of this tolerance region the value of the cost function variable will increase or 

decrease linearly to ±1. In this definition of the cost function 𝐹+ and 𝐹− represent the 

upper and lower limits respectively, and are given by 

  𝐹+ = 𝑀𝑖,𝑗  ∙ (1 +
𝑔

100
) + 𝑙 (9) 

 𝐹− = 𝑀𝑖,𝑗 ∙ (1 −
𝑔

100
) − 𝑙 (10) 

where 𝑔 is the percentage increase or decrease in completion times compared to 𝑀𝑖,𝑗 that 

would result in the fatigue variable, 𝑓1,𝑗, reaching its maximum absolute value. This 

percentage, 𝑔, would be defined by the end user allowing them to define the level of 

fatigue that would be unacceptable for a worker to reach. 

2.3. Completion Cost Function Variable: 

It was desired to quantify the quality of completion times for a worker completing 

an assembly subtask. In an industrial manufacturing environment a manufacturer would 

expect a product to be completed within a predetermined production time, this gives a 

suitable level of context as it allows completion times to be evaluated based on the 

manufacturers requirements. It is then assumed that the manufacturer implementing the 

system will provide a list of the desired work times for each subtask of an overall 

assembly with the assembly task specifications. 

The completion cost function variable, 𝑓2,𝑗, is then calculated by 

𝑓2,𝑗(𝑥𝑖,𝑗) = {

𝑥𝑖,𝑗 − 𝑦𝑗

𝑦𝑗
    𝑖𝑓    0 ≤ 𝑥𝑖,𝑗 ≤ 2𝑦𝑗

1           𝑖𝑓        2𝑦𝑗 < 𝑥𝑖,𝑗

 (11) 

where 𝑦𝑗 is the manufacturer’s work element time for subtask 𝑗. It was decided to use the 

moving average 𝑥𝑖,𝑗 of the most recent completion times used by the fatigue variable due 



to the inconsistency in human completion times mentioned previously. This was used to 

reduce the susceptibility to outliers over a production period whilst also providing a more 

stable change in the cost function variable. 

3. Testing: 

The cost functions outlined in this paper have been tested separately for two 

primitive tasks to illustrate cases where only one of the workers should be suitable for 

completing the task being analyzed. In these primitive tasks only the performance based 

cost functions were tested and the quality of task execution is assumed to be sufficient so 

was not analyzed. Of these two primitive tasks, one illustrates a case where use of a 

human worker should be more appropriate and the other illustrates a case where use of a 

robot worker should be more appropriate. The first task consisted of tightening a 3D 

printed bolt into a threaded hole over its entire length, the bolt used was an M15 bolt with 

a thread length of 40mm and a pitch of 2mm [13]. This illustrates a case where a human 

worker is faster than a robot worker due to their increased dexterity and speed of motion. 

For the worker to complete this task they pick up the bolt from a holder and screw the 

bolt into a 3D printed fixing, in this case the robot worker did not use force sensing 

abilities and its tightening movement was defined using the bolt length and pitch. In this 

case the execution time was measured for the time taken to tighten the bolt. The 

experimental setup for this task can be seen in Fig.2. 



 

Figure 2: Experimental setup for bolt tightening task 

The second task was a simple pick and place task and required the worker to pick 

up four 3D printed nuts [13] from a holder in sequential order and place each nut in one 

of four predefined placement positions. To add complexity to the task and simulate high 

mix production, the placement position for each bolt is randomly selected from the four 

predefined positions to simulate a task with the same production techniques but with 

changing specifications. This illustrates a case where a robot worker is more suited as it is 

better able to quickly input instructions for each task iteration and follow them with high 

accuracy. In contrast a human worker must check the specification before completing the 

task, then verify the task has been completed correctly once finished, which increases 

their completion time. The experimental setup for this task can be seen in Fig.3. 



 

Figure 3: Experimental setup for pick and place task 

These primitive tasks were executed by an ABB YuMi robot [1] to provide 

completion times for testing the cost functions with a robot worker. This robot was 

chosen for testing as in addition to human-safe features it has high precision of movement 

and is designed specifically to work in industrial manufacturing environments [14], [15]. 

