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5 Abstract

6 Food science is a domain of life science. Applications of thermal analysis and calorimetry (TAC) to food products deal

7 with many investigation targets spanning from the characterization of the systems at molecular and supramolecular level to

8 the description of the microbial metabolism. Food products are multi-phase and multi-component metastable systems

9 where several processes can occur simultaneously during the preparation process and the shelf life. One therefore has to

10 disentangle various contributions to the overall instrumental outputs, using appropriate data treatments and kinetic models,

11 and/or results from other experimental approaches. The paper reports an updated survey of TAC applications to food

12 products through specific examples of data treatments.

13

14 Introduction

15 The first European paper devoted to thermal analysis and

16 calorimetry (TAC) applied to food products and processes

17 appeared in 1990 [1], followed by wider presentations in

18 1994 [2] and 1999 [3]. In that decade, food science actually

19 became a special domain of TAC application to life science

20 (Scheme 1), including many appealing subjects as inves-

21 tigation targets, since food products are multi-component

22 and multi-phase metastable systems that host living

23 microbial cells.

24 As for the molecular and, above all, supramolecular

25 aspects, food science actually is a branch of polymer sci-

26 ence [4] in as much as natural polymers govern the overall

27 behavior of most food products. Food polymers are indeed

28 responsible for phase separations [5], which determine the

29 extension of the interphase regions where most of the

30 chemical reactions take place. Food polymers directly

31 affect the overall viscosity of the system and consequently

32 the diffusion rate of reactants with the ultimate limit of the

33 glass transition, below which no molecular displacement

34 can occur. This threshold mainly depends on the local

35 polymer concentration, which is not necessarily uniform

36 across the system because of: (a) the thermodynamic

37incompatibility that induces phase separation and (b) the

38large viscosity related to the presence of the polymers

39themselves. Beside their viscosity effects, many food

40polymers act as surfactants (proteins, nonionic polyglyc-

41erides, propylene glycol alginate, etc.) that stabilize the

42dispersion of various phases within a given food system

43[6], allowing the persistence of bubbles, droplets, solid

44particles. (A good example is the ice cream.)

45The other major component of most food systems is

46water. Its displacements and partition between coexisting

47phases (including dispersed phases) substantially con-

48tribute to the physical and sensory peculiarity of a given

49product [7]. Water enters the structure of biopolymers

50(carbohydrates, globular proteins and gluten) [8–12], since

51water molecules form bridges between polymer chains

52through hydrogen bonds [11]. In spite of its large mobility,

53water can remain trapped within a polymer network loos-

54ing many properties of bulk water, like the ability to form

55ice crystals or a vapor phase at the temperature where one

56would expect it to do so. The ‘‘bound’’ water is indeed a

57very popular parameter of food science as it determines the

58practice of industrial preparations, like frozen dough for

59bakery, ice cream, jellies, etc., and of some processes like

60lyophilization [13], thermal [14] and osmo-dehydration

61[15]. These aspects actually are consequences of the role of

62water on the glass transition temperature, Tg, of wettable,

63or water-trapping products, including powdered materials

64(sugars, coffee, cocoa, etc.) [4, 16, 17].

65Because of such interactions, polymers and water make

66the preparation of food a true endeavor, especially at the

67industrial scale. Once the various ingredients and
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68 respective doses are established, the preparation requires an

69 adequate procedure to account for the phase dispersion and

70 the overall viscosity at each step of the process. This pic-

71 ture is even more complex because of the concomitant

72 presence of microbes that are responsible for many

73 chemical and physical changes that affect sensory and

74 nutritional properties of most food products. At the

75 household scale, the heritage of previous experiences,

76 namely the culinary traditions, unconsciously complies

77 with these physical and microbiological constraints,

78 although, nowadays, a better awareness of the physics

79 involved is at the fundament of the so-called molecular

80 gastronomy [18] that suggests novel approaches to food

81 preparation. Unfortunately, this is not enough for processes

82 at the industrial scale.

83 The whole panoply of TAC (IC, DSC, TMDSC, TG,

84 DMA, etc.) allows a thorough inspection of food systems

85 through the quantitative determination of many properties

86 and processes, like enthalpy and heat capacity changes,

87 glass transition, phase separations, water activity and

88 microbial growth [3]. The results of such investigations

89 make the predictions of the shelf life reliable and provide a

90 rationale for the production at the industrial scale. One just

91 needs a representative sample of the system to investigate.

92 According to the size of such sample, one has to select the

93 kind of instrument to use. No pretreatment is normally

94 required. Salads, cheese, milk, rice, chocolate, etc., can

95 directly undergo the investigation. This possibility is of

96 crucial importance as long as almost any food would lose

97 its own physical and chemical properties once treated:

98 Separation, extraction, filtration, etc., can substantially

99 modify the food system.

