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Abstract

The foreseen climate change is going to affect the agricultural suitability, viticulture being one of
those sectors more sensible to environmental constraints. Projected warming combined with severe
droughts in the growing season is expected to have detrimental impacts on the grape berry ripening
affecting the berry quality. Thus, the demonstrated intra-varietal diversity of cv. Tempranillo has led
to the search of new clones able to cope with the projected scenarios. On the other hand, new
strategies such as deficit irrigation of vineyards have emerged as a promising tool to withstand water
stress in this new challenging scenario. Also, the promotion of the symbiotic association of
grapevines with arbuscular mycorrhizal fungi (AMF) which are known to benefit host plants by
improving nutrient uptake, growth and water status of grapevines and helping them to cope with
abiotic stresses. However, less is known about their effect on the phenolic content and antioxidant
properties under climate change scenarios as well as, the role that plant hormones, which interact to
regulate the establishment and functioning of symbiotic associations with AMF, play under
abovementioned conditions. Besides, the cultivation of grapevines produced a huge amount of
pruning wastes which could be reused in the pharmaceutical and nutritional industries due to their
elevated content in nutraceuticals and antioxidant metabolites. Again, the role of AMF on the
primary and secondary metabolism of grapevine leaves under elevated temperature remains
unclear. Taking all into account the general objective of this PhD thesis was to assess the intra-
varietal diversity of grapevine cv. Tempranillo to respond to different climate change scenarios
(elevated air temperature and deficit irrigation) and to analyze if the potential benefits of
mycorrhizal symbiosis on plant metabolism could be maintained under the predicted environmental
conditions. The study was carried out on fruit-bearing cuttings clones of cv. Tempranillo with
different agronomic traits and origins (CL-260, CL-1048, CL-1089, CL-8, CL-280 and CL-843) inoculated
(+M) or not (-M) with AMF and grown under controlled conditions. Plants were subjected to two
temperature regimes (24/14°C and 28/18°C (day/night)) from fruit set to berry maturity and different
irrigation regimes (early season deficit irrigation, ED; late season deficit irrigation, LD; and full
irrigation, Fl) throughout berry development.

Berry skin metabolism of Tempranillo was clone-dependent resulting in different abilities to respond
to deficit irrigation under warming. Under our experimental conditions, early deficit (ED) irrigation
was worse than late deficit (LD) at 24/14°C concerning anthocyanin and flavonol levels and berry
traits, however, such differences were attenuated at 28/18°C. Primary metabolism was mainly
affected by temperature whereas deficit irrigation was the main factor affecting secondary
metabolism. Both factors modified the amino acid, anthocyanin and flavonol profiles. Clonal diversity

of Tempranillo also resulted in different abilities to respond to AMF inoculation under elevated



temperature. Thus, in CL-1048, AMF inoculation avoided warming effects on berry quality by
improving antioxidant properties. This protective role of AMF under elevated temperatures was also
evidenced when plants were subjected to deficit irrigation. AMF inoculation improved the potential
benefits of LD at 28/18°C although this benefit was dependent on the intra-varietal differences of
Tempranillo. Results underlined the importance of implementing measures to promote AMF-
grapevines symbiosis in order to optimize the effect of irrigation strategy on berry properties under
elevated temperature. In view of abscisic acid (ABA) involvement in the berry ripening regulation, we
have investigated the potential role of AMF inoculation on the levels of free ABA and its catabolites
throughout berry development and ripening. Results showed that ABA catabolism/conjugation was
modified by AMF inoculation and by the climate change conditions evidencing that 7OH-ABA has an
important role in the berry quality of Tempranillo. In fact, the AMF inoculation modified berry ABA
catabolism, leading to increased 7°OH-ABA content, providing an explanation to the ability of AMF to
improve berry quality under global warming scenarios.

Tempranillo intra-varietal differences were also shown on the leaf phenolic composition and
antioxidant properties responding to AMF inoculation and elevated temperature. Thereby, AMF
inoculation at 28/18°C improved total soluble phenolics, flavonols and anthocyanins which
contributed to a higher antioxidant power of grapevine leaves. Furthermore, the nutritional value of
Tempranillo leaves was also enhanced under the predicted warming climate conditions by increasing
several minerals, soluble sugars, photosynthetic pigments and soluble proteins, and by means of
mycorrhizal inoculation which induced flavonol and hydroxycinnamic acid accumulation. Given this
high nutritional value, Tempranillo leaves could be used for animal or human nutrition or as a food
supplement. Finally, foliar extracts of Tempranillo exhibited high cytotoxic activity against some
cancer cell lines, which strengthens the potential application of these agricultural wastes for
biomedical purposes.

This dissertation provided evidence of the broad diversity within Tempranillo variety highlighting the
importance of an appropriate clonal selection based on the plausible applications and/or the
environmental or biotic modulator factors and demonstrates the importance of adopting measures
to protect the indigenous cohorts of AMF in vineyards. Moreover, since each clone responded
differently to each mycorrhizal inoculum and responses varied according to the environmental
conditions, it may be profitable to identify the AMF inoculants most suitable for a given clone in a

given environment.

Key words: Abscisic acid metabolism; Amino acids; Anthocyanins; Arbuscular mycorrhizal fungi
(AMF); Clones; Global warming; Flavonols; Grapevines; Intra-varietal diversity; Phenolic compounds;

Tempranillo; Total antioxidant capacity; Regulated deficit irrigation; Vegetative wastes.



Resumen

El cambio climatico previsto va a afectar a la idoneidad de la agricultura, siendo la viticultura uno de
los sectores mas afectados por las condiciones medioambientales. Las predicciones de aumento de
las temperaturas junto con periodos de sequia severa durante la estacion de crecimiento de la vid
van a tener un impacto muy negativo sobre la maduracién de la baya afectando a la calidad de la
misma. Todo ello sumado a la gran diversidad intra-varietal del cv. Tempranillo, ha impulsado la
busqueda de nuevos clones capaces de tolerar los futuros escenarios de cambio climatico. Por otro
lado, nuevas estrategias como el riego deficitario de vifiedos han emergido como técnicas
prometedoras para soportar el estrés hidrico asociado a las nuevas condiciones climaticas. También
la promocién de la asociacidon simbidtica de vides con hongos micorricicos arbusculares (HMA), los
cuales benefician a la planta huésped mejorando la toma de nutrientes, el crecimiento y el estado
hidrico de las vides, pudiendo ayudar a tolerar los estreses abidticos. Sin embargo, todavia se
desconoce su efecto sobre el contenido fendlico y las propiedades antioxidantes en condiciones de
cambio climatico asi como, el papel que las hormonas de la planta, las cuales interactlan para
regular el establecimiento y funcionamiento de la asociacion simbidtica con HMA, puedan
desempenar en dichas condiciones. Por otro lado, la viticultura genera una gran cantidad de
deshechos de poda, los cuales podrian ser reutilizados en las industrias farmacéutica y nutricional
debido a su alto contenido en nutracéuticos y metabolitos antioxidantes. A este respecto, todavia no
se conoce claramente el papel que los HMA desempefian en el metabolismo primario y secundario
de las hojas de vides crecidas a temperaturas elevadas. Teniendo en cuenta todos estos
antecedentes, el principal objetivo de esta tesis fue establecer la diversidad intra-varietal de vides cv.
Tempranillo en respuesta a diferentes escenarios de cambio climatico (temperatura elevada y déficit
hidrico) y analizar si en las futuras condiciones medioambientales, los potenciales beneficios de la
simbiosis micorricica sobre el metabolismo de la planta se mantendran. El estudio se llevd a cabo con
esquejes fructiferos del cv. Tempranillo con diferentes caracteristicas agrondmicas y procedencias
(CL-260, CL-1048, CL-1089, CL-8, CL-280 and CL-843) inoculados (+M) o no (-M) con HMA y crecidos
en condiciones controladas. Las plantas fueron sometidas a dos regimenes de temperatura (24/14°C
0 28/18°C (dia/noche)) desde cuajado hasta la madurez de la baya y diferentes estrategias de riego
(riego deficitario temprano, ED; riego deficitario tardio, LD; y riego completo, Fl) aplicados durante el
desarrollo del fruto.

El metabolismo del hollejo de las bayas de Tempranillo varié en funcién del clon analizado lo que se
tradujo en diferentes habilidades para responder al déficit hidrico bajo temperaturas elevadas. En
nuestras condiciones experimentales, con el riego deficitario temprano (ED) se obtuvieron peores

resultados que con el riego deficitario tardio (LD) a 24/14°C con respecto a los niveles de



antocianinas y flavonoles y a los rasgos de la baya, sin embargo, estas diferencias se atenuaron a
28/18°C. El metabolismo primario de las bayas se vio principalmente afectado por el aumento de
temperatura mientras que las diferentes estrategias de riego modificaron preferentemente el
metabolismo secundario. Ambos factores modificaron los perfiles de aminoacidos, flavonoles y
antocianinas. La diversidad clonal de Tempranillo también resulté en diferentes habilidades para
responder a la inoculacién micorricica bajo altas temperaturas. Asi, en el CL-1048, la inoculacién con
HMA evitd los efectos sobre la calidad de la baya asociados al calentamiento debido a la mejora de
las propiedades antioxidantes. Este papel protector de los HMA a altas temperaturas también se
evidencié cuando las plantas se sometieron a riego deficitario. De esta manera, la inoculacién con
HMA mejoré los potenciales beneficios del riego LD a 28/18°C, aunque este efecto también se dio en
funcién de las diferencias intra-varietales de Tempranillo. Los resultados subrayan la importancia de
la implementacion de medidas para promover la simbiosis entre vides y HMA para asi, optimizar los
efectos de la estrategia de riego sobre las propiedades de la baya bajo temperatura elevada. Dado
que el acido abscisico (ABA) estd implicado en la regulacion de la maduracién de la baya, hemos
investigado el papel potencial de la inoculacion micorricica sobre los niveles de ABA libre y sus
catabolitos a lo largo del desarrollo y la maduracidn de la baya. Los resultados demostraron que la
conjugacién/catabolismo del ABA se modificé por la inoculacién micorricica y por las condiciones de
cambio climatico evidenciando el papel importante que el 7°OH-ABA juega en la calidad de la baya de
Tempranillo. De hecho, la inoculacién micorricica modifico el catabolismo del ABA en las bayas,
aumentando el contenido de 7°OH-ABA lo que se pudo relacionar con la mejora de la calidad de la
baya en respuesta a la inoculacidn micorricica en escenarios de cambio climatico. La diversidad intra-
varietal de Tempranillo también se expresé en las variaciones de la composicidn fendlica de la hoja y
de las propiedades antioxidantes en respuesta a la inoculacidn micorricica y a la temperatura. Asi, la
inoculacién micorricica a 28/18°C mejoro los fenoles solubles totales, los flavonoles y las
antocianinas lo cual contribuyo a una mayor capacidad antioxidante de las hojas de vid. Por otra
parte, la temperatura elevada mejoré el valor nutricional de las hojas de Tempranillo debido al
aumento de muchos minerales, azucares solubles, pigmentos fotosintéticos y proteinas solubles, y
por medio de la inoculacién micorricica que indujo la acumulacién de flavonoles y acidos
hidroxicindmicos. Dado el alto valor nutricional de las hojas de Tempranillo, se podrian utilizar para
alimentacién animal o humana o cdmo suplemento alimentario. Finalmente, los extractos foliares de
Tempranillo mostraron una alta actividad citotdxica frente a algunas lineas celulares de cancer, lo
cual reforzé la posible aplicacién de estos residuos agricolas para su aplicacion biomédica.

Este trabajo evidencid la importancia de una adecuada seleccién clonal en el cv. Tempranillo debido
a su amplia diversidad en funcidn de las posibles aplicaciones y de los factores biéticos y ambientales

moduladores y demostrd la importancia de adoptar medidas para proteger las cohortes micorricicas



en los vifiedos. Ademas, ya que cada clon respondié de manera diferente a cada indculo y que las
respuestas variaron segun las condiciones ambientales, seria aconsejable identificar los indculos

micorricicos mas adecuados para un determinado clon en un determinado ambiente.

Palabras clave: Metabolismo del acido abscisico; Aminodcidos; Antocianinas; Hongos micorricicos
arbusculares (HMA); Clones; Calentamiento global; Flavonoles; Vid; Diversidad intra-varietal;
Compuestos fendlicos; Tempranillo; Capacidad antioxidante total; Riego deficitario controlado;

Residuos vegetativos.
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Introduccion general

1. General Introduction:

Grapevine (Vitis vinifera L.) is an important perennial crop worldwide, consumed as fresh fruit
or produced to make wine. Not only is the grapevine one of the most cultivated crops in
Europe, with a production of 23.4 million tons (Eurostat Statistics Division, 2016), which
represents the 39% of the world production but also, several studies have shown that the
moderate consumption of wine is beneficial for human health (Georgiev et al., 2014; Artero et
al., 2015). However, projected climate change is expected to have detrimental impacts on the
grapes and wine quality and properties due to this crop is shown as highly dependent upon

climatic conditions during the growing season.

Mutualistic plant-microbe interactions offer a novel approach to enhance agricultural
productivity while reducing environmental costs (Hamilton et al., 2016). Numerous studies
have demonstrated that (1) climate change may affect all types of beneficial plant-
microorganism interactions and (2) plant-associated microorganisms are an important factor
modulating the response of plants to climate change (Compant et al.,, 2010). Among these
beneficial microorganisms, it is worth noting the arbuscular mycorrhizal fungi (AMF), because
they can establish mutualistic association with most crops (Smith and Read, 2008) and have an
increasingly important role in vineyard production systems (Trouvelot et al., 2015). Currently,
in intensive agricultural production systems such as vineyards, new insights are essential to
increase competitiveness and minimize the environmental impacts of agricultural practices
(Nicolas et al., 2015). Although some aspects of effects of global climate change on grapevine
cultivation are recently reviewed (Costa et al., 2016; Mosedale et al., 2016; Alonso et al.,
2016b; Schultz, 2016; van Leeuwen and Darriet, 2016) so far, the mycorrhizal-mediated
responses to grapevine under changing environments have not been updated. In this review,
we summarize recent research progress on the effects of climate change on grapevine
physiology and metabolism and the benefits that AMF can report for improving fruit quality
and enhancing the adaptation of grapevines to the predicted environmental conditions in

future climate change scenarios.



Introduccion general

2. Climate change on a global basis for viticulture and for beneficial plant-microorganisms

interactions

2.1. Climate change scenarios for viticulture and the expected consequences

The increasing research interest in the climate change effect on viticulture is not surprising due
to the high socioeconomic relevance of the winemaking sector worldwide. Furthermore,
climate change and their resulting impacts is becoming a concern for winegrowers (Fraga et
al., 2013; Neethling et al., 2017). For most wine-production regions of the world, long-term
climate records have shown rising temperatures (Webb et al.,, 2013; Barnuud et al., 2014;
Fraga et al.,, 2016) together with shifting patterns in rainfall and extreme weather events
(Andrade et al., 2012; IPCC, 2014).

Warming temperatures have been linked to anthropogenic climate change and are
likely to continue. Thus, in most scenarios without additional mitigation efforts, atmospheric
concentrations of CO, could reach about 1000 ppm by 2100 and, thus, air temperature is likely
to exceed 4°C above pre-industrial levels (IPCC, 2014). This rise of temperature is expected to
have detrimental impacts on grapevine physiology and quality (Mosedale et al., 2016) and to
increase the risk of pests and diseases, especially with warmer winters (Caffarra et al., 2012).
Consequently, heat waves during the growing season could impair vine productivity and cause
a greater loss of water from the soil (Schultz, 2016). In addition, the absence of precipitation,
considered as a major limiting factor for plant growth, is frequently accompanied by increased

UV-B radiation levels (Bandurska et al., 2013).

This new scenario may allow future wine production in areas that are presently too
cold for wine cultivation, while the actual grape growing regions may become unsuitable for
premium wine production and will have to adapt to these changes (Hannah et al., 2013; Roy et
al., 2017). The establishment of vineyards at higher altitudes (colder areas) and the election of
exposures that lead to a lower interception of solar radiation would be some appropriated
options facing these changes (Hannah et al., 2013; Palliotti et al., 2014). On the other hand, in
south Mediterranean Europe region, climate may limit grapevine yield and berry quality
because most of the berry growth and ripening period occurs under conditions of high air
temperature and soil water deficit. Nevertheless, irrigation is expanded fast in this region to
mitigate environmental stress and to guarantee stable grape yield and quality (Costa et al.,
2016; Resco et al., 2016). Indeed, future strategies to optimize the environmental performance

of the viticulture in the Mediterranean region must be focused on an adequate selection of
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rootstocks and phenotypes resistant to drought and heat stress. However, currently,
winegrowers identified them as the last resort strategies (Neethling et al., 2017) and, in
Mediterranean countries (i.e. Spain) these strategies have been carried out in a non-climate-
smart way, this causing that almost a third of the 1 million hectares of grapevines in the
Spanish territory will face a different climate than the one they were planned for (Resco et al.,

2016).

2.2. Climate change consequences for the beneficial plant- microorganism interactions

The plant growth-promoting attributes (AMF, ectomycorrhizal fungi, plant growth-promoting
bacteria (PGPB) and other microbes) could play vital roles in the maintenance of plant fitness
and soil health under stressed environments (Vimal et al., 2017). Climate change related
factors may lead to increased C allocation to the root zone and potentially altered the
composition of root exudates (i.e. chemoattractants or signal compounds) and the C/N ratio or
nutrient availability affecting the composition, abundance or activity of plant-associated
microbial communities (Compant et al., 2010). Rising temperatures will affect roots and their
belowground associates will vary according to temperature optima of individual plant species
(Pritchard, 2011). Indeed, it has been demonstrated that some distinct mycorrhizal strains,
plant genotypes or specific associations might respond differently to altered environmental
conditions (Compant et al., 2010). Thus, the same rise of temperature decreased and increased
ectomycorrhizal fungal biomass in the rhizospheric soil of a natural forest and a plantation,
respectively (Li et al., 2015a). Regarding the increased atmospheric CO, concentration,
although it influences positively on the abundance of AMF and ectomycorrhizal fungi, the
interactions between mycorrhizae and plants are not necessarily impacted (see Compant et al.,
2010 for further details).

On the other hand, it was recently reported that PGPB increased plant productivity and
decreased the microbial respiratory C loss under elevated temperature (Nie et al., 2015).
Concerning the effect of water deficit on the beneficial plant-microorganism interactions, it
was recently reviewed by Vimal et al. (2017) that the association between a PGPB and AMF
positively affect plants subjected to drought stress by providing increased stomata
conductance and photosynthesis, and improving plant growth and drought tolerance.

Warming, elevated CO, and drought affect plant-beneficial microorganisms in many
ways, the effects being dependent on the climate change factor studied, plant species,
ecosystem type, soil type and microbial genotype (Compant et al., 2010). However, a better

understanding of the effect of climatic variability on the synchrony of plants and soil
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microorganisms which play a key role in the cycle of nutrients and disease cycles is necessary
(Pritchard, 2011). Additionally, further research about the different mechanisms involved in
plant-microorganism interactions is required for developing new strategies to manage stressed

agriculture (Vimal et al., 2017).

3. Grapevine physiology and metabolism under climate change

3.1. Grapevine physiology under climate change

There was a large body of evidences reporting the influence of climate change on grapevine
physiology (Table 1, page 40). Regarding phenology, numerous studies showed that the
increase in ambient temperature accelerated the succession of different phenological stages,
in which, flowering, véraison, berry maturity and harvest happen sooner (Fraga et al., 2016;
Hall et al., 2016; Ruml et al., 2016; Jarvis et al., 2017; Cola et al., 2017). Nonetheless, the
combination of high temperature with other climate change-related factors (i.e., UV-B, water
deficit or elevated CO,) could perform distinctly due to differential response of plant
development to each factor. For example, in Tempranillo, the UV-B treatment did not affect
the time to reach berry maturity (Martinez-Lischer et al.,, 2014) but berry maturity was
delayed when UV-B was combined with water deficit (Martinez-Lischer et al., 2015a), or with
elevated CO, and warm temperature (Martinez-Liischer et al., 2015b). Likewise, it has been
reported early véraison and berry maturity in response to elevated temperature and high CO,,
but these effects diminished under water deficit conditions (Martinez-Luscher et al., 2016;

Leibar et al., 2017).

Global climate change is also affecting leaf gas exchange of grapevines, water deficit being the
most extensively analysed factor (Table 1, page 41). In fact, different studies have reported
reductions in net photosynthesis, stomatal conductance and transpiration that lead to
improved water use efficiency (WUE) in water-stressed plants. Nevertheless, the
photosynthetic performance could be different under simultaneous variations in CO,, water
availability and temperature. In this way, it has been reported that the effects of water deficit
on leaf gas exchange were mitigated by increasing concentration of CO, (Salazar-Parra et al.,
2015; da Silva et al., 2017) and the impact of UV-B radiation was overshadowed by the effects
of water deficit (Martinez-Luscher et al., 2015a). Moreover, the combination of elevated CO,
and temperature with UV-B radiation or with water deficit resulted in higher photosynthetic

rates (Martinez-Lischer et al., 2015b, Leibar et al., 2015).



Introduccion general

Physiological adjustments of grapevines to climate change usually result in reductions
in plant growth and yield (Jones and Alves, 2012; van Leeuwen and Darriet, 2016; Santos et al.,
2017) (Table 1, page 42). Thus, a decrease associated with the warming trends has been
reported for berry mass, yield and wine production. Also, water deficit greatly reduced plant
and berry growth while elevated CO, enhanced plant growth, mainly due to increased number
of leaves (Leibar et al., 2017). In addition, the combination of water deficit and elevated
temperature decreased berry fresh mass and proportion of pulp per berry and increased
proportion of skin per berry (Bonada et al., 2015) but its impact on wine production was less

relevant (Cunha and Richter, 2016).
3.2. Grapevine metabolism under climate change

3.2.1. Primary and secondary metabolites in berries under challenging environments

Primary and secondary metabolites in grapevine berries are directly involved in the
organoleptic properties of grapes and wines (Conde et al., 2007). Climate change is particularly
important for berry quality, in which heat, drought and light intensity are just some
environmental stress factors that dramatically affect phenolic metabolism and berry chemical
composition. In this regard, cultural practices, such as canopy management and irrigation may

be optimized to adjust berry and wine quality (Teixeira et al., 2013).

Warming temperatures hasten sugar accumulation and delay colour development due
to reduction of anthocyanin content (Table 2, page 44). This decoupling was explained by a
relative shift in onset rather than rate of accumulation of these berry components leading to
the elaboration of wines with higher alcohol contents (Sadras and Moran, 2012). Moreover, it
has been reported that elevated temperatures resulted in higher proportion of acylated
anthocyanins (De Rosas et al., 2017). These authors showed that colour development and
pigment modifications under high temperature are regulated at transcriptional level by MYBA1
transcription factor, and by the UDP glucose:flavonoid-3-O-glucosyltransferase and
anthocyanin acyltransferase genes. Berry acidity is another important quality trait dependent
on the ratio of the concentration between free organic acids (mainly, malic and tartaric acids)
and their potassium salt forms. Organic acid metabolism, and especially malic acid
concentration, is highly responsive to warm temperatures during fruit ripening. High
temperatures are known to induce the degradation of malic acid (Sweetman et al., 2014).
Tartaric acid has been thought to be more stable than malic acid; however, several
discrepancies were found when the impact of temperature on tartaric acid was studied (Table

2, page 44). Recent findings of Cholet et al. (2016) showed two groups of expression profiles
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for the genes involved in the biosynthetic pathway of tartaric acid: those upstream of ascorbic
acid, belonging to the Smirnoff-Wheeler pathway and those downstream of ascorbic acid. This
study proposed that both groups of genes might be modulated by different environmental

factors, which could aid to explain the above mentioned discrepancies on tartaric acid content.

Many studies have extensively reported the effects of irrigation practices on the
accumulation of various grape secondary metabolites (Table 2, page 44). In addition to
temperature, predicted reduction on the amount of rainfall implies that vines may require
supplemental irrigation to limit water deficit stress during the grapevine growing season
(Keller, 2010) and therefore, different irrigation programs have been implemented in
viticulture areas (Chaves et al., 2010). Several studies have pointed out the role of water stress
on berry quality enhancing total phenolics, particularly, anthocyanins (Table 2, page 44).
Moreover, it has been reported that water deficit changed anthocyanin composition, as well as
the composition and the accumulation of flavonols or proanthocyanidins. In general, water
deficit enhanced phenylpropanoids, monoterpenes, and tocopherols, while carotenoids and
flavonoid accumulations were differentially modulated by water stress according to the berry
developmental stage (Savoi et al. 2016), grapevine variety (Niculcea et al., 2015; Kizildeniz et
al., 2015) and/or deficit irrigation program applied (Table 2, page 44-45). Recent findings
showed that the effects of deficit irrigation on berry composition were attenuated at high
temperature and that both factors (temperature and deficit irrigation) contributed to modify
metabolite profiles of amino acids, anthocyanins and flavonols in Tempranillo variety (Torres
et al., 2017). Thus, the combination of elevated temperature and deficit irrigation resulted in
high amino acid content mainly due to the accumulation of arginine, proline, threonine and
glutamine. The high arginine and proline contents could be related to a transcriptional
regulation of ornithine decarboxylase during water deficit (Berdeja et al., 2015), which could
be exacerbated under warm temperatures. Torres et al. (2017) also showed that both
temperature and irrigation modified anthocyanin profiles by increasing 3-acetyl-glucosides
derivatives due to increased methoxylated forms (petunidin and malvidin). Berry skin flavonols
were dominated by myricetin-3-O-glucoside but the changes in flavonol profiles were more
pronounced at elevated temperatures when plants were subjected to the deficit irrigation.
These changes on secondary metabolite profiles could be explained by the regulation at the
transcriptional level of phenylpropanoid pathway genes that takes place during water deficit
(Castellarin et al., 2007; Deluc et al. 2009) and under elevated temperatures (De Rosas et al.,

2017).
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On the other hand, exposure to visible and/or UV radiation is a key factor in the
synthesis of phenols and their accumulation in berries. On this subject, several studies have
reported increasing trends in flavonols, anthocyanins, flavanols, monoterpenes, and decreases
in hydroxy-cinnamates and flavan-3-ols in response to visible, UV-A and/or UV-B radiations
(see Table 2 for further details, page 45). However, under climate change scenarios (i.e.,
elevated CO, and temperature) the stimulation of UV-absorbing compound synthesis was
reduced (Martinez-Lischer et al., 2015b). Likewise, the combination of elevated CO,, elevated
temperature and drought significantly reduced the phenolic content in the same variety, but
no effect was observed when the environmental factors were applied individually (Kizildeniz et
al., 2015). These results highlight the importance of approach the combined effects of

different environmental factors on berry composition.
3.2.2. Hormonal status in berries under challenging environments

3.2.2.1. Hormonal signals during grape berry ripening

Grape and wine quality is extremely dependent on the fruit ripening process. Sensory and
nutritional characteristics are crucial aspects for wine market, which are developed during
berry ripening under a complex hormonal control (Figure 1, page 54). Grape berry
development involves a complex series of changes, which can be divided into three major
phases. Initial berry growth (Phase I) occurs along a sigmoid growth curve due to cell division
and subsequent cell expansion. In this phase, the accumulation of organic acids,
proanthocyanidins, and hydroxycinnamic acids starts to peak levels. In Phase Il (lag phase), cell
expansion ceases and sugars begin to accumulate. The beginning of Phase Ill is marked by the
onset on ripening (véraison), in which berries undergo a second period of sigmoid growth due
to mesocarp cell expansion and accumulate anthocyanin pigments. The accumulation of
volatile compounds for aroma and sugars takes place in this phase, as well as the decline in

organic acid content and the berry softening.

Grape berry is a non-climacteric fruit; therefore, the typical respiration peak of
ethylene observed in the climacteric fruits, does not occur in grapevines. Several hormones
participate in the control of grape berry development and ripening, such as auxin (IAA),
ethylene, abscisic acid (ABA), gibberellins (GAs), cytokinins (CKs), and brassinosteroids (BRs)
(Bottcher and Davies, 2012). In the early stages of berry development (from fertilization to
fruit set), IAA, CKs, and GAs promote the cell division and expansion and in spite of having an

essential role in berry development, they are mostly produced by the seeds. Then, from pre-
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véraison to full ripening, changes are driven by sequential increases in ethylene, BRs and ABA

(Fortes et al., 2015).

The accumulation of ABA during grape ripening has been widely reported. In fact, it
was noticed that an increase in free ABA levels around véraison accompanied sugar
accumulation, coloration, and softening, highlighting that ABA may play a major role in
controlling several ripening-associated processes of grape berry (Kuhn et al., 2014; Pilati et al.,
2017). In fleshy fruits as grape berries, ABA plays a crucial role not only in berry development
and ripening, but also in adaptive responses to biotic and abiotic stresses. In these processes,
the actions of ABA are under the control of complex regulatory mechanisms involving ABA
metabolism, signal transduction, and transport. In fact, the endogenous ABA content is
determined by the dynamic balance between biosynthesis and catabolism, so ABA conjugation
by cytosolic UDP-glucosyltransferases, or release by B-glucosidases, constitute important ways

for maintaining ABA homeostasis (see Leng et al., 2014 for further details).

3.2.2.2. Berry hormones as environmental mediators

In a context of climate change, some efforts are underway to better understand how
endogenous and external signals are perceived by the grapevine plant, thus modulating

ripening, metabolism and hence berry composition (Ferrandino and Lovisolo, 2014).

As mentioned above, ABA promotes grapevine berry ripening but is also a stress-
related signal. For this reason, to date, ABA has been the hormone most widely studied in
berries in relation to environmental stress factors (Table 3, page 49). Some studies have
reported that berry ABA content diminished under warm temperatures. Likewise, Shinomiya et
al. (2015) reported that temperatures exceeding 27°C during the ripening season lead to
insufficient berry coloration as a result of low levels of ABA and anthocyanin biosynthetic gene
expression levels. Carbonell-Bejerano et al., (2013) also showed that ABA concentration
decreased throughout ripening under high temperature, but it was significantly higher at full
ripeness. These authors suggest that when temperature exceeds 30°C, ABA could modulate

thermotolerance responses in the berries.

Deficit irrigation during growing season also modifies the pattern of hormone
accumulation in berries (Table 3, page 49). In this regard, Niculcea et al. (2013) showed that
sustained deficit irrigation (SDI) caused a decrease in ABA and salicylic acid (SA) at véraison
that affected the amount of anthocyanins at harvest. In the same study, authors concluded

that the lower size of berries in SDI plants could be due to a decrease in IAA in pea-size and
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suggested a role of jasmonic acid (JA) in the berry response to water stress. However, these
modifications in berry hormonal patterns also depend on timing of deficit irrigation program
applied. Thus, Niculcea et al. (2014) reported that both pre- and post-véraison water-deficit
modified evolution of ABA, IAA, SA and JA in berries, which was related to changes in berry
size, increases in phenolic substances and accumulation of amines in Tempranillo and Graciano
varieties. With respect to ABA, it has been reported that water deficit increased transcript
abundance of ABA signalling genes and ABA biosynthetic genes (Deluc et al., 2009), which
indicates that ABA signal transduction pathways are modulated by water deficit during grape
berry ripening (Savoi et al., 2017). In addition, changes on ABA catabolism could also account
for berry responses to water deficit. Thus, Balint and Reynolds (2013a) reported that ABA was
likely catabolized by conjugation to form abscisic acid glucose ester (ABA-GE) in treatments
under high levels of water deficit, while in treatments with high water status, the oxidation
pathway leading to dihydrophaseic acid (DPA) or phaseic acid (PA) predominated. Recent
findings of Zarrouk et al. (2016) indicated that berry ABA homeostasis is achieved by
degradation before véraison, while after véraison ABA homeostasis is realized by conjugation
in Tempranillo. This study showed that changes in ABA catabolism/ conjugation along berry
development were affected by water stress particularly under elevated temperatures,
indicating that ABA-GE and ABA catabolites play an essential role in ABA homeostasis under

environmental constraints.

4. Arbuscular mycorrhizal symbiosis in a changing climate

4.1. Effects of changing environments on the arbuscular mycorrhizal fungi

The data collected by Compant et al. (2010) in their review demonstrated that warming,
elevated CO, and drought affect plant-beneficial microorganisms in many ways, the effects
being dependent on the climate change factor studied, plant species, ecosystem type, soil type
and microbial genotype. Thus, Mohan et al. (2014), summarizing the effect of rising
temperatures on mycorrhizal communities, obtained that in 17% of such studies mycorrhizal
abundance decreased, in 20% of them no significant change was observed and the 63% of the
works concluded that the abundance of mycorrhizas can increase under elevated temperature.
In subsequent studies, Augé et al. (2015) pointed out that AMF promotion was 10% higher
when air temperatures were kept at or below 27°C than those that exceeded 27°C. Moreover,

Wilson et al. (2016) concluded that the direct effect of increasing 3°C the temperature
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decreases AMF colonization, and this appeared to be regionally consistent across the
Mediterranean climate gradient. On the other hand, although the growth of external hyphae
and the diversity of AMF species can increase at high temperatures (Hawkes et al., 2008; Zhang
et al., 2016), the mycorrhizal activity generally decreases (Mohan et al., 2014). Furthermore, in
a warmer world, the presumed enhanced growth of AMF hyphae is unlikely to balance the

carbon losses to the atmosphere from the AMF respiration (Hawkes et al., 2008).

Elevated CO, can promote mycorrhizal colonization of plant roots as a consequence of
the enhanced carbon allocation to roots (Zhu et al., 2016a; Asha et al., 2017), which may result
in an increased mineral uptake from soil but not necessarily correlated with nutrient transfer
to the host plant (Smith and Read, 2008). Regarding the community composition of AMF,
elevated CO, increased the ratio of Glomeraceae to Gigasporaceae but this effect may be
masked by the natural changes through time (Cotton et al., 2015) and also by the dependency
of different fungi on water availability and precipitation (Veresoglou et al., 2016). The
application of molecular tools revealed that, at present, Glomeraceae dominate the
composition of the AMF communities in vineyards in Oregon (USA) (Schreiner and Mihara,
2009), Piedmont (ltaly) (Balestrini et al., 2010) and Burgundy (France) (Bouffaud et al., 2016),
the AMF diversity being relatively low, which contrasts with the high diversity of AMF in the
rhizosphere of European wild grapevine V. vinifera L. ssp. sylvestris (Gmelin) Hegi found by
Ocete et al. (2015). Projected droughts within the climate change are expected to cause AMF
sporulation and reduction of the AMF activity (Guadarrama et al., 2014). Agricultural practices
(high fertilizer inputs, tillage, weed control practices, and pest management practices, among
others) may amplify the effect of environmental factors on the AMF communities present in
vineyard soils (Trouvelot et al., 2015; Vukicevich et al., 2018). In semi-arid to arid regions, such
as Mediterranean areas, soils of vineyards are periodically subjected to tillage or left totally
bared in order to keep the soil free of weeds and grassland plant species, which influences on
the development and reproduction of AMF. Oehl and Koch (2018) noted that AMF diversity
decreased in Central European vineyards subjected to this cultivation management, which can

in last instance affect yield and wine quality parameters.

A better understanding of the effect of climatic variability on the synchrony of plants
and soil microorganisms which play a key role in the cycle of nutrients and disease cycles is
necessary (Pritchard, 2011) and further research on the mechanisms involved in plant-
microorganism interactions is required for developing new strategies to manage sustainable

agriculture under stressful weather conditions (Vimal et al., 2017).

12



Introduccion general

4.2. Growth and physiology of plants associated with AMF and undergoing changing

environments

Expected climate change can create unfavourable conditions to plants. Drought, salinity, global
warming and rising CO, in the atmosphere affect plant growth and yield and constitute a
threat to sustainable agriculture and global food security. In this context, AMF are considered
a promising tool for improving plant resilience to adverse environmental conditions and
several mechanisms have been described to explain how and why mycorrhizal symbiosis can
benefit metabolism and physiology of their host plants. In general, under water deficit plants
associated with AMF show enhanced antioxidant activity, osmotic regulation and root
hydraulic properties than non-mycorrhizal ones (Ruiz-Lozano et al., 2012a). Studies carried out
by Yooyongwech et al. (2016) and Quiroga et al. (2017) showed that, when subjected to
drought, mycorrhizal potato and maize plants had higher levels of photosynthetic pigments,
improved chlorophyll fluorescence parameters, higher net photosynthetic rates, increased
membrane stability and lower lipid peroxidation than those not colonized by AMF. Li et al.
(2015b) found that mycorrhized Populus cathayana performed better under restricted
irrigation by improving photosynthesis, intrinsic water use efficiency (WUE) and yield of
photosystem Il. Similarly, AMF increased the uptake of N and improved the photochemistry
efficiency of photosystem Il in the flag leaf of winter wheat subjected to water deficit
(Garmendia et al., 2017). Armada et al. (2016) concluded that mycorrhizal inoculation was
more efficient than chemical fertilization for improving growth, nutrition and enzymatic
activities of Retama sphaerocarpa undergoing drought. The inoculation of Zea mays with
Rhizophagus intraradices enhanced drought tolerance of plants by promoting nutrient uptake,
adjusting C:N:P stoichiometry, improving WUE and water content in leaves, and accelerating
the rehydration rate (Zhao et al., 2015). The role of some aquaporins in the drought tolerance
induced by AMF in maize has been highlighted by several authors (Barzana et al.,, 2014;
Quiroga et al., 2017). The integrated physiological response of plants to salinity includes
several coordinated mechanisms that may be affected or modulated by mycorrhizal symbiosis:
the accumulation of compatible solutes, the control of ion homeostasis, the regulation of soil
water uptake, the reduction of oxidative damage, and the maintenance of photosynthetic
rates (Ruiz-Lozano et al. 2012b). Regarding global warming, Zhang et al. (2016) reported that
mycorrhizal hyphae beneficed soil water absorption and nutrient uptake in grassland plants
subjected to elevated temperatures. Similarly, Hu et al. (2015) found that AM association
improved plant growth through increased root biomass, root to shoot ratio, and the

concentrations of Zn in shoots and P in roots in Medicago truncatula undergoing night
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warming. Under increased CO, concentration in the atmosphere, AMF favoured the allocation
of carbon and nitrogen in roots of Triticum aestivum, leading to greater nitrogen use efficiency
(Zhu et al., 2016b). However, there are conflicting results concerning the interaction between
AMF and elevated CO, in the air on biomass production and allocation and uptake of nutrients
within the family of legumes. While no significant interactions were found in pea (Gavito et al.,
2000) and clover (Staddon et al., 1999), alfalfa plants associated with AMF and grown under
elevated CO, enhanced root biomass and slightly increased the leaves to stems ratio in
comparison with non-mycorrhizal plants just before flowering (Baslam et al., 2012a).
Moreover, AMF increased the accumulation of sugars and proteins in leaves of Medicago
sativa, which accelerated the photosynthetic acclimation under elevated CO, (Goicoechea et

al., 2014).