For these test cases the robot was programmed using the Robot Operating System (ROS) 

interface developed by Berkeley Automation [16]. Completion times for the human 

worker are then simulated using the model given by (4) and (5) based on various 

simulated initial completion times and simulated historical data. This method was chosen 

to allow easy illustration of cases where a human worker is “over fatigued” or “under 

fatigued” as well as behaving as expected for larger numbers of task iterations. To add 

realism to this model, for each human completion time a random variable will be 

generated using the standard normal distribution and added to the completion time to 

simulate natural variation in human completion times. This distribution was chosen as it 

is assumed that the variation in human completion times would be at extremes only three 



seconds due to the short completion times for the human worker for each task. In all these 

test cases a moving average of the last five completion times is used to stabilize the total 

cost for each task due to the inconsistency in human completion times.  

Over the following two subsections the methods for generating the completion 

times for the robot worker and simulated human worker for each test case will be 

outlined. In addition to this the parameters required to calculate the cost functions for 

each test case will be defined. 

3.1 Task 1) Bolt Tightening 

Robot Worker 

The ABB YuMi robot was programmed to complete 15 iterations of the task, with 

completion times being recorded between the robot starting to tighten the bolt in its fixing 

and the completion of the tightening of the bolt.  

In addition to these recorded completion times it was also necessary to define the 

parameters required to calculate the cost function variables for the robot worker. In this 

case only the completion variable, 𝑓2,𝑗, is used for which, the desired work element time, 

𝑦𝑗, was set as 45 seconds since it is assumed this would be set based on the fastest 

possible human completion time. This was done since the human worker is faster than the 

robot worker to complete this task which would be reflected in the manufacturer’s 

desired work element time, 𝑦𝑗. 



For the cost function to generate costs, weightings for the variables used must also 

be set using the schema detailed in section 2.1. However, in this test case only the 

completion variable, 𝑓2,𝑗, is used since the fatigue variable, 𝑓1,𝑗, is irrelevant to the robot 

worker. Due to this 𝑓2,𝑗 receives a weighting of one in the cost function whereas 𝑓1,𝑗 

receives a weighting of zero to eliminate it from consideration. 

Human Worker 

To obtain data from a typical skilled human worker their completion times were 

simulated for 15 iterations of the task using the model given by (3) and (4). To simulate 

the various states of fatigue in a human worker, three sets of initial conditions were used 

to simulate cases where a human worker is behaving as expected in addition to cases 

where they are over or under fatigued as given in Table 1. These initial conditions are the 

input required by the model given by (3) and (4), including an initial completion time for 

the work shift in addition to the number of task iterations that the worker can complete 

over an hour-long time period. This data was estimated for a typical skilled human 

worker based on the time taken to tighten the bolt in this test which was determined to be 

around 47 seconds. It is assumed that the initial completion time would only vary by a 

few seconds when the worker is over or under fatigued due to the short length of time 

that the task takes. However, this results in a greater variation in the number of task 

iterations over the shift length if the worker is over or under fatigued and this has been 

reflected in the simulated initial conditions. 

 



Table 1: Initial conditions for the simulated human worker in the bolt tightening task 

In addition to these completion times, it was also necessary to define parameters 

required to calculate the cost function variables for the human worker. For the fatigue 

cost function variable, 𝑓1,𝑗, it was further necessary to set the baseline completion time 

model given by equations (3) and (4). It was decided to use the same initial conditions as 

for the simulated worker behaving as expected because this represents the historical data.  

𝑔 was set to 20% triggering a maximum or minimum value for the fatigue variable when 

completion times increased or decreased by this percentage of 𝑀𝑖,𝑗 beyond the tolerance 

𝑙. This was chosen because manufacturers would be less tolerant of a decline in 

performance for such a simple task. For the fatigue variable, 𝑓1,𝑗, the tolerance to 

variation in human completion times, 𝑙, was set to three seconds, this was deemed 

suitable as it was assumed that this would be sufficient for such small tasks. For the 

completion cost function variable, 𝑓2,𝑗, the work element time 𝑦𝑗 was set as the same 

value for the robot worker. This is done because a manufacturer implementing this 

system would desire the same work element time regardless of whether a human or robot 

worker is completing the task. 