100 Other techniques, like microscopy (including laser

101 confocal microscopy), SEM, NMR, rheology, X-ray

102 diffraction, etc., add the complementary information that

103supports the interpretation of the evidences garnered

104through calorimetry and thermal analysis.

105The large number of experimental approaches

106nonetheless leaves unresolved the true challenge for food

107scientists: the simultaneous occurrence of many processes

108that take place in the course of the investigation of a given

109product. The direct output of a measurement can indeed be

110the resultant of many coexisting phenomena and therefore

111require a further treatment to split them from one another.

112Such a treatment can be mathematical (deconvolution of

113traces, kinetic models, etc.) and/or implies separate

114experiments on model systems.

115In the present review, some examples allow one to

116envisage how a food scientist can convey the interpretation

117of the experimental TAC data into the familiar view of

118chemical thermodynamics and kinetics, or traditional

119microbiology, selecting parameters that are useful tools for

120an objective description of a given food product or process.

121Bread and starchy products

122Bread and dough

123Bread, one the most diffused food, is the result of baking a

124dough formed by mixing cereal flours containing gluten

125with water, salt and yeast, or chemical leaven. In spite of

126the macroscopic appearance, the starting kneaded dough is,

127at room temperature, a rather heterogeneous system [19]. It

128contains starch granules (the size of which ranges from 5 to

12950 lm), damaged starch granules, aqueous globular pro-

130teins and salts, dispersed non-starch polysaccharides (like

131arabino-xylans), partially linked glutenin and gliadin

132(precursors of the gluten), separated lipid fractions, yeast

133cells, etc. This system undergoes a substantial transfor-

134mation when heated during the baking treatment. The

135formation of the gluten network takes place just after the

136onset of the starch gelatinization that encompasses a wide

137temperature range above 50 �C; the former process is

138exothermic, while the latter is endothermic. In the same

139temperature range, the globular proteins of the flour

140undergo unfolding (endothermic) and aggregation

141(exothermic). All these changes depend on the water con-

142tent, occurring at higher temperature for lower humidity

143[20].

144To complete the picture, one should account for the fact

145that the dough polymers (starch and non-starch carbohy-

146drates, gluten and globular proteins) compete with one

147another for the solvation water and are thermodynamically

148incompatible with one another [21], which means that they

149tend to form separated aqueous phases dispersed within one

150another. The mean size of the dispersed particles (droplets,

151bubbles) ranges around 5 microns, while the gluten

Domains of Life Scien ce

Molecular Science Targets of Inves�ga�on

• Proteins, Nuclei Acids Conforma�on Transi�ons

• Phospholipids Membranes, Phase Separa�on

• Incapsulated molecules Interac�ons, Release Kine�cs

Cell Science

• Prokariotes, Eukariotes, Yeasts, Fungi Growth and Metabolism

• Biotechnology Interac�ons with Molecules

Food Science

Thermal Stability

Water Ac�vity

Microbial Spoilage

All the above fields Nutri�on

Shelf Life

Packaging

Scheme 1 Domains of life science to investigate with TA and

calorimetry
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152 networks is a long-range extended structure that interpen-

153 etrates the amylopectin and amylose gels. What’s more,

154 because of the size of the loaf and the standard baking

155 conditions, a large temperature gradient exists between the

156 surface of the system, where T can attain 200 �C, and its

157 core, where the T raises more slowly and remains below

158 100 �C (Fig. 1). This is the reason for a core-to-surface

159 water migration [22]: Accordingly, the water content is not

160 homogeneous across the system.

161 In a typical baking process, water escapes from the

162 dough loaf and its final content is about half of the starting

163 one. The main consequence is an overall hardening of the

164 system, which, however, is not uniform at all. At its surface

165 appears the crust (that implies local pyrolysis and oxidation

166 because of the atmospheric oxygen), while its core

167 becomes a sponge with irregular alveoli, namely the

168 crumb. The formation of alveoli starts from original nuclei

169 of gas phase (mainly CO2 and water vapor produced by the

170 added leaven) and continues during the baking progress

171 with complete replacement of CO2 with air [23]. The

172 hardening of the walls that governs the average alveolar

173 size is the resultant of the competition for the available

174 moisture between the thermodynamic incompatible poly-

175 mers mentioned above [24], among which globular pro-

176 teins act as surfactants at the gas/liquid interface of the

177 bubbles.

178 Now let us consider what happens in a DSC investiga-

179 tion of a dough sample that normally does not exceed

180 10 mg. Since the DSC cell is sealed, no water loss takes

181 place. The temperature gradient across such a sample is

182 much smaller than in a real dough loaf that undergoes

183 baking. There is no formation of an external crust and an

184 internal true crumb. One therefore may reasonably raise the

185 question: Can a single DSC investigation shed some light

186 on the changes that take place in a real baking process? The

187 obvious the answer is ‘‘no’’.