The interaction of different factors related to the projected climate change can modify
the effect of AMF on host plant physiology and sometimes benefits provided by the
mycorrhizal symbiosis can diminish or even disappear. This is the case, for example, of winter
wheat: elevated CO, in the atmosphere impaired the previously mentioned benefits exerted by
mycorrhizal association to host plants undergoing water restriction (Garmendia et al., 2017). In
contrast with these results, AMF improved growth, stomatal conductance, nitrogen use
efficiency, and ion homeostasis of T. aestivum simultaneously subjected to elevated CO, and

salinity (Zhu et al., 2016a).

4.3. Nutritional quality of crops and fruits of plants associated with AMF and

undergoing changing environments

The application of mycorrhizal inocula has emerged as a reliable technique to enhance the
agricultural productivity and nutritional value of edible vegetables whereas reducing
environmental costs (Berruti et al., 2016; Goicoechea and Antolin, 2017). This is the case of
strawberry fruits, whose levels of phenolic compounds and minerals increased when plants
were inoculated with the arbuscular mycorrhizal fungus Glomus intraradices. Some colour
parameters of strawberry fruits were also affected by AMF (Castellanos-Morales et al., 2010).
Similarly, Hart et al. (2015) found that mycorrhizal inoculation enhanced the concentrations of
several minerals (N, P, Cu), carotenoids, and some flavour compounds, as well as the
antioxidant capacity in tomato fruits. This beneficial effect of AMF on the quality of tomatoes
was corroborated by Bona et al. (2017) in a field study performed in a real industrial tomato
farm. In another study carried out under nature conditions, Zeng et al. (2014) found that

Glomus versiforme improved the quality of citrus fruits by increasing the ratio of sugar to acid,
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and the amounts of vitamin C, flavonoids and minerals. Another woody plant beneficed by
mycorrhization in field is Libidibia ferrea, a tree with medicinal properties whose bark
accumulated higher amount of flavonoids and tannins when associated with AMF (dos Santos
et al., 2017). Mycorrhizal fungi also improved the antioxidant potential of leaves from sweet
basil, an aromatic plant widely used for medicinal and cooking purposes (Hristozkova et al.,
2017). In lettuce, mycorrhizal symbiosis induced the accumulation of carotenoids, total soluble
phenolics, anthocyanins, chlorophylls, tocopherol and some mineral nutrients in leaves
(Baslam et al., 2011, 2013a), which makes the application of AMF a feasible tool for improving
the nutritional quality of this horticultural crop. This improvement of the quality in lettuces
associated with AMF was significant enough to allow extending cultivation of this crop to
seasons in which non-mycorrhizal lettuces suffer relevant decreases in their levels of proteins,

carotenoids and flavonoids (Baslam et al., 2013b).

However, since the different factors involved in the projected climate change can
modify the effects of AMF on the metabolism and physiology of their host plants, they can also
change the nutritional properties of crops associated with AMF. In fact, drought, salinity,
global warming and rising CO, in the atmosphere constitute a threat to sustainable agriculture
and global food security. In studies focused on the role of mycorrhizal symbiosis when plants
are undergoing salt stress, some authors have found that AMF increase the plant salt-
tolerance and improve fruit yield and quality. This is the case of cucumber cultivated under
saline conditions: fruits produced by mycorrhizal plants had higher amounts of soluble
proteins, sugars and vitamin C and lower levels of nitrate than those from non-mycorrhizal
plants (Han et al., 2012). Likewise, Huang et al. (2013) measured higher contents of N, P, K and
Ca in tomato fruits of hybrid cultivars associated with AMF than in those of non-inoculated
ones. Beneficial effects of mycorrhizal symbiosis on yield and fruit quality of crops under salty
conditions, however, can vary depending on plant cultivars and fungal strains, as
demonstrated by results of Huang et al. (2013) in tomato and those obtained by Sinclair et al.
(2014) working with strawberry. Water deficit is one of the most important factors affecting
crop survival, growth, and productivity. Most times the beneficial effect of AMF on the host
plant development is more evident when water supply is restricted than under plentiful water
availability. For example, the beneficial effect of AMF on the growth and quality of chile ancho
pepper fruits was especially clear when plants were undergoing drought conditions: fruits of
mycorrhizal plants subjected to water deficit showed similar colour intensity and chlorophyll
content and higher amount of carotenoids than those of non-mycorrhizal plants cultivated at

optimal irrigation regime (Mena-Violante et al., 2006). In lettuce, while a moderate water
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deficit prolonged in time reinforced the capacity of AMF for increasing the levels of antioxidant
compounds in leaves (Baslam and Goicoechea, 2012), elevated CO, in the atmosphere
impaired this beneficial effect probably due to the use of photoassimilates for enhancing
growth of the host plant and spreading mycorrhizal colonization in detriment to the secondary
metabolism (Baslam et al., 2012b). Similarly, Goicoechea et al. (2016) observed a general
depletion of contents of micro- and macro-nutrients and gliadins in grains of durum wheat
cultivated under elevated CO, in the air, regardless of mycorrhizal inoculation and water
regime applied to plants, what contrasted with the higher accumulation of copper, iron,
manganese, zinc and gliadins —wheat-seed storage proteins responsible together with
glutenins for dough elasticity and extensibility that determine processing qualities in the
production of end products- in grains of durum wheat inoculated with AMF and grown under
water deficit at ambient CO,. Notwithstanding the above, elevated CO, not always nullify the
beneficial effect of mycorrhizal colonization on crop quality. For example, in alfalfa, the
combination of AMF and elevated atmospheric CO, improved forage quality by increasing the
amount of hemicellulose and decreasing that of lignin in leaves (Baslam et al.,, 2014).
Moreover, the positive effect of the synergism between AMF and elevated atmospheric CO,
may be reinforced by the simultaneous application of some cultural practices, such as the
supply of humic substances to the soil. In this sense, Bettoni et al. (2014) concluded that the
triple interaction between humic substances application, mycorrhizal inoculation and elevated
CO, enhanced the accumulation of soluble sugars, proteins and proline in leaves of onion
seedlings in a greater extent than the application of those factors separately, which increased
the quality of onion shoots as source organs for posterior growth and quality of bulbs. These
same authors found that the application of humic substances, AMF inoculum and elevated CO,
in the air had an additive effect of increasing the content of soluble sugars, proteins, and
phenolics in onion bulbs, thus reinforcing their energetic and antioxidant properties. This triple
interaction also enhanced the ratio between soluble solids and total titratable acidity, which
may favour the perception of sweetness and make onion more pleasant for consumption

(Bettoni et al., 2017).

5. Arbuscular mycorrhizal fungi in viticulture

The ability for V. vinifera to tolerate unsuitable environmental conditions for most crops will
partially be dependent on the functioning on its soil community (Holland et al., 2014). In
viticulture, the concept of “terroir” relates the sensory attributes of wines to the

environmental conditions of the grapes, and it therefore represents an important descriptor of
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the connection between wines and their origins (Likar et al., 2015). For these reasons,
considerable progress has been made in the last decade towards the use of soil
microorganisms associations, such as AMF, to improve grapevine growth and yield (Table 4,

page 51).

Mycorrhizal symbiosis has been associated with improved growth, increased tolerance
against biotic and abiotic stresses and/or enhanced mineral uptake from soils (Trouvelot et al.,
2015). Some studies evidenced that AMF colonization of grapevines improved the water
status, induced an improvement in the photosynthetic performance that increased the WUE,
promoted the uptake of P, potassium (K) and calcium (Ca) and led to a mobilization of starch
reserves in the apex in winter, which was possibly responsible for enhancing root development
(Table 4, page 51). Hence, Nicolas et al. (2015) concluded that AMF inoculation technique can

be recommended for sustainable viticulture in arid and semi-arid areas.

Grapevine association with AMF also stimulates the synthesis of plant secondary
metabolites (i.e., resveratrol, flavonols and anthocyanins), which are important for increased
plant tolerance to environmental stresses and beneficial to berry quality (Table 4, page 52). In
a recent study, Torres et al. (2016) have reported that inoculation of grapevines with AMF
might play a relevant role in a future climate-change scenario to maintain or even improve
berry quality by enhancing antioxidant properties. Other studies indicated that the positive
effects due to AMF colonization of grapevines are mediated by the up-regulation of some
genes (Table 4, page 53). Thus, Balestrini et al. (2017) showed that the expression of genes
belonging to categories such as nutrient transport, transcription factors, and cell wall-related
genes was significantly altered by AMF colonization. Moreover, the presence of AMF in roots
of three grapevine varieties stimulated the transcription of phenylalanine ammonia-lyase,
stilbene synthase, and a resveratrol O-methyltransferase, three genes involved in the
phenylpropanoid pathway, as response to aerial pathogens Plasmopara viticola and Botrytis

cinerea (Bruisson et al., 2016).

In addition to the induction of plant defences, many times through the activation of
pathways belonging to the antioxidant and secondary metabolism, Thirkell et al. (2017)
suggested that one of the strongest benefits of mycorrhizal symbiosis for crop plants is related
to the improved soil properties mediated by AMF. It is known that fungal hyphae increase the
mineralisation of soil organic matter (SOM) (Paterson et al.,, 2016). Moreover, mycorrhizal
fungi can enhance the fixation of atmospheric CO, by their host plants, and then induce the

transport of photoassimilates from the aerial part to the roots by exerting a sink effect. A
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portion of the carbon present in the fungal biomass will remain in the soil as a part of the SOM
after the AMF senescence (Treseder, 2016). These benefits exerted by AMF will become
especially relevant in the context of the projected loss of soil organic carbon caused by the
global warming, which in last instance will decrease agricultural productivity (Wiesmeier et al.,
2016). Erosion and low organic matter stocks are common problems affecting soils of
vineyards in Mediterranean areas as a consequence of the concurrence of environmental
factors and some management practices such as the abovementioned continuous tillage

(Garcia-Diaz et al., 2018).

6. Concluding remarks

This review summarizes the current knowledge about the role of AMF on grapevine
physiology, metabolism and hormonal status under changing environment. In the last decades,
a growing concern about the potential consequences of climate change on viticulture and the
detrimental impact on grape and wine quality has addressed several researches. Nevertheless,
few studies have highlighted the role of AMF symbiosis in this scenario, in spite of the know
benefits that mycorrhizas provide to host plants. The general utilization of fertilizers and/or
phytohormones may damage or unbalance soil ecosystem of viticultural areas, so that its
application need to be reduced. Thus, AMF has been presented as natural biofertilizers that
can be the alternative to chemical fertilization without the concomitant loss of crop yield and
quality (Berruti et al., 2016) and there is evidence that co-adaptation of the partners to a new
environment may maximize benefits and minimize costs of the symbiosis (Johnson et al. 2013).
On the other hand, exogenous phytohormone application (especially, ABA) to the vine has
been used as a tool to improve the quality of the grapes (Balint and Reynolds, 2013b; Alonso et
al., 2016b). Taking into account that under abiotic stress ABA concentration was enhanced by
AMF (Wang et al., 2017), the symbiotic association can offer an alternative to phytohormone
supply to improve grape quality. However, there is a need for more studies that deepen into
the influence of AMF in the levels of the ABA when grapevines undergo challenging
environments. In conclusion, the management of natural biotic interactions, such as AMF
symbiosis, as well as the processes to retain carbon in the soil longer may be the key to
maintain the resilience of viticulture to climate change. However, the fact that the responses
of grapevines to the inoculation with AMF and/or to the environmental conditions may vary
according to the plant variety or clone (Torres et al., 2015, 2016, 2018) indicates that it may be
profitable to identify the AMF inoculants most suitable for a given cultivar in a given

environment.
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7. Future perspectives

Winegrowers are aware of reconsidering their viticultural practices in order to better manage
climate-related risks and produce quality wines (Neethling et al., 2017). Given the global
warming impact on berry quality traits, it is useful to reconsider the potential application of
some new or traditional management techniques able to regulate sugar accumulation and/or
to delay or balance berry ripening (Palliotti et al., 2014). Most wine-producing regions are
subjected to seasonal drought but, based on the global climate models an increase in aridity is
predicted in the future. Hence, an optimized irrigation schedule would still be one of the most
desirable tools to improve WUE and crop productivity (Costa et al., 2016). Under low rainfall
conditions, warm temperatures and high light intensity, spontaneous vegetation used as
groundcover appears as an effective strategy to revert soil degradation in Mediterranean
vineyards (Garcia-Diaz et al., 2018) at the same time that it may benefit taste or quality of
wines (Trigo-Cdrdoba et al., 2015). Although the impact of water deficit on berry ripening and
quality has been extensively investigated during the last decades, the suitability of actual
irrigation programs should be reviewed in the future climate conditions. Consequently, several
researches have begun to address the combined effects of elevated temperature, UV-B
radiation or high CO, with water deficit on grapevine quality (Bonada et al., 2015; Kizildeniz et
al., 2015; Martinez-Liischer et al., 2015a; Torres et al., 2016; Zarrouk et al., 2016). However,
more research is needed to elucidate the potential effects of AMF symbiosis on the ability of
grapevines to cope with water deficit in interaction with other environmental factors as well as
to identify the mycorrhizal inoculants most appropriate for a given variety, cultivar or clone
cultivated under a real and specific environmental scenario. In addition, the long-term site
history and the previous management practices employed must be considered before
introducing the AMF inocula in order to obtain benefits and ensure future food security

(Thirkell et al., 2017).

The asexual propagation of the grapevine varieties allows the appearance and accumulation of
somatic mutations, which are the basis for the clonal selection, which leads to differences in
vigour, berry and cluster weight, yield production, resistance to plagues and diseases or
oenological potential (Fernandes et al., 2015). One of the adaptive agronomic strategies to use
in modern viticulture under the on-going climate change conditions is the selection of the best
adapted rootstock and clones. Thus, the clonal selection could be oriented toward late-
ripening clones to avoid alterations caused by high temperatures on fruit quality (van Leeuwen

and Darriet, 2016), or to obtain clones with better balance between yield, acidity and alcoholic
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degree (Gongalves et al., 2016) and WUE characteristics (Tortosa et al., 2016). Recent findings
provide evidence for this clonal diversity, which resulted in different abilities to respond to
AMF inoculation (Torres et al., 2016). Therefore, the use of AMF for improving the fruit quality

of grapevines needs to be included in an integrated management program of clonal selection.

Sustainable winemaking process, consisting of maximizing resources while decreasing
emissions generated by the production process, is imperatively required. Mutualistic
relationships between grapevines and AMF are being thought as a new tool to enhance
agricultural productivity and nutritional quality of food crops whereas reducing environmental
costs (Berruti et al., 2016; Goicoechea and Antolin, 2017). Indeed, AMF symbiosis involves a
continuous cellular and molecular dialogue between AMF and host plant that stimulated the
production of secondary compounds, which may be ascribed to the activation of host defence
reactions and the accumulation of antioxidants (Rouphael et al., 2015; Goicoechea and
Antolin, 2017). The viticulture industry generates large amounts of waste material because of
extensive winter and summer pruning practices. Recent investigations confirmed the phenolic
richness of pruning wastes such as grape pomace (Beres et al., 2017) and vegetative tissues
(leaves and stems) (Eftekhari et al., 2017), which have been pointed out as a promising source
of compounds with nutritional and nutraceutical properties and biological potential. Recent
studies have reported that AMF colonization also can improve phenolic content and
antioxidant power of grapevine leaves (Eftekhari et al., 2012a; Torres et al., 2015). Therefore,
the use of AMF for improving composition and reutilizing the grape wastes from pruning and
other viticultural activities as a potentially natural source of phenolic compounds will be a

promising field for pharmacological, cosmetic and food industries.
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Figure 1. Berry hormonal content during its development and ripening (adapted from Conde
et al. (2007) with the addition of the last findings). Phase I: early fruit development; Phase II:
lag phase; Phase lll: berry ripening. Hormonal content variations are indicated by arbitrary
thicknesses volumes. ABA: abscisic acid; ABA-GE: abscisic acid glucosylester; 7-OH-ABA: 7-
hydroxy abscisic acid; BRs: brassinosteroids; CKs: cytokinins; DPA: dihydrophaseic acid; GBs:
gibberellins; IAA: indol-3-acetic acid; JA: jasmonic acid; PAs: polyamines; PA: phaseic acid; SA:
salicylic acid. The main compounds that are accumulated in the fruit are showed at the

bottom.
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Objetivos

The general objective of this PhD thesis was to assess the intra-varietal diversity of grapevine
cv. Tempranillo to respond to different climate change scenarios (elevated air temperature
and deficit irrigation) and to analyze if the potential benefits of mycorrhizal symbiosis on plant

metabolism could be maintained under the predicted environmental conditions.
The general objective was divided into the following objectives:

- Objective 1. Evaluate the impact of pre- and post-veraison deficit irrigation under
elevated temperatures on berry metabolism of two Tempranillo clones.

- Objective 2. Evaluate the response of three Tempranillo clones to elevated
temperature and to determine whether mycorrhizal inoculation can improve berry
antioxidant properties under these conditions.

- Objective 3. Characterize the response of three clones of Tempranillo to the
combination of different water deficit programs (pre- and post-veraison deficit
irrigation) and mycorrhizal inoculation under elevated temperatures on fruit quality
and antioxidant capacity.

- Objective 4. Determine if the ability of arbuscular mycorrhizal fungi for inducing the
accumulation of anthocyanins in grapes under a climate change framework could be
mediated by alterations in the metabolism of ABA during berry ripening.

- Objective 5. Evaluate the effect of mycorrhizal inoculation and elevated temperature
on phenolic composition and antioxidant activity of leaf extracts of Tempranillo and to
determine whether such effects differed among clones within this variety.

- Objective 6. Analyze the effects of mycorrhizal association and elevated temperature
on the levels of some primary and secondary metabolites as well as on the
concentrations of minerals in leaves of Tempranillo grapevines in order to assess the
potential application of these vegetative wastes in the human diet or for

pharmacological and biomedical purposes.

The abovementioned goals have been developed in the following chapters:

- Chapter 1. Flavonoid and amino acid profiling on Vitis vinifera L. cv. Tempranillo
subjected to deficit irrigation under elevated temperatures. Published in Journal of
Food Composition and Analysis (2017) 62: 51-62 (This chapter addresses objective 1).

- Chapter 2. Berry quality and antioxidant properties in Vitis vinifera cv. Tempranillo as
affected by clonal variability, mycorrhizal inoculation and temperature. Published in

Crop & Pasture Science (2016) 67: 961-977 (This chapter addresses objective 2).
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Chapter 3. Influence of irrigation strategy and mycorrhizal inoculation on fruit quality
in different clones of Tempranillo grown under elevated temperatures. Published in
Agricultural Water Management (2018) 202:285-298 (This chapter addresses objective
3).

Chapter 4. Mycorrhizal symbiosis affects ABA metabolism during berry ripening in Vitis
vinifera L. cv. Tempranillo grown under climate change scenarios. Published in Plant
Science (doi: 10.1016/j.plantsci.2018.06.009; this chapter addresses objective 4).
Chapter 5. Antioxidant properties of leaves from different accessions of grapevine
(Vitis vinifera L.) cv. Tempranillo after applying biotic and/or environmental modulator
factors. Published in Industrial Crops and Products (2015) 76: 77-85 (This chapter
addresses objective 5).

Chapter 6. Nutritional properties of Tempranillo grapevine leaves are affected by
clonal diversity, mycorrhizal symbiosis and air temperature regime. Submitted to Plant
Physiology and Biochemistry (under revision; this chapter addresses objective 6).
Chapter 7. Potential biomedical reuse of vegetative residuals from mycorrhized
grapevines subjected to warming. Submitted to Archives of Agronomy and Soil Science

(under revision; this chapter addresses objective 6).
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Flavonoid and amino acid profiling on Vitis vinifera L. cv Tempranillo
subjected to deficit irrigation under elevated temperatures.

(Journal of Food Composition and Analysis 62 (2017) 51-62.)






Capitulo 1

Flavonoid and amino acid profiling on Vitis vinifera L. cv Tempranillo

subjected to deficit irrigation under elevated temperatures

NAZARETH TORRES®, GHISLAINE HILBERT?, JOSU LUQUIN®, NIEVES

GOICOECHEA® and M. CARMEN ANTOLIN**

'Universidad de Navarra, Facultades de Ciencias y Farmacia y Nutricidon, Grupo de Fisiologia del
Estrés en Plantas (Departamento de Biologia Ambiental), Unidad Asociada al CSIC (EEAD,
Zaragoza, ICVV, Logrofio), ¢/ Irunlarrea 1, 31008, Pamplona, Spain

EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, Villenave d’Ornon, France

* Corresponding author:
M. Carmen Antolin

Tel.: (34) 948425600
Fax: (34) 948425649

E-mail address: cantolin@unav.es

61


mailto:cantolin@unav.es

Capitulo 1

Abstract
Throughout the southern Mediterranean regions of Europe, projected climate warming
combined with severe droughts during the growing season may alter grape metabolism, thus
modifying the nutritional value of berries and the quality of wines. This study investigated the
effects of pre- and post-veraison drought under elevated temperatures on berry skin
metabolism of two Tempranillo clones (CL).

Experimental assays were performed on fruit-bearing cuttings from CL-1089 and CL-
843 of Vitis vinifera (L.) cv. Tempranillo subjected to two temperature regimes (24/14°C or
28/18°C (day/night)) combined with three irrigation regimes during berry ripening: (i) water
deficit from fruit set to veraison (early deficit, ED); (ii) water deficit from veraison to maturity
(late deficit, LD); and (iii) full irrigation (FI). At 24/14°C, the LD treatment performed better
than the ED treatment. Differences were attenuated at 28/18°C and responses were
modulated by type of clone. Elevated temperatures induced the accumulation of hexoses and
amino acids in berries. ED at 24/14°C reduced anthocyanins and flavonols, which may decrease
the antioxidant properties of fruits. In contrast, the levels of these secondary metabolites did
not decrease when LD was applied. Our results suggest that the adaptation of grapevines for
climate change might be plausible with the optimization of timing of water deficit and the

appropriate selection of clones.

Keywords: Amino acids; Anthocyanins; Berry skin metabolites; Climate change; Flavonols; Food

analysis; Food composition; Grapevines; Requlated deficit irrigation
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1. Introduction

Grapes are one of the most important crops in Europe. According to the official dataset of the
Statistics Division of Eurostat, in 2014 Europe produced 22.6 million tons, with Spain being one
of the greatest producers (29.6% of European production) (Eurostat Statistics Division, 2014).
The most distinctive characteristic of the South Mediterranean European climate is the
concentration of rainfall in the winter half-year but future climate projections for the this
region predict seasonal temperatures with higher rates of warming in summer and autumn
(IPCC, 2014; Spinoni et al., 2015).

Abiotic stresses such as drought and high temperatures reduce grapevine yield due to
their great impact on berry growth and ripening (Kuhn et al., 2014). Berry skin (exocarp) is the
site for the synthesis of major compounds and defines grape berry quality, which mainly
depends on sugars, organic acids, amino acids, phenolic compounds and aroma precursors
(Castellarin et al., 2012; Darriet et al., 2012). This very active skin metabolism deeply influences
the final characteristics of the berry and thus the understanding of metabolic responses to
environmental constraints has both scientific and practical importance. The projected warming
trends due to global climate change specially affect grapevine physiology. Harvest occurs
sooner (Sadras and Petrie, 2011), berry sugar content (and alcohol in the wine) tends to
increase (Petrie and Sadras, 2008) and phenolic and aromatic ripeness are delayed (Teixeira et
al., 2013), which results in an imbalance between berry sugar accumulation and phenolic
ripening (Sadras and Moran, 2012). Regarding drought, some studies have reported that
application of regulated deficit irrigation during berry ripening has a significant impact on berry
metabolism, which influences flavor and the quality characteristics of grapes and wines (Deluc
et al., 2009). Indeed, water deficit improved accumulation of phenolic compounds, especially
anthocyanins (Niculcea et al., 2014, 2015; Kyraleou et al., 2016) due to direct effects on
flavonoid gene expression and metabolism (Castellarin et al., 2007). Thus, water deficit
irrigation could enhance the nutraceutical value of berries since water restriction can induce
the accumulation of anthocyanins (Kyraleou et al., 2016). Anthocyanins are the most
important group of water-soluble pigments in plants, and they are regarded as important
components in human nutrition due to their antioxidant capacities (Stintzing and Carle, 2004)
and anti-carcinogenic effects against several types of cancer cells (You et al., 2011). However,
expected benefits of water deficit may not be achieved under projected future warming
conditions (Bonada et al., 2015).

The adaptation of grapevines grown in south Mediterranean Europe to a climate change

scenario might require a selection of new grapevines varieties. Many studies have reported a
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broad clonal diversity in grapevine varieties for precocity of the phenological cycle, yield, berry
composition, skin phenolic compounds and disease resistance (Revilla et al., 2009; van
Leeuwen et al., 2013), and for response to environmental changes (Berdeja et al., 2015; Torres
et al., 2016). Therefore, the aim of this study was to investigate the impact of pre- and post-
veraison deficit irrigation under elevated temperatures on berry metabolism of two

Tempranillo clones.

2. Material and Methods

2.1. Plant material and growth conditions

Dormant 400-500 mm long Vitis vinifera (L.) cuttings from two clones of Tempranillo were
collected during the winter of 2014 from an experimental vineyard of the Institute of Sciences
of Vine and Wine (Logrofio, Spain) (Denomination of Origin Rioja, North of Spain) (latitude:
42°28'12”N; longitude: 2°26’44”’W, altitude: 384 mamsl). A brief description of the selected
clones is presented in Table 1. Cuttings from each clone were selected to obtain fruit-bearing
cuttings according to the steps originally outlined by Mullins (1966) with some modifications
described in Ollat et al. (1998) and Morales et al. (2016). Briefly, cuttings were rooted in a
heat-bed (27°C) and then kept in a cool room (4°C). One month later, the cuttings were
planted in 6.5 L plastic pots containing a mixture of vermiculite-sand-light peat (2.5:2.5:1,
v:v:v) and transferred to greenhouses, which were adapted to simulate climate change
conditions (more details in Morales et al., 2014). Experiments were made with potted vines to
ensure that both clones were subjected to the same temperature conditions and similar water
stress patterns. Previous research has demonstrated that fruit-bearing cuttings are a
meaningful and useful model system to study the response of berry ripening to environmental
factors (Morales et al., 2016). Initial growth conditions were a 25/15°C and 50/90% relative
humidity (day/night) regime and natural daylight (photosynthetic photon flux density, PPFD,
was on average 850 pmol m™ s™' at midday) supplemented with high-pressure sodium lamps
(SON-T Agro Phillips, Eindhoven, Netherlands) to extend the photoperiod up to 15 h and
ensure a minimum PPFD of 350 umol m~2 s™! at the level of the inflorescence. Until fruit set,
plants were watered twice per day with the nutrient solution reported by Ollat et al. (1998)

alternated with water to maintain the soil water content at 80% of pot capacity.
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2.2. Experimental design

We established a two-factorial experiment where two temperature regimes were combined
with three water regimes. At fruit set (Eichhorn and Lorenz (E-L) growth stage 27) (Coombe,
1995) fruit-bearing cuttings (36 plants per clone) were divided into two groups that were
exposed to different temperature regimes: 24/14°C (day/night) and 28/18°C (day/night). At
this stage, plants have 4-5 fully expanded leaves. The 24/14°C temperature regime was
selected according average temperatures recorded in La Rioja (1981-2010) (AEMET, Spain)
during the growing season. The 28/18°C temperature regime was selected according to
predictions of a rise of 4.0°C at the end of the present century (IPCC, 2014). Both temperature
regimes were maintained until berries ripened (21-23°Brix) (E-L 38 stage).

Within each temperature regime, plants were divided into three groups that were
subjected to different irrigation programs. Two deficit irrigation strategies were compared
with full irrigation (F1). In the Fl treatment, pots were maintained at 80% of pot capacity from
fruit set to harvest. In the deficit irrigation treatments, plants received 50% of the water given
to Fl plants from fruit set (E-L 27 stage) to onset of veraison (E-L 35 stage) (early deficit, ED) or
from onset of veraison (E-L 35 stage) to maturity (E-L 38 stage) (late deficit, LD). Volumetric soil
water content was monitored with an EC 5 water sensor (Decagon Devices, Inc., Pullman, WA,
USA) placed within each pot. There were three replicates for each treatment.

Non-destructive determinations were made at four stages of berry development: 1) when
berries began to soften (E-L 34 stage, green berries); 2) when berries began to colour and
enlarge (E-L 35 stage, veraison); 3) seven days after veraison (E-L 36 stage); and 4) fourteen
days after veraison (E-L 37 stage). At fruit maturity (E-L 38 stage), plants were harvested
separately based on sugar level (21-23°Brix) from berry subsamples (2-3 berries) taken weekly.
Length of phenological phases was recorded as the number of days from fruit set (E-L 27 stage)

to veraison (E-L 35 stage), and from veraison (E-L 35 stage) to maturity (E-L38 stage).

2.3. Plant measurements
Predawn leaf water potential (‘\,4) was measured with a SKYE SKPM 1400 pressure chamber

(Skye Instruments Ltd, Llandrindod, Wales, UK) on three fully expanded leaves per treatment

at each sampling date just prior to irrigation.
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The evolution of epidermal levels of flavonols and anthocyanins was estimated in situ by
using a handheld, non-destructive fluorescence-based proximal Multiplex3™ sensor (Force-A,
Orsay, France) as described by Agati et al. (2013). At maturity, ten berries from each treatment
were collected and weighed. Mean fresh berry mass was determined and then, berries were
separated into skin and flesh (including seeds). Subsequently, each berry fraction was oven-
dried at 80°C until constant mass was reached. Berry water content was calculated as
100*(FM-DM)/ FM, where FM is fresh mass and DM is dry mass. The relative skin mass was

calculated as the quotient between skin FM and total berry FM expressed as a percentage. The

rest of the berries were counted, weighed and frozen at -80°C for further analysis.

2.4. Sugars, organic acids and amino acids profiles in berry skins

Samples of 5-10 berries per plant were separated into skin and flesh. Skins were powdered
separately in an MM200 ball grinder (Retsch, Haan, Germany) and then, they were freeze
dried in a Vir Tis Bench Top K lyophilizer (SP Scientific, Warminster, Philadelphia, PA, USA).
Skins from each plant were used to analyse primary and secondary metabolites. Primary
metabolites were extracted according to Bobeica et al. (2015) with minor modification.
Subsamples of 50 mg fine powder of skins were extracted with 80% ethanol (v/v) at 80°C for
15 min followed by two extractions with 50% ethanol (v/v) and ultrapure water, respectively,
dried in Speed-Vac, and re-dissolved in ultrapure water. The resultant extracts were used for
determinations of sugars, organic acids and amino acids.

Sugars were measured enzymatically with an automated micro-plate reader (EIx800UV,
Biotek Instruments Inc., Winooski, VT, USA) using the Glucose/Fructose kit from BioSenTec
(Toulouse, France). Malic acid was determined using an enzyme-coupled spectrophotometric
method that measures the change in absorbance at 340 nm from the reduction of NAD" to
NADH. Tartaric acid was assessed by using the colorimetric method based on ammonium
vanadate reactions (Pereira et al., 2006). Both compounds were quantified with a Bran and
Luebbe TRAACS 800 autoanalyzer (Bran & Luebbe, Plaisir, France).

After derivation with 6-aminoquinolyl-N-hydroxy-succinimidyl-carbamate (AccQ-Tag
derivatization reagent, Waters, Milford, MA, USA) according to Hilbert et al. (2003), free amino
acids were measured according to Habran et al. (2016). Briefly, amino acids were analysed
using an UltiMate 3000 UHPLC system (Thermo Electron SAS, Waltham, MA USA) equipped
with an FLD-3000 Fluorescence Detector (Thermo Electron SAS, Waltham, MA USA).

Separation was performed on a AccQeTag Ultra column, 2.1 x 100 mm, 1.7 um (Waters,
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Milford, MA, USA) at 37°C with elution at 0.5 ml min™ (eluent A, sodium acetate buffer,
140mM at pH 5.7 ; eluent B, acetonitrile ; eluent C, water) according to the gradient described
by Habran et al. (2016). Chromatograms corresponding to excitation at 250 nm and emission
at 395 nm were recorded (Figure S1). To maintain consistent retention time and a stable
baseline, a control was performed before each run of 18 samples. Chromeleon software,
version 7.1 (Thermo Electron SAS, Waltham, MA USA) was used to calculate peak area. A
standard of 20 amino acids (Alanine, Arginine, Aspartic acid, Asparagine, Cysteine, GABA,
Glycine, Glutamic acid, Glutamine, Histidine, Isoleucine, Leucine, Lysine, Methionine,
Phenylalanine, Proline, Serine, Threonine, Tyrosine, Valine) purchased from Sigma (St Louis,
Missouri, USA) was used after the control and in the middle of each run to calibrate amino acid
quantification. Seventeen amino acids were identified and quantified in skin extracts as

described by Pereira et al. (2006). Results were expressed in umol g™ dry matter (DM) of skin.

2.5. Anthocyanin and flavonol profiles in berry skins

Another subsample of powdered berry skins was used in order to analyse individual
anthocyanins and flavonols. Samples were extracted according to Acevedo de la Cruz et al.
(2012) then analysed as described in Martinez-Liischer et al. (2014) with some modifications.
Extracts were analysed using an UltiMate 3000 UHPLC system (Thermo Electron SAS, Waltham,
MA USA) equipped with DAD-3000 diode array detector operating at 520 nm and at 360 nm
(Thermo Electron SAS, Waltham, MA USA). Separation was performed on a Syncronis C18, 2.1
x 100 mm, 1.7 um Column (Thermo Fisher Scientific, Waltham, MA USA) at 25°C with elution at
0.368 ml min™ according to the following gradient (v/v): 0 min 92.2% A 7.8% B, 9.6 min 73% A
27% B, 14.1 min 70 % A 30% B, 14.8 min 92.2% A 7.8% B (eluent A, water and formic acid,
90/10 v/v; eluent B, acetonitrile). Identification and peak assignment of phenolic compounds
were based on comparison of their retention times and UV-vis spectrometric data with that of
pure standards. Formal identification of flavonoids was performed by liquid chromatography
coupled to mass spectrometry and nuclear magnetic resonance spectrometry as in previous
studies (Acevedo de la Cruz et al., 2012; Hilbert et al., 2015). Chromeleon software, version 7.1
(Thermo Electron SAS, Waltham, MA USA) was used to calculate peak area. The concentration
of individual flavonoids was calculated in milligrams per gram (mg g™) of dry skin weight (DM)
using malvidin-3-O-glucoside was used as external standard for all the quantified anthocyanins
(at 520 nm), and quercetin-3-0-glucoside was used for all the quantified flavonols (at 360 nm)
(Extrasynthese, Genay, France). A chromatographic profile of anthocyanins is shown in Figure

S2.
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2.6. Statistical analysis

Statistical analyses were carried out using the Statistical Package for the Social Sciences (SPSS)
(SPSS Inc., Chicago, IL, USA) version 21.0 for Windows. Data were subjected to Kolmogorov-
Smirnov normality tests due to the small sample size (3 plants per treatment). Data appeared
to follow a normal distribution; therefore an analysis of variance (ANOVA) was conducted
within each clone. Percentage data were transformed into arcsine root square before ANOVA.
The test was performed to assess the main effect of the factors temperature (T) (24/14°C, 24
and 28/18°C, 28) and irrigation program (l) (FI, ED and LD) and the interaction between them
(TxI). Means * standard errors (SE) were calculated and when the F ratio was significant (P <
0.05), a Duncan test was applied. A two-way ANOVA was performed to determine significant
differences in all parameters measured. Berry characteristics and the main primary and
secondary metabolites were analysed by principal component analysis (PCA) with the same

software.