Behaviour of Human 
Worker 

Initial Completion Time 
(Seconds) 

Number of Task Iterations 
Completed  

Over Fatigued 50 124 

Under Fatigued 45 145 

As expected  47 135 

Historical 47 135 



For the cost function to generate costs, weightings for the variables used must also 

be set using the schema detailed in section 2.1. In this case the task itself is considered as 

a primitive task that both cost function variables would have influence upon hence both 

the fatigue variable, 𝑓1,𝑗,  and the completion variable, 𝑓2,𝑗, are given equal weightings of 

0.5 within the cost function. 

3.2 Task 2) Pick and Place 

Robot Worker 

The ABB YuMi robot was programmed to complete 90 iterations of the task, with 

the completion time being recorded between the robot moving to pick up the first nut and 

placement of the final nut.  

In addition to these recorded completion times, it was also necessary to define the 

parameters required to calculate the cost function variables for the robot worker. In this 

case only the completion cost function variable, 𝑓2,𝑗, is used for which, the desired work 

element time, 𝑦𝑗, was set as 45 seconds since it is assumed this would be set based on the 

fastest possible robot completion time. This was done since the robot worker is faster 

than the human worker to complete this task which would be reflected in the 

manufacturer’s desired work element time, 𝑦𝑗. 

For the cost function to generate costs, weightings for the variables used must also 

be set using the schema detailed in section 2.1, however, as with the bolt tightening task 

since only 𝑓2,𝑗 is used the same weighting schema is used in this task. 



Human Worker 

To obtain data from a typical skilled human worker their completion times were 

simulated over 90 iterations of the task using the model given by equations (3) and (4). 

As before, the various states of fatigue in a human worker were simulated using the three 

sets of initial conditions as given in Table 2. This data was estimated for a typical skilled 

human worker to complete the pick and place task which was determined to be around 48 

seconds.  

Table 2: Initial conditions for the simulated human worker in the pick and place task 

In addition to these completion times, it was also necessary to define parameters 

required to calculate the cost function variables for the human worker. For the fatigue 

cost function variable, 𝑓1,𝑗, the baseline completion time model again used the same 

initial conditions as for the simulated worker behaving as expected. In addition to this, 𝑔 

and 𝑙 were given the same values due to the similar completion times for the human 

worker to the bolt tightening task. For the completion cost function variable, 𝑓2,𝑗, the 

work element time 𝑦𝑗 was again set as the same value for the robot worker. 

For the cost function to generate costs, weightings for the variables used must also 

be set using the schema detailed in section 2.1. In this case, the task is broken down into 

Behaviour of Human 
Worker 

Initial Completion Time 
(Seconds) 

Number of Task Iterations 
Completed  

Over Fatigued 51 48 

Under Fatigued 45 58 

As expected 48 54 



three different types of primitive task which must be completed including checking the 

placement location for each nut, moving each nut to its position and verifying the 

placement locations are correct. For the human worker it was determined that the 

completion variable, 𝑓2,𝑗, would only influence the physical elements of the task since the 

time taken to perform the cognitive elements of the task is negligible compared to those 

for the physical elements. It was also determined that the fatigue variable would influence 

all elements of the task since an over fatigued worker may make mistakes with the 

cognitive elements of the task and would perform physical tasks more slowly. Using the 

schema detailed in section 2.1 this would give the weighting for the fatigue variable, 𝑓1,𝑗, 

as 0.75 and the weighting for the completion variable, 𝑓2,𝑗, as 0.25.  

4. Results: 

4.1. Task 1) Bolt Tightening: 

Robot Worker 

The total costs for the robot worker are illustrated in Fig.4 with the completion 

variable given in Fig.5. In this test case, Fig.4 shows that the robot worker immediately 

reaches a cost of one which is maintained for the duration of the test period. This 

indicates that the robot worker is poorly suited to this task as it has attained the maximum 

possible cost for completion of the task which does not decrease over the period of task 

assignment. When examining the cause of this Fig.5 shows that the completion cost 

function variable also immediately reaches its maximum value of one which is 

maintained for the duration of the test period. This can be attributed to the long 



completion time for the robot compared to the work element time for this task due to the 

robot lacking the high dexterity required to complete this task quickly.  