188 To overcome the substantial differences between a DSC

189 experiment and a real baking test, one has to perfect the

190 information through other investigations, like DSC and TG

191 runs performed with open cells [25], including Knudsen

192 cells [26], and rheological tests [27]. However, in such

193conditions the large exothermal effect related to the water

194evaporation overwhelms any other heat exchange just in

195the temperature range where most of the interesting

196transformations take place. One cannot therefore rely on

197the overall thermal effect, but shall first take into account

198mass loss and temperatures of the main signals. Knudsen

199isothermal TG allows the estimation of the relative

200humidity (RH) of starting and final products [28]. Such

201multifacet approach allows one to recognize that starch

202gelatinization is not complete in most regions of the bread

203loaf, above all the crust, where the quick drying makes the

204water content insufficient to sustain the process [26]. This

205picture comes from DSC and TG investigations that allow

206definition of a TTT (time, temperature, transformation)

207diagram related to the starch gelatinization in a dough that

208undergoes baking [25].

209The TTT diagram (Fig. 2) can be determined with

210several DSC investigations, each at a given heating rate.

211From every single DSC run, one can draw the corre-

212sponding trend of the gelatinization degree, a[T(t)],

213sweeping the area beneath the DSC signal [25]. One has,

214however, to take into account the simultaneous loss of

215moisture, which can be assessed with parallel TG investi-

216gations [25].

217The RH is about 98% in the starting dough, but it drops

218below 80% in the crust and levels at about 95% in the

219crumb [28]. The gluten meshwork traps almost 15% of the

220moisture content of the crumb, while the rest of the

221moisture content, shared by starch and non-starch

222polysaccharides and globular proteins, undergoes easier

223displacements [29]. According to TG investigations, a

224starchy gel releases its moisture content continuously,

225producing a single DTG peak, while a gluten/water

226aggregate shows a double peak [29], which indicates the

core-to-surfce water migration 
T < 100/°C

T ∼ 200/°C

Bread loaf in an oven

Fig. 1 Water displacement within a bread loaf undergoing baking in

an oven
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Fig. 2 TTT diagram related to the progress of starch gelatinization,

a = a(T), within a bread loaf undergoing baking. The red line reflects

the actual thermal history at the loaf core. The straight dotted lines

correspond to the DSC traces recorded at different heating rates (0.5,

1, 2 and 5 �C min-1) while full tie lines are drawn across iso-a steps.

Data from ref [25]
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227 presence of at least two moisture fractions released below

228 and above 100 �C, respectively. The occurrence of a high-

229 temperature peak indeed is the fingerprint of the presence

230 of gluten (Fig. 3) and can be an easy check of many

231 ‘‘gluten-free’’ products [20]. However, the moisture frac-

232 tion bound to gluten decreases when the dough is over-

233 kneaded, namely when the gluten meshwork undergoes a

234 mechanical stress, but comes back to the starting level after

235 a two-hour rest [29]. If the overstressed dough immediately

236 undergoes baking, it releases a larger amount of water and

237 the final product is drier and crispier (e.g., biscuit) [30].

238 The underlying reason is that weak driving forces, like

239 those experienced in kneading and extruding, can displace

240 a large fraction of water linked to polymers, so allowing an

241 easier realignment of polymer chains and the formation of

242 more tight supramolecular clusters or networks.

243 Since the vapor phase is pure water, the equilibrium

244 condition with a condensed aqueous phase implies the

245 equivalence of the water chemical potential, lW:

l
�
W;vap ¼ l

�
W;liq þ RTvaplnðaWÞ

247247 that is

Tvap ¼
Dvapl

� Tð Þ

R ln aWð Þ

249249 where ‘‘*’’ and R stand for ‘‘pure water’’ and the gas

250 constant, respectively. Reminding that aW B 1 and Dvap-

251 l*(T)\ 0 for T[ T*vap (i.e., 373.15 K), a lower aW
252 implies a higher Tvap, as ln(aW) has a steeply decreasing

253 trend. When the temperature of the system is not far from

254 the relevant Tg, a real equilibrium is never reached. This

255 means that the system can host regions with different water

256 activity and different temperature of vaporization, Tvap.

257 This conclusion is in line with the results of NMR relax-

258 ation experiments [9].

259The crumb sealed in a plastic bag does not lose mois-

260ture, but undergoes staling that implies short-range dis-

261placements of water because of the formation of

262amylopectin and amylose crystal phases [31]. Similar

263changes occur in pasta and other starchy products [32].