3. Results and discussion

3.1. Phenology and physiological characteristics during berry ripening

Clones of grapevine cv. Tempranillo tested in this study show significant diversity for some
agronomic traits such as length of cycle, yield, bunch mass and berry mass (Table 1). With
regard to phenology, vineyard-grown plants of CL-1089 were characterized by a shorter
reproductive cycle than CL-843. Temperature was the main factor influencing time from fruit
set to veraison which was shortened by increasing temperature to 28/18°C (Table 2) as has
been shown other studies (Petrie and Sadras, 2008; Hall et al., 2016). Moreover, interaction
between ED irrigation and 24/14°C lengthened time from veraison to maturity.

Some studies have reported that the application of deficit irrigation to grapevines caused
different effects on berry ripening due to differences in the timing of water stress, its severity
and duration, and cultivar (Intrigliolo and Castel, 2010; Niculcea et al., 2014). The present
study has attempted to eliminate such variations by subjecting two clones of Tempranillo to a
similar water stress level at either pre- or post-veraison, for comparison (Figure 1). Results
showed that temperature and irrigation treatments caused significant differences in grapevine
water status throughout fruit ripening, as indicated by the decrease in predawn ¥4 measured

in plants subjected to ED or LD compared with Fl plants (Figure 2).
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The FERARI and FLAV indices measured with the Multiplex3™ sensor are good indicators
of anthocyanin and flavonol contents of tissues (Agati et al., 2013). Both types of compounds
belong to flavonoids, the most widely studied group of polyphenols. From the nutritional point
of view, polyphenol rich diets provide important protection against the development and
progression of many chronic pathological conditions, such as cancer, diabetes, cardio-vascular
problems and aging in part due to their antioxidant activity (Pandey and Rizvi, 2009).
Anthocyanins are the main agents responsible for the color of red grapes and the wines
produced from them. Our data revealed that irrigation was the main factor modulating the
FERARI index in CL-1089, but in CL-843 both temperature and irrigation significantly accounted
for diminished anthocyanin content (Figure 1). Flavonols serve as UV-protecting agents but
also, contribute to both bitterness and to wine colour as copigments with anthocyanins
(Castellarin et al., 2012; Hilbert et al., 2015). During berry ripening, temperature and irrigation
modulated the FLAV index in both clones, resulting in significant interaction between both
factors for most stages. At the E-L 37 stage the combination of LD and elevated temperature
(28LD) significantly improved the FLAV index, especially in CL-1089, which may have
counteracted the expected loss of antioxidant capacity associated with the decreased level of

anthocyanins in berries from the 28LD treatment.

3.2. Berry characteristics and berry skin primary and secondary metabolites at maturity

Irrigation was the main factor modifying berry traits in both clones, resulting in small berries
with high relative skin mass in the treatment ED (Table 2). In CL-843, increasing temperature to
28/18°C also contributed to decreased relative skin mass and berry water content.

In CL-1089, temperature was the main factor modulating primary metabolites such as
sugars and organic acids. In fact, warm temperatures resulted in increased concentrations of
glucose and fructose, and reduced tartaric acid (Figure 2). Increased levels of sugars may
enhance the alcohol content in wine after the must fermentation carried out by yeasts. Total
amino acid content was modulated by both temperature and irrigation, thus 28LD led to the
highest concentration. The accumulation of amino acids is a common phenomenon in plant
stress response related with nitrogen-reallocation following growth inhibition and/or with
enhanced protein catabolism (Less and Galili, 2008). Free amino acids in must are of great
importance, because they constitute a source of nitrogen for yeast in alcoholic fermentation,
for lactic acid bacteria in malolactic fermentation and can also be a source of aromatic
compounds (Moreno-Arribas and Polo, 2009) that contribute to wine aroma, taste and

appearance (Garde-Cerdan et al., 2009; Darriet et al., 2012). However, in certain cases, some
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amino acids can produce undesirable compounds in wines, such as ethyl carbamate (from urea
produced in the metabolism of arginine), biogenic amines (from tyrosine, arginine, histidine,
phenylalanine and lysine), ochratoxin A (from 2-phenylalanine, when grapes are contaminated
by some fungi), and B-carbolines (from tryptophan) (Moreno-Arribas and Polo, 2009).

Regarding secondary metabolites, in CL-1089 irrigation was the main factor modulating
skin anthocyanin and flavonol concentrations, with the 24ED being the treatment most
severely affected (Figure 2). Flavonol content was also modulated by temperature, since 28LD
have improved flavonol content. Similarly, other studies have shown that the flavonoid
pathway responds to water deficit at the transcript and metabolite level thus determining
increased phenolic concentrations (Savoi et al., 2016). The enhancement of flavonol content
was more evident in CL-1089 grown at 28/18°C, which supports our previous observations
showing that this clone seemed quite tolerant of warm temperatures (Torres et al., 2016).

In CL-843, temperature was the main factor modulating primary metabolites (i.e., glucose,
fructose and tartaric acid) whereas both, temperature and irrigation contributed to increased
amino acid content, resulting in a highly significant interaction between both factors (TxI,
P<0.001) (Figure 3). Regarding the secondary metabolites of CL-843, temperature and
irrigation accounted for diminished anthocyanins, but no significant changes were recorded in
flavonol concentrations (Figure 3). Overall, for both Tempranillo clones, differences in
secondary metabolites between the three irrigation procedures assayed were attenuated in

plants grown at 28/18°C (Figures 2 and 3).

3.3. Berry skin amino acid and flavonoid profiles at maturity

Amino acid profiles are known to change in response to environmental constraints such as
water deficit (Niculcea et al., 2014; Berdeja et al., 2015). LD under warm temperatures (28)
enhanced the amount of most amino acids in grape skins of both clones, which was mainly due
to the accumulation of arginine, proline, threonine and glutamine (Table 3). The marked
abundance of arginine reflects its role as a precursor of the remaining amino acids and is also
an important yeast nitrogen source (Garde-Cerdan et al., 2009). Increased levels of arginine,
however, can decrease wine safety when this amino acid serves as a precursor for the
synthesis of putrescine, a biogenic amine frequently found in wine. Excessive intake of
biogenic amines can cause health problems, such as headache, flushing, itching, skin irritation,
hypotension, vomiting or tachycardia (Guo et al., 2015). Proline may contribute to berry taste
but it can also act as an osmoprotectant in response to deficit irrigation (Castellarin et al.,

2007) and threonine is strongly correlated with the accumulation of odorants related to fatty
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acid synthesis (Hernandez-Orte et al., 2002). The high arginine and proline contents in berry
skins subjected to 28LD could be related to increased amount and/or activity of ornithine
decarboxylase during water deficit (Berdeja et al.,, 2015), which in our case, could be
exacerbated at 28/18°C (Table 3). Phenylalanine was significantly enhanced in berry skins from
both clones in the 24ED treatment (Table 3), and such an increase coincided with decreased
contents of anthocyanins (Figures 2 and 3), suggesting reductions in the amount and/or
activity of phenylalanine ammonia lyase under ED (Deluc et al., 2009). As mentioned above, 2-
phenylalanine may be the precursor of ochratoxin A, a dangerous mycotoxin produced as a
secondary metabolite by several fungi of the Aspergillus or Penicillium families that may be
contaminating grapes. This mycotoxin has been shown to be nephrotoxic, hepatotoxic,
teratogenic and carcinogenic in animals and has been classified as a possible carcinogen in
humans (Mateo et al.,, 2007). Overall, changes observed in amino acid profiles due to
temperature and/or irrigation could be relevant because they can affect the aromatic
characteristics of wines (Hernandez-Orte et al., 2002).

The berry skin anthocyanins of both clones were dominated by malvidin-3-glucosides
regardless of the temperature and water irrigation applied (Table 4). According to Huang et al.
(2014), malvidin-3-glucosides are promising molecules for the development of nutraceuticals
to prevent chronic inflammation. In CL-1089, irrigation was the main factor accounting for the
diminished contribution of 3-monoglucosides and increased 3-p-coumaroyl-glucosides to total
anthocyanins. However, both temperature and irrigation accounted for increased 3-acetyl-
glucosides due mainly to increased derivatives of petunidin and malvidin. Other studies have
indicated that water deficit stimulated anthocyanin hydroxylation, which converts
hydroxylated anthocyanins (cyanidin and delphinidin) into their methoxylated derivates
(peonidin, petunidin and malvidin) through the differential regulation of flavonoid 3’-
hydroxylase, flavonoid 3’, 5’-hydroxylase and O-methyltransferase (Castellarin et al., 2007;
Deluc et al., 2009). Our results are in accordance with these observations in the 24ED
treatment, in which the proportion of malvidin increased (Table 4). However, in CL-1089 this
effect disappeared under warming conditions whereas in CL-843, temperature was the main
factor accounting for increased proportion of methoxylated derivatives (i.e., malvidin)
indicating that the anthocyanin hydroxylation pathway confers stability of anthocyanins under
warm conditions (Movahed et al., 2016). In CL-843, temperature was the main factor
modulating the distribution of the three anthocyanin fractions (Table 4). Thus, elevated
temperature reduced the contribution of 3-monoglucosides to total anthocyanins increasing
that of 3-acetyl-glucosides (malvidin and petunidin) and 3-p-coumaroyl-glucosides (malvidin), a

finding in line with previous studies (Tarara et al., 2008). In this clone, the ED treatment also
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contributed to changes in 3-acetyl-glucosides profiles showing reduced petunidin and
increased peonidin derivatives. Overall, changes in anthocyanin profiles were more evident at
24/14°C than at 28/18°C and were limited to the ED treatment. By contrast, for both
temperature regimes, anthocyanin profiles of LD were almost the same as those analyzed in Fl
plants.

Berry skin flavonols were dominated by myricetin-3-O-glucoside regardless of the
temperature and irrigation applied (Table 5). In CL-1089, temperature was the main factor
modifying flavonol composition. Thus, the high concentration of flavonols observed at 28/18°C
(Figure 2) was mainly due to increased myricetin-3-O-glucoside, quercetin-3-O-galactoside,
quercetin-3-0-glucoside, laricitrin-3-0-glucoside and isorhamnetin-3-O-glucoside (Table 5).
Taking into account that flavonols provide photoprotection (Martinez-Lischer et al., 2014), the
enhanced flavonol synthesis of the 28LD treatment could contribute to high tolerance of this
clone under warm temperatures (Torres et al., 2016). In contrast to this trend, temperature
and/or irrigation did not affect the total flavonol concentration of CL-843 but influenced its
individual composition in different ways (Figure 3). Thus, raising temperature enhanced
guercetin-3-O-galactoside, laricitrin-3-O-glucoside and isorhamnetin-3-O-glucoside but deficit
irrigation reduced myricetin-3-O-glucoside, quercetin-3-O-glucoside and kaempferol-3-O-
glucoside (Table 5). In general, changes in flavonol profiles were more pronounced at 28/18°C
than at 24/14°C, especially when plants were subjected to the LD treatment. Environmental
factors (elevated temperature in our study) that induce the accumulation of quercetin can
enhance the healthy properties of berry grapes because this flavonoid has often been linked to
beneficial effects on the cardiovascular system (Bondonno et al., 2016). In addition, increases
in the levels of laricitrin-3-O-glucoside and isorhamnetin-3-0-glucoside may have improved the
antioxidant capacity of berries (Jiang and Zhang, 2012).

PCA was conducted in the present study to determine general trends in the different
samples. Figure 4A shows the scores plot obtained by PCA where samples of each clone are
grouped in the plot of PC1 versus PC2. PC1 accounted for about 35.23% of the total variance
while PC2 covered about 24.01%. Different Tempranillo clones could not be clearly
distinguished (Figure 4A) but irrigation treatments were separated by PC2 for both clones
(Figure 4A). The discrimination was mainly based on total anthocyanins and the distribution of
the three anthocyanin fractions, total flavonols, relative skin mass and berry mass (Figure 4B).
Otherwise, temperature treatments were distinguished by PC1 (Figure 4A) and were mainly
based on differences in sugars, main amino acids and tartaric acid (Figure 4B). This analysis

also showed that LD and Fl appeared together under both temperature conditions, reinforcing
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the idea that LD irrigation could continue being valid under a projected warming scenario in

order to maintain berry characteristics and metabolite profiles.

4, Conclusions

This research provides evidence for clonal-specific changes in berry skin metabolism of
Tempranillo resulting in different abilities to respond to deficit irrigation under warm
temperatures. In our experimental conditions, at 24/14°C LD performed better than ED in
terms of anthocyanins, flavonols and berry traits but such differences were clearly attenuated
at 28/18°C. The extent of alteration in primary metabolism due to temperature was higher
than in secondary metabolism, which was mainly affected by deficit irrigation. While the
increased levels of hexoses in berries developing at 28/18°C may enhance the alcohol content
in wine, the decreased levels of anthocyanins and flavonols in berries from plants subjected to
ED at 24/14°C may be associated with decreased antioxidant properties. Temperature and
irrigation modified the metabolite profiles of amino acids, anthocyanins and flavonols in both
clones, with CL-843 appearing to be more sensitive than CL-1089 to high temperature. These
results indicate that the adaptation to climate change in south Mediterranean Europe might be
plausible with the optimization of timing of water deficit and the appropriate selection of
clones. Nevertheless, the limitations of controlled environments with regard to grapevine

growth require that extrapolations to field-grown grapevines should be made with caution.
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Capitulo 1

Figure legends

Figure 1. Effect of irrigation treatments on anthocyanin content (FERARI index) and flavonol
content (FLAV index) measured with the Multiplex’™ sensor a different stages of berry
ripening in fruit-bearing cuttings of ‘Tempranillo’ clones grown either at 24/14°C or 28/18°C
(day/ night) temperature regimes. Fl, full irrigation; ED, early season deficit irrigation; LD, late
season deficit irrigation. Values represent means + SE (n = 9). Two-way ANOVA analysis to
evaluate temperature (T), irrigation (I) and interaction (TxI) effects was performed. ns, *, **,
and *** indicate non-significance or significance at 5%, 1%, and 0.1% probability levels,

respectively.

Figure 2. Effect of irrigation treatments on main primary (glucose, fructose, malic and tartaric
acids and amino acids) and secondary (anthocyanins and flavonols) metabolites quantified at
harvest in grape skins of fruit-bearing cuttings of ‘Tempranillo’ CL-1089 grown either at
24/14°C or 28/18°C (day/ night) temperature regimes. Fl, full irrigation; ED, early season deficit
irrigation; LD, late season deficit irrigation. Values represent means = SE (n = 3). Two-way
ANOVA analysis to evaluate temperature (T), irrigation (I) and interaction (Txl) effects was
performed. ns, *, ** and *** indicate non-significance or significance at 5%, 1%, and 0.1%
probability levels, respectively. Within each parameter, when interaction between the main
factors ‘temperature, T’ and ‘irrigation, I’ was significant, histograms with different letter
indicate that values differed significantly (P<0.05). Values of amino acids, anthocyanins and

flavonols refer to sum of individual compounds quantified.

Figure 3. Effect of irrigation treatments on main primary (glucose, fructose, malic acid and
tartaric acids and amino acids) and secondary (anthocyanins and flavonols) metabolites

guantified at harvest in grape skins of fruit-bearing cuttings of ‘Tempranillo’ CL-843 grown

86



Capitulo 1

either at 24/14°C or 28/18°C (day/ night) temperature regimes. Fl, full irrigation; ED, early
season deficit irrigation; LD, late season deficit irrigation. Values represent means + SE (n = 3).
Two-way ANOVA analysis to evaluate temperature (T), irrigation (I) and interaction (Txl)
effects was performed. ns, *, **, and *** indicate non-significance or significance at 5%, 1%,
and 0.1% probability levels, respectively. Within each parameter, when interaction between
the main factors ‘temperature, T’ and ‘irrigation, I’ was significant, histograms with different
letter indicate that values differed significantly (P<0.05). Values of amino acids, anthocyanins

and flavonols refer to sum of individual compounds quantified.

Figure 4. Principal component analysis score (A) and loading plot (B) obtained from the
statistical analysis of the berry characteristic and primary and secondary metabolites data of
36 samples from fruit-bearing of ‘Tempranillo’ clones grown either at 24/14°C or 28/18°C (day/
night) temperature regimes. Fl, full irrigation; ED, early season deficit irrigation; LD, late season

deficit irrigation.
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Figure 1.
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Figure 2.
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Figure 3.
Glucose Fructose
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Flavonoid and amino acid profiling on Vitis vinifera L. cv Tempranillo

subjected to deficit irrigation under elevated temperatures
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* Corresponding author: Tel.: (34) 948425600; Fax: (34) 948425649
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Table S1. Standard errors (SE) of means from main phenological phases of berry ripening
and berry characteristics recorded at harvest from fruit-bearing cuttings of

‘Tempranillo’.

Table S2. Standard errors (SE) of means from amino acids measured at harvest in grape

skins of fruit-bearing cuttings of ‘Tempranillo’.

Table S3. Standard errors (SE) of means from anthocyanin derivatives and their
distribution into different fractions measured at harvest in grape skins of fruit-

bearing cuttings of ‘Tempranillo’.

Table S4. Standard errors (SE) of means from individual composition of flavonols

determined at harvest in grape skins of fruit-bearing cuttings of ‘Tempranillo’.

Figure S1. Chromatographic profile of amino acids.
Figure S2. Chromatographic profile of anthocyanins.
Figure S3. Soil water content measured from fruit set to harvest in pots subjected to

different water treatments.

Figure S4. Effect of irrigation treatments on pre-dawn leaf water potential (‘¥;,q) recorded

at different stages of berry ripening.
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Capitulo 1

Figure S3. Soil water content measured from fruit set to harvest in pots subjected to different
water treatments: full irrigation (Fl), early season deficit irrigation (ED) or late season deficit
irrigation (LD) either at 24/14°C or 28/18°C (day/ night) temperature regimes. Values represent

means * SE (n = 3). Vertical dotted lines mark the boundary for veraison for all treatments.
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Capitulo 1

Figure S4. Effect of irrigation treatments on pre-dawn leaf water potential (‘¥',4) recorded at
different stages of berry ripening in fruit-bearing cuttings of Tempranillo clones grown either
at 24/14°C or 28/18°C (day/ night) temperature regimes. Fl, full irrigation; ED, early season
deficit irrigation; LD, late season deficit irrigation. Values represent means + SE (n = 3). Two-
way ANOVA analysis to evaluate temperature (T), irrigation (l) and interaction (TxI) effects was
performed. ns, *, ** and *** indicate non-significance or significance at 5%, 1%, and 0.1%

probability levels, respectively.
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CAPITULO 2

Berry quality and antioxidant properties in Vitis vinifera cv.
Tempranillo as affected by clonal variability, mycorrhizal inoculation
and temperature.

(Crop & Pasture Science 67 (2016) 961-977.)
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Capitulo 2

Abstract

The projected increase in mean temperatures caused by climate change is expected to have
detrimental impacts on berry quality. Microorganisms as arbuscular mycorrhizal fungi (AMF)
produce numerous benefits to host plants and can help plants to cope with abiotic stresses
such as high temperature. The aims of this research were to characterise the response of three
clones of Vitis vinifera L. cv. Tempranillo to elevated temperatures and to determine whether
AMF inoculation can improve berry antioxidant properties under these conditions. The study
was carried out on fruit-bearing cuttings three clones of cv. Tempranillo (CL-260, CL-1048 and
CL-1089) inoculated with AMF or uninoculated and subjected to two temperature regimes
(day—night: 24°C-14°C and 28°C-18°C) during berry ripening. Results showed that clonal
diversity of Tempranillo resulted in different abilities to respond to elevated temperature and
AMF inoculation. In CL-1048, AMF inoculation improved parameters related to phenolic
maturity such as anthocyanin content and increased antioxidant activity under elevated
temperature, demonstrating a protective role of AMF inoculation against warming effects on
berry quality. The results therefore suggest that selection of new clones and/or the
implementation of measures to promote the association of grapevines with AMF could be
strategies to improve berry antioxidant properties under future warming conditions.

ToC Abstract: The projected increase in mean temperatures caused by climate change is
expected to have detrimental impacts on berry quality but inoculation with arbuscular
mycorrhizal fungi (AMF) could help grapevines to cope with abiotic stresses such as high
temperature. Different fruit-bearing cuttings clones of cv. Tempranillo were inoculated with
AMF or uninoculated and subjected to two temperature regimes (day—night: 24°C-14°C and
28°C-18°C) during berry ripening. In some clones the association of grapevines with AMF may
play a relevant role in a future climate change scenario to maintain o even improve fruit

quality by enhancing antioxidant properties.

Running head: Mycorrhizas and temperature on Tempranillo clones

Additional keywords: DPPH assay, global warming, mycorrhizal efficiency index (MEI),

polyphenols, technological maturity.
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1. Introduction

Human activities, especially during the last 50 years, have contributed to increased
atmospheric greenhouse gas concentration, which is responsible for the Earth’s surface
warming (Webb et al. 2013). Climate change particularly affects winemaking regions in
southern Europe, where from 1950 to 1999, growing-season average temperatures have
increased by 1.26°C (Jones et al. 2005). Moreover, according to the Intergovernmental Panel
on Climate Change (IPCC 2014), global average temperature could increase by 4°C in the next
100 years. Associated with warming trends over the last few decades, early maturity of
grapevines has been reported for Europe, North America and Australia (Duchéne and
Schneider 2005; Petrie and Sadras 2008; Sadras and Petrie 2011) and these shifts in the timing
of wine-grape maturity can have implications for the viticultural sector. Understanding the
effects of elevated temperature on different grapevine varieties is important for the
implementation of appropriate agronomic practices and relevant for the knowledge and
attribution of trends in the context of climate change (Teixeira et al. 2013).

High temperature impairs processes associated with grapevine ripening (Kuhn et al.
2014). Characteristic warming effects on berry composition include reduction of anthocyanin
content (Mori et al. 2007; Azuma et al. 2012; Carbonell-Bejerano et al. 2013), rapid fall in
acidity and malate content (Conde et al. 2007; Keller 2010; Sweetman et al. 2014), and
changes in the composition of phenolic compounds (Tarara et al. 2008; Cohen et al. 2012). This
may have significant implications for wine quality due to changes in the hue and intensity of
the grape colour (Mori et al. 2007). In addition, elevated temperatures hasten sugar
accumulation at the expense of other relevant compounds, leading to the elaboration of wines
with higher alcohol contents (Greer and Weston 2010). However, the magnitude of all
described impacts on berry quality differs among varieties (Barnuud et al. 2014). Clonal
diversity within grapevine cultivars has been studied for a broad range of characteristics. Thus,
precocity of the phenological cycle, yield, sugar concentration, skin phenolic compounds,
disease resistance or response to environmental conditions varied widely among clones
(Anderson et al. 2008; van Leeuwen et al. 2013). Because projected warming during the
growing season over southern Europe is expected to have detrimental effects on grapevine
development and wine quality, different possibilities are emerging. One possibility is the
adaptation of vineyards to projected future warming through varieties being able to maintain
berry characteristics under the new conditions and through the development of breeding
programs selecting the most adaptable grapevine clones in each country (Duchéne et al. 2010;

Fraga et al. 2013; Webb et al. 2013).
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Recent studies indicate that microorganisms may help plants to cope with abiotic
stresses such as high temperature (Grover et al. 2011; Maya and Matsubara 2013). Among
these, arbuscular mycorrhizal fungi (AMF) have received increasing attention because of their
numerous benefits to host plants. Under field conditions, grapevine roots are normally
colonised by AMF, with the general AMF structure and composition in vineyards more
influenced by soil type than by host plant features or management practices (Balestrini et al.
2010). The association between AMF and grapevine roots has been related to increased plant
growth (Linderman and Davis 2001), drought tolerance (Nikolaou et al. 2003), nutrient uptake
(Karagiannidis et al. 2007; Schreiner 2007) and protection against pathogens (Nogales et al.
2009), without changes to berry composition (Karagiannidis et al. 2007). Associations with
AMF can stimulate the synthesis of plant secondary metabolites, which are important for
increased plant tolerance to environmental stresses and beneficial to human health through
their antioxidant activity (Baslam et al. 2013; Bettoni et al. 2014).

Nevertheless, little is known about the potential benefits of AMF colonisation on grape
quality under conditions of climate change. Therefore, the objectives of the present research
were: (i) to characterise the response of three Vitis vinifera L. cv. Tempranillo clones to
elevated temperatures, focusing on technologic and phenolic maturity; and (ii) to determine
whether AMF inoculation can improve berry antioxidant properties under these conditions.
Tempranillo is a Spanish variety widely cultivated in northern and central Spain where it is the
main variety in half of the Denominations of Origin. This variety exhibits a broad clonal
diversity (Cervera et al. 2002), and we hypothesise that this could result in different abilities to
respond to warm climates and AMF inoculation. Thus, the goal of this study was to identify
some clones of Tempranillo that maintain fruit quality as well as antioxidant capacity under
changing environmental conditions. Potted vines were used to ensure that all clones
experienced the same temperature conditions, and to control mycorrhizal inoculation and to
have comparable non-inoculated plants. Previous researchers have demonstrated that fruit-
bearing cuttings are a meaningful and useful model system to study grape berry metabolism
(Dai et al. 2013) and evaluate the response of berry ripening to environmental factors (Antolin
et al. 2010; Niculcea et al. 2014; Martinez-Lischer et al. 2015). In addition, the chronology of
flowering and fructification of the fruit-bearing cuttings is similar to that of the vineyard-grown
grapevines (Ollat et al. 1998; Lebon et al. 2008). However, experiments with greenhouse
experiments and potted plants to assess the effect of temperature and/or AMF inoculation
have some limitations such as abrupt changes in temperature cycles, lack of wind, small soil
volume or warming of roots above air temperature (Passioura 2006; Poorter et al. 2012;

Bonada and Sadras 2015).
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2. Material and methods

2.1. Biological material and growth conditions

Dormant 400-500-mm-long cuttings of different clones of Tempranillo with were obtained in
winter 2013 from an experimental vineyard of the Institute of Sciences of Vine and Wine,
Logrofio, Spain (Denomination of Origin Rioja, North of Spain). Three clones (CL-260, CL-1048
and CL-1089) were selected on basis of previous research showing that phenolic content and
antioxidant activity of leaves were stimulated by the combination of elevated temperature and
mycorrhizal inoculation (Torres et al. 2015). A brief description of the clones is presented in
Table 1. Cuttings of each clone were selected for fruit-bearing according to steps originally
outlined by Mullins (1966) with some modifications described in Ollat et al. (1998) and Antolin
et al. (2010). Research has demonstrated that the fruit-bearing cutting technique is a useful
model for grapevine physiology studies that allows development of vegetative and
reproductive organs that is similar to vineyard grapevines but under fully controlled
environmental conditions (Antolin et al. 2010; Dai et al. 2013). Briefly, rooting was made in a
heat bed (27°C) kept in a cool room (4°C). One month later, the cuttings were planted in 6.5-L
plastic pots containing a mixture of vermiculite-sand-light peat (2.5:2.5:1, v:v:v) and
transferred to the glasshouses. Properties of the peat (Floragard; Vilassar de Mar, Barcelona,
Spain) were: pH 5.2—6.0, nitrogen 70-150 mg L-1, P205 80-180 mg L-1, and K20 140-220 mg
L-1. The peat was previously sterilised at 100°C for 1 h on 3 consecutive days.

At transplanting, half of the plants were inoculated with the mycorrhizal inoculum
GLOMYGEL Vid, Olivo, Frutales (Mycovitro S.L.,, Pinos Puente, Spain) (+M plants). The
concentrated commercial inoculum derived from an in-vitro culture of AMF Rhizophagus
intraradices (Schenck & Smith) Walker & SchiiRler comb. nov. (Kriiger et al. 2012). It contained
~2000 mycorrhizal propagules (inert pieces of roots colonised by AMF, spores and vegetative
mycelium) per mL inoculum. In order to facilitate its application, the concentrated commercial
inoculum was diluted with distilled water to a mycorrhizal inoculum of ~250 propagules mL-1.
Each +M plant received 8 mL diluted mycorrhizal inoculum close to the roots, thus making
2000 propagules in total. A filtrate was added to plants that did not receive the mycorrhizal
inoculum (—M plants) in order to restore other soil free-living microorganisms accompanying
AMF. The filtrate was obtained by passing diluted mycorrhizal inoculum through a layer of 15—
20-um filter paper with particle retention of 2.5 um (Whatman 42; GE Healthcare, Little
Chalfont, UK), and each —M plant received 8 mL filtrate close to the roots. The selection of in-

vitro-produced inoculum of R. intraradices was based on two expected benefits: (i) easy
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application of the product; and (ii) low colonisation of roots by contaminant fungi (Vimard et
al. 1999).

Plants were transferred to greenhouses, which were adapted to simulate climate
change conditions as described by Morales et al. (2014). Initial growth conditions were 25°C-
15°C and 50%—90% relative humidity (day—night). Natural daylight (photosynthetic photon flux
density, PPFD, on average 850 pmol m™? s at midday) was supplemented with high-pressure
sodium lamps (SON-T; Agro Phillips, Eindhoven, Netherlands) to extend the photoperiod up to
15 h and ensure a minimum PPFD of 350 umol m™? s™ at the level of the inflorescence.
Humidity and temperature were controlled by using M22W2HT4X transmitters (Rotronic
Instrument Corp., Hauppauge, NY, USA). PPFD was monitored with a LI-190SZ quantum sensor
(LI-COR Biosciences, Lincoln, NE, USA). Under these conditions, bud-break took place after 1
week. Careful control of vegetative growth before flowering improves the partitioning of
stored carbon towards the roots and the reproductive structures. Thus, only a single flowering
stem was allowed to develop on each plant during growth. Plants were irrigated with the
nutrient solution detailed by Ollat et al. (1998). The electric conductivity of the nutrient
solution adjusted to pH 5.5 was 1.46 + 0.15 mS cm™" as determined with a conductivity meter
(524; Crison Instruments SA, Alella, Spain). Plants were watered twice daily with a nutrient
solution (140 mL day ™) with phosphorus (P) level 0.30 mM. This was lower than the amount of
P applied by Petit and Glubler (2006) to Vitis inoculated with R. intraradices under controlled

conditions.

2.2. Experimental design

Fruit-bearing cuttings (20 plants clone™) were exposed to two day—night temperature regimes
at fruit set (Eichhorn and Lorenz (E-L) fruit stage 27; Coombe 1995): 24°C-14°C and 28°C-18°C.
At this stage, plants have 4-5 fully expanded leaves. The 24°C-14°C temperature regime was
selected according to the average temperatures registered in La Rioja (1971-2000) (AEMET,
Spain) during growing season. The 28°C-18°C temperature regime was selected according to
predictions of a rise of 4.0°C by the end the present century (IPCC 2014). Both temperature
regimes were maintained until ripeness (21°-23°Brix) (E-L 38). To avoid excessive soil warming,
which can negatively affect AMF infection, sides of pots were shaded by covering with a
reflecting material (Passioura 2006; Poorter et al. 2012). Soil temperature was measured at 5
cm soil depth by using temperature probes (PT100; Coreterm, Valencia, Spain) and reached
24°C + 0.5°C and 27°C % 0.5°C for 24°C-14°C and 28°C-18°C air temperature regimes,

respectively.
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Length of phenological phases was recorded as the number of days from fruit set (E-L 27) to
veraison (E-L 35), and from veraison to harvest ripe (E-L 38). Thermal time was calculated on a
daily basis by using a base temperature of 10°C (Sadras and Moran 2013). Plants were
harvested separately based on sugar level from berry subsamples (two or three berries) taken

weekly.

2.3. Mycorrhizal colonisation

Root samples were cleared and stained (Phillips and Hayman 1970), and mycorrhizal
colonisation was determined by examining 1-cm root segments (45 per pot) under the
microscope. Then, parameters of mycorrhizal colonisation were calculated for each pot. First,
the extension (E) of mycorrhizal colonisation was first determined for every root segment and
was calculated as the product of value of mycorrhizal colonisation in width (W) and value of
mycorrhizal colonisation in length (L). Values of mycorrhizal colonisation in W and length L
were ascribed according a 0—10 scale where 0 is complete absence of fungal structures and 10
is fungal structures occupying the full length or width of the root segment. Total E per pot was
calculated as E = S(W x L)/n, where n is total number of root segments observed under the
microscope (n = 45 per pot), and was expressed as a percentage. Second, the incidence (/) of
mycorrhizal colonisation per pot was calculated as the ratio between number of root segments
with fungal structures (arbuscules, vesicles and/or hyphae) and total number of root segments
observed under the microscope (45 per pot). Third, the intensity of mycorrhizal colonisation
per pot was calculated as E x /, and results were expressed as percentage of infection (Hayman
et al. 1976). The mycorrhizal efficiency index (MEI) was estimated from fresh matter (FM)
according to Bagyaraj (1994) as: MEI = (bunch FM of +M plant — bunch FM of —M plant) x
100/(bunch FM of +M plant). Determination of MEI allows assessment of the improvement

provided by inoculation of plants with a mycorrhizal fungus.

2.4.Plant growth, yield and leaf nutrients

Leaf area was measured with a portable area meter (model LI-3000; LI-COR). A good
correlation (r = 0.97) was obtained between the length of the main vein of the leaf and leaf
area by using several leaves of each clone. Total leaf area of each plant was calculated after
measuring the length of the main vein in all leaves and applying the formula: leaf area = —4.98

+(2.54 x vein length) + (0.90 x vein length®). Then, all leaves were removed and counted.
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To obtain yield, bunches were weighed and then 10 berries from each plant were collected
and weighed individually. Mean berry mass was determined and berries were separated into
skin and flesh. The remaining berries were counted, weighed and frozen at —80°C for further
analysis. The relative skin mass was calculated as the quotient between skin FM and total berry
FM expressed as percentage.

For mineral analyses, leaf samples (0.5 g dry matter (DM)) were dry-ashed and
dissolved in HCl according to Duque (1971). Phosphorus was determined by using inductively
coupled plasma-optical emission spectroscopy (ICP-OES) (Optima 4300; PerkinElmer, Waltham,
MA, USA). The operating parameters for ICP-OES were: radio frequency power, 1300 W;
nebulizer flow, 0.85 L min™%; nebulizer pressure, 30 psi; auxiliary gas flow, 0.2 L min~%; sample
introduction, 1 mL min™}; and three replicates per sample. Total N was quantified after
combustion (950°C) of leaf DM with pure oxygen by an elemental analyser (TruSpec CN; LECO
Corp., St. Joseph, Ml, USA).

2.5. Technological maturity

A subsample of 25 berries was crushed and then extracts were centrifuged at 4300g at 4°C for
10 min. The supernatant was used for the following determinations: total soluble solids
(mainly sugars) measured with a temperature-compensating refractometer (Zuzi model 315;
Auxilab, Beridin, Spain) and expressed as °Brix; must pH measured with a pH meter (Crison
Instruments, Barcelona, Spain) standardised to pH 7.0 and 4.0; titratable acidity measured by
titration with NaOH according to International Organisation of Vine and Wine methods (OIV
2014), and expressed as g tartaric acid L™"; L-malic acid measured by an enzymatic method
(Enzytec L-Malic Acid; R-Biopharm, Darmstadt, Germany); and tartaric acid by using the
modified method of Rebelein (1973).

2.6.Phenolic maturity

Another 25-berry subsample per plant was weighed and taken for the analysis of anthocyanins
and total phenols. Total and extractable anthocyanins were calculated according to the
procedure described by Saint-Cricq et al. (1998). Two samples of the non-filtered, crushed
grape homogenate were macerated for 4 h at pH 1 (hydrogen chloride) and pH 3.2 (tartaric
acid), respectively. Once maceration was over, the macerated samples were centrifuged at
4300g at 4°C for 10 min. Total and extractable anthocyanins were determined in both

supernatants (macerated at pH 1 and pH 3.2) according to Ribéreau-Gayon and Stonestreet
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(1965) by using absorbance at 520 nm. Both data were used to calculate the cellular
extractability of anthocyanins as described in Nadal (2010). The seed maturity index estimates
the contribution of tannins of seeds to the ripeness evaluation and it was obtained by the
Glories procedure (Nadal 2010). Total polyphenol index (TPI) was calculated by the absorbance
reading at 280 nm in the supernatant obtained after maceration at pH 3.2 (EEC 1990). All

analyses were run in triplicate.

2.7.Antioxidant capacity

Total antioxidant capacity was evaluated on the same must samples used for technological
maturity determinations by using the free-radical scavenging activity (a, a-diphenyl-B-
picrylhydrazyl (DPPH)) assay (Brand-Williams et al. 1995). The free radical scavenging activity,
using the free radical DPPHe, was evaluated by measuring the variation in absorbance at 515
nm after 30 min of reaction in Parafilm-sealed glass cuvettes (to avoid methanol evaporation)
at 25°C. The reaction was started by adding 20 pL of the corresponding sample to the cuvette
containing an 80 uM (methanol solution) (980 pL) of the free radical (DPPHe). The final volume
of the assay was 1 mL. The reaction was followed with a spectrophotometer (Jasco V-630;
Analytical Instruments, Easton, MD, USA). The calibration curve was made using gallic acid as

standard. Results were expressed as mg gallic acid g™ DM.