 

Figure 4: Total costs for workers in the bolt tightening task 

Human Worker 

The overall costs for the human worker are illustrated in Fig.4 with the 

completion variable given in Fig.5 and the fatigue cost function variable being given in 

Fig.6. When the human is behaving as expected they have a mean total cost of 0.0511 

over the duration of the test period with a maximum cost of 0.0665 at the 15th iteration 

and a minimum cost of 0.0443 at the 7th iteration.  Investigating Fig.5 shows that the 

fatigue variable remained at zero for the duration of the test period so the completion 



variable was the only variable contributing to the total cost. As the fatigue variable 

remained zero, the completion variable displays the same behavior as the total cost except 

the values are double that of the total cost due to the cost function weightings as seen in 

Fig.5. This indicates that a human worker performing as expected over a work shift 

should have a steady cost that increases minimally over an assignment period as human 

completion times naturally increase with fatigue. When the worker is behaving as 

expected the magnitude of the cost for them to complete the task should only be 

dependent on the difference between their completion times and the manufacturer’s 

expectations. 

 

Figure 5: Completion cost function variable for workers in the bolt tightening task 



 

Figure 6: Fatigue cost function variable for workers in the bolt tightening task 

In the case of the over fatigued simulated worker, their mean total cost is 0.1186 

over the test period with a maximum cost of 0.1705 at the 13th iteration and a minimum 

cost of 0.0782 at the 5th iteration. In comparison with the worker behaving as expected, 

Fig.4 shows the over fatigued worker’s total cost again shows a gradually increasing 

trend over the test period however the total cost behaves noticeably more unexpectedly at 

certain points. The most notable unexpected behaviors of the total cost are a significant 

cost increase between iterations eight and nine followed by a significant cost decrease 

between iterations 13 and 14. When examining the cause of this Fig.5 shows that the 

completion variable increases steadily for the majority of the test period, with the initial 

cost being 0.0905 and the final cost being 0.1970. In comparison, Fig.6 shows the fatigue 



variable behaves more erratically with the variable remaining minimal until the 9th 

iteration where it increases significantly followed by a gentle increase until the 13th 

iteration where the cost significantly decreases again. This period between iterations nine 

and 13 where the fatigue variable shows a greater magnitude of about 0.1 can be seen to 

affect the total cost with an increase in cost over the same period.  

In the case of the under fatigued simulated worker, their mean total cost is -0.0238 

over the test period with a maximum cost of 0.0084 at the 7th iteration and a minimum 

cost of -0.0679 at the 10th iteration. In comparison with the worker under the other fatigue 

conditions the total cost for the under fatigued human worker behaves far more erratically 

over the test period with no obvious increasing or decreasing trend as seen in Fig.4. 

Despite the total cost increasing and decreasing erratically over the test period, the total 

cost varies minimally overall starting at -0.0318 at the 5th iteration and only rising to -

0.0177 at the 15th iteration. When examining the cause of this behavior it is noted that the 

behavior of the completion variable shows a gentle overall increase in cost over the test 

period from its minimum point of 0.0146 at the 5th iteration to a maximum of 0.0468 at 

the 15th iteration with a mean cost of 0.0332. In contrast to this, the behavior of the 

fatigue variable can be seen to follow that of the total cost far more closely with the same 

pattern of increasing and decreasing cost occurring over the test period. The fatigue 

variable has a mean cost of -0.0809 over the test period with a maximum cost of -0.0172 

at the 7th iteration and a minimum cost of -0.1586 at the 10th iteration. The greater 

magnitude of the fatigue variable causes its behavior to become the dominant influence 

on the total cost. This is best seen between the 10th and 12th iterations of the task where 

the magnitude of the fatigue variable is so great compared to the completion variable that 



it defines the behavior of the total cost of the worker resulting in a period of significant 

negative cost. The only time the completion variable exerts such a dominant influence 

over the total cost is at the 7th iteration where it has a greater magnitude than the fatigue 

variable creating the maximum total cost for the worker over the test period.  