264As a result, water activity decreases in a staling crumb

265[28] even when any water loss is prevented and the product

266hardens since the relevant glass transition rises above room

267temperature because mostly the plasticizing water migrates

268into the polymer crystal zones. A 24-h stale crumb can

269release the moisture fraction fixed by gluten only when

270heated up to 175 �C (Fig. 4), while practically all the

271moisture bound to the other polymers leaves the crumb at

272temperatures below 100 �C [28].

273Minor additions of extra ingredients produce substantial

274changes. For example, the addition of non-starch carbo-

275hydrates, like arabino-xylans, to the original wheat dough

276implies reduction of the gluten-bound moisture fraction

277and a final crumb with coarser alveolar structure and

278slower staling [24]. The addition of gluten-free flours (like

279soy, buckwheat, rice) delays the denaturation threshold of

280the globular proteins, whose exothermic effect can be

281‘‘disentangled’’ from the endothermic one related to the

282starch gelatinization in DSC traces [20], and produces a

283denser loaf with smaller alveoli (although in a larger

284number per mL).

285These pieces of information coupled with extra data,

286like elastic and rheological moduli [18], support some

287reliable conclusions about the macroscopic changes

288occurred in the system. NMR and X-ray diffraction provide

289evidence of changes at the molecular level either in the

290crust or in the crumb regions of the loaf [7, 9, 33–36].

20 60 100 140

T /°C

D
T

G
/a

.u

Stress
Rest

Fig. 3 DTG trace from a wheat flour dough. The high T peak

concerns the moisture fraction bound to gluten. The temperature of

this peak decreases when the dough undergoes a mechanical stress,

like over kneading, but turns back to the original value after two-hour

rest at room temperature
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T /°C

D
T

G
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–
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after 0/h
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Fig. 4 DTG traces of stale crumb sealed in a plastic bag for 0 and

24h. Data from ref [28]
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291 Starch and other components

292 Much simpler is the study of the behavior of single

293 ingredients of the dough, like an aqueous suspension of

294 starch granules, requiring just standard DSC investigations

295 to monitor the progress of the starch gelatinization in dif-

296 ferent conditions, namely water content, salt concentration,

297 presence of proteins, or fats, etc. MTDSC [37] provides a

298 better evidence especially when the investigation implies

299 heating/cooling cycles (Fig. 5).

300 These studies show that the starting heterogeneity of the

301 system (aqueous suspension of starch granules) becomes a

302 mixed amylose/amylopectin gel that, when heated above

303 85 �C, becomes a sol system containing some amylose

304 crystals and, in the presence of endogenous fats, amylose–

305 lipid complexes. These complexes undergo fusion at about

306 110 �C, while the amylose crystals melt above 135 �C

307 [38]. On cooling from 150 �C to room temperature, the

308 amylose/lipid complexes undergo a partial restoration, and

309 the final system is an amylopectin gel containing three

310 types of crystals (amylose crystals, amylose/lipid

311complexes, amylopectin crystals) that show different X-ray

312diffraction patterns [7].

313Specific investigations devoted to check the role or the

314effect of ionic strength, or simple sugars, on starch gela-

315tinization, showing that cations and anions produce dif-

316ferent effects [39] on starch gelatinization, while the

317addition of simple sugars normally delays the onset of the

318gelatinization and reduces its extent [40]. These results are

319relevant to nutritional issues, especially those related to

320diabetic consumers.

321Non-aqueous food systems: the case
322of cocoa butter

323Fats are the major family of non-aqueous food components

324(others are terpenes, hydrophobic vitamins, some aroma

325compounds, etc.). Many real food products can contain

326separate aqueous and fat layers or finely disperse phases

327(emulsions), or mechanically mixed ice and lipid crystals

328(ice cream), or mixtures of different lipids (edible oil,

329butter, margarine, etc.). The study of such systems once

330again requires the disentanglement of different processes

331that can occur simultaneously. The standard approach

332obviously is the investigation of single substances or

333mixtures of homologous compounds. An interesting system

334to study is cocoa butter, which indeed is a mixture of tri-

335acylglycerols (TAG) that behaves like a solid solution with

336its own polymorphic crystal phases. These show a mono-

337tropic behavior, namely each crystal phase has its own

338melting point and there are no transition temperatures

339between polymorphs. According to Wille and Lutton [41],

340there are six polymorphs with different melting points and

341fusion enthalpies (Table 1).