2.8. Statistical analyses

Statistical analyses were carried out with the statistical software SPSS version 21.0 for
Windows (IBM, Armonk, NY, USA). Data were subjected to Kolmogorov—Smirnov normality test
due to the small sample size. Data appeared to follow a normal distribution and they were
therefore subjected to analysis of variance (ANOVA) within each clone. The test was
performed to assess the main effect of the factors temperature (24°C-14°C and 28°C-18°C)
and mycorrhization (-M and +M) and the interaction between them (T x M). In the case of
mycorrhizal efficiency index (MEI), the main factors were temperature and clone. Means +
standard errors (s.e.) were calculated, and when the F-ratio was significant (P < 0.05), Duncan’s
test was applied. Two-way ANOVA was performed to determine significant differences in all
parameters. Berry quality parameters and antioxidant activity data were analysed by principal

component analysis (PCA) with the same software.
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3. Results

3.1. Phenological cycle, plant and berry traits and MEI

In plants grown at 24°C-14°C, the period from fruit set to veraison of the fruit-bearing cuttings
of Tempranillo clones was similar to that of the vineyard-grown plants (Tables 1 and 2).
However, the time between veraison and harvest ripe was longer in fruit-bearing cuttings than
the vineyard-grown plants (Table 2). In our study, temperature was the main factor influencing
phenology, and no significant effects could be attributed to AMF inoculation (Table 2). Thus,
increasing temperature to 28°C—18°C shortened the time to reach veraison in all clones, but
the time from veraison was distinctly affected by raising temperature according to clone. Thus,
in CL-260 and CL-1048, fruit maturity was reached earlier at 28°C-18°C, but in CL-1089, no
significant variations from veraison to ripening period were found. On a thermal-time scale,
most significant changes in phenology disappeared, indicating that the differences are fully
accounted for by temperature (Table 2).

Although the intensity of mycorrhizal colonisation was low (10-15%) (Table 2), the MEI
allows assessment of the effect obtained after AMF inoculation (Fig. 1). Results showed that
AMF inoculation exerted a negative effect on bunch growth (except for CL-1089 grown at
24°C-14°C) but the MEI values were distinctly modified by temperature as a function of clone
assayed. Thus, in CL-260 grown at 28°C-18°C, effectiveness of mycorrhizal symbiosis was
improved (i.e. MEI was less negative). However, in CL-1048, MEI values were not affected by
increased temperature, and in CL-1089, MEI was strongly diminished. This differential pattern
was emphasised by two-way ANOVA showing a significant interaction between temperature
treatment and clone (Fig. 1). Plant growth (estimated by leaf area) decreased with increased
temperature mainly through reduction in leaf number, whereas AMF inoculation did not affect
either parameter (Table 3). In the same way, temperature was the main factor influencing
yield and berry size, and no significant effects could be attributed to AMF inoculation (Table 3).
By contrast, relative skin mass was not significantly modified by temperature or AMF
treatments.

Foliar levels of N were not affected by mycorrhizal inoculation and/or increased
temperature for CL-260 and CL-1089 (Table 4). In CL-1048, increased temperature and the
interaction between high temperature and AMF inoculation (T x M, P < 0.05) enhanced the
accumulation of N in leaves. Foliar concentrations of P were not significantly affected by

mycorrhizal inoculation (Table 4) but clearly increased in plants subjected to increased
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temperature. In CL-1048, the application of AMF diminished the increase in P in leaves

observed under high temperature (T x M, P <0.01).

3.2.Phenolic and technological maturity

In CL-260, technological maturity parameters were significantly modified by increased
temperature, as evidenced by increased concentration of total soluble sugars and decreased
tartaric acid (Table 5). No significant interactions between temperature and mycorrhization
were observed in technological maturity (Fig. 2a). Analyses of phenolic maturity showed that
increasing temperature significantly reduced TPI, cellular extractability of anthocyanins and
seed maturity (Table 5). AMF inoculation also resulted in low cellular extractability of
anthocyanins (Table 5), and significant reductions in total and extractable anthocyanins were
observed in +M plants grown at 28°C—18°C (Fig. 2b). This differential pattern was emphasised
by two-way ANOVA showing significant T x M interaction for total (P < 0.01) and extractable (P
<0.001) anthocyanins.

In CL-1048, analyses of technological maturity showed that temperature was the main
factor increasing total soluble solids (Table 5). Moreover, AMF inoculation resulted in
significant reduction of must pH and increased tartaric acid. In this clone, phenolic maturity
parameters reduced by temperature were TPl and both total and extractable anthocyanins
(Table 5). In addition, total anthocyanins were significantly increased by AMF inoculation
(Table 5). Two-way ANOVA showed significant T x M interaction for titratable acidity (P < 0.05;
Fig. 3a) and for extractability of anthocyanins (P < 0.05; Fig. 3b).

In CL-1089, neither temperature nor mycorrhization affected levels of total soluble
solids but titratable acidity as well as malic and tartaric acids were significantly modified by
temperature increase (Table 5). Regarding phenolic maturity parameters, in this clone total
and extractable anthocyanins were reduced by elevated temperature, but AMF inoculation
significantly increased total anthocyanins and extractability of anthocyanins (Table 5). No

significant T x M interactions were observed in any case (Fig. 4a, b).

3.3. Antioxidant capacity

In CL-260 and CL-1089, temperature rise was the main factor accounting for diminished total

antioxidant capacity of berry extracts (Table 6). On the other hand, AMF inoculation resulted in

a significant enhancement of antioxidant capacity in berry extracts of CL-1048.
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3.4.Principal component analysis

Principal component analysis was conducted to determine general trends in the different
samples. Figure 5a shows the score plot obtained by PCA where samples of each variety are
grouped in the plot of the first and second principal components: PC1 v. PC2. Here, PC1
accounted for ~28.6% of the total variance and PC2 covered -15.5%. Different Tempranillo
clones could not be clearly distinguished (Fig. 5a). The —M plants grown under both
temperature conditions appeared together; however, +M plants were separated along PC1
where a clear distinction was observed between plants grown at 24°C-14°C and plants grown
under warming conditions. The loading plot (Fig. 5b) shows the importance of TPI,
anthocyanin, pH and acidity levels in explaining variance along PC1. Moreover, the graph
highlights that total antioxidant capacity measured was related to anthocyanin and polyphenol

levels.

4. Discussion

Clones of Vitis vinifera cv. Tempranillo tested in this study have significant diversity for some
agronomic traits such as yield, bunch mass and berry mass (Table 1) (Cervera et al. 2002).
However, clonal selection in viticulture should integrate other criteria related to plant
physiological responses to biotic and abiotic factors in order to select interesting clones able to
maintain berry properties under future climate scenarios. Under our experimental conditions,
a rise of temperature from 24°C-14°C to 28°C-18°C during berry ripening resulted in
accelerated phenology, which was more pronounced from fruit set to veraison than from
veraison to maturity in CL-260 and CL-1089 (Table 2). Such observations show a consistent
trend towards earlier veraison and harvest, commonly observed in previous studies (Duchéne
and Schneider 2005; Petrie and Sadras 2008; Duchéne et al. 2010). Our data show that
temperature effects significantly differed among clones and that the intensity of effects
depends on phenological phase, which could be explained by nonlinear effects of temperature
on vine phenology (Sadras and Moran 2013).

In the present study, the intensity of mycorrhizal colonisation in grapevine roots never
exceeded 15% whether plants were cultivated under either 24°C-14°C or 28°C-18°C (Table 2).
These values are clearly lower than measured by Eftekhari et al. (2012) in grapevines
inoculated with different species of AMF, including R. intraradices (70% of root colonisation).
Several factors could have been involved. First, differences in root colonisation may be

influenced by small soil volume (Poorter et al. 2012); 8-L pots were used in Eftekhari et al.
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(2012) and 6.5-L pots in the present study. In fact, development of extraradical mycelium may
be limited by the small size of pots with consequent reduction of root AMF colonisation
(Nogales et al. 2010). Second, AMF colonisation could be reduced by higher root temperature
(Passioura 2006); however, this was avoided by shading pots (see Material and methods).
Third, differences in root colonisation may be at least partially due to the type of inoculum
applied to grapevine in both studies. Whereas Eftekhari et al. (2012) used an inoculum that
contained spores, mycelium and root fragments of clover colonised by AMF, in our study the
main component of the mycorrhizal inoculum was spores of R. intraradices. Similarly, we have
found low colonisation percentages when using monoxenically produced spores of R.
intraradices as mycorrhizal inoculum in onion plants (Bettoni et al. 2014). Fourth, percentages
of mycorrhizal colonisation are highly dependent on the grape variety (Eftekhari et al. 2012).
Fifth, because in the grape fruiting-cuttings model several leaves are removed to allow fruit
development, the leaf area may have been insufficient to provide enough photoassimilates to
satisfy the demand of the main sinks in plants inoculated with R. intraradices (fungal structures
in roots and bunch), and this would be detrimental to the spread of mycorrhizal colonisation.
Such limitation would have resulted in non-improvement of bunch growth brought about by
inoculation of plants (low or negative MEI; Fig. 1), even in the only case in which AMF
enhanced P status of plants compared with the non-inoculated controls (CL-1048 grown at
24°C-14°C; Table 4). However, the values of root AMF colonisation in our study were similar to
those obtained by Nogales et al. (2010) working with in-vitro, micro-propagated plantlets of
grapevine inoculated with monoxenically produced R. intraradices. Although plants in our
study were fertilised at a P rate lower than that applied by Petit and Glubler (2006), the foliar
concentrations of P were always higher than measured by those authors in shoots of grape
rootings. Foliar P concentrations in cv. Tempranillo were also higher than extractable P
observed in leaves of cv. Carignane fertilised with P for the full growing season (Skinner and
Matthews 1989). Therefore, we can dismiss the possibility that, in our study, P supply was
insufficient for correct plant growth.

Recent studies have shown great phenotypic plasticity among grapevine varieties for
berry sensory traits in response to elevated temperatures (Sadras et al. 2013a, 2013b; Barnuud
et al. 2014). In the same way, results of this study showed clonal diversity within Tempranillo
in response to temperature and AMF inoculation. Thereby, tartaric acid content decreased in
CL-260 (Fig. 2a) but increased in CL-1048 at 28°C—18°C (Fig. 3a). These results contrast with
general observations that tartaric acid is largely unaffected by temperature. However, some
studies agree with our data by showing broad diversity in tartaric acid levels within grapevine

varieties and climate conditions (Liu et al. 2006; Preiner et al. 2013).
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On the other hand, in CL-260, TPl and total and extractable anthocyanins decreased in AMF-
inoculated plants grown at 28°C—18°C (Fig. 2b), in agreement with other studies (Mori et al.
2007; Mira de Ordufia 2010; Teixeira et al. 2013; Barnuud et al. 2014). This loss of
anthocyanins has been associated with chemical and/or enzymatic degradation (Mori et al.
2007) and with delayed onset of anthocyanin accumulation (Sadras and Moran 2012). Phenolic
maturity covers not only the overall concentration of phenolic compounds, but also their
structure and capacity to be extracted from grapes during vinification (Boulton et al. 1996;
Cagnasso et al. 2008). In our study, CL-260 showed significant decreases in the cellular
extractability of anthocyanins in plants grown at 28°C-18°C, suggesting early phenolic maturity
under these conditions (Fig. 2b). As mentioned above, AMF-inoculated plants of CL-260 grown
at 28°C-18°C have low anthocyanin content (Fig. 2b) together with increased soluble solids
(Fig. 2a), which could lead a decoupling between anthocyanins and sugars (Sadras and Moran
2012). Because these changes could have detrimental consequences for the colour—alcohol
balance of wine, we suggest that AMF colonisation may not be beneficial under future warm-
temperature scenarios for CL-260.

When grown at 28°C—18°C, CL-1048 showed increased soluble solids (Fig. 3a) together
with reduction in anthocyanins regardless of mycorrhizal treatment (Fig. 3b). However, in this
clone, mycorrhizal inoculation improved anthocyanin content, suggesting that AMF exerted a
positive effect on berry quality (Fig. 3b). To date, there has been little information about the
influence of AMF on phenolic composition of grape berries (Karagiannidis et al. 2007), but a
beneficial role of AMF on anthocyanin content was previously detected in leaves of lettuce
(Baslam et al. 2013), onion (Bettoni et al. 2014) and grapevine (Torres et al. 2015). According
with these results, we suggest that mycorrhizal association of CL-1048 may improve berry
quality under warmer temperatures.

In contrast to other clones, CL-1089 grown at 28°C—18°C did not show changes in total
soluble solids (Fig. 4a) as reported in other studies (Coombe 1987; Sadras et al. 2013a).
However, AMF inoculation of CL-1089 resulted in decreased extractable anthocyanins leading
to increased cellular extractability of anthocyanins (~70%), which suggests low potential of
colour extraction (Nadal 2010). Overall, our data indicate that CL-1089 could be a good
candidate for growing under climate change conditions because of its poor response to
temperature, but AMF colonisation could reduce some positive traits.

Phenolic compounds have generated remarkable interest with their antioxidant and
free-radical-scavenging properties (Castellarin et al. 2012). Catechins, proanthocyanidins and
anthocyanins are the most concentrated natural antioxidants present in berries and they may

generate significant health benefits (Xia et al. 2010; Georgiev et al. 2014). The observed
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decrease in total antioxidant capacity of AMF-inoculated CL-260 grown at 28°C—18°C was
related to a decrease in TPl and anthocyanins (Fig. 2b). By contrast, in CL-1048, the
combination of AMF inoculation and elevated temperatures exerted an additive effect in
improving antioxidant power (Table 6) that could be explained, at least in part, by improved
anthocyanin content in berries (Fig. 3b). In fact, anthocyanins are considered very good
antioxidant agents, and a significant relationship has been reported between antioxidant
capacity and anthocyanin content in different grapevine varieties (Kallithraka et al. 2009; De
Nisco et al. 2013), as was also observed in our study (Fig. 5b). An additive effect between AMF
inoculation and elevated temperature for antioxidant properties of CL-1048 was recently
shown in cyclamen (Maya and Matsubara 2013) and grapevine (Torres et al. 2015) leaves.
Moreover, the enhanced N status of plants from CL-1048 inoculated with AMF and subjected
to elevated temperature (Table 4) may have contributed to the synthesis of N-containing
compounds (i.e. amino acids) with antioxidant properties.

In conclusion, this study provides evidence for clonal diversity of Tempranillo resulting
in different abilities to respond to increasing temperature and mycorrhizal inoculation. Under
our experimental conditions, the protective role of AMF inoculation in avoiding warming
effects on berry quality was particularly evident in CL-1048. Although under elevated
temperatures this clone ripened earlier, it could be an alternative to typical clones of
Tempranillo used in the winemaking process. Moreover, the association of CL-1048 with AMF
may play a relevant role in a future climate-change scenario to maintain or even improve fruit
quality by enhancing antioxidant properties, which demonstrates the importance of adopting
measures to protect the indigenous cohorts of AMF in vineyards. However, limitations of
controlled environments to assess the effect of temperature on grapevine means that

extrapolations to field-grown grapevines should be made with due caution.
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Capitulo 2

Table 1. Summary of the agronomic characteristics of Tempranillo clones used in the study. Data provided by
Institute of Sciences of Vine and Wine (Logrofio, Spain) were collected and averaged over the 2009—-12 period

in an experimental vineyard.

CL-260 C-1048 CL-1089
City of origin (region) San Vicente de la Laguardia Bargota
Sonsierra (La Rioja) (Alava) (Navarra)
Agronomic classification
Reproductive cycle Short Short Short
Yield Low Medium High
Reproductive cycle
Fruit set—veraison (days) 56 55 52
Veraison—harvest (days) 30 37 33
Yield components
Yield (kg vine™) 10.37 12.90 21.91
Bunch mass (g bunch™) 84 133 154
Berry mass (g) 1.24 1.40 2.05
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Table 2. Phenology expressed on chronological and thermal-time scales and intensity of mycorrhizal
colonisation in roots of fruit-bearing cuttings of Tempranillo clones inoculated with arbuscular mycorrhizal

fungi or uninoculated and grown at 24°C-14°C or 28°C-18°C (day—night) temperatures.

Fruit set—veraison

Veraison—-maturity

Mycorrhizal

(days) (degree-days) (days) (degree-days) colonisation (%)
CL-260
Treatments
-M24 57 513 57a 513 n.d.
+M24 58 522 55a 495 14.8
-M28 45 585 39b 507 n.d.
+M28 43 559 44b 572 12.6
Main effects
Temperature:
24 58a 518 56 504
28 44b 572 42 540
Mycorrhization:
-M 51 549 43 510
+M 50 541 50 534
ANOVA
Temperature *k n.s. * n.s. n.s.
Mycorrhization n.s. n.s. n.s. n.s. n.s.
TxM n.s. n.s. *k n.s. n.s.
CL-1048
Treatments
-M24 55 495 67 603 n.d.
+M24 54 486 66 594 13.7
-M28 42 546 50 650 n.d.
+M28 43 559 54 702 10.9
Main effects
Temperature:
24 58a 518 56a 504
28 44b 572 42b 539
Mycorrhization:
-M 49 521 58 626
+M 48 523 60 648
ANOVA
Temperature *k n.s. ** n.s. n.s.
Mycorrhization n.s. n.s. n.s. n.s. n.s.
TxM n.s. n.s. n.s. n.s. n.s.
CL-1089
Treatments
-M24 58 522 57 513 n.d.
+M24 56 504 58 522 11.5
-M28 44 572 50 650 n.d.
+M28 43 559 49 637 10.3
Main effects
Temperature:
24 57a 513 58 603a
28 44b 565 50 520b
Mycorrhization:
-M 51 547 53 582
+M 50 532 53 580
ANOVA
Temperature *k n.s. n.s. * n.s.
Mycorrhization n.s. n.s. n.s. n.s. n.s.
TxM n.s. n.s. n.s. n.s. n.s.

Values represent means (n = 5) separated by Duncan’s test (at P = 0.05). Within columns and clones, means
followed by different letters are significantly different as affected by the main factors temperature (24, 28),
mycorrhization (+M, —M) and their interaction (T x M). *P < 0.05; **P < 0.01; n.s., not significant (P > 0.05).
n.d., Not detected.
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Table 3. Plant and berry characteristics from fruit-bearing cuttings of Tempranillo clones inoculated with

arbuscular mycorrhizal fungi or uninoculated and grown at 24°C-14°C or 28°C-18°C (day—night) temperatures.

Leaf area Leaf no. Yield Berry mass Relative skin mass
(m? pIant_l) (no. plant_l) (g plant_l) (g berry_l) (% berry FM)
CL-260
Treatments
-M24 0.77 59 269.4 1.19 29.5
+M24 0.95 57 246.3 141 24.0
-M28 0.39 38 201.0 1.00 30.4
+M28 0.47 35 209.8 1.04 26.1
Main effects
Temperature:
24 0.86a 58a 257.9a 1.30a 26.7
28 0.43b 37b 205.4b 1.02b 28.2
Mycorrhization:
-M 0.58 49 235.2 1.09 29.9
+M 0.71 46 228.1 1.22 25.0
ANOVA
Temperature *Ek ** ** * n.s.
Mycorrhization n.s. n.s. n.s. n.s. n.s.
TxM n.s. n.s. n.s. n.s. n.s.
CL-1048
Treatments
-M24 0.97 75 284.1 1.21 33.3
+M24 0.95 91 249.8 1.28 32.2
-M28 0.54 45 227.3 1.00 37.9
+M28 0.58 49 203.0 1.10 28.9
Main effects
Temperature:
24 0.96a 83a 266.9a 1.24a 32.7
28 0.56b 47b 215.1b 1.04b 33.9
Mycorrhization:
-M 0.75 61 255.7 1.10 35.6
+M 0.79 70 226.4 1.20 30.7
ANOVA
Temperature *Ek *Ex * * n.s.
Mycorrhization n.s. n.s. n.s. n.s. n.s.
TxM n.s. n.s. n.s. n.s. n.s.
CL-1089
Treatments
-M24 0.96 62 324.1 1.27 34.4
+M24 0.92 75 320.6 1.27 311
-M28 0.56 54 264.6 1.01 335
+M28 0.60 44 241.3 1.01 29.9
Main effects
Temperature:
24 0.93a 69a 322.1a 1.27a 32.6
28 0.58b 49b 254.2b 1.01b 31.9
Mycorrhization:
-M 0.74 58 291.0 1.13 33.9
+M 0.78 60 285.3 1.16 30.6
ANOVA
Temperature *x * * * n.s.
Mycorrhization n.s. n.s. n.s. n.s. n.s.
TxM n.s. n.s. n.s. n.s. n.s.

FM, Fresh matter. Values represent means (n = 5) except for berry mass and relative skin mass (n = 50)
separated by Duncan’s test (P < 0.05). Within columns and clones, means followed by different letters are
significantly different as affected by the main factors temperature (24, 28), mycorrhization (+M, —M) and their
interaction (T x M). *P < 0.05; **P < 0.01; ***P < 0.001; n.s., not significant (P > 0.05).
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Table 4. Concentrations of nitrogen (N) and phosphorus (P) in leaves from fruiting cuttings of Tempranillo
clones inoculated with arbuscular mycorrhizal fungi or uninoculated and grown at 24°C-14°C or 28°C-18°C

temperatures.

Leaf N Leaf P
(mgg™ DM)
CL-260
Treatments
-M24 37.66 2.95
+M24 40.58 2.78
-M28 40.10 4.60
+M28 42.48 4.66
Main effects
Temperature:
24 39.34 2.85b
28 41.43 4.63a
Mycorrhization:
-M 39.41 3.78
+M 41.62 3.71
ANOVA n.s. oAk
Temperature n.s. n.s.
Mycorrhization n.s. n.s.
TxM
CL-1048
Treatments
-M24 39.16b 2.38c
+M24 37.62b 3.20b
-M28 40.26b 4.61a
+M28 42.94a 3.99a
Main effects
Temperature:
24 38.54 2.83
28 41.66 4.32
Mycorrhization:
-M 39.84 3.53
+M 40.28 3.62
ANOVA
Temperature *x *Ex
Mycorrhization n.s. n.s.
T % M * % %k
CL-1089
Treatments
-M24 39.50 2.32
+M24 38.10 2.81
-M28 41.58 3.86
+M28 41.55 4.24
Main effects
Temperature:
24 38.46 2.43b
28 41.50 4.11a
Mycorrhization:
-M 40.77 3.22
+M 40.36 3.61
ANOVA
Temperature n.s. *Ex
Mycorrhization n.s. n.s.
™M n.s. n.s.

DM, Dry matter. Values represent means (n = 5) separated by Duncan’s test (P < 0.05). Within columns and clones, means
followed by different letters are significantly different as affected by the main factors temperature (24, 28),
mycorrhization (+M, —M) and their interaction (T x M). *P < 0.05; **P < 0.01; ***P < 0.001; n.s., not significant (P > 0.05).
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Capitulo 2

Table 6. Total antioxidant capacity of berry extracts from fruiting cuttings of Tempranillo clones inoculated with
arbuscular mycorrhizal fungi or uninoculated and grown at 24°C-14°C or 28°C—18°C temperatures.

Total antioxidant capacity
(mggDM™)

CL-260 Treatments

CL-1048

CL-1089

-M24

+M24

-M28

+M28

Main effects

Temperature:
24
28

Mycorrhization:

-M
+M
ANOVA
Temperature
Mycorrhization
TxM
Treatments
-M24
+M24
-M28
+M28
Main effects
Temperature:
24
28

Mycorrhization:

-M
+M
ANOVA
Temperature
Mycorrhization
TxM
Treatments
-M24
+M24
-M28
+M28
Main effects
Temperature:
24
28

Mycorrhization:

-M
+M
ANOVA
Temperature
Mycorrhization
TxM

0.172
0.193
0.152
0.149

0.183a
0.151b

0.162
0.171

* %

n.s.
n.s.

0.138
0.160
0.150
0.189

0.150
0.169

0.144b
0.174a

n.s.

n.s.

0.178
0.129
0.117
0.122

0.151a
0.119b

0.126
0.144

*

n.s.
n.s.

DM, Dry matter. Values represent means (n = 5) separated by Duncan’s test (P < 0.05). Within each clone, means followed by

different letters are not significantly different as affected by the main factors temperature (24, 28), mycorrhization (+M, —M)

and their interaction (T x M).

*P < 0.05;

**p < 0.01; n.s., not significant (P > 0.05).
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Figure legends

Figure 1. Mpycorrhizal efficiency index (MEI) from fruit-bearing cuttings of Tempranillo clones
grown at normal (24°C-14°C) or elevated (28°C-18°C) (day—night) temperatures during berry
growth and ripening. Values are means * s.e. (n = 5). Means with the same letter are not
significantly different (P > 0.05) between treatments according to Duncan’s test. Two-way
ANOVA was performed to evaluate the effects of temperature (T), clone (C) and their
interaction (T x C). ***P < 0.001; n.s., not significant (P > 0.05).

Figure 2. Response of (a) technological and (b) phenolic maturity of berries from fruit-bearing
cuttings of Tempranillo CL-260 inoculated with arbuscular mycorrhizal fungi (+M) or
uninoculated (—M) and grown at 24°C-14°C or 28°C-18°C (day—night) temperatures during
berry ripening. Values are means * s.e. (n = 5). Within each parameter, when interaction
between the main factors temperature and mycorrhization was significant, means with the
same letter are not significantly different (P > 0.05). TPI, Total polyphenol index; EA, cellular
extractability of anthocyanins; SM, seed maturity index; AU, absorbance units.

Figure 3. Response of (a) technological and (b) phenolic maturity of berries from fruit-bearing
cuttings of Tempranillo CL-1048 inoculated with arbuscular mycorrhizal fungi (+M) or
uninoculated (—M) and grown at 24°C-14°C or 28°C-18°C (day—night) temperatures during
berry ripening. Values are means * s.e. (n = 5). Within each parameter, when interaction
between the main factors temperature and mycorrhization was significant, means with the
same letter are not significantly different (P > 0.05). TPI, Total polyphenol index; EA, cellular
extractability of anthocyanins; SM, seed maturity index; AU, absorbance units.

Figure 4. Response of (a) technological and (b) phenolic maturity of berries from fruit-bearing
cuttings of Tempranillo CL-1089 inoculated with arbuscular mycorrhizal fungi (+M) or
uninoculated (—-M) and grown at 24°C-14°C or 28°C-18°C (day-night) temperatures during
berry ripening. Values are means + s.e. (n = 5). TPI, total polyphenol index; EA, cellular

extractability of anthocyanins; SM, seed maturity index; AU, absorbance units.

133



Capitulo 2

Figure 5. Principal component analysis (a) score and (b) loading plot obtained from statistical
analysis of technological and phenolic maturity parameters and total antioxidant capacity data
of 60 studied samples from fruiting cuttings of Tempranillo clones inoculated with arbuscular
mycorrhizal fungi (+M) or uninoculated (-M) and grown at 24°C-14°C or 28°C-18°C (day—

night) temperatures during berry ripening.
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Figure 2.
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Figure 3.
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Figure 4.
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Abstract

The projected climate scenario for South Mediterranean Europe predicts lower precipitation
and higher temperatures that will negatively affect viticulture in the region. The application of
moderate deficit irrigation at crucial moments of berry ripening has been found to improve
berry quality. Furthermore, grapevine association with arbuscular mycorrhizal fungi (AMF) may
improve grapevine’s ability to cope with abiotic stresses. Therefore, the aims of this research
were: (1) to characterize the response of three clones of Vitis vinifera L. cv. Tempranillo to the
combination of different water deficit programs and AMF inoculation under elevated
temperatures, and (2) to determine whether AMF inoculation can improve berry antioxidant
properties under these conditions. The study was carried out on three fruit-bearing cuttings
clones of cv. Tempranillo (CL-260, CL-1089 and CL-843) inoculated (+M) or not (-M) with AMF
and subjected to two temperature regimes (24/14°C and 28/18°C (day/night)) combined with
three irrigation regimes during berry ripening. Irrigation treatments were: (i) water deficit from
fruit set to veraison (early deficit, ED); (ii) water deficit from veraison to maturity (late deficit,
LD); and (iii) full irrigation (FI). Although each Tempranillo clone seemed to have different
abilities to respond to elevated temperatures and water supply, in general, at 24/14°C the LD
treatment performed better than ED. Differences among clones were attenuated at 28/18°C.
In addition, potential benefits of the LD treatment were improved by AMF inoculation. Thus, in
all clones the loss of anthocyanins at 28/18°C detected in —M plants after applying LD did not
occur in the +M plants. Moreover, AMF inoculation increased must antioxidant capacity in CL-
843 under these environmental conditions. Our results suggest that the implementation of
measures to promote the association of grapevines with appropriate AMF for each variety
could contribute to optimize effects of irrigation strategy on berry properties under future
warming conditions.

Keywords: Anthocyanins; arbuscular mycorrhizal fungi (AMF); climate change; clonal

variability; DPPH assay; deficit irrigation
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1. Introduction

The grapevine is one of the most widely cultivated crops, with a total global surface area of
7.5 million ha under vines. Most harvested grapes are processed into wine, leading to a global
production of 274 million hectoliters in 2015, with Spain being the third largest producer in the
world (14% of the total world wine production) (OIV, 2016a). However, the future climate
scenario for South Mediterranean Europe is not favorable for agriculture in general and for
viticulture in particular (Chaves et al., 2010; Lionello et al.,, 2014) due to the predicted
decreased precipitation, increased air and soil temperatures and extreme climate events (IPCC,
2014). Grapevine development has already suffered from significant impact from global
climate change (Teixeira et al., 2013). Thus, a growing body of evidence indicates that as the
climate warms, grapevine phenology progresses at a faster rate, grapes ripen earlier (Webb et
al., 2012), berry sugar content (and subsequent alcohol in the wine) tends to increase (Petrie
and Sadras, 2008) and phenolic ripeness is not always achieved (Mori et al., 2007; Sadras and
Moran, 2012). In addition, the tendency toward a decreased acidity of must (Sweetman et al.,
2014) has potential effects on wine aging capacity.

In the Mediterranean region, the climate may be quite dry during the grapevine growing
season and vines may require additional irrigation to counteract water deficit stress (Chaves et
al., 2007; 2010).Currently, irrigation of vineyards is below 10% of the total area in Europe, but
the tendency towards irrigation is increasing in order to mitigate the negative impact of
climate change (Costa et al., 2016). Severe water deficit exacerbates the accelerated
accumulation of sugars in grapes caused by warm temperatures (Bonada et al., 2015), which
results in an imbalance between the levels of sugars and the phenolic ripening in berries
(Sadras and Moran, 2012). In contrast, several studies (Santesteban et al., 2011; Zarrouk et al.,
2012; Niculcea et al., 2014) have demonstrated that, under moderate water restriction, berries
from red wine varieties (such as Tempranillo) had increased levels of sugars and anthocyanins.
For several years, moderate deficit irrigation has been applied in order to improve cluster
microclimate, increase water use efficiency, control the vegetative development of grapevines,
reduce berry size and induce the accumulation of sugars and polyphenols in fruits (Wample
and Smithyman, 2002). Different deficit irrigation programs maintain plants at some degree of
water deficit for a prescribed part of the season (Basile et al., 2011; Intrigliolo et al., 2012).
Nevertheless, high temperatures can constitute a relevant constraint to the implementation
and success of the deficit irrigation (Shellie, 2011) and the timing of water deficit might need
to be revised to account for the deleterious effects of elevated temperatures in water-stressed

plants (Edwards et al., 2011). Thus, it has been reported that alterations in berry primary
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metabolism (such as sugars, organic acids and amino acids) due to warm temperatures was
higher than in secondary metabolism (i.e., anthocyanins and flavonoids), which was mainly
affected by timing of water deficit throughout ripening (Torres et al., 2017).

Soil microorganisms can help crops to cope with abiotic stresses (Grover et al.,, 2011).
Amongst these microorganisms, arbuscular mycorrhizal fungi (AMF) have received increasing
attention due to their numerous benefits for their host plants. The symbiotic association of
plants with AMF is a common phenomenon observed in nearly 80% of plant species, including
grapevines (Balestrini et al., 2010). For this reason, considerable progress has been made in
the last decade towards the use of these symbiotic fungi to improve grapevine growth and
yield. Mycorrhizal symbiosis has been associated with improved growth, increased tolerance
against drought and/or enhanced mineral uptake from soils (Trouvelot et al., 2015). Moreover,
mycorrhizal plants can accumulate higher levels of phenolic compounds in their tissues than
non-mycorrhizal plants and this phenomenon is more evident when plants undergo water
deficit rather than optimal irrigation (Baslam and Goicoechea, 2012). In grapevines,
mycorrhizal colonization enhances water use efficiency under drought (Valentine et al., 2006)
and induces the accumulation of phenolics in leaves (Eftekhari et al., 2012; Torres et al., 2015)
and berries (Torres et al., 2016) under optimal irrigation, with these latter results being highly
dependent on intravarietal differences of grapevines and air temperatures throughout
grapevine cultivation. The phenolic compounds detected in grapes have generated remarkable
interest because they have antioxidant properties that are beneficial for human health
(Georgiev et al., 2014).

Currently, deficit irrigation in viticulture can be managed in order to increase the
concentrations of phenolics in berries with attain the final objective of enhancing must quality
and its nutraceutical properties. However, to our knowledge, no studies have assessed the
contribution of AMF for improving or maintaining the benefits that different deficit irrigation
programs can exert on berry quality in a future scenario of climate change. In our previous
studies, we showed that the effects of warm temperatures on berry composition of
Tempranillo depended on the deficit irrigation system applied and on the clone chosen (Torres
et al., 2017). Moreover, under warm temperatures, the benefits of AMF inoculation on berry
properties were also modulated by type of clone (Torres et al., 2016). Taking into account all
these precedents, the aims of the current research were (1) to characterize the response of
three clones of Vitis vinifera L. cv. Tempranillo to the combination of different water deficit
programs (pre- and post-veraison deficit irrigation) and AMF inoculation under elevated
day/night temperatures; and (2) to determine whether AMF inoculation can improve berry

antioxidant properties under different climatic scenarios. Previous research (Antolin et al.,
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2010; Morales et al., 2016) has demonstrated that fruit-bearing cuttings are a meaningful and
useful model system to study the response of berry ripening to environmental factors. Thus,
potted vines were used to ensure that all clones experienced the same conditions and to

control mycorrhizal inoculation and to have comparable non-inoculated plants.

2. Material and Methods

2.1. Biological material and growth conditions

Dormant 400-500 mm long Vitis vinifera (L.) cuttings from different clones of Tempranillo
were collected during the winter of 2014 from an experimental vineyard of the Institute of
Sciences of Vine and Wine (Logrofio, Spain) (Denomination of Origin Rioja, North of Spain).
Three clones (CL-260, CL-1089 and CL-843) were selected in the field on the basis on their
different agronomic traits (Table S1) and on the basis of our previous finding, which showed
that phenolic content and antioxidant activity were stimulated by the combination of elevated
temperature and AMF inoculation (Torres et al., 2015; 2016). Cuttings of each clone were
selected for fruit-bearing according to the steps originally outlined by Mullins (1966) with
some modifications as described in Ollat et al. (1998) and Antolin et al. (2010). Briefly, rooting
was made in a heat-bed (27°C) kept in a cool room (4°C). One month later, the cuttings were
planted in 6.5-L plastic pots containing a mixture of vermiculite—sand-light peat (2.5:2.5:1,
v:v:v). Properties of the peat (Floragard, Vilassar de Mar, Barcelona, Spain) were pH 5.2-6.0,
nitrogen 70-150 mg L™, P,Os 80-180 mg L™, and K,O 140-220 mg L™. The peat was previously
sterilised at 100°C for 1 h on 3 consecutive days. At transplanting, half of the plants were
inoculated with the mycorrhizal inoculum GLOMYGEL Vid, Olivo, Frutales (Mycovitro S.L., Pinos
Puente, Spain) (+M plants). The concentrated commercial inoculum was derived from an in-
vitro culture of AMF Rhizophagus intraradices (Schenck & Smith) Walker & SchiBler comb.
nov. (Kriger et al., 2012) that contained 2,000 mycorrhizal propagules (inert pieces of roots
colonised by AMF, spores and vegetative mycelium) per mL inoculum. The selection of in vitro-
produced inoculum of R. intraradices was based on two expected benefits: easy application of
the product and low colonization of grape roots by contaminant fungi (Vimard et al., 1999). In
order to facilitate its application, the concentrated commercial inoculum was diluted with
distilled water to a mycorrhizal inoculum of 250 propagules mL™. Each +M plant received 8 mL
diluted mycorrhizal inoculum close to the roots, thus making 2,000 propagules in total. In
order to compensate for a possible partial disinfection of mycorrhizal spores during the

production of high quantities of the commercial inoculum, a filtrate was added to plants that
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did not receive any inoculum (—M plants) with the objective of restoring the helper
microorganisms accompanying spores and hyphae of AMF and which play an important role in
the uptake of soil resources as well as on the infectivity and efficiency of AMF isolates
(Agnolucci et al., 2015). The filtrate was obtained by passing diluted mycorrhizal inoculum
through a layer of 15-20-mm filter paper with particle retention of 2.5 mm (Whatman 42; GE
Healthcare, Little Chalfont, UK), and each —M plant received 8 mL filtrate close to the roots.
After transplanting, the fruit-bearing cuttings were transferred to greenhouses, which
were adapted to simulate climate change conditions (see details in Morales et al., 2014) until
berry maturity was reached. Initial growth conditions were 25/15°C and 50/90% relative
humidity (day/night) regime and natural daylight (photosynthetic photon flux density, PPFD,
was on average 850 pmol m™ s™! at midday) supplemented with high-pressure sodium lamps
(SON-T Agro Phillips, Eindhoven, Netherlands) to extend the photoperiod up to 15 h and
ensure a minimum PPFD of 350 pmol m™ s™ at the level of the inflorescence. Humidity and
temperature were controlled using M22W2HT4X transmitters (Rotronic Instrument Corp.,
Hauppauge, USA). PPFD was monitored with a LI-190SZ quantum sensor (LI-COR, Lincoln, USA).
Under these conditions, bud-break took place after one week. Careful control of vegetative
growth before flowering improves the partitioning of stored carbon towards the roots and the
reproductive structures. Thus, only a single flowering stem was allowed to develop on each
plant during growth. Until fruit set, plants were watered twice per day with a nutrient solution
(140 mL day™) with phosphorus level 0.30 mM (Ollat et al., 1998) alternated with water to
maintain the soil water content at 80% of pot capacity. The electric conductivity of the nutrient
solution adjusted to pH 5.5 was 1.46+0.15 mS cm™ as determined with a conductivity meter

(524; Crison Instruments SA, Alella, Spain).