Comparison of Workers 

Comparing the total cost for the workers for this test case seen in Fig.4 the most 

suitable worker is clearly the human worker. The high completion times for the robot 

worker in this case resulted in the highest possible cost for them to complete the task 

showing that their assignment to the task would be unsuitable. In the case of the 

simulated human worker their costs can be considered to be fairly low regardless of the 

level of fatigue they are experiencing. Despite this there are clear distinctions between the 

total costs for the human worker to complete the task under the various fatigue 

conditions. 

4.2. Pick and Place: 

Robot Worker 

This simulated data combined with the defined cost function parameters resulted 

in the total costs for the robot worker illustrated in Fig.7 with the completion variable 

given in Fig.8. In this test case, it is shown that the robot worker has a mean cost of 

0.0256 over the test period with a maximum cost of 0.343 at the 88th task iteration and a 

minimum cost of 0.0139 at the 39th task iteration. In this test case the completion cost 

function variable is the only contributing factor to the cost for the robot to complete the 



task. The behavior for the completion variable is due to the robot’s ability to perform the 

task efficiently and work consistently at the performance level desired by the 

manufacturer for the task. The variance in the completion variable in this case can be 

attributed to the change in the placement location for each nut resulting in different robot 

arm trajectories for each task iteration and in turn different completion times.  

 

Figure 7: Total costs for workers in the pick and place task 

Human Worker 

This simulated data combined with the defined cost function parameters resulted 

in the total costs for the human worker illustrated in Fig.7 the completion variable given 

in Fig.8 and the fatigue cost function variable being given in Fig.9. When the human is 



behaving as expected they have a mean total cost of 0.2377 over the duration of the test 

period with a maximum cost of 0.25 at the 86th iteration and a minimum cost of 0.2085 

at the 5th iteration. Over this larger test period a degradation in performance is more 

evident in the total cost for the worker as seen in Fig.7, however, this is a very gentle 

increase over a large number of task iterations. Investigating Fig.9 shows that the fatigue 

variable again remained at zero for the duration of the test period so the completion 

variable was the only variable contributing to the total cost. In this test case Fig.8 shows 

the completion variable has a far greater magnitude than the total cost with a more 

significant increase over the test period in addition to greater variability. Over the test 

period the completion variable has a mean cost of 0.9510 with a maximum cost of one at 

the 86th iteration and a minimum cost of 0.8340 at the 5th iteration of the task. Such a 

large completion variable which reached its maximum value of one towards the end of 

the test period resulted in a significantly lower total cost for the worker in this case due to 

the weighting of the variable in the cost function. Since the weighing of the completion 

variable was 0.25 this massively reduced its contribution to the overall cost and also 

smoothed the variability in its behavior. This again indicates that a human worker 

performing as expected over a work shift should have a steady cost that increases gently 

over an assignment period even when performing a more complex task. When the worker 

is behaving as expected the magnitude of the cost for them to complete the task should 

again only be dependent on the difference between their completion times and the 

manufacturer’s expectations. 



Figure 8: Completion cost function variable for workers in the pick and place task 



Figure 9: Fatigue cost function variable for workers in the pick and task 

In the case of the over fatigued simulated worker their mean total cost is 0.6903 

over the test period with a maximum cost of 0.8335 at the 69th iteration and a minimum 

cost of 0.2622 at the 5th iteration. In comparison with the worker behaving as expected, 

Fig.7 shows the over fatigued worker’s total cost shows a massive increase over the test 

period with a rapid increase over the first 40 iterations of the task followed by a gentler 

increase over the remainder of the test period. A significant variation in the cost can also 

be seen from the 35th iteration onwards with the total cost significantly increasing and 

decreasing over the remainder of the test period despite an overall increase in the total 

cost. When examining the cause of this behavior it is noted that the completion variable 

had a cost of 0.9997 at the 5th iteration of the task which climbed to one at the 6th iteration 



and remained at this cost for the duration of the test period as shown in Fig.8. This meant 

that the completion variable made a constant contribution to the total cost for the worker 

weighted at 0.25. Examining the fatigue variable for the over fatigued worker, Fig.9 

shows that it displays the same behavior as the total cost but at a lower magnitude due to 

the weighting of the cost function. This case shows that the fatigue variable is the 

dominant influence on the behavior of the total cost despite the greater magnitude of the 

completion variable. This occurs since the cost for the completion variable remains 

constant, so it does not contribute to any variability in the total cost but instead boosts the 

magnitude of the fatigue variable to give the total cost.  