342The DSC evidence is an endothermic signal that corre-

343sponds to the fusion of the crystals. In the case of cocoa-

344based products, a large number of DSC traces, collected to

345investigate the TAG polymorphous transitions in cocoa

346butter, cocoa liquor and dark chocolate, showed that these

347transitions have an extent and occur with a kinetics that

348largely depend on the previous thermal history [42]. The

3.7

3.65

3.6

3.55

3.5

3.45

3.4
20 40 60 80 100 120

T /°C

C
'/J

g
–
1
 K

–
1
 

Cooling

Heating

Sol
State

Gel state

Re-building of 
amylose-lipid

complexes

Endo

Wet starch
granules

Fig. 5 Heating–cooling MTDSC traces of the in-phase heat capacity,

C’, of an aqueous suspension of wheat starch granules. The red trace

is the first heating run, while the blue one corresponds to the cooling

run. The evidence clearly shows the irreversibility of the starch

gelatinization, while starch–lipid complexes (lipids are always

associated with wheat starch granules) undergo fusion on heating

and at least a partial reconstruction on cooling. Data from Ref. [38]

Table 1 TAG polymorphs in cocoa butter according to [41]

Polymorph Tfus/ �C Dfus H/Jg
-1

I 17.3 Not appl.

II 23.5 ± 1.0 86.15

III 26.0 ± 0.5 112.47

IV 29.0 ± 0.5 117.47

V 31.3 ± 0.5 136.73

VI 36.0 ± 1.5 148.02
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349 contribution of the various polymorphs to the DSC endo-

350 therm of cocoa butter samples that had undergone a pre-

351 vious thermal history, namely annealing at various

352 temperatures, comes out through a deconvolution treatment

353 (Fig. 6).

354 The results are at the fundamental of a kinetic model

355 [42] that describes the progress of the TAG evolution

356 toward the most stable crystal form,

Amorphous�!
k1 Tð Þ

IV �!
k2 Tð Þ

V �!
k3 Tð Þ

VI

358358 The kinetic model predicts the final crystal phases after

359 any annealing history [42]: a result of obvious interest to

360 explain the blooming of chocolate during the shelf life [43]

361 and plan the industrial production process.

362 As mentioned, complementary information collected

363 through other experimental approach can perfect the

364 description of the system. Laser confocal microscopy and

365 rheology investigations [44] demonstrated that TAG

366 polymorphism reflects a hierarchical scale of structures at

367 the mesoscopic level: Aggregates of small crystals form

368 domains (spherulites) linked to one another in a fractal

369 network that hosts a liquid (amorphous) phase within its

370 meshes. The fractal dimension of the network would

371 depend on the size of the spherulites, which in turn depends

372 on the growth extent of the specific TAG polymorph(s),

373 determined by the cooling rates and annealing tempera-

374 tures. The final mesoscopic structure of the system (size of

375 spherulites, fractal dimensions and fraction of amorphous/

376 liquid phase) affects the rheological properties of the

377 products.

378Shelf life and microbial spoilage

379Another field of application of TAC in food science con-

380cerns the shelf life, during which food products undergo

381many changes of structure, texture, composition, etc.,

382related to a number of factors, like formation of crystal

383phases, dehydration, oxidation, microbial spoilage.

384Structural and composition changes

385Food products undergo physical changes, as they are

386metastable systems tending to attain more or less slowly

387some equilibrium state. This is typical of dispersed systems

388[45]. Foams, emulsions and suspensions tend to collapse

389and separate in bulk phases. Amorphous solids tend to

390crystallize whenever the local molecular mobility is large

391enough to allow short-range displacements. Water migrates

392along local gradients of chemical potential across phase

393boundaries and/or escape toward the head–space of the

394system. These changes produce substantial modifications

395of texture, color, taste and flavor and often make the pro-

396duct unacceptable by the consumer. A good example

397comes again from starchy products that undergo staling

398[16, 18]. TAC experiments allow a quantitative assessment

399of this change and its progress on ageing (see above).

400The most important composition change that affects the

401properties of food is the decrease in the moisture content.

402The change is often desired as drying is an old practice to

403preserve food.

404Besides thermal and freeze-dry dehydration, osmo-de-

405hydration is a mild treatment that does not severely affect

406the original properties of the starting product, as in the case

407of fruits and vegetables whose moisture content can

408account for more than 85% of the overall mass. The pro-

409cess requires the use of a hypertonic medium where to pour

410the food. The consequent displacement of water affects

411both the extra- and the intracellular regions. Actually, a

412gradient of water activity between the hypertonic medium

413and the extracellular region drives water toward the former

414(whose composition remains practically unaffected because

415of its overwhelming mass). Since there is no semiperme-

416able barrier between these fluids, some solute (e.g., sugar)