2.2. Experimental design

At fruit set (Eichhorn and Lorenz (E-L) growth stage 27) (Coombe, 1995), which took place
one month after bud-break, we established a three-factorial design where two temperature
regimes were combined with three water regimes that were applied to plants inoculated (+M)
or non-inoculated (-M) with AMF. At fruit set (Eichhorn and Lorenz (E-L) growth stage 27)
(Coombe, 1995) fruit-bearing cuttings from +M or -M treatments (36 plants per clone) were
exposed to two different temperature regimes: 24/14°C (day/night) and 28/18°C (day/night).
At this stage, plants have 4-5 fully expanded leaves. The 24/14°C temperature regime was
selected according to average temperatures recorded in La Rioja (1981-2010) (AEMET, Spain)

during the growing season. The 28/18°C temperature regime was selected according to
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predictions of a rise of 4.0°C at the end of the present century (IPCC, 2014). Both temperature
regimes were maintained until berry ripened (21-23°Brix) (E-L 38 stage). To avoid excessive soil
overwarming, which can negatively affect roots, and maintain a stable temperature, pots were
shaded by wrapping their lateral surface with a reflecting material (Passioura, 2006). Soil
temperature was measured at 5 cm soil depth using temperature probes PT100 (Coreterm,
Valencia, Spain) and reached 23+0.5°C and 28+0.5°C for 24/14°C and 28/18°C air temperature
regimes, respectively (Figure S1).

Within each temperature regime, +M and -M plants from each clone were divided into
three groups that were subjected to different irrigation programs. Two deficit irrigation
strategies were compared with full irrigation (Fl). In the Fl treatment, pots were maintained at
80% of pot capacity (volumetric soil water content between 40 and 50%, (m® H,0 m™ soil) x
100) from fruit set to harvest. In the water deficit treatments, plants received 50% of the water
given to Fl plants from fruit set (E-L 27 stage) to onset of veraison (E-L 35 stage) (early deficit,
ED) or from onset of veraison (E-L 35 stage, 20-24 fully expanded leaves) to maturity (E-L 38
stage) (late deficit, LD). After ED and before LD, plants were subjected to full irrigation.
Volumetric soil water content was monitored with an EC 5 water sensor (Decagon Devices,
Inc., Pullman, WA, USA) placed within each pot. Pot capacity was previously assessed by
determining water retained after free-draining water had been allowed to pass through the
holes in the bottom of the pot. The surface of the plant containers was covered with quartz
stones during the experiments to avoid water loss because of evaporation. Water volume
supplied to the Fl treatment was adjusted to increase plant development according to the daily
measurements of the EC 5 water sensor (Figure S2). Watering was performed with nutrient
solution or deionised water in order to supply the different treatments with the same amount
of nutrients during water deficit. There were three replicates for each combination of

mycorrhizal, temperature, irrigation treatment and clone.

2.3. Mycorrhizal colonization and relative mycorrhizal dependency (RMD)

Root samples were cleared and stained (Koske and Gemma, 1989), and AMF colonization
was determined by examining 1-cm root segments (45 per pot) under the microscope. Then,
parameters of AMF colonisation were calculated for each pot as described previously (Torres
et al., 2015). The relative mycorrhizal dependency (RMD) index was estimated as reported by
Bagyaraj (1994): RMD = (bunch fresh matter of +M plant) x 100/ (bunch fresh matter of -M
plant). Determination of RMD allows assessment of the dependency of a crop on the

mycorrhizal condition to achieve its maximum growth or yield at a given level of soil fertility.
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When yield in +M plants is very similar to that achieved in —M plants, the value of RMD is equal
to 100%. Values beyond 100% indicate that mycorrhizal symbiosis has improved plant yield.

RMD values lower than 100% indicate that mycorrhizal association has reduced yield.

2.4. Plant determinations

Predawn leaf water potential (V,q) was measured with a SKYE SKPM 1400 pressure
chamber (Skye Instruments Ltd, Llandrindod, Wales) on three fully expanded leaves per
treatment at four stages of berry development: 1) when berries began to soften (Eichhorn and
Lorenz(E-L) growth stage 34, green berries) (Coombe, 1995); 2) when berries began to colour
and enlarge (E-L 35 stage, veraison); 3) seven days after veraison (E-L 36 stage, veraison+7);
and 4) fourteen days after veraison (E-L 37 stage, veraison+14). When fruit maturity was
reached (E-L 38 stage) plants were harvested separately based on sugar level (21-23°Brix) from
berry subsamples (2-3 berries) taken weekly.

The length of phenological phases was recorded as the number of days from fruit set (E-L
27 stage) to veraison (E-L 35 stage), and from veraison (E-L 35 stage) to maturity (E-L38 stage).
To obtain yield, bunches were weighed and then 10 berries from each plant were collected
and weighed individually. Mean fresh berry mass was determined and berries were separated
into skin and flesh. The remaining berries were counted, weighed and frozen at -80°C for
further analysis. The relative skin mass was calculated as the quotient between skin FM and

total berry FM expressed as percentage.

2.5. Grape berry determinations

A subsample of 25 berries was crushed and then extracts were centrifuged at 4,300 x g at
4°C for 10 min. The supernatant was used for the following determinations: total soluble solids
(mainly sugars) measured with a temperature-compensating refractometer (Zuzi model 315;
Auxilab, Beridin, Spain) and expressed as °Brix; must pH measured with a pH meter (Crison
Instruments, Barcelona, Spain) standardised to pH 7.0 and 4.0; titratable acidity measured by
titration with NaOH according to International Organisation of Vine and Wine methods (OIV,
2016b) and expressed as g tartaric acid L''; and L-malic acid measured by an enzymatic method
(Enzytec L-Malic Acid; R-Biopharm, Darmstadt, Germany).

Another 25-berry subsample per plant was weighed and taken for the analysis of
anthocyanins and total phenols. Anthocyanins were calculated according to the procedure

described by Saint-Cricq et al. (1998). The samples of the non-filtered, crushed grape
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homogenate were macerated for 4 h at pH 3.2 (tartaric acid). Once maceration was over, the
macerated samples were centrifuged at 4,300 x g at 4°C for 10 min. Anthocyanin content was
determined in the supernatant by measuring absorbance at 520 nm (Ribéreau-Gayon and
Stonestreet, 1965). Total polyphenol index (TPI) was calculated by the absorbance reading at
280 nm in the supernatant obtained after maceration at pH 3.2 (EEC, 1990). All analyses were

run in triplicate.

2.6. Antioxidant capacity

Total antioxidant capacity was evaluated on the same must samples used for berry quality
determinations by using the free-radical scavenging activity (a, a-diphenyl-B-picrylhydrazyl,
DPPH) assay (Brand-Williams et al., 1995). The free radical scavenging activity, using the free
radical DPPHe, was evaluated by measuring the variation in absorbance at 515 nm after 30 min
of reaction in Parafilm sealed glass cuvettes (to avoid methanol evaporation) at 25°C. The
reaction was started by adding 20 pL of the corresponding sample to the cuvette containing 80
mM (methanol solution) (980 L) of the free radical (DPPH*). The final volume of the assay was
1 mL. The reaction was followed with a spectrophotometer (Jasco V-630; Analytical

Instruments, Easton, MD, USA). The calibration curve was made using gallic acid as a standard.

2.7.Statistical analysis

Statistical analyses were carried out using statistical software the Statistical Package for the
Social Sciences (SPSS) (SPSS Inc., Chicago, IL, USA) version 21.0 for Windows. Data were
subjected to Kolmogorov-Smirnov normality test due to the small sample size (n= 3). Data
appeared to follow a normal distribution and were thus subjected to analysis of variance
(ANOVA) within each clone. The test was performed to assess the main effect of the factors
temperature (T) (24/14°C, 24 and 28/18°C, 28), AMF inoculation (+M and —M) and irrigation
program (Fl, ED and LD) and the interaction between them. Means + standard errors (SE) were
calculated and when the F ratio was significant (P<0.05), a Duncan test was applied. Three-way
ANOVA was performed to determine significant differences in all measured parameters. Berry
quality parameters and antioxidant activity data were analyzed by principal component

analysis (PCA) with the same software to determine general trends in the different samples.
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3. Results and discussion

3.1. Mycorrhizal colonization and relative mycorrhizal dependency (RMD)

Under moderate temperatures and optimal irrigation, 100% of plants from CL-260 and CL-
1089 had mycorrhizal structures (mainly hyphae and vesicles) (Figure 1), but percentages of
root mycorrhizal colonization did not exceed 10%. In Fl plants from CL-843 grown at moderate
temperatures, the percentage of root colonization reached 15%, but only 35% of plants
showed mycorrhizal structures. Imposition of drought (ED or LD) and/or elevated
temperatures (28/18°C) negatively affected mycorrhizal symbiosis in the three clones of
Tempranillo. These low percentages of mycorrhizal colonization achieved at the final stage of
fruit ripening could be due to several causes: (1) disinfection of the AMF spores during the
production of in vitro-mycorrhizal inoculum may have eliminated or at least reduced the
bacteria associated with the fungus, thus harming both the survival and the well-timed
germination and growth of spores and hyphae included in the applied inoculum (Roesti et al.,
2005; Agnolucci et al., 2015); (2) low photosynthetic rates measured at fruit ripening (data not
shown) could not allow the production of sufficient carbohydrates to support the mycorrhizal
symbiosis; and/or (3) several sinks, such as fruits and mycorrhizal fungus in roots, would be
competing for the scarce synthetized photoassimilates during this period of the grapevine life
cycle.

In our study, no clear effect of the irrigation regimes and/or air temperatures on the
percentage of mycorrhizal colonization was observed. However, several studies have revealed
that climate change can affect indirectly (through changes in host plant growth and
physiology) and directly the fungal development and the rates of root colonization by AMF
(Compant et al.,, 2010). Although fungal responses to environmental factors can be strain-
dependent, in most cases, increased soil temperature favors the mycorrhizal colonization of
roots and the spread of hyphal networks while drought reduces AMF colonization. The future
scenarios of climate change, however, predict that increased temperature will increase soil
drying, which subsequently will reduce the length of the growing season for mycorrhizal fungal
hyphae (Allen et al., 2014).

On the other hand, it is important to note that percentages of mycorrhizal colonization
provides information about the root length colonized by AMF but does not indicate the
functionality of the symbiosis and thus its benefits for the host plant. A low correlation
between the root length colonized by the fungus and the mycorrhizal responsiveness of the

host plant means that genetic factors other than those allowing colonization are determining
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the responsiveness of the host plant to the percent of its root colonized by the mycorrhizal
fungus (Parke and Kaeppler, 2000). Calculation of RMD allowed the assessment of the degree
to which the studied Tempranillo clones were dependent on the mycorrhizal conditions to
produce their maximum yield. Results were highly dependent on the Tempranillo clone and
environmental conditions (Figure 2). In CL-260, mycorrhizal inoculation always decreased fruit
yield (RMD values lower than 100%), which may be as a consequence of a sink effect caused by
the presence of the fungus in roots that would have increased the translocation of sugars from
the aerial part to the roots in detriment to fruit development. The lower yield of +M24-FI
plants from CL-260 in comparison with that of -M24-Fl was accentuated by the ED treatment,
but attenuated when ED was imposed under elevated temperatures(28ED). Pischl and Barber
(2017) also found that non-mycorrhizal bell peppers grown at optimal irrigation and ambient
temperatures produced more fruits than mycorrhizal plants. According to these authors, under
non-stressed conditions the AMF treatments incurred a cost that resulted in reduced growth
and fitness relative to uncolonized plants. In agreement with our results, Pischl and Barber
(2017) also observed that warm temperatures and drought reduced differences between
treatments.

In contrast with findings in CL-260, mycorrhizal association improved yield in plants from
CL-1089 grown at 24/14°C, except for those undergoing LD (Figure 2). The highest benefit of
AMF inoculation on yield was observed when ED was applied.. In this case, RMD values almost
reached 200%. In CL-843, at 24/14°C mycorrhizal inoculation enhanced vyield in drought
stressed plants (24ED and 24LD) . However, at 28/18°C RMD only was significantly improved
under full irrigation (28Fl). Arbuscular mycorrhizal dependency can strongly vary not only
among different plant species (Tawaraya, 2003) but also among cultivars belonging to the
same plant species (Tawaraya, 2003; Fahey et al., 2016), which has also been assessed
between different grape varieties (Eftekhari et al., 2012; Torres et al., 2015, 2016). Root
morphology (root length, length and frequency of the root hairs) seems to be the main factor
for determining the mycorrhizal dependency of a given plant species or cultivar because it
strongly affects the efficiency of the host plant to acquire resources from the soil (Tawaraya,
2003). Any environmental factor that may alter the root morphology of host plants could also
modify their mycorrhizal dependency.

In our study, despite the interclonal differences between CL-1089 and CL-843, in general
terms, mycorrhizal inoculation improved vyield in plants undergoing adverse conditions
(drought, elevated temperatures or both), which reinforces the idea that mycorrhizal

symbiosis may be more beneficial for host plants under stressful conditions (Goicoechea et al.,
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2004) and supports the results indicating that AMF can improve the drought/heat tolerance of

vines (Schreiner and Linderman, 2005; Valentine et al., 2006; Schreiner et al., 2007).

3.2. Phenology and physiological characteristics during berry ripening

Clones of grapevine cv. Tempranillo tested in this study have significant diversity for some
agronomic traits such as length of cycle, yield, bunch mass and berry mass (Table S1). With
regard to phenology, vineyard-grown plants of CL-260 and CL-1089 were characterized by a
shorter reproductive cycle than CL-843. In our experimental conditions, temperature was the
main factor influencing time to reach veraison that was shortened by increasing temperature
to 28/18°C (Table S2). Such observations show a consistent trend towards earlier veraison
commonly observed at warm temperatures (Petrie and Sadras, 2008; Web et al., 2012; Torres
et al., 2016). However, in CL-843, at 24/14°C the ED treatment also contributed to reduce time
to reach veraison, as showed by significant interaction between both factors (TxI, P<0.05). In
the same way, several studies provided support for acceleration of the ripening process due to
ED water restriction that was shown by the accelerated onset of anthocyanin synthesis
(Castellarin et al., 2007; Herrera and Castellarin, 2016). The hormone abscisic acid (ABA) plays
a critical role in regulating berry ripening because berry ABA concentration increases
remarkably at veraison, and stimulates anthocyanin synthesis by promoting expression of key
biosynthetic genes (Fortes et al., 2015). Under water deficit, it has been reported that ABA
pattern accumulation was altered and at veraison, peak of ABA was significantly higher in ED
than FI (Niculcea et al., 2014). Possibly, such changes could have contributed to reducing time
to reach veraison in the ED treatment. On the other hand, temperature and irrigation were the
main factors affecting the time course from veraison to maturity in CL-260 and CL-843. In CL-
1089, there was also an additive effect of AMF inoculation, as indicated by the interaction
between temperature, AMF inoculation and irrigation (TxMxI, P<0.05).

Grapevine water status throughout fruit ripening was significantly different per treatments
as indicated by the decrease in predawn ¥4 measured in plants subjected ED or LD compared
with FI plants (Figure 3). During the ED treatment, ¥4 values reached in CL-260, CL-1089 and
CL-843 varied between -1.2 and -1.5 MPa and were not modified by AMF inoculation and/or
elevated temperature. In contrast, in the LD treatment, AMF inoculation and elevated
temperature modified plant water status. Moreover, significant interactions among factors
were observed at stages EL-37 and EL-38 in CL-260 (TxI and MxI, P<0.001), CL-1089 (TxM and
Txl, P<0.05) and CL-843 (TxI, P<0.01, Mxl, P<0.05 and TxMxI, P<0.01). Thus, the lowest values
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of Wpq were always recorded in the +M28 treatment and were reached at stage E-L37 (ca. -1.4
MPa) in CL-260 and at stage EL-38 (ca. -1.7 MPa) in CL-1089 and CL-843 (Figure 3). Similarly,
Edwards et al. (2011) showed an additive effect of temperature and water stress on plant
water status, which in our study seemed to be more accentuated in +M plants. This low ¥4 in
+M28 treatment could be result from elevated water losses due to high leaf area and/or high
transpiration rates. However, this was not the case because leaf area was considerably smaller
in +M28 than in +M24 plants (0.80-0.90 m” plant™ in +M24 and 0.25-0.40 m? plant™ in +M28).
Furthermore, +M28 plants had the lowest leaf conductance rates (data not shown). In
disagreement with our results, Nikolaou et al. (2003) measured higher ¥, in leaves of
mycorrhizal ‘Cabernet Sauvignon’ than in those of non-mycorrhizal plants under drought
conditions and the improved water relations in mycorrhizal grapevines were attributed to their
higher cytokinin concentrations. However, the exposure of plants to high temperatures can
cause reductions in the levels of cytokinins (Todorova et al., 2005; Yang et al., 2016), which
may explain the low ¥4 measured in the +M28 treatment. In addition, it should be noted that
although decreases in the tissue ¥4 depend mostly upon leaf dehydration, it also depend both
on initial osmolarity of the cell sap and on cell wall elasticity. Previous studies of our group
showed that W,4 of mycorrhizal plants involved an increase in the percentage of apoplastic
water without a decrease in osmotic ¥ (Goicoechea et al., 1997). This mechanism may allow
mycorrhizal plants to tolerate drought without investing solutes into osmotic adjustment,
which may be of special importance when the production of carbohydrates to support several
sinks (fruits and mycorrhizal fungus) is limited, especially at the end of berry ripening in +M28

plants.

3.3. Berry characteristics

Berry size was mainly modulated by both AMF inoculation and irrigation in CL-260 and CL-
1089 (Table 1). Moreover, a significant interaction between irrigation and temperature was
highlighted for these clones (TxI, P<0.01 and P<0.05, respectively), showing that the LD
treatment resulted in small berries when plants grew at 28/18°C. Our findings are in contrast
with those presented by Bonada et al. (2015), which showed additive effects (i.e. lack of
interaction) between temperature and water for berry mass. In our study, ED was the
treatment that most reduced berry mass regardless of temperature and clone, which agrees
with previous studies in Tempranillo (Girona et al., 2009; Santesteban et al., 2011; Intrigliolo et

al., 2012; Niculcea et al., 2014; Torres et al., 2017). On the other hand, relative skin mass in CL-
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260 and CL-843 was affected by the three factors applied (TxMxI, P<0.001 for CL-260 and
P<0.01 for CL-843) (Table 1). In these clones, AMF inoculation and/or elevated temperature
accentuated the ability of the ED treatment to increase relative skin mass (Table S3), which
could be due to a reduction in berry flesh mass (Roby and Matthews, 2004; Bonada et al.,
2015). In CL-1089, temperature had no effect on relative skin mass, with this parameter being
mainly modulated by AMF inoculation (P<0.05) and irrigation (P<0.001). The increase of
relative skin mass could be an interesting response under climate change conditions because
flavour and colour compounds, which determine wine quality, are located principally in the
berry skin. On that basis, at 28/18°C, berries from 28ED (CL-260 and CL-843) and +M28 (CL-
843) treatments will be subject to less dilution of skin compounds during winemaking (Table

1),

3.4. Berry quality

Some studies have observed great phenotypic plasticity in berry composition between
grapevine varieties in response to warm temperatures (Sadras et al., 2013; Barnuud et al.,
2014) and to water deficit irrigation (Basile et al., 2011; Niculcea et al., 2014). Our previous
research provided evidence for clonal diversity within Tempranillo that resulted in different
abilities to respond to AMF inoculation (Torres et al., 2016) or to the irrigation schedule
applied (Torres et al.,, 2017) under elevated temperatures. Data from the current study
showed that interaction between three factors (temperature, irrigation and AMF inoculation)
modulated fruit composition to a different extent in each clone. Zarrouk et al. (2016)
demonstrated that the interaction between irrigation regime and high temperature controls
berry ripening in Tempranillo. Similarly, in CL-260, temperature and irrigation were the main
factors modulating berry quality parameters (Table 2). At 28/18°C, total soluble solids were
increased in the water deficit treatments (Txl, P<0.001), which was explained by the fact that
faster accumulation of sugars at warm temperatures may be intensified under water deficit
conditions (Bonada et al., 2015). The ED treatment caused the most significant changes in
must pH and titratable acidity whereas malic acid was affected by all treatments and growth
conditions. This pattern was underlined by a significant interaction among factors (TxMxl,
P<0.01). One of the clearest relationships between temperature and fruit quality occurs with
grape berry acidity, whereby high temperatures reduce the concentration and/or increase the
breakdown of malic acid. Our data coincide previous studies that showed that warm
temperatures produced malate losses in Shiraz (Sweetman et al., 2014), Cabernet Sauvignon

and Chardonnay (Barnuud et al., 2014). This has been related to an increased NAD-dependent
156



Capitulo 3

malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase
activities (Sweetman et al., 2014). Furthermore, total polyphenol index (TPI) and anthocyanin
content of CL-260 were also significantly modulated by all factors (Table 2). Thus, TPI tended to
be low in response to elevated temperatures, AMF inoculation or ED irrigation, and total
anthocyanins decreased in plants grown at 28/18°C. The decline of anthocyanins under water
stress and elevated temperature likely results from the repression of anthocyanin biosynthesis
at the onset of ripening and by a high degradation rate at later stages of berry ripening
(Bonada et al., 2015; Zarrouk et al., 2016). However, this effect was clearly mitigated in +M28-
LD plants, which achieved higher anthocyanins than —M28-LD plants (Table S4). This finding
indicates that the beneficial effects produced by AMF inoculation on berry phenolic content
under warming conditions (Torres et al., 2016) was higher under LD in comparison to ED,
obtaining wines with improved nutritional and nutraceutical value (Gabriele et al., 2016).
Similarly, Baslam and Goicoechea (2012) reported that AMF colonization improved the
accumulation of anthocyanins in leaves of lettuce especially under water deficit conditions,
which may be due to ability of AMF to stimulate the expression of key genes of the
phenylpropanoid pathway (Bruisson et al., 2016).

In CL-1089, total soluble solids, must pH and malic acid were modulated by the three
factors and/or their interactions, but titratable acidity was only affected by elevated
temperatures (Table 3). At 24/14°C, total soluble solids were reduced by the ED treatment, but
such differences disappeared at 28/18°C (TxI, P<0.01). Malic acid decreased in response to
elevated temperatures and AMF inoculation under ED and LD, which underlines the interactive
effects of all factors on berry quality (TxMxI, P<0.05) (Bonada et al., 2015). Furthermore, TPI
was significantly modified by the combination of different factors (TxM, P<0.01, TxI, P<0.05,
and Mxl, P<0.01) (Table 3). In general, TPI diminished in response to AMF inoculation or ED
irrigation, but interestingly, the deleterious effect of the —M-ED treatment did not appear in
+M-ED plants. Furthermore, total anthocyanin content was significantly modulated by the
interaction between all factors (TxMxI, P<0.05). At 24/14°C, AMF inoculation and/or the ED
treatment reduced the content of anthocyanins in berries. However, such differences were
alleviated at warm temperatures (Table 3) which is in agreement with our previous
observations showing that CL-1089 was quite tolerant of elevated temperatures (Torres et al.,
2016). Interestingly, although in the study of Torres et al. (2016) AMF colonization
deteriorated some aspects of berry quality of CL-1089, the current study shows that the
irrigation schedule may modify this pattern. Thus, the loss of anthocyanins detected in —M28-

LD plants in comparison with =M24-LD plants did not occur in +M-LD plants when cultivated at
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28/18°C instead of 24/14°C. This observation highlights the potential benefit of AMF
inoculation on phenolic content maintenance under LD conditions applied to CL-1089 (Table
S5).

In CL-843, the berry quality parameters were significantly modified by warm temperatures
and ED irrigation, as indicated by increased concentration of total soluble sugars, must pH and
decreased titratable acidity (TxI, P<0.001, P<0.01, and P<0.01, respectively) (Table 4). In
contrast to other clones, the content of malic acid was modulated by mycorrhization and
irrigation but not by temperature, which highlights a clonal diversity within the Tempranillo
variety in malate metabolism under warm temperatures. Similarly, Sadras et al. (2013)
observed great phenotypic plasticity in the responsiveness for some traits such as titratable
acidity and must pH. Furthermore, all factors contributed to changes in TPl and anthocyanins
as highlighted by the interaction between them (TxMxI, P<0.01 for TPl and P<0.001 for
anthocyanins). Regarding TPI, data showed that the +M28-LD treatment performed better
than the +M28-ED treatment (Table S6). With regard to anthocyanins accumulated in berries
of plants grown at 24/14°C, both water restriction regimes (ED and LD) resulted in decreased
anthocyanin contents in comparison with levels found in FlI plants (-M24-Fl or +M24-Fl), this
effect being more pronounced in —M than in +M plants (Table S6). In general, anthocyanin
content was reduced under elevated temperatures but the impact was also lower in +M than
in —M plants., In fact, in CL-843, the loss of anthocyanins detected in -M28-LD plants was not
found in +M28-LD plants, in comparison with —-M24-LD and +M24LD respectively. This finding
supports the notion that benefits of AMF under elevated temperature on berry composition

(Torres et al., 2016) could be accentuated in combination with water deficit.

3.5. Antioxidant capacity

Figure 4 shows the results obtained from the DPPH assay performed in must in order to
test its total antioxidant capacity. In CL-260 and CL-1089, all factors accounted for modifying
total antioxidant capacity of berry extracts (TxMxI, P<0.05). In CL-260, there were small
changes in total antioxidant capacity, and only + +M28-FI plants exhibited a significant
reduction in this parameter under warm temperatures. However, in CL-1089, AMF inoculation
exerted a positive effect on antioxidant capacity, which was especially accentuated in +M28-Fl
and +M28-ED treatments. In CL-843, total antioxidant capacity was modulated by the
interaction between temperature and mycorrhization (TxM, P<0.001). Our data also revealed

that elevated temperatures reduced total antioxidant capacity in —M28 plants but it was
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clearly improved in +M28 plants regardless irrigation regime applied (Figure 4). These findings
suggest that in this clone, the combination of AMF inoculation and elevated temperatures
exerted an additive effect in improving antioxidant power (Maya and Matsubara, 2013; Torres

et al., 2016).

3.6. Principal component analysis

Figure 5A shows the score plot obtained by PCA where samples of each clone are grouped
in the plot of the first and second principal components: PC1 versus PC2. Here, PC1 accounted
for about 27.66% of the total variance while PC2 covered 20.30%. Different Tempranillo clones
and AMF inoculated or uninoculated plants could not be clearly distinguished (Figure 5A).
However a clear distinction between plants subjected to different irrigation treatments was
shown across PC1. On the other hand, temperature treatments were separated along PC2.
These findings reveal that, in our experimental model, abiotic factors (air temperature and
water regime) were more determinant than biotic factors (Tempranillo clones and
mycorrhization) for berry quality. However, the selection of a given clone of Tempranillo
and/or the application of the mycorrhizal inoculum under specific environmental conditions
modulated some concrete aspects related to characteristics (Table 1) and quality (Figure 4,
Tables 2, 3 and 4) of berries, which was demonstrated by the significant interactions between
the main factors reflected in the results of ANOVA.

The loading plot (Figure 5B) highlighted the importance of W ,4 E-L35, TPI, anthocyanin, pH
and acidity levels in explaining variance across PCl. Separation between temperature
treatments was related to '¥,4 at the final stages of berry ripening (E-L37 and E-L38), the days
between veraison to berry maturity and total soluble solids. This analysis also showed that LD
and Fl appeared together under both temperature conditions, reinforcing the idea that LD
irrigation could continue being valid under a projected warming scenario in order to maintain
berry quality and antioxidant properties. With the aim to understand the different
performance of biotic factors (clones and mycorrhization) in each temperature two more PCA
were conducted (Figure 6). Figure 6A and 6B show the score and the loading plots generated
at 24/14°C while Figure 6C and 6D correspond to 28/18°C conditions. At 24/14°C irrigation
treatments were separated along PC1 which explained the 33.36% of the variance whereas
PC2 covered 15.95%. Separation was due to the content of total anthocyanins, TPI, titratable
acidity, W,q E-L34, pH, and the number of days between veraison and maturity. Results
highlight the similarities between LD and FI at 24/14°C in the quality parameters and

phenology data, but clones and mycorrhizal treatments were not clearly distinguished (Figure
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6A). On the other hand, the two first principal components from data of warming conditions
covered 27.39% and 14.95% of the total variance, respectively. ED was distinguished from FI
and LD due to PC1, according to their W4 E-L34, ¥ 4 E-L35, total anthocyanins, titratable
acidity and days from veraison to maturity. However, PC2 allowed establishing a difference
between Fl and LD treatments (Figure 6C) in relation with W4 E-L37, ¥4 E-L38 and the °Brix
(Figure 6D). This result is not surprising due to the treatments were similar till berries reached
E-L37 and this period matched with the sugar accumulation period which has been recently
shown to be faster under water deficit and warming (Bonada et al., 2015). Additionally, the
PC2 conducted at 28/18°C showed a slightly separation between —M and +M within each
irrigation treatment (FI and LD) (Figure 6D), suggesting that the effect of AMF is more
pronounced at 28/18°C. Under elevated air temperature and LD irrigation the association of
Tempranillo grapevine with the mycorrhizal fungus R. intraradices favoured the antioxidant
capacity of berries (Figure 4) in CL-843, and induced the accumulation of anthocyanins in
berries of CL-260 (Table S4) and CL-843 (Table S6). Because Tempranillo clones responded
differently to the inoculation with R. intraradices and responses varied according to the
environmental conditions, we completely agree with Sinclair et al. (2014) when they concluded
that it may be profitable to identify the AMF inoculants most suitable for a given cultivar in a

given environment.

4, Conclusions

In a scenario of climate change, effective water management should accomplish the dual
purpose of reducing water supply at certain phenological stages to improve grape quality traits
while ensuring plant water status to counteract the deleterious effects of elevated
temperature in water-stressed plants. The findings in this study indicate that AMF inoculation
may alleviate the negative effects of water restriction and warming conditions in some clones
of Tempranillo grapevines. In general, post-veraison (LD) water deficit performed better than
pre-veraison (ED) water deficit but such differences were attenuated at -elevated
temperatures. Furthermore, at 28/18°C, the potential benefits of LD can be improved by AMF
inoculation because the loss of anthocyanins detected in the non-mycorrhizal plants did not
occur when plants were inoculated with AMF; this benefit, however, was dependent on
Tempranillo intravarietal differences. Our results suggest that the implementation of measures
to promote the association of grapevines with AMF could contribute to optimize effects of
irrigation strategy on berry properties under future warming conditions. This research also

offers the first evidence that the combined effect of water and temperature stress varied
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depending on AMF inoculation and the clone studied. Future assays with different mycorrhizal
inoculants may help to select the most adequate fungal species for benefiting yield and/or

berry quality of each clone of Tempranillo cultivated under predicted warming scenarios.
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Table 1. Main effects and their interactions on berry characteristics from fruit-bearing cuttings of
Tempranillo clones (CL-260, CL-1089, CL-843) inoculated with arbuscular mycorrhizal fungi (+M) or
uninoculated (-M), grown at 24/14°C or 28/18°C (day/ night) temperatures and subjected to different

irrigation regimes (Fl: full irrigation; ED, early season water deficit; LD, late season water deficit).

CL-260 CL-1089 CL-843
Berry mass Relative skin ~ Berry mass  Relative skin ~ Berry mass  Relative skin
(g FM berry™) mass (g FM berry™) mass (g FM berry™) mass
(% berry FM) (% berry FM) (% berry FM)

Main effects
Temperature (T)
24 0.99 30.6 1.00 28.1 0.89 29.5
28 0.86 29.5 0.90 28.1 0.99 28.4
Mycorrhization (M)
-M 0.99 31.2 0.88 b 30.4a 0.97 30.0
+M 0.87 28.9 1.03 a 25.8b 0.91 27.9
Irrigation (1)
Fl 1.16 30.2 1.19 229b 1.09a 25.8
ED 0.54 36.6 0.47 35.4a 0.52b 36.7
LD 1.08 23.3 1.19 26.0b 1.21a 24.3
Two-factor interactions
-M24 1.06 314 0.91 30.7 0.90 340a
+M24 0.92 29.7 1.08 25.5 0.88 249b
-M28 0.92 30.9 0.84 30.1 1.04 25.9b
+M28 0.81 28.1 0.97 26.1 0.94 309a
24FI 1.18 a 346b 1.19ab 23.1 1.06 283D
24ED 0.51c 33.2b 0.46 ¢ 33.9 0.55 33.7b
241D 1.29a 23.8¢c 1.35a 27.3 1.06 26.5 bc
28Fl 1.14a 25.7 ¢ 1.20ab 22.6 1.12 23.3¢c
28ED 0.58 ¢ 40.1a 0.48 ¢ 37.0 0.50 39.7a
28LD 0.88b 22.7 ¢ 1.03b 24.7 1.36 22.2¢c
-M-FI 1.20 34,5 1.10 23.7 1.03 27.3
-M-ED 0.62 35.0 0.47 36.7 0.64 39.3
-M-LD 1.15 24.1 1.06 30.7 1.24 23.3
+M-FI 1.12 25.9 1.29 22.0 1.15 24.3
+M-ED 0.46 38.3 0.47 34.2 0.40 34.1
+M-LD 1.01 22.5 1.32 21.3 1.18 25.3
ANOVA
Temperature (T) * ns ns ns ns ns
Mycorrhization (M) * ns * * ns ns
|rrigati0n (l) 3k %k %k 3k %k %k %k 3k %k 3k %k % %k %k %k %k %k
<M ns ns ns ns ns rEx
Txl * %k * %k * ns ns *
Mx| ns ns ns ns ns ns
TxMx| ns Rk ns ns ns ok

Values represent means separated by Duncan’s test (at P = 0.05). Within columns, means followed by
different letters are significantly different as affected by the main factors temperature (24, 28),
mycorrhization (+M, —M), irrigation (FI, ED, LD) and their interactions. *P < 0.05; **P < 0.01; ***P <

0.001; ns, not significant (P > 0.05). FM indicates fresh matter.
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Table 2. Main effects and their interactions on berry quality parameters from fruit-bearing cuttings

of Tempranillo CL-260 inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown
at 24/14°C or 28/18°C (day/ night) temperatures and subjected to different irrigation regimes (Fl: full

irrigation; ED, early season water deficit; LD, late season water deficit).

Total soluble Must Titratable Malic acid TPI Anthocyanins
solids pH acidity (g LY (AU) (mg LY
(°Brix) gL
Main effects
Temperature (T)
24 22.0 4.17 5.7a 7.6 40.0 505.5
28 22.3 4.22 46b 5.6 36.5 456.2
Mycorrhization (M)
-M 22.0 423 5.0 6.6 40.8 484.9
+M 224 4.16 5.2 6.5 35.4 473.4
Irrigation (1)
Fl 211 3.97b 5.8a 6.5 44.4 615.3
ED 22.6 4.46 a 4.1b 6.5 31.3 341.1
LD 22.8 416 b 55a 6.8 41.3 530.9
Two-factor
interactions
-M24 22.0 4.20 5.5 7.1b 40.5a 550.9
+M24 22.0 4.10 5.9 8.1a 39.6a 467.7
-M28 22.0 4.20 4.6 6.2b 41.0a 437.8
+M28 22.7 4.20 4.6 5.0c 309b 479.7
24F| 21.8b 4.00 6.3 7.0 48.9 a 713.4a
24ED 22.4b 4.50 4.6 8.1 29.0b 287.9¢c
241D 21.8b 4.10 6.2 7.8 49.5a 660.2 a
28FI 20.4c 3.90 5.4 6.0 41.1a 541.7 b
28ED 22.8 ab 4.50 3.6 4.9 339b 400.2 b
28LD 23.8a 4.30 4.8 5.9 35.1b 4339b
-M-FI 20.6 4.10 5.5 7.1b 51.2a 630.7
-M-ED 22.7 4.50 4.0 4.7c 28.4b 351.6
-M-LD 22.6 4.10 5.6 8.1a 42.9 ab 472.5
+M-FI 21.6 3.80 6.2 5.9c 355b 594.9
+M-ED 22.5 4.50 4.2 83a 334b 3334
+M-LD 23.0 4.20 5.3 5.5¢c 39.1b 608.7
ANOVA
Temperature (T) ns ns Hokk Hokk *ok *
Mycorrhization (M) ns ns ns ns * ns
Irrigation (l) * k% %k k %k 3k k ns * k¥ * k¥
TxM ns ns ns *k * ns
Txl % %k %k ns ns ns %k %k %k %k %k
Mx| ns ns ns *Ex rEx ns
TxMxI ns ns ns *k ns *

Values represent means separated by Duncan’s test (at P = 0.05). Within columns, means followed by
different letters are significantly different as affected by the main factors temperature (24, 28),
mycorrhization (+M, —M), irrigation (FI, ED, LD) and their interactions. *P < 0.05; **P < 0.01; ***P <

0.001; ns, not significant (P > 0.05). AU indicates absorbance units.
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Table 3. Main effects and their interactions on berry quality parameters from fruit-bearing cuttings

of Tempranillo CL-1089 inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M),
grown at 24/14°C or 28/18°C (day/ night) temperatures and subjected to different irrigation regimes

(FI: full irrigation; ED, early season water deficit; LD, late season water deficit).