In the case of the under fatigued simulated worker their mean total cost is 0.1377 

over the test period with a maximum cost of 0.2105 at the 71st iteration and a minimum 

cost of -0.0256 at the 63rd iteration. As with the simulated under fatigued worker in the 

last test case Fig.7 shows there was a high variability in the behavior of the total cost 

making an overall pattern of change over the test period hard to detect. Examining the 

cause of this unpredictable behavior it is noted that the completion variable has a mean 

cost of 0.8169 over the test period with a maximum cost of 0.8679 at the 71st task 

iteration and a minimum cost of 0.7051 at the 5th task iteration. Fig.8 shows the 

completion variable has a gentle increase in cost over the test period with none of the 

unpredictability of the total cost however when examining the fatigue variable in Fig.9, 

the same behavior as the total cost can be seen. As with the over fatigued human worker 

the small increase in cost for the completion variable in addition to its low weighting has 

resulted in the fatigue variable becoming the dominant influence on the total cost for the 

simulated human worker. In comparison to the completion variable the fatigue variable 



has a mean cost of -0.0887 over the test period with a maximum cost of -0.0087 at the 

71st iteration of the task and a minimum cost of -0.2321 at the 63rd iteration of the task. 

Despite the magnitude of the fatigue variable being approximately 10% of that of the 

completion variable, the weighting of the cost function has resulted in a total cost that is 

significantly lower than the cost of the completion variable. 

Comparison of Workers: 

Comparing the total cost for the workers for this test case seen in Fig.7 the most 

suitable worker is clearly the robot worker due to its lower cost throughout the test 

period. In the case of the simulated human worker that is under fatigued or behaving as 

expected their mean total cost over the test period is still fairly low at 0.1377 and 0.2377 

respectively compared to a mean total cost of 0.0511 for the robot worker. This means 

that despite the robot worker displaying the best performance in this test case the human 

worker could take over when under fatigued or behaving as expected without a huge 

increase in cost. When the simulated human worker is over fatigued their mean total cost 

over the test period is significantly larger at 0.6903 showing their unsuitability for 

completing the task in this case.  

5. Conclusions: 

In both of the test cases presented the cost functions resulted in costs that 

provided clear distinctions between the robot worker and the simulated human worker 

under various fatigue conditions. In the cases of the robot worker and the simulated 

human worker behaving as expected, the total costs progressed in a predictable way over 



the test period. In the cases of the simulated human worker being over or under fatigued 

the total costs deviated from those of the worker behaving as expected, increasing and 

decreasing many times over the test period. This erratic behavior was shown to be 

influenced by the fatigue cost function variable thus clearly identifying cases where the 

human worker is under or over fatigued compared to their expected behavior. 

As expected in the bolt tightening test case, the robot worker had a significantly 

larger cost to complete the task than the human worker regardless of the level of fatigue 

they are experiencing. In the pick place task the robot worker had a lower cost than the 

simulated human worker as expected however when under fatigued or behaving as 

expected, the cost for the simulated human worker to complete the task was not 

significantly larger than the robot worker’s cost. Due to this with the pick place task the 

human worker could take the task over from the robot worker without a significant 

increase in cost. 

The results shown in this paper are solely based on performance of workers and 

does not take into account the quality and precision with which the assembly tasks are 

being performed. Future work will include development of variables which quantify the 

quality with which tasks are being carried out with workers which could lead to different 

task assignments. Future work will also focus on development of the full task planning 

system outlined in the introduction of this paper and integrating the cost functions 

outlined in this paper into such a system. 
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