417of the hypertonic medium enters the extracellular region

418and remains there at the end of the process. The intracel-

419lular water trespasses the cell membranes toward the

420extracellular region. Because of this moisture depletion, the

421fruit shrinks keeping its basic structure, which can turn

422back to the starting status almost completely on rehydra-

423tion, save for the trapped sugar. Knudsen TG is a suit-

424able tool to monitor the process and provides data that

425allow description of all its steps, including the shrinkage

426[14]. The corresponding DTG trace reflects the flux, JW, of

20 25 30 35

T /°C

H
F

/a
.u

Fig. 6 Deconvolution of the endothermic DSC signal of the fusion of

a cocoa butter sample. The Gaussian peaks correspond to the

contributions of different TAG polymorphs (I, II, III, IV and V)

present in the sample after a given annealing treatment. Not published

data (experimental details in Ref. [42])
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427 escaping water that depends on the gradient of the chemical

428 potential, rlW;

JW ¼
1

A

dm

dt
¼

DTG

A
/ �DWrlW

430430 where A and DW stand for cross-sectional area and diffu-

431 sion coefficient, respectively. The dehydration of a sample

432 in Knudsen regime implies the simultaneous detection of

433 water activity and water content, which therefore allows

434 the direct assessment of the dehydration isotherm [26]. If

435 one performs the Knudsen dehydration of partially osmo-

436 dehydrated samples, he can accordingly define both the dry

437 mass and the water activity at every intermediate step of

438 the process. It comes out that the desorption trend of the

439 osmo-dehydrated food tends to overlap that of the hyper-

440 tonic medium (Fig. 7) for large drying extents [14].

441 This reflects the decrease in the overall mass of the

442 intracellular region. Since the three fluids (hypertonic

443 medium, extra- and intracellular regions) must have the

444 same water activity at any step of the process, the gap

445 between the desorption trends of non-treated sample and

446 hypertonic medium can be used to predict the mass pro-

447 portion between intra- and extracellular regions in a par-

448 tially osmo-dehydrated sample applying the classic lever

449 rule [14]. This finally leads to a likely estimation of the

450 shrinkage of the sample, assuming that the volume of the

451 moisture lost is the main contribution [14] to the process.

452 Oxidation

453 Another crucial issue related to the shelf life of most food

454 products is oxidation. The addition of antioxidants, vac-

455 uum-sealing or inert atmosphere can delay the process.

456 Some food products are naturally rich of antioxidant

457compounds and therefore are easier to preserve. However,

458because of the multi-component and multi-phase nature of

459most food, a quantitative assessment of the antioxidant

460potential of a given product is not easily achievable. In

461most cases, such evaluation comes from experimental data

462drawn with independent methods, most of which require

463preliminary time-consuming treatments.

464Reaction calorimetry (RC) allows determination of the

465exothermic effect related to the scavenging of oxygen or

466oxidants, regardless of the physical form of the sample and

467without the need of sample pretreatments. RC can therefore

468be of help to describe the behavior of the antioxidant

469potential of many food systems [46].

470A common natural antioxidant is ascorbic acid (AA).

471When matched with H2O2, AA (one should better say

472ascorbate anion) produces a large exothermic effect that,

473for small AA concentrations ([AA] B 500 mM), appears

474as a single peak in the isothermal RC trace. Nonetheless, at

475larger concentrations, the signal shows a shoulder that

476suggests an underlying multi-step reaction mechanism. It is

477known that the oxidation of AA occurs via radical inter-

478mediates with the formation of dehydroascorbic Acid

479(DHA), diketogulonic acid (DKGA) and the end product

4804,5,5,6-tetra hydroxyl-2,3-di-keto-hexanoic acid

481(THDHA). Each step would imply its own thermal effect

482that contributes to the overall signal detected. For the sake

483of simplicity, a simpler scheme of two consecutive steps

484involving the known intermediate compounds may be of

485help to suggest an interpretation of the signal (Scheme 2).

486This scheme implies a simple solution and a corre-

487spondent expression for the related heat flow:
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Fig. 7 Knudsen desorption

isotherms of non-treated (NT)

and partially osmo-dehydrated

apple pulp (PD), compared with

that of the hypertonic syrup

used for the osmo-dehydration.

The inset shows that the

desorption trend of PD tends to

overlap the one of SYRUP for

large dehydration extents.

Adapted from Ref. [14])
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_Q ¼ k1DH1 þ
k1k2

k2 � k1
DH2

� �

e�k1t �
k1k2

k2 � k1
DH2

� �

e�k2t

¼ ae�ct � be�dt

489489 The best fit of the RC trace leads to recognize that

490 DH1\ 0 and DH2[ 0. Accordingly, one can split the

491 overall signal in two contributions,

k1DH1e
�k1t ¼ dQ1=dt

k1k2

k2 � k1
DH2 e�k1t � e�k2t

� �

¼ dQ2=dt:

493493 Figure 8 reports an example of such split.

494 Having so defined the oxidation process of AA, one can

495 determine the antioxidant power of a given food product

496 (usually wine, fruit juices or liquid products) versus

497 hydrogen peroxide matching the heat released with that

498 obtained with known amounts of ascorbic acid (AA) at

499 given pH and temperature conditions. This procedure

500 allows the assessment of a rank of antioxidant capacity of

501 various food products, expressed as ascorbic acid equiva-

502 lents [46]. Similar investigations concern spent coffee [47],

503 tocopherols [48] and linoleic acid [49].