Total soluble Must Titratable Malic acid TPI Anthocyanins
solids pH acidity (g LY (AU) (mg LY
(°Brix) (gL
Main effects
Temperature (T)
24 21.0 4.15 5.7a 6.4 36.7 443.8
28 22.6 4.37 3.7b 4.9 45.1 459.1
Mycorrhization (M)
-M 20.9 4.23 4.8 6.2 47.4 481.8
+M 22.7 4.30 4.6 5.0 33.9 420.2
Irrigation (1)
FI 21.8 4.16 4.8 5.6 44.3 508.2
ED 20.4 4.36 4.3 5.2 35.4 285.7
LD 23.1 4.27 5.0 6.1 43.1 586.8
Two-factor
interactions
-M24 19.8 4.10 5.8 6.3a 39.2b 490.4
+M24 221 4.20 5.7 6.5a 34.2b 397.2
-M28 22.0 4.40 3.9 6.2a 56.6 a 472.4
+M28 23.3 4.40 3.5 35b 33.6b 445.8
24F| 216a 4.10c 5.8 54b 34.8b 584.1a
24ED 18.6b 430b 5.2 59b 340b 199.4 ¢
241D 22.7 a 4.10c 6.3 79a 42.1 ab 629.3 a
28FI 22.1a 4.20 bc 3.9 5.8b 53.7a 432.4b
28ED 22.3a 4.50a 3.3 4.4b 373b 400.8 b
28LD 235a 4.40a 3.8 4.4b 44.1 ab 544.3 a
-M-FI 20.6 4.10 5.4 5.6b 579a 572.0b
-M-ED 20.1 4.40 4.2 5.6b 38.1 bc 252.3¢
-M-LD 22.0 4.20 5.0 7.6a 47.8 ab 659.6 a
+M-FI 23.1 4.20 4.4 5.6b 30.7 ¢ 444.5b
+M-ED 20.8 4.40 4.4 4.7b 32.8¢ 319.2¢
+M-LD 24.2 4.30 5.1 46b 38.5 bc 513.9b
ANOVA
Temperature (T) 3k k ok 3k k ok kk ok kk ok * k¥ ns
Mycorrhization (M) ok * ns Hk Hkok *
Irrigation (1) ok ok ns ns *ok Hokk
TxM ns ns ns *EX rEx ns
Txl * %k * ns 3k %k % %k %k %k %k %k
Mx| ns ns ns *E *Ex *
TxMxI ns ns ns * ns *

Values represent means separated by Duncan’s test (at P = 0.05). Within columns, means followed by
different letters are significantly different as affected by the main factors temperature (24, 28),
mycorrhization (+M, —M), irrigation (FI, ED, LD) and their interactions. *P < 0.05; **P < 0.01; ***P <

0.001; ns, not significant (P > 0.05). AU indicates absorbance units.
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Table 4. Main effects and their interactions on berry quality parameters from fruit-bearing cuttings

of Tempranillo CL-843 inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown

at 24/14°C or 28/18°C (day/ night) temperatures and subjected to different irrigation regimes (Fl: full

irrigation; ED, early season water deficit; LD, late season water deficit).

Main effects
Temperature (T)
24

28
Mycorrhization
(M)

-M

+M

Irrigation (1)

FI

ED

LD

Two-factor
interactions
-M24

+M24

-M28

+M28

24F|
24ED
241D
28FI
28ED
28LD

-M-Fl

-M-ED

-M-LD

+M-FI

+M-ED

+M-LD

ANOVA
Temperature (T)
Mycorrhization
(M)

Irrigation (1)
™M

TxI

Mx|

TxMxI

Total soluble

solids
(°Brix)

20.8
21.6

21.2
21.2

215
20.7
21.4

19.94 c
21.61ab
2241 a
20.82 bc

21.37 ab
20.77 b
20.20b

21.67 ab
20.58 b
22.65a

21.48
20.95
21.10
21.50
20.40
21.75

% %k

ns
*

% %k

% %k

ns
ns

Must
pH

4.13
4.35

4.25
4.23

4.13
4.43
4.16

4.10
4.10
4.40
4.30

4.00b
4.40a
4.00b
430a
4.40a
4.30a

4.20
4.40
4.20
4.10
4.50
4.10

% %k %k

ns

% %k %k

ns
* %

ns
ns

Titratable
acidity

(gL

5.3
4.0

4.6
4.7

5.0
3.7
53

5.2
5.3
4.0
4.1

5.7a

3.8 bc

6.3a
440
3.5¢c

4.2 bc

4.9
3.7
5.2
5.1
3.6
5.3

% %k %k

ns

% % %

ns
*%

ns
ns

Malic acid

(gL

6.2
5.9

6.9a

52b

6.1b

ns

% % %

% % %

ns
ns
ns
ns

51c
7.0a

6.8
5.7
7.1
4.8

6.2
4.8
7.7
6.1
53
6.4

6.7
6.2
7.8
5.5
3.9
6.3

TPI
(AU)

39.0
40.9

40.6
39.2

49.0
32.6
40.0

36.8b
41.4a
445 a
37.2b

49.6
30.5
38.3
48.5
34.5
41.7

511
30.6
43.4
47.0
34.8
36.6

ns

ns
* k%

ns

ns
* %

Anthocyanins
(mgL?)

569.9
427.0

509.2
483.3

619.4
316.1
599.3

581.1
557.4
437.3
416.7

784.6 a
304.6d
664.6 b
454.3 c
326.2d
534.0b

678.6
305.0
612.1
560.3
328.9
586.5

% % %k

ns
* ok ok

ns
* ok ok

ns
* ok %

Values represent means separated by Duncan’s test (at P = 0.05). Within columns, means followed by

different letters are significantly different as affected by the main factors temperature (24, 28),

mycorrhization (+M, —M), irrigation (FI, ED, LD) and their interactions. *P < 0.05; **P < 0.01; ***P <

0.001; ns, not significant (P > 0.05). AU indicates absorbance units.
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Figure legends

Figure 1. Microscopic image (x 100) of fungal structures from Rhizophagus intraradices colonizing
roots of inoculated grape plants. h = hyphae; v = vesicle.

Figure 2. Relative mycorrhizal dependency (RMD) for yield of fruit-bearing cuttings of Tempranillo
clones grown at 24/14°C or 28/18°C (day/ night) temperatures and subjected to different irrigation
regimes (Fl, full irrigation; ED, early season deficit irrigation; LD, late season deficit irrigation). Values
represent means * SE (n = 3). Data exceeding 100% indicate that mycorrhizal symbiosis improved
yield. A three-way ANOVA analysis was performed to evaluate the effects of temperature (T),
irrigation (1), clone (C) and their interaction. ns and *** indicate non-significance or significance at
0.1% probability levels, respectively. Histograms with different letter indicate that values differed
significantly (P<0.05).

Figure 3. Pre-dawn leaf water potential (¥,q4) recorded at different stages of berry ripening in fruit-
bearing cuttings of Tempranillo clones inoculated with arbuscular mycorrhizal fungi (+M) or
uninoculated (-M), grown at 24/14°C or 28/18°C (day/night) temperatures and subjected to different
irrigation regimes (Fl, full irrigation; ED, early season deficit irrigation; LD, late season deficit
irrigation). Values represent means = SE (n = 3). A three-way ANOVA analysis was performed to
evaluate the effects of temperature (T), mycorrhizal inoculation (M), irrigation (I) and their
interactions. ns, *, ** and *** indicate non-significance or significance at 5%, 1%, and 0.1%
probability levels, respectively.

Figure 4. Total antioxidant capacity of berries from fruit-bearing cuttings of Tempranillo clones
inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown at 24/14°C or 28/18°C
(day/night) temperatures and subjected to different irrigation regimes (Fl, full irrigation; ED, early
season deficit irrigation; LD, late season deficit irrigation). Values represent means + SE (n = 3). A
three-way ANOVA analysis was performed to evaluate the effects of temperature (T), mycorrhizal

inoculation (M), irrigation (I) and their interactions. ns, *, **, and *** indicate non-significance or
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significance at 5%, 1%, and 0.1% probability levels, respectively. When interaction between the main

factors ‘temperature, T’, ‘mycorrhizal inoculation, M’ and ‘irrigation, I’ was significant, histograms

with different letter indicate that values differed significantly (P<0.05).

Figure 5. Principal component analysis score (A) and loading plot (B) obtained from the statistical
analysis of plant and berry characteristics and total antioxidant capacity data of 72 studied samples
from fruit-bearing cuttings of Tempranillo clones inoculated with arbuscular mycorrhizal fungi (+M)
or uninoculated (-M), grown at 24/14°C or 28/18°C (day/ night) temperatures and subjected to
different irrigation regimes (Fl, full irrigation; ED, early season deficit irrigation; LD, late season deficit

irrigation).

Figure 6. Principal component analysis score (A, C) and loading plot (B, D) obtained from the
statistical analysis of plant and berry characteristics and total antioxidant capacity data of 36 studied
samples from fruit-bearing cuttings of Tempranillo clones grown at 24/14°C (day/ night) (A, B) or at
28/18°C (day/ night) (C, D), inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M)
and subjected to different irrigation regimes (Fl, full irrigation; ED, early season deficit irrigation; LD,

late season deficit irrigation).
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Figure 1.
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Summary of the agronomic characteristics of the Tempranillo clones used in this
study. Data provided by Institute of Sciences of Vine and Wine (Logrofo, Spain)
were collected and averaged over the 2009-2012 period from plants grown in

the field.

Phenology from fruit-bearing cuttings of Tempranillo clones (CL-260, CL-1089,
CL-843) inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M),
grown at 24/14°C or 28/18°C (day/ night) temperatures and subjected to
different irrigation regimes (FI: full irrigation; ED, early season water deficit; LD,

late season water deficit).

Berry characteristics from fruit-bearing cuttings of Tempranillo clones (CL-260,
CL-1089, CL-843) inoculated with arbuscular mycorrhizal fungi (+M) or
uninoculated (-M), grown at 24/14°C or 28/18°C (day/ night) temperatures and
subjected to different irrigation regimes (Fl: full irrigation; ED, early season

water deficit; LD, late season water deficit).

Berry quality parameters from fruit-bearing cuttings of Tempranillo CL-260
inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown

at 24/14°C or 28/18°C (day/ night) temperatures and subjected to different
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Table S5.

Table S6.

Figure S1.

Figure S2.
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irrigation regimes (Fl: full irrigation; ED, early season water deficit; LD, late

season water deficit).

Berry quality parameters from fruit-bearing cuttings of Tempranillo CL-1089
inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown
at 24/14°C or 28/18°C (day/ night) temperatures and subjected to different
irrigation regimes (FI: full irrigation; ED, early season water deficit; LD, late

season water deficit).

Berry quality parameters from fruit-bearing cuttings of Tempranillo CL-843
inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown
at 24/14°C or 28/18°C (day/ night) temperatures and subjected to different
irrigation regimes (Fl: full irrigation; ED, early season water deficit; LD, late

season water deficit).

Soil temperature recorded during a week each hour in eight pots subjected to

different temperature treatments. Values represent means * SE (n = 4).

Volumetric soil water content recorded daily from fruit set to maturity in fruit-
bearing cuttings of Tempranillo clones grown at 24/14°C or 28/18°C (day/night)
temperatures and subjected to different irrigation regimes (Fl, full irrigation; ED,
early season deficit irrigation; LD, late season deficit irrigation). Values represent

means * SE (n = 18).
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Table S1. Summary of the agronomic characteristics of the Tempranillo clones used in this

study. Data provided by Institute of Sciences of Vine and Wine (Logrofo, Spain) were collected

and averaged over the 2009-2012 period from plants grown in the field.

City of origin
(region)
Agronomic
classification
Reproductive
cycle
Yield
Reproductive
cycle
Fruit set-veraison
(days)
Veraison-
maturity (days)
Yield components
Yield (kg vine™)
Bunch mass (g
bunch™)
Berry mass (g)

CL-260 CL-1089 CL-843
San Vicente de la Sonsierra Bargota Oyén (Alava)
(La Rioja) (Navarra)
Short Short Long
Low High High
56 52 61
30 33 56
10.37 21.91 12.65
84 154 199
1.24 2.05 1.50
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Table S2. Phenology from fruit-bearing cuttings of Tempranillo clones (CL-260, CL-1089, CL-
843) inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown at 24/14°C
or 28/18°C (day/ night) temperatures and subjected to different irrigation regimes (FI: full

irrigation; ED, early season water deficit; LD, late season water deficit).

CL-260 CL-1089 CL-843
Fruit set- Veraison- Fruit set- Veraison- Fruit set- Veraison-
veraison maturity veraison maturity veraison maturity
(days) (days) (days) (days) (days) (days)

Treatments
-M24-FI 46 49 43 60 cd 50 56
-M24-ED 47 92 38 70 bc 38 100
-M24-LD 42 46 45 60 cd 52 57
+M24-Fl 42 51 46 76 b 52 66
+M24-ED 40 82 40 98 a 43 91
+M24-LD 36 65 38 54 de 44 55
-M28-Fl 34 32 34 42 ef 35 50
-M28-ED 34 74 37 66 bcd 38 76
-M28-LD 34 43 32 46 ef 34 41
+M28-Fl 28 37 34 38f 33 50
+M28-ED 39 71 34 63 bcd 33 81
+M28-LD 36 40 32 45 ef 34 37
Main effects
Temperature
M
24 42 a 64 a 42 a 70 47 71a
28 34b 49 b 34 b 50 34 56 b
Mycorrhizatio
n (M)
-M 39 56 38 57 41 63
+M 37 58 37 62 40 63
Irrigation (1)
FI 37 42 b 39 54 43 55 b
ED 40 80 a 37 74 38 87 a
LD 37 48 b 37 51 41 48 b
Two-factor
interactions
-M24 45 62 42 63 47 71
+M24 43 66 41 76 47 71
-M28 34 49 34 51 35 56
+M28 34 49 33 49 33 56
24FI 44 50 45 68 51a 61
24ED 44 87 39 84 41b 96
241LD 39 55 42 57 48 a 56
28FI 31 34 34 40 34 b 50
28ED 36 72 35 64 35b 79
28LD 35 41 32 45 34 b 39
-M-Fl 40 40 39 51 43 53
-M-ED 41 83 37 68 38 88
-M-LD 38 44 39 53 43 49
+M-FI 35 44 40 57 43 58
+M-ED 39 77 37 80 38 86
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+M-LD

ANOVA

Temperature Rk
(M

Mycorrhizatio ns
n (M)

Irrigation (1) ns
<M ns
TxI| ns
MxI| ns
TxMxI| ns

36 52

%k %k %

ns
* ok
ns
ns
ns
ns

%k %k %

ns

ns
ns
ns
ns
ns

35

* %k %k

* %k %k

ns

50

* %k %k

ns

ns
ns
*
ns
ns

39

46

* %k %

ns
* %k ok
ns
ns
ns
ns

Values represent means (n = 3) separated by Duncan’s test (at P = 0.05). Within columns,

means followed by different letters are significantly different as affected by the main factors

temperature (24, 28), mycorrhization (+M, —M), irrigation (Fl, ED, LD) and their interactions. *P

< 0.05; ***P < 0.001; ns, not significant (P > 0.05).
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Table S3. Berry characteristics from fruit-bearing cuttings of Tempranillo clones (CL-260, CL-
1089, CL-843) inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown
at 24/14°C or 28/18°C (day/ night) temperatures and subjected to different irrigation regimes

(FI: full irrigation; ED, early season water deficit; LD, late season water deficit).

CL-260 CL-1089 CL-843
Berry mass Relative skin Berry mass Relative skir Berry mass Relative skir
(g FM berry’ mass (g FM berry’ mass (g FM berry’ mass

Y (% berry Y (% berry Y (% berry
FM) FM) FM)

Treatments
-M24-Fl 1.16 459a 1.08 20.8 1.06 33.2b
-M24-ED 0.59 25.9 bc 0.47 36.6 0.63 439 a
-M24-LD 1.44 22.5¢c 1.19 34.8 1.01 25.1c
+M24-FI 1.20 23.3¢c 1.31 25.4 1.06 23.4c
+M24-ED 0.42 40.6 a 0.44 31.2 0.47 23.5¢c
+M24-LD 1.13 25.2 bc 1.51 19.8 1.11 27.8 ¢
-M28-Fl 1.24 231c 1.13 26.6 1.00 215¢c
-M28-ED 0.65 44.1a 0.46 36.9 0.65 346b
-M28-LD 0.86 25.7c 0.93 26.7 1.46 21.6¢c
+M28-Fl 1.03 28.4 bc 1.27 18.6 1.24 25.1c
+M28-ED 0.50 36.1 ab 0.50 37.2 0.34 44.7 a
+M28-LD 0.89 19.7c 1.13 22.7 1.25 22.8¢c

Values represent means (n = 3). When interaction between the main factors ‘temperature, T,
‘mycorrhizal inoculation, M’ and ‘irrigation, I’ was significant, histograms with different letter

indicate that values differed significantly (P<0.05). FM indicates fresh matter.
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Table S4. Berry quality parameters from fruit-bearing cuttings of Tempranillo CL-260
inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown at 24/14°C or
28/18°C (day/ night) temperatures and subjected to different irrigation regimes (FI: full

irrigation; ED, early season water deficit; LD, late season water deficit).

Total soluble Must Titratable Malic acid TPI Anthocyanins

solids pH acidity (g L'l) (AU) (mg L'l)

(°Brix) (gL?
Treatments
-M24-FI 21.7 4.11 5.9 6.6b 53.7 8239a
-M24-ED 229 4.47 4.3 6.6b 21.3 268.0e
-M24-LD 21.4 4.06 6.2 8.2ab 53.0 655.1 ab
+M24-FI 22.0 3.90 6.6 75b 44.2 602.9b
+M24-ED 21.8 4.43 4.8 9.6a 34.1 301.2e
+M24-LD 22.3 4.04 6.2 73b 46.1 665.3 ab
-M28-Fl 19.6 4.09 5.1 7.7 ab 49.7 514.7 bc
-M28-ED 22.5 4.44 6.7 2.7c 35.5 435.3 cd
-M28-LD 23.8 4.19 5.0 8.1ab 36.8 362.9d
+M28-Fl 21.2 3.77 5.7 43c 26.7 586.8 bc
+M28-ED 23.1 4.49 3.5 70b 32.6 372.1d
+M28-LD 23.7 4.35 4.5 3.7c 32.1 552.1 bc

Values represent means (n = 3). When interaction between the main factors ‘temperature, T,
‘mycorrhizal inoculation, M’ and ‘irrigation, I’ was significant, histograms with different letter
indicate that values differed significantly (P<0.05). FM indicates fresh matter. AU indicates

absorbance units.
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Table S5. Berry quality parameters from fruit-bearing cuttings of Tempranillo CL-1089
inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown at 24/14°C or
28/18°C (day/ night) temperatures and subjected to different irrigation regimes (FI: full

irrigation; ED, early season water deficit; LD, late season water deficit).

Total soluble Must Titratable Malic acid TPI Anthocyanins

solids pH acidity (g L'l) (AU) (mg L'l)

(°Brix) gLlh
Treatments
-M24-Fl 20.6 3.98 6.3 5.4 bc 43.1 676.7 ab
-M24-ED 17.7 4.24 5.1 51c 32.6 134.3d
-M24-LD 213 4.10 5.9 8.4a 45.0 778.8 a
+M24-FI 22.5 4.24 5.3 5.4 bc 27.5 491.4b
+M24-ED 19.5 4.26 5.3 6.7b 354 264.5d
+M24-LD 24.1 4.12 6.6 7.3 ab 39.3 479.8 bc
-M28-FI 20.7 4.16 4.4 5.7 bc 73.6 467.3 bc
-M28-ED 22.5 4.51 3.2 6.1b 455 409.3c
-M28-LD 22.7 4.40 4.0 6.8b 50.6 540.4 b
+M28-FI 23.6 4.25 3.4 5.8 bc 33.8 397.4c
+M28-ED 22.1 4.44 3.4 2.8d 29.2 392.0c
+M28-LD 24.3 4.49 3.6 1.9d 37.7 548.0b

Values represent means (n = 3). When interaction between the main factors ‘temperature, T,
‘mycorrhizal inoculation, M’ and ‘irrigation, I’ was significant, histograms with different letter
indicate that values differed significantly (P<0.05). FM indicates fresh matter. AU indicates

absorbance units. AU indicates absorbance units.
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Table S6. Berry quality parameters from fruit-bearing cuttings of Tempranillo CL-843
inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown at 24/14°C or
28/18°C (day/ night) temperatures and subjected to different irrigation regimes (FI: full

irrigation; ED, early season water deficit; LD, late season water deficit).

Total soluble Must Titratable Malic acid TPI Anthocyanins

solids pH acidity (g L'l) (AU) (mg L'l)

(°Brix) gLlh
Treatments
-M24-Fl 20.6 3.94 5.9 6.4 48.9 ab 936.0a
-M24-ED 20.5 4.42 3.8 6.1 22.1c 196.7 e
-M24-LD 18.7 4.03 6.0 7.8 44.2 ab 738.8b
+M24-F| 22.1 4.01 5.6 5.9 50.2a 633.2b
+M24-ED 21.0 4.41 3.8 3.6 41.7b 448.6 cd
+M24-LD 21.7 3.97 6.6 7.6 32.4 bc 590.3 bc
-M28-FI 22.3 4.40 4.0 7.0 53.3a 421.2d
-M28-ED 21.4 4.37 3.6 6.4 39.2 bc 413.3d
-M28-LD 23.5 4.35 4.4 7.7 42.7b 485.3 cd
+M28-FI 20.9 1.20 4.7 5.0 437 b 487.4 cd
+M28-ED 19.8 4.51 3.4 4.3 29.7 c 239.1e
+M28-LD 21.8 4.29 4.0 5.0 40.8b 582.8 bc

Values represent means (n = 3). When interaction between the main factors ‘temperature, T,
‘mycorrhizal inoculation, M’ and ‘irrigation, I’ was significant, histograms with different letter
indicate that values differed significantly (P<0.05). FM indicates fresh matter. AU indicates

absorbance units.
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Abstract

Arbuscular mycorrhizal symbiosis is a promising tool for improving the quality of grapes under
changing environments. Therefore, the aim of this research was to determine if the ability of
arbuscular mycorrhizal fungi (AMF) to enhance phenolic content (specifically, anthocyanins) in
a climate change framework could be mediated by alterations in berry ABA metabolism during
ripening. The study was carried out on fruit-bearing cuttings of cv. Tempranillo (CL-1048 and
CL-1089) inoculated (+M) or not (-M) with AMF. Two experimental designs were
implemented. In the first experiment +M and -M plants were subjected to two temperatures
(24/14°C or 28/18°C (day/night)) from fruit set to berry maturity. In the second experiment,
+M and -M plants were subjected to two temperatures (24/14°C or 28/18°C (day/night))
combined with two irrigation regimes (late water deficit (LD) and full irrigation (FI)). At 28/18°C
AMF contributed to an increase in berry anthocyanins and modulated ABA metabolism,
leading to higher ABA-GE and 7'OH-ABA and lower phaseic acid (PA) in berries compared to —
M plants. Under the most stressful scenario (LD and 28/18°C), at harvest +M plants exhibited
higher berry anthocyanins and 7°OH-ABA and lower PA and dihydrophaseic acid (DPA) levels
than —M plants. These findings highlight the involvement of ABA metabolism into the ability of

AMF to improve some traits involved in the quality of grapes under global warming scenarios.

Keywords: Abscisic acid; anthocyanins; arbuscular mycorrhizal fungi; restricted irrigation;

global warming; grapevines
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1. Introduction

Global warming is expected to reduce food production in the future. Viticulture is one of those
sectors most sensitive to both short- and long-term climate changes due to the narrow
cultivation niches of vines [1]. Climate scenarios for South Mediterranean Europe predict an
increase in temperature, alterations in rainfall patterns and an increasing frequency of
extreme climate events, all of which will negatively affect viticulture in the region [2, 3]. In
spite of accounting for 14% of the surface area of vineyards in the world, the Spanish surface
area has fallen from 1196 kha in 1995 to 975 kha in 2016 and in this context future projections
are unlikely to be positive without adaptation. Almost 90% of the total Spanish grape
production is used to produce wine, with a production of 33.5 MhL in 2017, which represents
a reduction of 5.8% with respect to 2016 [4]. Among red wine varieties, Tempranillo is one of
the dominant varieties in Spain, where it accounts for 21% of the total Spanish vineyard
surface [4]. The Tempranillo variety is characterized by early ripening with a short vegetative
cycle. Although these traits are not relevant for coping with climate change, it is difficult to
change the established grapevine cultivars in a specific region because of the narrow
dependency on consumer preferences which are often linked to a certain particular wine taste
[5]. In this context, producers and markets are clearly aware of the risks and opportunities of

climate change and demand information on future choices[6].

Climate change affects winemaking because it reduces grapevine yields and modifies berry
composition due to its great impact on berry growth and ripening [7]. Among the most
important warming-related effects on grapevines are the significant advance in phenology (i.e.,
budburst, flowering and veraison dates) [8, 9], increases in berry sugar concentrations that
lead to high wine alcohol levels, lower acidity levels, delays in the synthesis of phenolic
compounds [10] and changes in berry skin metabolite profiles [11-13]. In addition to
temperature, the predicted reductions in rainfall imply that vines may require supplemental
irrigation to limit water deficit stress during the grapevine growing season [14]. As a result,
different irrigation programs have been implemented in South Mediterranean areas, which
allow the control of vegetative development and reduction in berry size, improvement of the
cluster microclimate, increases in water use efficiency, and the enhancement of the sugar and

phenolic content of berries[15-18].

Within the climate change scenario, new strategies are crucial to maintaining grape quality

under the future environmental constraints. Maintaining soil quality in order to improve the
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beneficial relationships between plants and arbuscular mycorrhizal fungi (AMF) could be a
suitable option. Considerable progress has been made in the last decade in the use of AMF to
improve plant growth and yield for crop plants in general, but also for grapevines, particularly
as AMF symbiosis plays a major role in the survival of grapevines in their natural habitats [19].
Thus, the adaptation of viticulture to climate change may benefit from AMF since root
colonization increases grapevine growth and nutrition, tolerance to abiotic stresses, protects
against biotic stresses, and increases soil stability [20]. Furthermore, AMF colonization induces
changes in plant secondary metabolism leading to enhanced biosynthesis of polyphenols,

carotenoids or flavonoids [21-25].

Phytohormone abscisic acid (ABA) has been considered as the main mediator of grapevine
response to abiotic stress, such as water deficit [26] or elevated temperature [27, 28].
Furthermore, ABA plays a crucial role in grape berry development and ripening [29, 30]. Thus,
the accumulation of ABA around veraison is accompanied by sugar accumulation, colour
development, and berry softening, suggesting that ABA may play a major role in controlling
several ripening-associated processes [30-33]. Nevertheless, a lack of correlation between
free-ABA in berries and 9-cis-epoxycarotenoid dioxygenase (NCED), the enzyme involved in
the first step of ABA synthesis suggests that compounds derived from ABA
catabolism/conjugation could also be involved in berry ripening [32, 34]. Active ABA can be
metabolized in a variety of ways [35]. It can be conjugated to glucose forming the inactive
ABA-glucose ester (ABA-GE), which is stored or transported [36] or alternatively, ABA can be
catabolized by hydroxylation at the positions 7’, 8 and 9’. Hydroxylation at the 7’ position
produces 7-hydroxy-ABA (7’OH-ABA) and at the 8’ position phaseic acid (PA) and subsequently
dihydrophaseic acid (DPA). Recent research has shown that ABA concentrations and
catabolites were also regulated by the intensity and/or timing of water deficit [31, 37, 38] and

temperature [39].

Plant hormones also interact to regulate the establishment and functioning of symbiotic
associations with AMF [40]. Specifically, it has been demonstrated that ABA is essential for
root colonization and for the functionality of the fungal structures [41]. In view of the role of
ABA in the regulation of some berry ripening processes, and given that ABA concentration is
enhanced by AMF in leaves, especially under abiotic stress [42, 43], it is of interest to
investigate the possible role of AMF inoculation on the levels of free ABA and its catabolites
throughout berry ripening. Therefore, the aim of this research was to determine if the ability

of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of anthocyanins in grapes
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under a climate change framework could be mediated by alterations in the metabolism of ABA
during berry ripening. Previous research has demonstrated that fruit-bearing cuttings are a
useful model system to study the response of berry ripening to environmental factors [ 24, 25,
44-46]. Hence, potted vines were used to control mycorrhizal inoculation and to have

comparable non-inoculated plants.

2. Material and Methods

2.1. Plant material and growth conditions

Vitis vinifera (L.) cuttings from different clones of Tempranillo were obtained from an
experimental vineyard of the Institute of Sciences of Vine and Wine (Logrofio, Spain)
(Denomination of Origin Rioja, North of Spain) during the winter. The study was performed in
two clones (CL) of different origins (CL-1048, from Laguardia (Alava), and CL-1089, from
Bargota (Navarra)) that were selected in the field on the basis on their different agronomic
traits and plant material availability. Both clones have a short reproductive cycle but differed in
yield, which was medium for CL-1048 and high for CL-1089). Dormant 400-500 mm long
cuttings of each clone were selected for fruit-bearing according to the steps originally outlined
by Mullins [47] with slight modifications as described in Ollat et al. [48] and Antolin et al. [49].
Briefly, rooting was induced with indole butyric acid (400 mg L) in a heat-bed (27°C) kept in a
cold room (4°C). Once cuttings had developed roots, they were transplanted to 6.5-L plastic
pots containing a mixture of vermiculite—sand-light peat (2.5:2.5:1, v:v:v). The properties of
the peat (Floragard, Vilassar de Mar, Barcelona, Spain) were pH 5.2—6.0, nitrogen 70-150 mg L’
! P,05 80-180 mg L™, and K,0 140-220 mg L™. The peat was previously sterilised at 100°C for 1

h on 3 consecutive days.

At transplantation, the fruit-bearing cuttings were transferred to two growth chamber-
greenhouses (GCG) adapted to provide different climate change scenarios [50] until berry
maturity was reached. In both GCG, initial growth conditions were a 25/15°C and 50/90%
relative humidity (day/night) regime and natural daylight (photosynthetic photon flux density,
PPFD, was on average 850 umol m™ s™* at midday) supplemented with high-pressure sodium
lamps (SON-T Agro Phillips, Eindhoven, Netherlands) to extend the photoperiod up to 15 h and
ensure a minimum PPFD of 350 pmol m™ s™ at the level of the inflorescence. Humidity and

temperature were controlled using M22W2HT4X transmitters (Rotronic Instrument Corp.,
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Hauppauge, USA). PPFD was monitored with a LI-190SZ quantum sensor (LI-COR, Lincoln, USA).
Under these conditions, plants reached bud-break one week later. In order to improve the
partitioning of stored carbon towards the roots and the reproductive structures, vegetative
growth before flowering was controlled carefully. Thus, only a single flowering stem was
allowed to develop on each plant during growth. Until fruit set, plants were watered twice a
day with a nutrient solution (140 mL day™) with a phosphorus level of 0.30 mM [48] alternated
with water. The electric conductivity of the nutrient solution adjusted to pH 5.5 was 1.46%0.15
mS cm™ as determined with a conductivity meter (524; Crison Instruments SA, Alella, Spain).
Under these conditions, fruit set (Eichhorn and Lorenz (E-L) growth stage 27)[51] took place 30

days after bud break and plants had 4-5- fully expanded leaves.
2.2. Mycorrhizal inoculation

At transplantation, half of the plants were inoculated with the commercial mycorrhizal
inoculum Bioradis Gel (Bioera SLU, Tarragona, Spain) (+M plants). The inoculum consisted of a
mixture of five AMF fungi (Septglomus deserticola, Funneliformis mosseae, Rhizoglomus
intraradices, Rhizoglomus clarum and Glomus aggregatum), containing 100 spores per g of
inoculum and a mixture of rhizobacteria belonging to the Bacillus and Paenibacillus genera (2 x
10° cfu g™). The microbial preparation was diluted in distilled water (1:20) so that each plant
received 1 g of product. The roots of +M fruit bearing cuttings were submerged in the gel for
15 min, and then plants were placed in the pots. In order to discriminate the effects on plant
metabolism due to the action of the mycorrhizal symbiosis, half of the plants were kept as
non-inoculated controls. Uninoculated plants (-M plants) were submerged directly for 15
minutes in the filtrate of mycorrhizal inocula with the objective of restoring rhizobacteria and
other soil free-living microorganisms accompanying AMF and which play an important role in
the uptake of soil resources as well as in the infectivity and efficiency of AMF isolates [52]. The
filtrate was obtained by passing diluted mycorrhizal inoculum through a layer of 15-20-mm
filter paper with particle retention of 2.5 mm (Whatman 42; GE Healthcare, Little Chalfont,
UK). All plants (-M and +M) were fertilized as described previously. Studies carried out by our
group [24] had demonstrated that a phosphorus level of 0.30 mM was sufficient to ensure an
adequate development of -M plants, even under water deficit[25], and not too high to impede

the correct establishment of the mycorrhizal symbiosis.
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2.3. Experimental design

Two separate experimental designs were performed to assess the grapevine responses under
different climate change scenarios. In a first experiment (experiment 1), we chose Tempranillo
CL-1048 because previous data had shown that AMF inoculation improved berry properties in
this clone when subjected to elevated temperatures [24]. Fruit-bearing cuttings from +M or -M
treatments were divided into two GCG to be exposed to each temperature regime: 24/14°C
(day/night) and 28/18°C (day/night) from fruit set (E-L 27 stage) to berry maturity (E-L 38
stage). The 24/14°C temperature regime was selected according to average temperatures
recorded in La Rioja (1981-2010) [53] during the growing season. The 28/18°C temperature
regime was selected according to predictions of a rise of 4.0°C at the end of the present
century [54]. To avoid excessive soil overwarming, which can negatively affect roots, and
maintain a stable temperature, pots were shaded by wrapping their lateral surface with a
reflecting material. Soil temperature was monitored at a depth of 5 cm soil using temperature
probes PT100 (Coreterm, Valencia, Spain) and reached 24+0.5°C and 28+0.5°C for 24/14°C and
28/18°C air temperature regimes, respectively. Berry samples were collected at five stages of
berry development: 1) when berries began to soften (Eichhorn and Lorenz (E-L) growth stage
34, green berries); 2) when berries began to colour and enlarge (E-L 35 stage, mid-veraison); 3)
one week after mid-veraison (E-L 36 stage); 4) two weeks after mid-veraison (E-L 37 stage);

and 5) at commercial maturity (22°Brix) (E-L 38 stage).

In a second experiment (experiment 2), we chose the clone CL-1089 because previous data
had shown that AMF inoculation improved anthocyanin accumulation under deficit irrigation
and elevated temperatures [25]. Thus, we established a three-factorial design where the two
temperature regimes (24/14°C and 28/18°C) were combined with two water regimes. Within
each temperature regime, fruit-bearing cuttings of CL-1089 from +M or -M treatments were
divided into two groups: 1) plants under full irrigation (FI) from fruit set (E-L 27 stage) to
maturity (E-L 38 stage) and 2) plants that received 50% of the water given to Fl plants from
veraison (E-L 35 stage) to maturity (E-L 38 stage) (late deficit, LD). Until the beginning of
treatment, LD plants were maintained to full irrigation. Soil moisture sensors (EC-5 Soil
Moisture Sensors, Decagon Devices Inc., Pullman, WA, USA) were placed in the pots. Fl plants
were maintained at ca. 80% of pot capacity (sensor value between 40 and 50%, (m> H,0 m?
soil) x 100) until fruit harvest. Pot capacity was previously assessed by determining water
retained after free-draining water had been allowed to pass through the holes in the bottom

of the pot. The surface of the plant containers was covered with quartz stones during the
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experiments to avoid water loss because of evaporation. The water volume supplied to the FI
treatment was adjusted to increase plant development according to the daily measurements
of the EC 5 water sensor. Watering was performed with nutrient solution or deionised water in
order to supply the different treatments with the same amount of nutrients during water
deficit. Predawn leaf water potential (W,q) was measured with a SKYE SKPM 1400 pressure
chamber (Skye Instruments Ltd, Llandrindod, Wales, UK) on three fully expanded leaves per
treatment at each sampling date just prior to irrigation (Figure S1). In this experiment, berry
samples were collected at three stages of berry development: 1) one week after mid-veraison
(E-L 36 stage); 2) two weeks after mid-veraison (E-L 37 stage); and 3) at commercial maturity

(22°Brix) (E-L 38 stage).

2.4. Mycorrhizal colonization

Root samples were cleared and stained following the procedure described in Koske and
Gemma [55]. A potassium hydroxide solution (10% w:v) was added to the roots which were
placed in an oven at 70°C for 2 h. After being rinsed with water, roots were clarified by the
addition of H,0, (3% v:v) and subsequent washing with water. Then, they were acidified by
soaking in HCI (1% v:v) for 5-15 minutes and stained in a solution of methyl blue: lactic acid (1%
w:v) at 70°C for 1 h. Stained roots were stored in a mixture of glycerol, water and HCl 1%
(500:450:50, v:v:v) until quantification. The percentage of mycorrhizal colonization was

determined under a stereoscopic microscope by the plate intersection method [56].