504 Microbial spoilage

505 The most important changes during the shelf life depend on

506 the microbial spoilage, which takes place when the relative

507 humidity (RH) is larger than 70% (lower thresholds apply

508for molds and enzymatic processes) [50, 51]. This is why

509the control of RH is compulsory for food technologists.

510Isothermal calorimetry (IC) is an ideal tool to monitor

511the presence and the growth of microbial organisms, no

512matter whether single or many microbial strains are pre-

513sent, in almost any kind of medium and represents a valid

514alternative to the plate counts, not requiring any prelimi-

515nary treatment [52].

516The increase in the microbial population is the neat

517balance between growth (exothermic) and death (normally

518endothermic) of cells, although the former implies a much

519larger thermal effect. Beside the neat exothermic balance

520related to the growth progress, one should account for the

521fact that, in a microbial culture, some aged cells do not

522duplicate, but still are able to uptake and metabolize the

523available substrate, which implies an extra neat exothermic

524effect proportional to the number of viable cells [53].

525Therefore, the observed thermal effect, _Q, appears as a

526large exothermic signal that reflects the growth progress

527and the non-growth cell metabolism, namely

_Q ¼ _Nqg þ N _qm

529529where qg and _qm are the heat released by a single dupli-

530cating cell and the metabolic non-growth heat flow of a

531single viable cell, respectively, while N and _N stand for

532number of viable cells and growth rate. However, the

533calorimetric signal appears only when _Q is significantly

534larger than the detectability threshold of the instrument

535used, namely 0.1 lW/mL for standard calorimeters [54].

536This implies that the onset of the calorimetric signal occurs

537substantially later than the onset of the growth trend and

538corresponds to the attainment of the detectability threshold

539of the instrument (Fig. 9).

540During the span between growth and signal onsets, both

541the microbial population within the calorimetric cell and

AA

H2O2 H2O2
H2O H2O

DKGA THDHA
k1 k2

Scheme 2 Simplified reaction steps of the oxidation of AA with

hydrogen peroxide [46]
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Fig. 8 Split of the RC isothermal trace of AA oxidation with excess

H2O2 in the sum of an exo- and an endothermic contribution.

[AA] = 0.25 mM. Not published data (experimental details in Ref.

[46])
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Fig. 9 The onset of the calorimetric trace can appear rather smooth

and broad: this shape has nothing to do with the actual trend of the

growth, but simply reflects the trespass through the detectability

threshold

A. Schiraldi, D. Fessas

123
Journal : Large 10973 Dispatch : 4-3-2019 Pages : 12

Article No. : 8166
h LE h TYPESET

MS Code : JTAC-D-18-02033 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

542 the growth rate increase by some orders of magnitude.

543 When the microbial population approaches its end steady

544 level, the growth rate vanishes. The relevant thermal effect

545 can again drop below the detectability threshold, unless the

546 metabolic contribution N _qm is sufficiently large because of

547 the high value attained by N. In other words, IC only

548 partially ‘‘perceives’’ the growth progress at its beginning

549 and at its end. The so-called lag phase that usually precedes

550 the growth onset is expected to imply a very low heat flux

551 (less than 0.1 fW/CFU), therefore remaining hardly

552 detectable even with very sensitive instruments.

553 A critical issue to consider is that microbial growth in

554 food systems is not the same as in planktonic conditions,

555 i.e., cells dispersed in an aqueous solution of nutrients. In

556 real systems, the progress of the microbial growth can

557 substantially modify the surrounding environment imply-

558 ing change of pH, ionic strength, substrate concentration

559 [55] and, of course, the available volume to accommodate

560 the new cell generations.

561 To achieve a reliable view of what is happening in a real

562 system, one needs to perform separate experiments with a

563 single microbial species in planktonic conditions and check

564 the changes produced by varying the medium pH, the

565 temperature and, tentatively, by adding some extra

566 microbial species or adverse compounds [56]. Of great help

567 are extra data, possibly collected from the same system that

568 is undergoing the calorimetric investigation (Fig. 10). This

569 implies the use of special calorimetric cells that allow the

570 insertion of extra sensors to detect pH, color changes, or

571 the concentration of given probe compound [55].

572 Finally, one has to translate all these pieces of infor-

573 mation in a clear picture of the microbial growth that may

574 occur in a real system. For example, one may attempt an

575 interpretation of the experimental overall evidence through

576 models of microbial growth [57, 58]. However, the

577assessment of N and _N is unachievable through an ‘‘a

578priori’’ approach, as the number of variables involved in

579real systems is large and can differ from case to case

580[59, 60]. An interpretation of the calorimetric signal (and

581experimental evidences of the traditional microbiology

582investigations) that does not require the use of a growth

583model is therefore of great interest.

584A semiempirical approach, based on some experimental

585evidence, like plate counts, has proven rather adequate

586whenever the microbial strain grows via duplication

587mechanism [61, 62], namely N = N0 2
t/s(t), where N0 and s

588(t) are the starting microbial population and the generation

589time, respectively (Fig. 11).

590It is important to notice that the plate count data are

591commonly reported in a semilogarithmic scale, the slope of

592which corresponds to the so-called specific growth rate,

593_N=N, while the calorimetric signal is related to the absolute

594growth rate, _N, which shows a maximum quite later than

595the former, and to N.

596In the considered example, N0 is close to 102 CFU,

597while the end steady values of N are about 109 CFU. This

598means that the end tail of the IC trace would reflect the

599microbial non-growth metabolism if _qm is larger than 0.1

600fW/CFU.

601The proposed semiempirical model suggests the fol-

602lowing fitting expression for the IC trace:

_Q ¼ qg N0 � 2t=s � loge 2ð Þ �
s� t _s

s2

� �

þ _qm N0 � 2t=s
h i

604604where s ¼ a
t
þ bt

� �

is the generation time [61, 62]. To

605account for the delayed onset of the IC signal, one has to

606replace t with (t - Dt) in every expression used. This is

607tantamount as to replace the microbial culture with a vir-

608tual one with the same starting N0, and a generation time
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Fig. 10 Streptococcus thermophilus. IC trace, plate counts and pH

Adapted from ref [55]: fitting dotted lines for plate counts and pH

according to the semiempirical model (see text below) and dose-

logistic model, respectively
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experimental plate counts of L. helveticus. The maximum of the

specific growth rate ( _N=N) occurs at t = t*, when the growth progress

reaches � of the overall growth span in logarithmic scale [61]
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609 that is a little larger in the early phase of the growth (that

610 anyway escaped from the IC detection) but becomes a little

611 smaller during the so-called exponential growth phase. The

612 parameters Dt, a, b, qg and _qm come from the fitting rou-

613 tine. Figure 12 shows the result.

614 The reliability of the qg and _qm values is obviously

615 limited to the respective order of magnitude as they come

616 from the product between very large (N or _N) and very

617 small (qg or _qm) quantities. Nonetheless, they can be of

618 some interest for those who are involved in the study of cell

619 biochemistry. These values of qg and _qm allow estimation

620 of the threshold IC detectable levels of N and _N, namely

621 106 CFU/mL and 5 CFU mL-1 s-1, respectively.

622 A threshold value of 106 CFU/mL may seem rather high,

623 casting some doubts about the practical use of calorimetry

624 to monitor microbial growth. However, it is not so when

625 considered in the appropriate perspective: Namely, real

626 situations imply population densities of this (or higher)

627 order of magnitude that are too large for the standard

628 practice of the microbiological plate counts. Plate counts

629 indeed require a previous dilution of the sample, which

630 implies loss of accuracy. The calorimetric approach does

631 not require a previous dilution of the original sample that

632 can directly undergo the calorimetric investigation without

633 any preliminary preparation.

634 Conclusions

635 Some examples of TAC investigations applied to food

636 products or their ingredients show that these experimental

637 approaches, combined with side information from other

638 techniques, allow one to shed light on the properties of

639 these multi-phase and multi-component systems. However,

640 the investigator needs to put at work a specific expertise to

641select the suitable instrument and envisage an adequate

642experimental plan, according to the available tools.

643A special attention requires the interpretation of the

644collected data, as food systems undergo simultaneous and

645concurrent changes that produce an overall instrumental

646output, which may appear neat and simple, but actually is

647the resultant of many contributions.

648The need of separate investigations dealing with simple

649model systems is a way to disentangle different transfor-

650mations that occur in the same temperature range or time

651span. Mathematical deconvolution of the recorded signals

652is a major tool to use, but the underlying physical models

653require a critical scrutiny to avoid oversimplifications or

654imply unsuitable assumptions.

655Kinetic models can usually be of help, because of the

656intrinsically dynamic nature of the system under study, as

657in the case of microbial cultures. However, semiempirical

658approaches seem more reliable than a priori schemes,

659since, although not providing general ‘‘laws’’, they can

660account for the peculiarities of the system under study

661through adjustable fitting parameters, whose physical

662meaning may appear a posteriori [61, 62].

663
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