2.5. Berry determinations

For each stage, berries were collected and frozen in liquid nitrogen and kept at -80°C until
determinations. When fruit maturity was reached, plants were harvested separately based on
sugar level from berry subsamples (2-3 berries) taken weekly. The length of phenological
phases was recorded as the number of days from fruit set (E-L 27 stage) to each of the

abovementioned berry stages.
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A subsample of 5 berries was crushed and then extracts were centrifuged at 4300 g at 4°C for
10 min. The supernatant was used for determination of total soluble solids (mainly sugars)
measured with a temperature-compensating refractometer (Zuzi model 315; Auxilab, Beriain,
Spain) and expressed as °Brix. Another subsample of 5 berries was taken for the analysis of
anthocyanins, total phenols and abscisic acid (ABA) metabolites. Berries were ground
separately to a powder in a mortar with liquid nitrogen and weighed. Anthocyanins were
calculated according to the procedure described by Saint-Cricq et al. [57]. Two samples of the
non-filtered, crushed grape homogenate were macerated for 4 h at pH 1 (hydrogen chloride)
and pH 3.2 (tartaric acid), respectively. Once maceration was over, the macerated samples
were centrifuged at 4300 g at 4°C for 10 min. Total anthocyanins were determined in
supernatant (macerated at pH 1) according to Ribéreau-Gayon and Stonestreet [58] by reading
absorbance at 520 nm. Calibration was performed by using malvidin-3-glucoside as a standard
and anthocyanins were expressed as mg g DM. Phenolic substances were estimated by
reading absorbance at 280 nm in the supernatant obtained after maceration at pH 3.2 and
results were expressed as gallic acid equivalent (mg g* DM) [59]. All analyses were run in

triplicate.
2.6.ABA and catabolite analyses

The extraction, purification, and quantification of abscisic acid (ABA) and its catabolites
(abscisic acid glucosylester (ABA-GE), 7-hydroxyl-ABA (7'OH-ABA), dihydrophaseic acid (DPA)
and phaseic acid (PA)) were carried out in 0.1 g of the frozen powdered material as recently
described by Chini et al. [60] with some modifications. Briefly, 1 mL of precooled (-20°C)
methanol:water:formic acid (90:9:1, v/v/v with 2.5 mM Na-diethyldithiocarbamate) and 10 pL
of deuterium labelled internal standards [([*Ha]-ABA), ([’Hs]-ABA-GE), ([*Hs]-DPA), ([*Hs]-PA)
and ([’H4]-7-OH-ABA) provided by The National Research Council of Canada, Saskatoon,
Saskatchewan, Canada) in methanol, were added to each sample. After shaking in a Multi Reax
shaker (Heidolph Instruments) at 2,000 r.p.m. for 60 min at room temperature, solids were
separated by centrifugation at 20,000 g for 10 min at room temperature in a Sigma 4-16K
Centrifuge (Sigma Laborzentrifugen), and re-extracted with an additional 0.5 mL extraction
mixture, followed by shaking (20 min) and centrifugation. 1 mL of the pooled supernatants was
separated and evaporated at 40°C using a RapidVap Evaporator (Labconco Co). The residue
was redissolved in 0.5 mL of methanol: 0.133% acetic acid (40:60, v/v). The solution was
centrifuged at 20,000 g for 10 min at room temperature before injection into the high

resolution accurate mass spectrometry (HPLC-ESI-HRMS) system.
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The quantification was carried out using a Dionex Ultimate 3000 UHPLC device coupled to a Q
Exactive Focus Mass Spectrometer (Thermo Fisher Scientific) equipped with an HESI(Il) source,
a quadrupole mass filter, a C-trap, a HCD collision cell and an Orbitrap mass analyser, using a
reverse-phase column (Synergi 4 mm Hydro-RP 80A, 150 x 2 mm; Phenomenex). A linear
gradient of methanol (A), water (B) and 2% acetic acid in water (C) was used: 38% A for 3 min,
38% to 96% A in 12 min, 96% A for 2 min, and 96% to 38% A in 1 min, followed by stabilization
for 4 min. The percentage of C remained constant at 4%. The flow rate was 0.30 mL min™,
injection volume was 40 ulL, and column and sample temperatures were 35 and 15°C,
respectively. lonization source working parameters were optimized (Table S1). The detection
and quantification were performed by a full MS experiment with MS/MS confirmation in the
negative-ion mode, employing multilevel calibration curves with deuterated hormones as
internal standards. MS1 extracted from the full MS spectrum was used for quantitative
analysis and MS2 for confirmation of target identity. For full MS, a m/z scan range from 62 to
550 was selected, resolution was set at 70,000 full width at half maximum (FWHM), automatic
gain control (AGC) target at 1e® and maximum injection time (IT) at 250 ms. A mass tolerance
of 5 ppm was accepted. The MS/MS confirmation parameters were resolution of 17,500
FWHM, an isolation window of 3.0 m/z, AGC target of 2e’, maximum IT of 60 ms, loop count of
1 and minimum AGC target of 3e’. Instrument control and data processing were carried out
with TraceFinder 3.3 EFS software. Accurate masses of ABA, its metabolites and internal
standard, as well as their principal fragments are reported in Table S2 and a chromatographic

profile of ABA and its metabolites is shown in Figure S2.
2.7.Statistical analysis

Statistical analyses were carried out using statistical software the Statistical Package for the
Social Sciences (SPSS) (SPSS Inc., Chicago, IL, USA) version 21.0 for Windows. Data were
subjected to Kolmogorov-Smirnov normality test due to the small sample size (n= 4). Data
appeared to follow a normal distribution and were thus subjected to analysis of variance
(ANOVA). In the first experiment, tests were performed to assess the main effect of the factors
temperature (T) (24/14°C, 24 and 28/18°C, 28), AMF inoculation (+M and —M) and the
interaction between these factors. In the second experiment, tests evaluated the main effect
of the factors temperature (T) (24/14°C, 24 and 28/18°C, 28), AMF inoculation (+M and —M)
and irrigation program (Fl and LD) and the interaction between them. Means + standard errors

(SE) were calculated and when the F ratio was significant (P<0.05), a Duncan test was applied.
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Two-way or three-way ANOVAs were performed to determine significant differences in all

measured parameters in CL-1048 or CL-1089, respectively.

3. Results and discussion

Previous research has shown the ability of Tempranillo grapevine to adapt to different
environmental constraints associated with climate change, such as elevated air temperature
and water deficit, both of which ultimately benefited berry properties [13]. In this context of
heat and drought, AMF inoculation has been shown to be an appropriate resource to maintain
or improve Tempranillo berry quality [24, 25]. For these reasons, a detailed study into berry

ABA metabolism was performed to explore the mechanism underlying this effect.

3.1. Climate change scenario: effects of warming temperature

The results showed that mycorrhizal colonization of CL-1048 Tempranillo reached high values
(to ca. 40 %) and that this percentage increased significantly at 28/18°C (Table 1). Several
authors have reported that elevated temperature increased the abundance of mycorrhizas
[61], mycorrhizal colonization and hyphal length [62] by enhancing carbon allocation of AMF
and increasing phosphorus acquisition [63]. In contrast, Wilson et al. [64] reported that
increased temperature diminished mycorrhizal colonization, and this effect was consistent
across the Mediterranean climate gradient. These inconsistencies could be due to the role that
AMF ultimately play in the alteration of the carbon storage capacity of soils and could be
dependent on changes in the structure of the AMF network and the flux of labile

photosynthetates from plants to the fungus[65].

In the current study, no significant effect of AMF on phenolic content was found (Table 1),
which contrasts with results of Torres et al. [24]. These discrepancies could be due to
differences in the rates of AMF colonization in the former study, which were much lower than
those presented here. Thus, the high carbon cost of symbiosis maintenance could have
resulted in limited carbon available for phenolic biosynthesis under elevated temperatures[61,
65]. Moreover, the type of mycorrhizal inocula could have also exerted an influence because
Torres et al. [24] used a commercial inoculum derived from an in vitro culture of Rhizophagus
intraradices. In the present study, grapevines received a mixture of five AMF (see Material and
Methods section), which reinforces the idea that it may be useful to identify the AMF

inoculants most suitable for a given variety or cultivar in a given environment [66]. On the
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other hand, the temperature was the main factor reducing the content of phenolic substances
in berries (Table 1). Similarly, other studies have reported significant reductions in phenolic
content in berries at high temperatures [10], which have recently been linked to increased

peroxidase activity under these conditions[12, 67].

At 28/18°C berries of CL-1048 reached berry maturity (estimated as total soluble sugars) 20
days earlier than plants exposed to 24/14°C (Figure 1), which agrees with the known effect of
temperature to accelerate grapevine phenology [68]. AMF inoculation dampened the effect of
elevated temperature, with berry sugars being similar under both temperature conditions
(TxM, P<0.05) (Figure 1). Nevertheless, in —M28 plants, the acceleration of phenology led to
higher levels of sugars than those obtained at 24/14°C. Furthermore, the pattern of
anthocyanin accumulation throughout berry ripening was significantly modified by AMF
inoculation and/or temperature (Figure 2). The study of the main factors (temperature and
mycorrhization) revealed that, while AMF induced the accumulation of anthocyanins in grapes
at veraison (E-L 35 stage), elevated temperature favoured the accumulation of these phenolic
compounds at the E-L 37 stage. At harvest (E-L 38), however, the highest levels of
anthocyanins were found in berries from +M plants cultivated at 24/14°C. Mycorrhizal
symbiosis also increased the content of anthocyanins in strawberry fruits [69, 70], which has
been attributed to the up-regulation of some genes responsible for phenylpropanoid
biosynthesis, such as phenylalanine ammonia lyase (PAL), a key enzyme involved in the

synthesis of many phenolic compounds[71].

The influence that AMF symbiosis and temperature exerted on ABA metabolism was examined
profiling ABA and its catabolites throughout berry ripening (Figure 3). The endogenous free
ABA content is determined by the dynamic balance between biosynthesis and catabolism [35].
In our study, the concentrations of ABA and its catabolites were assessed at the same time as
sugars and anthocyanins. As expected, free ABA content peaked at veraison (E-L 35 stage) and
decreased thereafter in all treatments (Figure 3). The concentrations of ABA-GE increased
during berry ripening, reaching a maximum content at maturity, whereas the concentrations of
7'OH-ABA were reduced at the E-L 38 stage and PA and DPA continuously diminished from the
E-L 34 to E-L 38 stages. Current research is focusing on ABA catabolites, which have been
recently highlighted as key molecules in grapevine development [34] and in its physiological
responses to environmental stresses [37-39]. The ABA-GE acts as a reservoir of ABA and
controls its concentration via the release of ABA by B—glucosidase. Moreover, ABA can be

catabolized by hydroxylation at the positions 7' and 8’, which produces 7°OH-ABA or PA and
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DPA, respectively. Our results showed that mycorrhizal inoculation was the main factor
modulating levels of ABA derivatives by increasing ABA-GE, 7°"OH-ABA and DPA and by
decreasing PA content in most of the stages studied (Table 2). Temperature also modulated
the free ABA content of berries, since warm temperatures resulted in increased concentrations
of ABA in the most stages analysed. This could be related to the up-regulation of NCED genes
under these conditions suggesting the participation of ABA in berry acclimation responses to
high temperature [28]. Similarly, temperature also contributed to increasing levels of ABA-GE
and 7°0OH-ABA, and to a lesser extent, PA and DPA (Table 2). At the late stages of berry
maturation (E-L 37 and E-L 38) both temperature and AMF influenced ABA metabolism, which
led to higher ABA-GE (TxM, P<0.05) and 7’OH-ABA (TxM, P<0.001) and lowers PA (TxM,
P<0.01) in the +M28 treatment (Table 2).

It has been reported that in grapes ABA hydroxylation at the 8 position predominates over the
7 position [34]. In contrast, our results suggest that, at the end of berry ripening (E-L37 and E-L
38 stages), AMF inoculation under warming temperatures promoted ABA catabolism by means
of 7°OH-ABA (Figure 3). Other authors have indicated that 7°OH-ABA may be active in some
hormonal processes, showing ABA-like activity and up-regulating secondary metabolism-
related genes [72]. Although little is known about the role of this catabolite in berry ripening,
Owen et al. [73] suggested that the increase in some ABA metabolites could make ABA
unnecessary. This idea could help to explain some effects of AMF inoculation such as the
enhancement of anthocyanin content related to lower levels of the inactive conjugated (ABA-
GE) in +M24 treatment at maturity (E-L 38 stage) or the advancement of anthocyanin
biosynthesis after veraison (E-L 37 stage) related to higher 770OH-ABA in +M28 plants (Figures 2
and 3).

3.2.Climate change scenario: combined effects of deficit irrigation and warming temperature

Mycorrhizal colonization of Tempranillo CL-1089 reached high values (ca. 60 %) at 24/14°C and
this percentage increased significantly at 28/18°C, attaining values up to 75%, (Table 3) in
accordance with references discussed above. On the other hand, total phenolic content in
berries was not significantly modified by any of the three factors applied (AMF, temperature or
irrigation regime), corroborating that CL-1089 could be a good candidate to cope with global

warming due to its ability to maintain certain fruit quality traits under these conditions [24].

As indicated in experiment 1, temperature was the main factor accelerating berry maturity

(estimated as total soluble sugars) regardless of the AMF inoculation or irrigation level applied
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(Figure 4). In contrast, the anthocyanin content was mostly affected by the three factors
applied (TxMxI, P £ 0.001 and P < 0.01 for E-L 37 and E-L 38, respectively) (Figure 5). Thus,
under the most stressful climate change conditions (LD and 28/18°C) anthocyanin
accumulation was significantly improved at the E-L 38 stage, especially in AMF inoculated
plants, in agreement with preceding results obtained in this clone [25]. These observations
could be explained by the ability of AMF symbiosis to stimulate the production of secondary
metabolites in plants [22], together with the suitability of a post-veraison water deficit (LD)

schedule to improve anthocyanin content[13, 15, 46].

The influence of AMF symbiosis, temperature and deficit irrigation on ABA metabolism was
assessed profiling ABA and its catabolites from the end of veraison until berry maturity (Figure
6). Our results showed that under elevated temperature AMF inoculation reduced ABA-GE
concentrations in all phenological stages studied and DPA concentration in the E-L 38 stage,
(TxM, P<0.05) (Table 4). Moreover, at berry maturity, AMF inoculation contributed to
increasing 7°0OH-ABA concentrations under LD conditions (MxI, P<0.05). Recent studies
indicated that the ABA catabolism/conjugation processes play an important role under
environmental constraints. Thus, Balint and Reynolds [37, 38] reported that ABA was mainly
catabolized by conjugation to form ABA-GE in plants subjected to water deficit, which agrees
with the high rates of ABA-GE detected in the LD treatment, especially under elevated

temperature (Figure 6).

It has been reported that in grape berries, the patterns of mRNA expression associated with
ABA metabolism were altered under water deficit that, in turn, this could modify the
endogenous ABA content of berry [18, 31, 44, 74]. Similarly, our results showed that the
imposition of LD altered the pattern of ABA accumulation, consisting of a significant
prolongation of ABA production over time (Figure 6). In a previous study we have reported
that in the LD treatment ABA accumulation lasted until to the end of veraison [46]. The data
presented here show that under LD, ABA accumulation was prolonged to berry maturity (E-L
38 stage), especially under warming conditions. However, at the E-L 37 stage ABA was
modulated by the three factors applied that led to lower ABA concentrations in the berries of

+M plants subjected to 28LD (TxMxI, P < 0.001) (Table 4).

Overall, under the most stressful climate change conditions (LD and 28/18°C) ABA catabolism
was seriously altered by AMF inoculation. Indeed, at the E-L 38 stage, +M plants showed a
preferential pathway of ABA degradation to 7"OH-ABA that was modulated by all the factors
applied (TxI, P<0.001 and MxI, P<0.05) (Table 4). However, in —M plants ABA catabolism
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seemed to occur mainly by means of degradation to PA and DPA (8’hydroxilation pathway), as
shown by the higher PA and DPA concentrations in the 28LD treatment at maturity (TxMxI, P <
0.001 and P<0.05, respectively). Similar findings were obtained in non-mycorrhizal Tempranillo
plants subjected to a combination of water deficit and high temperature and were related to
lower anthocyanin content at maturity [39]. Furthermore, the observed differences in ABA
catabolism pathways between —M and +M plants in our study could explain why berries in the
—M28LD treatment reached lower anthocyanins than those of +M28LD (Figure 5). Since
phytohormonal homeostasis in the plant host is also modulated by AMF symbiosis [40, 42, 43],
our study suggests that the observed changes in ABA metabolism under climate change
conditions could contribute to explain the positive effects of AMF inoculation of Tempranillo
on berry anthocyanins. Although this study does not provide information on the contents of
minerals in grapes, AMF may exert a positive effect by increasing the uptake of some macro
(mainly phosphorus) and micronutrients (such as iron, copper, manganese or zinc) which are

accumulated in berries during growth and ripening[75].

4, Conclusions

The main findings of this study showed that ABA catabolism/conjugation throughout berry
development was modified by AMF inoculation and by the climate change conditions and that
7°'0OH-ABA plays an important role in the anthocyanin content of Tempranillo berries. Thus,
under elevated temperature, AMF inoculation contributed to increase berry anthocyanins and
modulated ABA metabolism, which led to higher ABA-GE and 7°OH-ABA and lower PA
concentrations in comparison with those in fruits of —M plants. Under the most stressful
climate change conditions (elevated temperature and deficit irrigation) AMF-inoculated plants
reached higher berry anthocyanins and evidenced some modifications in berry ABA
catabolism, leading to increased ABA hydroxylation at the position 7’ in detriment of position
8’. Our findings provide an explanation of the ability of AMF to maintain and/or improve berry
characteristics under future climatic conditions. To our knowledge, data presented in this
study offer the first evidence on the implication of mycorrhizal symbiosis on grape ABA
metabolism and how changes induced by AMF could affect some traits which determine the
quality of grapes. Moreover, these results provide information on the role that AMF may play
under future conditions of climate change. Several authors have studied the mycorrhizal
communities associated with grapevines in the field. Results obtained in vineyards from USA,

Italy, France or Central Europe subjected to agricultural practices such as high fertilizer inputs,
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tillage, weed control or pest management [76-79], have shown reduced diversity of AMF in
comparison with that found in the rhizosphere of European wild grapevine [80]. Evidence on
the role that AMF may play on berry hormonal status and thus on berry ripening in different
environmental scenarios reinforces the need to protect the natural mycorrhizal fungal

communities present in vineyards.
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Table 1. Experiment 1: percentage of mycorrhizal colonization and total phenolics recorded at
the harvest of fruit-bearing cuttings of Tempranillo (CL-1048) inoculated with arbuscular
mycorrhizal fungi (+M) or uninoculated (-M) and grown at 24/14°C (24) or 28/18°C (28)

(day/night) temperatures (T).

Treatments Mycorrhizal Soluble phenolic

colonization substances
(%) (mg g’ DM)

Treatments

-M24 - 40.4

+M24 453 b 42.9

-M28 - 32.6

+M28 62.3a 294

Main effects
Temperature (T)

24 - 41.7 a
28 - 31.0b
Mycorrhization (M)

-M - 36.5
+M - 36.2
ANOVA

<M ns ns

Values represent means (n = 4) separated by Duncan’s test (at P<0.05). Within columns, means
followed by different letters are significantly different as affected by the main factors
temperature (24, 28), mycorrhization (+M, —M) and their interaction. ns, not significant

(P>0.05). DM: dry matter.
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Table 2. Experiment 1: main effects and their interactions on berry ABA and its catabolites
quantified during ripening in fruiting cuttings from Tempranillo (CL-1048) inoculated with
arbuscular mycorrhizal fungi (+M) or uninoculated (-M) and grown at 24/14°C (24) or 28/18°C
(28) (day/ night) temperatures (T).

Main effects ANOVA
Temperature (T) Mycorrhization (M) T M TxM
24 28 -M +M

ABA (nmol g™ DM)
E-L34 2.7 3.0 33a 2.4b ns * ns
E-L 35 52b 9.5a 7.3 7.4 *kx ns ns
E-L 36 3.7b 5.6a 4.7 4.5 * ns ns
E-L 37 1.8b 3.6a 2.9 2.5 *kx ns ns
E-L 38 0.4b 0.6a 0.5 0.5 ** ns ns
ABA-GE (nmol g™ DM)
E-L34 3.8 3.7 3.2 4.3 ns ns *
E-L 35 3.2b 6.1a 42b 5.1a *kx * ns
E-L 36 39b 8.4a 49Db 7.4 a ** * ns
E-L37 52b 139a 8.8b 103 a kK ns ns
E-L 38 6.2 12.3 8.1 104 Hokk *E *
7’OH-ABA (nmol g™ DM)
E-L34 0.39 0.43 0.30b 0.52a ns * ns
E-L 35 0.50b 0.71a 0.52 0.59 ** ns ns
E-L 36 0.36b 0.54 a 0.39 0.51 ** ns ns
E-L 37 0.34 0.60 0.37 0.56 Hokk HEx HEX
E-L 38 0.17 b 0.30a 0.19b 0.28 a ** * ns
PA (pmol g DM)
E-L34 22.4 24.3 31.8a 23.0b ns * ns
E-L 35 15.6 28.2 21.7 22.0 * ns *k
E-L 36 12.8b 20.1a 19.3a 13.7b * * ns
E-L 37 10.0 13.2 14.4 a 89b ns * ns
E-L 38 4.2 5.9 5.2 4.9 * ns ok
DPA (nmol g DM)
E-L 34 2.97 2.12 1.97b 3.13a ns * ns
E-L35 0.52b 0.95a 0.63 0.84 * ns ns
E-L 36 0.25 0.50 0.47 0.27 *okk HEx rEx
E-L37 0.14b 0.27 a 0.24 0.17 * ns ns
E-L 38 0.13 0.17 0.08b 0.22a ns *ok ns

Values represent means (n = 4) separated by Duncan’s test (at P<0.05). Within rows, means
followed by different letters are significantly different as affected by the main factors
temperature (24, 28), mycorrhization (+M, —M) and their interaction. *P<0.05; **P<0.01;
***p<0.001; ns, not significant (P>0.05). ABA: abscisic acid, ABA-GE: abscisic acid glucosylester;
7’OH-ABA: 7-hydroxy-ABA; DPA: dihydrophaseic acid; PA: phaseic acid; DM: dry matter.
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Table 3. Experiment 2: percentage of mycorrhizal colonization and total phenolics recorded at
the harvest of fruit-bearing cuttings from fruit-bearing cuttings of Tempranillo (CL-1089)
inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M), grown at 24/14°C (24)
or 28/18°C (28) (day/ night) temperatures (T) and subjected to different irrigation () regimes

(FI: full irrigation; LD: late season water deficit).

Mycorrhizal Soluble phenolic
colonization substances
(%) (mg g’ DM)
Treatments
-M24-Fl - 41.9
-M24-LD - 40.6
+M24-FI 65.7 39.8
+M24-LD 46.3 43.4
-M28-Fl - 37.1
-M28-LD - 39.5
+M28-FI 67.0 38.2
+M28-LD 83.7 48.5
Main effects
Temperature (T)
24 56.0b 41.4
28 75.3a 40.8
Mycorrhization (M)
-M - 39.8
+M - 42.5
Irrigation (1)
FI 66.3 39.3
LD 65.0 43.0
ANOVA
TxMxI| - ns

Values represent means (n = 4) separated by Duncan’s test (at P<0.05). Within columns, means
followed by different letters are significantly different as affected by the main factors
temperature (24, 28), mycorrhization (+M, —M), irrigation (FI, LD) and their interactions. ns,

not significant (P>0.05). DM indicates dry matter.
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Capitulo 4

FIGURE LEGENDS

Figure 1. Experiment 1: evolution of total soluble solids (°Brix) recorded during berry ripening
in fruit-bearing cuttings of Tempranillo (CL-1048) inoculated with arbuscular mycorrhizal fungi
(+M) or uninoculated (-M) and grown at 24/14°C (24) or 28/18°C (28) (day/night)
temperatures. Values represent means * SE (n = 4). A two-way ANOVA analysis was performed
to evaluate the effects of temperature (T), mycorrhizal inoculation (M) and their interaction.
ns, and * indicate non-significance or significance at 5% probability levels, respectively. When
interaction between the main factors ‘temperature, T' and ‘mycorrhizal inoculation, M’ was
significant, different letters indicate significant differences according to Duncan test (P<0.05).
Figure 2. Experiment 1: evolution of total anthocyanins recorded during berry ripening in fruit-
bearing cuttings of Tempranillo (CL-1048) inoculated with arbuscular mycorrhizal fungi (+M) or
uninoculated (-M) and grown at 24/14°C (24) or 28/18°C (28) (day/night) temperatures during
the berry ripening. Values represent means + SE (n = 4). Within each phenological stage, a two-
way ANOVA analysis was performed to evaluate the effects of temperature (T), mycorrhizal
inoculation (M) and their interaction. ns, * and ** indicate non-significance or significance at
5% or at 1% probability levels, respectively. When the interaction between the main factors
‘temperature, T' and ‘mycorrhizal inoculation, M was significant, histograms with different

letters indicate significant differences according to Duncan test (P<0.05).

Figure 3. Experiment 1: evolution of berry ABA and its catabolites measured in fruit-bearing
cuttings of Tempranillo (CL-1048) inoculated with arbuscular mycorrhizal fungi (+M) or
uninoculated (-M) and grown at 24/14°C (24) or 28/18°C (28) (day/night) temperatures during
the berry ripening. Values represent means + SE (n = 4). Within each phenological stage, when
the interaction between the main factors ‘temperature, T" and ‘mycorrhizal inoculation, M’

was significant, histograms with different letters indicate significant differences according to
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Duncan test (P<0.05). ABA: abscisic acid, ABA-GE: abscisic acid glucosylester; 7’OH-ABA: 7-

hydroxy-ABA; DPA: dihydrophaseic acid; PA: phaseic acid.

Figure 4. Experiment 2: evolution of total soluble solids (°Brix) recorded in fruit-bearing
cuttings of Tempranillo (CL-1089) inoculated with arbuscular mycorrhizal fungi (+M) or
uninoculated (-M) and grown at 24/14°C (24) or 28/18°C (28) (day/night) temperatures and
subjected to different irrigation regimes (Fl, full irrigation; LD, late season deficit irrigation)
during berry ripening. Values represent means * SE (n = 4). Within each phenological stage, a
three-way ANOVA analysis was performed to evaluate the effects of temperature (T),

mycorrhizal inoculation (M), irrigation (I) and their interactions. ns indicate non-significance.

Figure 5. Experiment 2: evolution of total anthocyanins measured in fruit-bearing cuttings of
Tempranillo (CL-1089) inoculated with arbuscular mycorrhizal fungi (+M) or uninoculated (-M)
and grown at 24/14°C (24) or 28/18°C (28) (day/night) temperatures and subjected to different
irrigation regimes (FI, full irrigation; LD, late season deficit irrigation) during the berry ripening.
Values represent means + SE (n = 4). Within each phenological stage, a three-way ANOVA
analysis was performed to evaluate the effects of temperature (T), mycorrhizal inoculation
(M), irrigation (l) and their interactions. ** and *** indicate significance at 1% or at 0.1%
probability levels, respectively. When the interaction between the main factors ‘temperature,
T, ‘mycorrhizal inoculation, M" and ’irrigation, |" was significant, histograms with different

letters indicate significant differences according to Duncan test (P<0.05).

Figure 6. Experiment 2: evolution of berry ABA and its catabolites recorded in fruit bearing
cuttings of Tempranillo (CL-1089) inoculated with arbuscular mycorrhizal fungi (+M) or
uninoculated (-M) and grown at 24/14°C (24) or 28/18°C (28) (day/night) temperatures and
subjected to different irrigation regimes (Fl, full irrigation; LD, late season deficit irrigation)
during the berry ripening. Values represent means * SE (n = 4). Within each phenological stage,
when the interaction between the main factors ‘temperature, T, ‘mycorrhizal inoculation, M’

222



Capitulo 4

and ’irrigation, |’ was significant, histograms with different letters indicate significant
differences according to Duncan test (P<0.05). ABA: abscisic acid, ABA-GE: abscisic acid

glucosylester; 7’OH-ABA: 7-hydroxy-ABA; DPA: dihydrophaseic acid; PA: phaseic acid.
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Mycorrhizal symbiosis affects ABA metabolism during berry ripening in

Tempranillo (Vitis vinifera L.) grown under climate change scenarios
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Antolin®*
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Figure S1. Experiment 2: effect of irrigation treatments on pre-dawn leaf water potential

(Wpa) recorded at different stages of berry ripening.

Figure S2. Chromatographic profile of abscisic acid (ABA) and its catabolites in Tempranillo
berries.

Table S1. lonization source working parameters

Table S2. Masses of ABA, its catabolites, internal standards and their principal fragments.
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Table S1: lonization source working parameters

Instrumental parameters Value
Sheath gas flow rate 44 au
Auxiliary gas flow rate 11 au
Sweep gas flow rate lau

Spray voltage 3.5kv
Capillary temperature 340°C
S-lens RF level 50

Auxiliary gas heater temperature 300°C

au: arbitrary units.
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Table S2: Masses of ABA, its catabolites, internal standards and their principal fragments.

[M-H]™

Analyte phytohormone [M-H] ™ Fragment 1 [M-H]* Fragment 2
ABA 263.12888 219.139 204.1155
ABA-GE 425.18171 263.12895 219.13907
70H-ABA 279.1238 151.0765 217.12337
PA 279.1238 139.07651 205.12337
DPA 281.13945 237.1498 171.11803
2H4—ABA 267.15399 223.1642 208.1407
’Hs-ABA-GE 430.21309 268.1604 224.17052
2H4—7'—OH-ABA 283.1489 154.0954 221.14859
2H3—PA 282.14263 142.09531 208.14224
’H;-DPA 284.15828 240.1686 174.13676
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Capitulo 5

Abstract

Within climate change scenario, the maintenance of grape quality and wine characteristics will
be the main concern for viticulture in the future years. However, changes in the composition
of grapevine pruning wastes (i.e., leaves and stems) could be another interesting aspect as
important antioxidant source for pharmaceutical industry due its richness in phenolic
compounds beneficial for human health. To date, the effect of biotic and environmental
factors in the accumulation of these compounds in leaves had received little attention.
Therefore, the aims of study were: 1) to evaluate the effect of biotic (mycorrhizal inoculation)
and environmental (temperature) factors, alone or combined, on phenolic composition and
antioxidant activity of leaf extracts of grapevine, and 2) to determine whether such effects
differed among accessions of the same cultivar of grapevine. The study was carried out using
container-grown grapevines grown in greenhouses. Dormant Vitis vinifera (L.) cuttings of
different accessions of Tempranillo were selected to get fruit-bearing cuttings. At
transplanting, half of the plants of each accession were inoculated with the mycorrhizal
inoculum and after fruit set, plants were exposed to two temperature regimes (24°C/14°C and
28°C/18°C (day/night)) to commercially berry ripe. Results showed that total phenolic content,
antioxidant compounds like flavonols and anthocyanins, and antioxidant activity of leaves
were improved with mycorrhizal inoculation under high temperature conditions. It was
concluded that mycorrhizal inoculation of grapevines could contribute to preserve high level of
antioxidant compounds of leaves in a future climate change scenario. However, the effects
were strongly dependent of accession assayed, which indicated a significant intra-varietal

diversity in the response of Tempranillo to biotic and environmental factors.

Keywords: Arbuscular mycorrhizal fungi, climate change, fruiting cuttings, grapevine wastes,

intra-varietal diversity, phenolic compounds.
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Introduction

Phenolic compounds are the most commonly studied compounds because of their universal
presence in high concentrations and their significant roles in plant cells and tissues. They
include many secondary metabolites with multiple functions: i) as absorbing filters they reduce
the penetration of UV and visible radiation (Teixeira et al., 2013); ii) as antioxidants they can
scavenge reactive oxygen species (ROS) (Castellarin et al., 2012; Brunetti et al., 2013); iii) as
regulators of soil processes they control recycling and nutrient availability for plants and soil
microbes; and iv) as signal molecules they play a significant role in the interactions between
plants and other organisms (Karabourniotis et al., 2014).

Grapevine (Vitis vinifera L.) phenolic compounds are divided in nonflavonoid and
flavonoid compounds. Nonflavonoid compound are hydroxybenzoic acids, hydroxycinnamic
acids, volatile phenols and stilbenes; while flavonoid compounds are flavones, flavonols,
flavanones, flavan-3-ols and anthocyanins. Flavonoids constitute the major group of phenolic
compounds in grapes and their composition is determined firstly by genetic factors but it could
be changed during growth and season conditions (Teixeira et al., 2013; Niculcea et al., 2015)
and they are important components in the determination of wine style and quality (Downey et
al., 2006). Besides, phenolic compounds are of major interest for human nutrition and health
(Ali et al., 2010; Brunetti et al., 2013). Several studies revealed that phenolic compounds of
grapes exhibited a wide range of biological activities, including antioxidant, antifungal,
antibacterial, antiviral and therapeutic properties (Cheynier, 2005; Pezzuto, 2008; Perron and
Brumaghim, 2009; Jin et al., 2013). Other researches have shown that grape extracts exhibited
anticancer properties (Sun et al., 2011; Zhou and Raffoul, 2012; Handoussa et al., 2013).

Phenolic compounds and other antioxidant molecules are especially abundant in grape
berries (Kallithraka et al., 2009; Xu et al., 2010; Cramer et al., 2011; De Nisco et al., 2013) but
other tissues as leaves were also rich in phenolic compounds and can be used for many
applications such as therapeutic and food industries (Krdl et al., 2014; Eftekhari et al., 2012). In
consequence, a possibility that emerge is reutilising the grape wastes from pruning and other
viticultural activities as a potentially natural source of the well-known medicinal and
antimicrobial phenolic compounds.

Phenolic metabolism and its accumulation of grapevine tissues can be strongly modified
in response to biotic and environmental factors. Within biotic factors, arbuscular mycorrhizal
fungi (AMF) are the most widespread and common root-fungus associations (Smith and Read,
2008) and have an increasingly important role in vineyard production systems (Likar et al.,
2013). Thus, AMF inoculation of grapevines has been associated with increased growth

(Linderman and Davis, 2001), drought tolerance (Nikolau et al., 2003), nutrient uptake
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(Karagiannidis et al., 2007) and protection against diseases caused by pathogens (Nogales et al.
2009). However, there is little information about changes on phenolic composition in response
to AMF inoculation in grapevines. Some studies have been reported that AMF inoculation did
not modified berry composition (Karagiannidis et al., 2007) but a significant enhancement of
phenolic content in leaves was found (Eftekhari et al., 2012).

Climate change refers to any change in climate over time, whether due to natural
variability or as a result of human activity leading increased greenhouse gases emissions,
which have a direct effect on air temperature (Webb et al., 2013). According to IPCC (2013)
global temperatures average is predicted to increase between 1.8 and 4.0°C at the end the
present century. Climate change will be particularly important for phenolic composition of
grapevines, because heat, drought and light intensity are just some environmental stress
factors that dramatically affect phenolic metabolism (Mira de Orduia, 2010; Teixeira et al.,
2013). Associated with warming trends over the last few decades, early maturity of berries and
changes in vegetative and reproductive growth, yield and berry attributes have been reported
(Duchéne and Schneider, 2005; Petrie and Sadras, 2008; Webb et al., 2011).

Many studies have related clonal diversity among grapevine cultivars for a broad range of
characteristics. Thus, precocity of the phenological cycle, yield, berry sugars and total acidity,
berry phenolic composition and disease resistance (van Leeuwen et al., 2013) and response to
environmental changes varied broadly among accessions (Mannini et al., 2010). However, to
date, no attention had been paid on intra-varietal diversity on phenolic composition and its
antioxidant potential in leaves. Therefore, the objectives of this study were: 1) to evaluate the
effect of biotic (mycorrhizal inoculation) and environmental (temperature) factors, alone or
combined, on phenolic composition and antioxidant activity of leaf extracts of grapevine, and
2) to determine whether such effects differed among accessions of the same cultivar of
grapevine cv. Tempranillo. This variety is widely cultivated in northern and central Spain where
it is the main variety in half of the Denominations of Origin. Potted vines were used to assure
that all accessions experienced the same conditions of temperature and a controlled

mycorrhizal inoculation.

Material and methods

Biological material and growth conditions
Dormant Vitis vinifera (L.) cuttings of different accessions of Tempranillo with 400-500 mm
long were selected in the winter of 2013 in different villages located in Rioja Alavesa

(Denomination of Origin Rioja, North of Spain). A brief description of selected accessions is
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presented in Table 1. Cuttings of each accession were selected to get fruit-bearing cuttings
according to steps originally outlined by Mullins (1966) with some modifications described in
Ollat et al. (1998) and Antolin et al. (2010). Previous research demonstrated that the fruiting
cuttings technique is a useful model for grapevine physiology studies (Antolin et al., 2010) that
allows the development of vegetative and reproductive organs similar to the vineyard
grapevines but under fully controlled environmental conditions (Dai et al., 2013). Briefly,
rooting was made in a heat-bed (27°C) kept in a cool room (4°C). One month later, the cutting
were planted in 6.5 L plastic pots containing a mixture of vermiculite-sand-light peat (2.5:2.5:1,
v:v:v) and transferred to the glasshouses. Peat (Floragard, Vilassar de Mar, Barcelona, Spain)
had a pH of 5.2-6.0, 70-150 mg L of nitrogen, 80-180 mg L™ P,0s and 140-220 mg L™ K,0 and
it was previously sterilized at 100°C for 1 h on three consecutive days.

At transplanting, half of the plants were inoculated with the mycorrhizal inoculum
‘GLOMYGEL® vid, olivo, frutales’ (Mycovitro S.L., Pinos Puente, Granada, Spain) (+M plants).
The concentrated commercial inoculum derived from an in vitro culture of arbuscular
mycorrhizal fungi (AMF): Rhizophagus intraradices (Schenck and Smith) Walker & Schiiler
comb. nov. (Krlger et al.,, 2012). It contained around 2,000 mycorrhizal propagules (inert
pieces of roots colonized by AMF, spores and vegetative mycelium) per mL of inoculum. In
order to facilitate its application, the concentrated commercial inoculum was diluted with
distillate water until obtaining a resultant mycorrhizal inoculum with around 250 propagules
per mL. Each +M plant received 8 mL of the diluted mycorrhizal inoculum close to the roots
thus making a total of 2,000 propagules. A filtrate was added to plants that did not receive the
mycorrhizal inoculum (-M plants) in an attempt to restore other soil free-living microorganisms
accompanying AMF. The filtrate was obtained by passing diluted mycorrhizal inoculum through
a layer of 15-20 um filter papers (Whatman, GE Healthcare, UK) and each —M plant received 8
mL of filtrate close to the roots. The selection of in vitro-produced inoculum of R. intraradices
was based on two expected benefits: (1) easy application of the product and (2) low
colonization of onion roots by contaminant fungi (Vimard et al., 1999).

Plants were transferred to greenhouses, which was adapted to simulate climate change
conditions as described recently in Morales et al. (2014). Initial growth conditions were
25/15°C and 50/90% relative humidity (day/night) regime and natural daylight (photosynthetic
photon flux density, PPFD, was on average 850 umol m™ s™ at midday) supplemented with
high-pressure sodium lamps (SON-T Agro Phillips, Eindhoven, Netherlands) to extend the
photoperiod up to 15 h and ensure a minimum PPFD of 350 pmol m™ s™* at the level of the
inflorescence. Humidity and temperature were controlled using M22W2HT4X transmitters

(Rotronic Instrument Corp., Hauppauge, USA). PPFD was monitored with a LI-190SZ quantum
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sensor (LI-COR, Lincoln, USA). Under these conditions, bud-break took place after one week.
Careful control of vegetative growth before flowering improves the partitioning of stored
carbon towards the roots and the reproductive structures. Thus, only a single flowering stem
was allowed to develop on each plant during growth. Plants were irrigated with the nutrient
solution detailed by Ollat et al. (1998). The electric conductivity (EC) of the nutrient solution
adjusted to pH 5.5 was 1.46 + 0.15 mS cm™; after applying the nutrient solution to grapevines
the EC of the substrate was 2.35 + 0.10 mS cm™ for non-inoculated plants and 0.18 + 0.04 mS
cm™ for plants inoculated with R. intraradices, as determined with a conductivity meter 524

Crison (Crison Instruments S.A., Alella, Spain).

Experimental design

Fruit-bearing cuttings (4—6 plants per accession) were exposed to two temperature regimes at
fruitset (Eichhorn and Lorenz (E-L) fruit stage 27) (Coombe, 1995): 24°C/14°C (day/night) and
28°C/18°C (day/night). The 24°C/14°C temperature regime was selected according average
temperatures registered in Rioja Alavesa (1997-2000) (AEMET, Spain) during growing season.
The 28°C/18°C temperature regime was selected according to predictions of a rise of 4.0°C at
the end the present century (IPCC, 2013). Both temperature regimes were maintained to
harvest that corresponded to commercially ripe berries (approximately 22°Brix) (E-L 38 stage).
Leaves from each treatment (40-50 leaves per biological replicate) were frozen at -80°C for

further analysis.

Plant growth, mycorrhizal colonization and mycorrhizal efficiency index (MEI)

Leaf area was measured with a portable area meter (model LI-3000, Li-Cor, Lincoln, Nebraska,
USA). A good correlation (R = 0.97) was obtained between the length of the main vein of the
leaf and leaf area using several leaves of each accession. Total leaf area of each plant was
calculated after measuring the length of the main vein in all leaves and applying the following
formula: leaf area = -4.98 + (2.54 x vein length) + 0.90 x vein length?).

Root samples were cleared and stained (Phillips and Hayman, 1970) and mycorrhizal
colonization was determined by examining 1 cm root segments (n = 45 per pot) under the
microscope. Extension (E), incidence (I) and intensity (Int) of mycorrhizal colonization were
calculated for each pot as described by Baslam et al. (2014). The E of mycorrhizal colonization
was firstly determined for every root segment and it was calculated as the product between
value of mycorrhizal colonization in width (W) and value of mycorrhizal colonization in length
(L). Values of mycorrhizal colonization in width (W) and length (L) were ascribed according a

scale in which 0 meant complete absence of fungal structures and 10 meant that fungal
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structures occupied the full length or width of the root segment. Afterwards, total E per pot
was calculated as E = 5 (WxL)/n, where ‘n’ was the total number of root segments observed
under the microscope (n = 45 per pot) and it was expressed as a percentage. Incidence (l) of
mycorrhizal colonization per pot was calculated as the ratio between number of root segments
with fungal structures (arbuscules, vesicles and/or hyphae) and total number of root segments
observed under the microscope (n = 45 per pot). Finally, the intensity (Int) of mycorrhizal
colonization per pot was calculated as the product between E and | (Int = E x |) and results
were expressed as percentage of infection (Hayman et al., 1976).

The mycorrhizal efficiency index (MEI) was estimated according to Bagyaraj (1994) as: MEI
= (leaf DM of inoculated plant — leaf DM of non-inoculated plant) x 100/leaf DM of inoculated
plant where DM means dry matter. Determination of MEI allows assessment of the

improvement provided by inoculation of plants with a mycorrhizal fungus.

Phenolic compounds determinations
The content of epidermal levels of flavonols and anthocyanins in leaves were evaluated at
harvest, coinciding with berry ripening. Determinations were estimated in situ by using a
handheld, non-destructive fluorescence-based proximal sensor Multiplex3™ (Force-A, Orsay,
France) as described by Agati et al. (2013). It has four LED-matrix light sources: 373 nm
(Ultraviolet, UV), 470 nm (Blue, B), 516 nm (Green, G) and 635 nm (Red, R) and three
synchronised detectors for fluorescence recording: yellow (YF), red (RF) and far-red (FRF). The
fluorescence ratios linked to polyphenol content were based on FRF_UV (FRF excited by UV
light), FRF_R (FRF excited by red light), FRF_G (FRF excited by green light) and RF_R (RF excited
by red light). The FERARI (fluorescence excitation ratio anthocyanin relative index) index has
been inversely correlated with the anthocyanin content in grapes (Baluja et al., 2012). The
definition of a fluorescence index for flavonols is based in that they attenuate UV radiation
because they attain maximum absorption at 350 nm. The FLAV index is obtained by comparing
the fluorescence signals excited by UV and by FRF_R and has been directly correlated with the
flavonol content in grapes (Agati et al., 2013). Thus, the fluorescence indices used in this work
were defined as:
FERARI = log (5000/ FRF_R)
FLAV = log (FRF_R/FRF_UV).

Total soluble phenolic compounds were extracted according to Chapuis-Lardy et al. (2002)
with some modifications. Samples of leaves (0.2 g fresh weight) were pulverized in liquid
nitrogen, mixed with 10 mL of 80% methanol, and homogenized at room temperature for 1

min. After filtration, 0.5 mL of each sample was mixed with 10 mL of distilled water. Total
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phenolic content was determined from aqueous solutions by spectrophotometric analysis at
760 nm with Folin-Ciocalteau reagent (Waterman and Mole, 1994). Results were expressed as

mg of gallic acid per g of DM.

Antioxidant activity

Total antioxidant activity of leaf extracts was evaluated by using the free radical scavenging
activity (a, o-diphenil-B-picrylhydrazyl (DPPH) assay) (Brand-Williams et al., 1995). Leaf
extracts were the same used for determining the content of total soluble phenolic compounds.
The free radical scavenging activity using the free radical DPPHe was evaluated by measuring
the variation in absorbance at 515 nm after 30 min of reaction in parafilm-sealed glass
cuvettes (to avoid methanol evaporation) at 25°C (Espin et al., 2000). The reaction was started
by adding 20 uL of the corresponding sample to the cuvette containing 80 uM (methanol
solution) (980 pL) of the free radical (DPPHe) (Llorach et al., 2004). The final volume of the
assay was 1 mL. Reaction was followed with a spectrophotometer (Jasco V-630, Analytical
Instruments, Easton, MD, USA). Calibration curve was made using gallic acid as standard.

Results were expressed as pg of gallic acid per g of DM.

Statistical analysis

Data were subjected to a two-factor analysis of variance (ANOVA), and variance was related to
the main treatments (temperature, T, and mycorrhizal inoculation, M) and to the interaction
between them (T x M) within each grape accession. In the case of mycorrhizal efficiency index
(MEI) the main treatments were temperature (T) and accession (A). Means + standard errors
(SE) were calculated and, when the F ratio was significant (P < 0.05), a Duncan test was applied
by using the Statistical Package for the Social Sciences (SPSS) (SPSS Inc., Chicago, IL, USA)
version 21.0 for Windows XP. All values shown in the figures are means % SE. The significance

of regression equations was also evaluated using this program.

Results and discussion

Mycorrhizal colonization, phenology and plant growth

In the present study, the percentage of mycorrhizal colonization in grapevine roots never
exceeded 15% regardless plants were cultivated under either 24°/14°C or 28°/18°C regimes.
These values are clearly lower than those measured by Eftekhari et al. (2012) in V. vinifera
inoculated with different species of arbuscular mycorrhizal fungi, including R. intraradices (70%

of root colonization). Several factors could have been implied: (1) differences in root
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colonization may be at least partially due to the different type of inocula applied to grapevine
in both studies: while Eftekhari et al. (2012) used a commercial inoculum that contained
spores, mycelium and root fragments of clover colonized by mycorrhizal fungi, in our study the
main component of the mycorrhizal inoculum was spores of R. intraradices. Bettoni et al.
(2014), working with onion, also found low colonization percentages when using
monoxenically-produced spores of R. intraradices as mycorrhizal inoculum; (2) percentages of
mycorrhizal colonization are highly dependent on the grape variety (Eftekhari et al., 2012); and
(3) as in the grape fruiting cuttings model several leaves are removed to allow fruit
development, the total leaf area may have resulted insufficient to provide enough
photoassimilates for satisfying the demand of the main sinks in plants inoculated with R.
intraradices (fungal structures in roots and fruits) in detriment of the spread of mycorrhizal
colonization. Such limitation would have resulted in a reduced improvement of vegetative
growth brought about by inoculation of plants with R. intraradices (low or negative MEI, Figure
1). The application of nutrient solution can also influence the percentage of mycorrhizal
colonization. In a recent assay performed by Navarro et al. (2012) with carnation plants
inoculated with a very similar in vitro-produced commercial inoculum (Glomygel Garden, R.
intraradices, from MYCOVITRO) than that used in our study (GLOMYGEL® vid, olivo, frutales, R.
intraradices, from MYCOVITRO), the highest mycorrhizal colonization (26%) was reached in
plants irrigated with fresh water, whereas increases of salinity in the irrigation water caused
decreased levels of mycorrhizal colonization. In our study, however, such effect is expected to
be inappreciable due to the low EC of the substrate where inoculated grapevine plants were
cultivated.

Although it was established a monophyletic origin with low genetic variability for
Tempranillo variety (Cervera et al., 2002), accessions selected in this work have significant
diversity for some agronomic traits as yield or the length of phenological cycle (Table 1). Under
our experimental conditions, a rise of temperature from 24°C/14°C to 28°C/18°C resulted in
accelerated phenology (i.e., number of days from fruit set to harvest) that was more
pronounced in long-cycle accessions (Table 2). Such observations show a consistent trend
towards earlier flowering, veraison and harvest commonly observed in previous studies
(Duchéne and Schneider, 2005; Petrie and Sadras, 2008). The combination of temperature and
AMF inoculation contributed significantly to length cycle reduction in CL-1089 and CL-8
accessions. On the other hand, vegetative plant growth estimated from leaf area was
decreased mainly by temperature in most of Tempranillo accessions and no significant
differences between +M and —M plants was detected (Table 2). Our results were in contrast

with previous reports that showed increased vegetative growth in mycorrhizal grapevines
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(Karagiannidis et al., 2007; Camprubi et al., 2008). Such discrepancies could be explained
because in our experimental model, mycorrhizal fungi could have imposed an additional sink
to bunch, which have limited vegetative development of plants (Mortimer et al. 2005).
Calculation of MEI enables showing that positive effects of AMF inoculation disappeared at
28°C/18°C, suggesting that increased temperature diminished the effectiveness of mycorrhizal
symbiosis for improving vegetative growth (Figure 1). Our results agree with those reported by
Bunn et al. (2009), which reduction of plant growth in high temperatures allocated more
carbon to fungal structures. In our case, this effect was strongly dependent of accession as

showed by significant interaction of between temperature and accession (P<0.001) (Figure 1).

Phenolic compounds

The concentration of total soluble phenolic compounds was strongly modified by temperature
and AMF inoculation but the extent of effects was accession-dependent (Figure 2). Thus, the
combination of elevated temperature and AMF inoculation significantly improved phenolic
content of leaves in short-cycle accessions. This positive effect of AMF inoculation of leaf
phenolic content was also reported by other authors and was attributed mainly to improved
concentrations of flavonols (Eftekhari et al., 2012). By contrast, AMF inoculation of plants grown
at 28°C/18°C did no lead to increased phenolic content in long-cycle accessions (Figure 2). The
effect of AMF on the content of total phenols is contradictory in the literature. For instance,
Toussaint et al. (2007) showed the potential of AMF to enhance the production of phenolic
compounds in sweet basil leaves, but Geneva et al. (2010) observed decreased concentrations of
total phenols in leaves of Salvia officinalis associated with R. intraradices.

It was well established that FLAV index and FERARI index measured though Multiplex3™
sensor is a good indicative of flavonol and anthocyanin contents of tissues (Baluja et al., 2012;
Agati et al.,, 2013). Our data revealed that the temperature was the main factor modulating
flavonol content of leaves as showed by two-factor ANOVA (Table 3). Although at 28°C/18°C
temperature regime AMF inoculation reduced flavonol content in some accessions (CL-1089 and
CL-280), the combination of elevated temperature and AMF inoculation improved flavonol
content in a half of accessions analysed (CL-260, CL-1048 and CL-843). Our results agree partially
with those other authors that showed that leaves of mycorrhizal grapevines have higher flavonol
content than non-mycorrhizal plants (Eftekhari et al., 2012); however, our data revealed that the
positive effect of AMF inoculation varied in function of accession studied and could be mediated
by interaction with elevated temperature. These findings open new perspectives for reuse of

grapevine wastes because some recent researches have shown that flavonols present in
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vegetative organs of grapevines inhibited different cancer cell growth (Apostolou et al., 2013;
Sahpazidou et al., 2014).

The FERARI index is indicative of the anthocyanin content of leaves (Table 3). In general,
temperature was the main factor modulating anthocyanin content of grapevine leaves. Besides,
at 28°C/18°C, AMF inoculation improved anthocyanin content in all short-cycle accessions but
this effect was not observed in long-cycle accessions. It is well documented that high
temperature results in the reduction of anthocyanin content of berries that could be caused by
chemical and/or enzymatic degradation (Mori et al., 2007, Cohen et al., 2008); our data contrast
with these findings, but no data was yet reported analyzing the effects of elevated temperatures
in grapevine leaves. However, the beneficial role of AMF inoculation on anthocyanin content
detected in the present work was also showed in strawberry (Lingua et al., 2013) and lettuce

(Baslam et al., 2011, 2013; Baslam and Goicoechea, 2012).

Antioxidant properties

Similarly to total phenolic content, the antioxidant activity evaluated by using the DPPH assay
changed according to temperature and AMF inoculation in an accession-dependent way
(Figure 3). In general, results suggest a role of AMF inoculation in improvement of antioxidant
activity of foliage of grapevine grown at 28°C/18°C temperature regime. Thus, the combination
of elevated temperature and AMF inoculation stimulated antioxidant activity in all short-cycle
accessions but no changes were observed in long-cycle accessions. In consequence, two-factor
ANOVA indicated significant interactions between temperature and AMF for most of
accessions.

A correlation analysis was done among the phenolic compounds and the antioxidant
capacity for all Tempranillo accessions (Figure 4). Combining all measurements data revealed
that improved antioxidant activity from leaf extracts was significantly correlated with higher
phenolic content (R = 0.58, P < 0.001) (data not shown). This result is in agreement with other
reports in the literature (Kallithraka et al., 2009; Xu et al., 2010; Krél et al., 2014). However,
other authors did not find any correlation between both parameters, indicating that
antioxidant potential was due to specific phenols (Apostolou et al., 2013; Sahpazidou et al.,
2014). Such contrasting results could be attributed to the different grapevine varieties used for
obtaining the extracts and that were subjected to different environmental conditions during
growth. This idea was supported by the present study that showed different relationships
between total antioxidant activity and phenolic content of leaf extracts from accessions grown
in the same controlled conditions (Figure 4). These correlations were significant in CL-260, CL-

1048, CL-1089 and CL-843 accessions but were no significant in CL-8 and CL-280.
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It would be interesting to consider if the observed improvement of phenolic content and
antioxidant activity by AMF inoculation at moderate high temperatures used in this study will
be loss at higher temperatures. Indeed, some research showed decreases in mycorrhizal
activity with warm temperatures and increases in carbon allocation to fungi which can lead to
increased respiration (Martin and Stutz, 2004; Hawkes et al., 2008; Mohan et al., 2014) or to
increased growth of the extraradical mycelium (Heinemeyer et al. 2006). In consequence, the
advantages to the host plant could disappear by high carbon cost resulting in low available
carbon for phenolic biosynthesis. However, this could not implicate necessarily that
antioxidant activity were diminished because compounds other than phenolics (i.e., ascorbic
acid, glutathione, alkaloids, tocopherol and carotenoids) also contribute to antioxidant activity
(Apel and Hirt, 2004; Noctor, 2006). In our study, this possibility may be applied to the
accessions in which the total antioxidant capacity was not significantly correlated with the
phenolic content in leaves (CL-8, CL-280) (Figure 4). In addition, it has been reported that AMF
may protect plants against temperatures up to 30°C and even 40°C by different ways including
increasing antioxidant activity and antioxidant compounds as ascorbic acid (Zhu et al., 2011;
Aktar Maya and Matsubara, 2013). However, the effects can depend on plant-fungus
combinations (Baslam et al., 2011; 2013; Aktar Maya and Matsubara, 2013).

Conclusions

This study provides evidence of intra-varietal-dependent response of phenolic composition
and antioxidant properties of leaf extracts to mycorrhizal inoculation under elevated
temperatures applied during berry ripening in Tempranillo grapevines. The most striking result
that emerges from data was that antioxidant compounds were improved with mycorrhizal
inoculation at 28°C/18°C temperature conditions, which showed higher levels of total soluble
phenolics, flavonols and anthocyanins even when mycorrhizal colonization of grapevine roots
did not achieve high rates. This increase of antioxidant compounds content was highly
correlated with enhanced total antioxidant activity. The combination of the modulator factors
mycorrhizal inoculation and elevated temperatures could exert an additive effect in improving
phenolic synthesis and antioxidant power of grapevine leaf wastes for pharmaceutical uses. In
addition, some accessions showed a particularly interesting combination of attributes for
human health applications. To our knowledge, this is the first study reporting intra-varietal
diversity of phenolic content and antioxidant activity in leaves of Tempranillo grapevines as
well as the effect of the interaction between mycorrhizal inoculation and temperature on the

accumulation of secondary metabolites in leaves of grapevine.
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Figure legends

Figure 1. Mycorrhizal efficiency index (MEI) from fruiting cuttings of Tempranillo accessions
grown either at 24°C/14°C or 28°C/18°C temperature regimes during berry growth and
ripening. Values represent means + S.E. (n=4-6). Within each accession, different letters
indicate significant differences (p<0.05) between treatments according to Duncan test. One-
way ANOVA analysis to evaluate the temperature (T), accession (A) and interaction (TxA)
effects was performed. *** indicate significance at 0.1% probability level.

Figure 2. Total phenols of leaves from fruiting cuttings of Tempranillo accessions inoculated
(+M) or non-inoculated (-M) with arbuscular mycorrhizal fungi and grown either at 12
24°C/14°C or 28°C/18°C temperature regimes during berry ripening. Values represent 13
means + S.E. (n=4-6). Within each accession, different letters indicate significant differences
(p<0.05) between treatments according to Duncan test. Two-way ANOVA analysis to evaluate
the temperature (T), presence of mycorrhizal fungi (M) and interaction (TxM) effects was
performed. ns, *, ** and *** indicate non-significance or significance at 5%, 1% and 0.1%
probability levels, respectively.

Figure 3. Total antioxidant activity of leaves from fruiting cuttings of Tempranillo accessions
inoculated (+M) or non-inoculated (-M) with arbuscular mycorrhizal fungi and grown either at
24°C/14°C or 28°C/18°C temperature regimes during berry ripening. Values represent means
S.E. (n=4-6). Within each accession, different letters indicate significant differences (p<0.05)
between treatments according to Duncan test. Two-way ANOVA analysis to evaluate the
temperature (T), presence of mycorrhizal fungi (M) and interaction (TxM) effects was
performed. ns, *, ** and *** indicate non-significance or significance at 5%, 1% and 0.1%
probability levels, respectively.

Figure 4. Relationships between antioxidant activity and total phenolic content of leaves from
fruiting cuttings of Tempranillo. For each accession, straight lines correspond to the regression

lines fitted for the joint data of all treatments. ns indicates non significance.
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ABSTRACT

Tempranillo grapevine is widely cultivated in Spain and other countries over the world
(Portugal, USA, France, Australia, and Argentina, among others) for its wine, but leaves are
scarcely used for human or animal nutrition. Since high temperatures affect quality of fruits
and leaves in grapevine and the association of Tempranillo with arbuscular mycorrhizal fungi
(AMF) enhances the antioxidant properties of berries and leaves, we assessed the effect of
elevated air temperature and mycorrhization, separately or combined, on the nutritional
properties of Tempranillo leaves. Experimental assay included three clones (CL-260, CL-1048,
and CL-1089) and two temperature regimes (24/14°C or 28/18°C day/night) during fruit
ripening. Within each clone and temperature regime there were plants not inoculated or
inoculated with AMF. The nutritional value of leaves increased under warming climate:
elevated temperatures induced the accumulation of minerals, especially in CL-1089;
antioxidant capacity and soluble sugars also increased in CL-1089; CL-260 showed enhanced
amounts of pigments, and chlorophylls and soluble proteins increased in CL-1048. Results
suggested different applications for leaves of every clone: those from CL-1089 would be
adequate for an energetic diet and leaves from CL-260 and CL-1048 would be suitable for
culinary processes. Mycorrhization improved the nutritional value of leaves by enhancing

flavonols in all clones, hydroxycinnamic acids in CL-1089 and carotenoids in CL-260.

Keywords: Arbuscular mycorrhizal fungi, global warming, minerals, phenolic compounds,

pigments, Vitis vinifera cv. Tempranillo
Abbreviations: AMF = arbuscular mycorrhizal fungi; CL = clone; DM = dry matter; -M = non-

mycorrhizal plants; +M = mycorrhizal plants; Pro = proline; T = temperature; TAC = total

antioxidant capacity; TSP = total soluble proteins; TSS = total soluble sugars

268



Capitulo 6

1. Introduction

The annual pruning of vineyards produces vegetative residuals (stems and leaves) which
are most times left in open fields and, to a lesser extent, used to feed sheep and goats
(Gurbuz, 2007) or as an ingredient for the preparation of dishes for human consumption,
especially in rural regions of some Mediterranean areas, such as Turkey, Greece and Middle
East countries (Harb et al., 2015; Lima et al., 2016, 2017). Grapevine leaves can also be found
as a marketed food supplement in which case it is very important to know their mineral
composition (Panteli¢ et al., 2017). Nutritional value of grapevine leaves is based on their high
levels of minerals, vitamins, carotenoids and phenolic compounds (Andelkovi¢ et al., 2015).
Spain is one of the greatest producers of grapes in the European Union (Eurostat Statistical
Books, 2017), being Tempranillo a red grape variety widely cultivated in northern and central
regions of the country for its wine of high quality. This variety, which exhibits a broad clonal
diversity (Cervera et al., 2002), accounts for the 21% of the total Spanish vineyard surface (OIV
Focus, 2017), but leaves are not consumed in the human diet yet. Tempranillo is also cultivated
in other countries over the world, although it is known under other synonyms, such as
Aragonez in Portugal or Valdepenfias in California.

In many Mediterranean countries, an important part of vineyards are subjected to heat
stress from the end of spring till fruit harvest near September. Therefore, the impact of
elevated temperatures is one of the environmental factors that most influence both primary
and secondary metabolisms and, consequently, the quality of grape berries and leaves (Harb et
al., 2015; Torres et al., 2017). Moreover, according to the Intergovernmental Panel on Climate
Change (IPCC, 2014), the current situation will aggravate since it is expected that the increase
of global average temperature could reach 4°C in the next 100 years. In this challenging
context, soil microorganisms may play a crucial role since they can help crops to cope with
abiotic stresses (Grover et al., 2011). Amongst these microorganisms, arbuscular mycorrhizal
fungi (AMF) have received increasing attention due to their numerous benefits for their host
plants. The symbiotic association of plants with AMF is a common phenomenon observed in
nearly 80% of plant species, including grapevines (Balestrini et al., 2010; Ocete et al., 2015).
The inoculation of grapevines with AMF has been associated with enhanced nutrient uptake
and plant vigour (Schreiner, 2005), as well as improved drought tolerance (Nikolau et al.,
2003). Recently, Torres et al. (2016) concluded that the association of Tempranillo with AMF
may play a relevant role in a future climate change scenario to maintain or even improve fruit
quality by enhancing berry antioxidant properties. Moreover, mycorrhizal symbiosis induced

the accumulation of antioxidant compounds, such as flavonols and anthocyanins, and
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enhanced the antioxidant activity in leaves of Tempranillo grapevines subjected to warm
temperatures (Torres et al., 2015). All these findings suggest that the nutraceutical value of
leaves from Tempranillo may be increased by the association of grapevines with AMF under
stressful conditions. Therefore, the present study has deepen on the effect of mycorrhizal
association and elevated air temperature, separately or in combination, on the levels of some
primary and secondary metabolites as well as on the concentrations of minerals in leaves of
three clones of Tempranillo coming from different geographical areas in order to assess the

potential application of these vegetative residuals in the human diet.

2. Materials and methods

2.1. Biological material

Three-node segments of Vitis vinifera (L.) cv. Tempranillo clones were collected in the
winter of 2016 from an experimental vineyard of the Institute of Sciences of Vine and Wine
(Logrofio, Spain). Three clones from different origins and agronomic traits in the field (CL-260,
from San Vicente de la Sonsierra, La Rioja; CL-1048, from Laguardia, Alava; and CL-1089, from
Bargota, Navarra) were chosen. All of them have short reproductive cycle but different yield:
low for CL-260, medium for CL-1048 and high for CL-1089. However, the main reason why they
were selected for the present research was their different phenolic content and antioxidant
activity in leaves as well as their distinct response to elevated air temperature and mycorrhizal
inoculation, applied alone or in combination (Torres et al., 2015). Fruit bearing cuttings were
produced as initially described in Mullins (1966) and modified by Ollat et al. (1998) and Antolin
et al. (2010). Fruit-bearing cuttings stand out as a useful model to study grapevine physiology
under controlled environments (Morales et al. 2016). Rooting was made in a heat-bed (27°C)
kept in a cool room (4°C). At transplanting, half of the plants (+M) were inoculated with the
mycorrhizal inoculum Bioradis Gel (Bioera SLU, Tarragona, Spain). The inoculum consisted in a
mixture of five AMF (Septglomus deserticola, Funneliformis mosseae, Rhizoglomus
intraradices, Rhizoglomus clarum and Glomus aggregatum), containing 100 spores per g of
inoculum and a mixture of rhizobacteria belonging to the genera Bacillus and Paenibacillus (2 x
10° cfu g). The microbial preparation was diluted in distilled water (1:20) to ensure that each
plant could receive 1 g of product. The inoculation was performed by submerging roots of
fruit-bearing cuttings in the Bioradis Gel for 15 min. In order to restore rhizobacteria and other

soil free-living microorganisms accompanying AMF, uninoculated plants (-M) were submerged
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for 15 min in a filtrate of the abovementioned mycorrhizal inoculum. The filtrate was obtained
by passing mycorrhizal inoculum through a layer of 15-20 mm filter paper with particle
retention of 2.5 mm (Whatman 42; GE Healthcare, Little Chalfont, UK). Microorganisms
accompanying AMF play an important role in the uptake of soil resources as well as on the
infectivity and efficiency of AMF isolates (Agnolucci et al., 2015). Then plants were placed in
6.5 L plastic pots containing a mixture of vermiculite-sand-light peat (2.5:2.5:1, v:v:v) and
transferred to the greenhouses adapted to simulate climate change conditions (Morales et al.
2014). Peat (N: 70-150 mg L%; P,0s: 80-180 mg L™; K,0: 140-220 mg L'%; pH: 5.2-6.0) (Floragard,
Vilassar de Mar, Barcelona, Spain) was previously sterilized at 100°C for 1 h on three
consecutive days. Initial growth conditions were 25/15°C and 50/90% relative humidity
(day/night) regime and natural daylight (photosynthetic photon flux density, PPFD, was on
average 850 pmol m™ s at midday) supplemented with high-pressure sodium lamps (SON-T
Agro Phillips, Eindhoven, Netherlands) to extend the photoperiod up to 15 h and ensure a
minimum PPFD of 350 umol m™ s™. Humidity and temperature were controlled by using
M22W2HT4X transmitters (Rotronic Instrument Corp., Hauppauge, USA). PPFD was monitored
with a LI-190SZ quantum sensor (LI-COR, Lincoln, USA). Plants were watered twice per day
(140 mL day™) with the nutrient solution detailed by Ollat et al. (1998). The electric
conductivity of the nutrient solution adjusted to pH 5.5 was 1.46 + 0.15 mS cm™ as determined
with a conductivity meter 524 Crison (Crison Instruments S.A., Alella, Spain) and the

phosphorus (P) level was 9.78 mg L™.

2.2. Experimental design

From fruit set (Eichhorn and Lorenz (E-L) fruit stage 27) (Coombe, 1995) to harvest (E-L38
stage), -M and +M plants of each clone were exposed to two temperatures (24/14°C and
28/18°C day/night). Temperature regimes were chosen according to the average temperature
registered in La Rioja during the growing season (1981-2010) (AEMET, Spain) and the projected
rise of 4°C for 2081-2100 (IPCC 2014). The excessive soil warming, which can negatively affect
AMF infection, was avoided by wrapping the pots with a reflecting material (Passioura, 2006;
Poorter et al., 2012). Soil temperature was measured at 5 cm soil depth using probes PT100
(Coreterm, Valencia, Spain) and reached 23 * 0.5°C and 28 + 0.5°C for 24/14°C and 28/18°C
temperatures, respectively. Leaves were harvested coinciding with commercially ripe berries

(approximately 22°Brix, E-L38 stage) and immediately frozen at -80°C for further analysis.
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2.3. Determination of mycorrhizal colonization

Root samples were cleared and stained following the procedure described by Koske and
Gemma (1989). 10% potassium hydroxide solution (w:v) was added to the roots which were
placed in an oven at 70°C for 2 h. After rinsing with water, roots were clarified by the addition
of 3% H,0, (v:v) and subsequently washed with water. Then, they were acidified by soaking in
1% HCI (v:v) for 5-15 min and stained in a solution of 1% methyl blue: lactic acid (w:v) at 70°C
for 1 h. Stained roots were stored in a mixture of glycerol, water and 1% HC| (500:450:50,
v:viv) until mycorrhizal quantification. The percentage of mycorrhizal colonization was
determined under a stereoscopic microscope by the plate intersection method (Giovannetti

and Mosse, 1980).

2.4. Fluorimetric sensor measurements in leaves through berry ripening

The evolution of epidermal levels of chlorophylls, nitrogen, flavonols and anthocyanins in
leaves was estimated in situ by using a hand-held, non-destructive fluorescence based
proximal Multiplex3™ sensor (Force A, Orsay, France) at four stages of berry ripening: 1) onset
of softening (E-L34 stage, green berries); 2) beginning of berry coloration and enlargement (E-
L35 stage, veraison); a week after veraison (E-L36 stage); and 4) two weeks after veraison (E-
L37 stage). Multiplex3™ records twelve signals and several signal ratios that are linked to
plants constituents. Thus, SFR_G index is positively correlated with grapevine leaf chlorophylls
(Diago et al., 2016). The Nitrogen Balance Index (NBI,) was designed to use a single emission
signal (FRF) in order to avoid the influence of the variable chlorophyll fluorescence under
certain conditions and has been shown to respond to nitrogen nutrition of the plant (Agati et
al., 2013a). Finally, the ANTH_RG and FLAV indexes are proportional to the anthocyanin and
flavonols concentration in the epidemic cells, respectively (Agati et al., 2013b; Diago et al.,
2016). For the present experiment, the chlorophylls fluorescence signals RF_G and FRF_G,
excited with green (G) light, FRF_UV, excited with ultraviolet (UV) radiation and FRF_R, excited
with red (R) light were used to calculate the abovementioned indexes as:

SFR_G =FRF_G/RF_G

NBI, = FRF_UV x FRF_G / FRF’_R)
ANTH_RG = log (FRF_R / FRF_G)
FLAV = log (FRF_R/FRF_UV)
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2.5. Minerals in leaves at fruit harvest (E-L38)

Leaf samples (0.5 g dry matter, DM) were dry-ashed and dissolved in HCl according to
Duque (1971). Phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), manganese (Mn),
iron (Fe), zinc (Zn) and copper (Cu) were determined using a Perkin Elmer Optima 4300
inductively coupled plasma optical emission spectroscopy (ICP-OES) (Perkin Elmer, USA). The
operating parameters of the ICP-OES were: radio frequency power, 1300 W; nebulizer flow,
0.85 L min™; nebulizer pressure, 30 psi; auxiliary gas flow, 0.2 L min™; sample introduction, 1
mL min™ and three replicates per sample. Total nitrogen (N) and carbon (C) were quantified
after combustion (950°C) of leaf DM with pure oxygen by an elemental analyzer provided with

a thermal conductivity detector (TruSpec CN, Leco, USA).

2.6. Total soluble proteins (TSP), proline (Pro), total soluble sugars (TSS) and starch in leaves at
fruit harvest (E-L38)

Determination of TSP, TSS and starch was performed on 0.5 g of fresh leaves which were
ground in an ice-cold mortar and pestle containing potassium phosphate buffer (50 mM, pH
7.0). The homogenates were filtered through four layers of cheese cloth and centrifuged at
28,710 g at 4°C for 15 min. The supernatant was collected and stored at 4°C for TSP and TSS
determinations. The pellet was used to determine starch after iodine reaction (Jarvis and
Walker, 1993). TSP were analyzed with the protein dye-binding method (Bradford, 1976) and
TSS with the anthrone reagent (Yemm and Willis, 1954) using, respectively, bovine serum
albumin (BSA) and glucose as standards. Proline was analyzed as described by Rienth et al.
(2014). 500 mg of fresh leaves were powdered in liquid nitrogen, diluted 5 fold with deionized
water and centrifuged at 3,000 g for 10 min at 4°C. 750 pL of the supernatant were mixed with
the same volume of formic acid in a vortex for two min. Then, 750 uL of 3% ninhydrin in
dimethylsulfoxide (daily prepared) were added and the mixture was heated at 100°C for 15

min. The absorbance was read at 520 nm.
2.7. Chlorophylls and carotenoids in leaves at fruit harvest (E-L38)
Total chlorophylls (a + b) and total carotenoids were extracted according to Séstak et al.

(1971) by immersing samples of fresh leaves (1 cm?, approximately equivalent to 20 mg) in 5

mL of 96% ethanol at 80°C for 10 min. The absorbance of extracts was measured at 470, 649,
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665 and 750 nm. Estimation of total chlorophylls (a + b) and total carotenoids was performed

by using the extinction coefficients and equations described by Lichtenthaler (1987).

2.8. Phenolic compounds and total antioxidant activity (TAC) in leaves at fruit harvest (E-L38)

2.8.1. Extraction of phenolic compounds

Samples of 0.5 g of fresh leaves were ground to a powder in a mortar with liquid nitrogen.
After adding 3 mL 80% aqueous acidified methanol (2% HCI 12N) (Revilla et al., 1998) to each
sample, phenolics were extracted by shaking samples overnight at room temperature in the
dark. Then, samples were centrifuged at 13,200 g for 15 min at ambient temperature. The
residues were re-extracted other two more times (for 3 h every re-extraction) under similar
conditions. Supernatants were combined (9 mL in total for each sample) before determining

phenolic compounds and total antioxidant capacity (TAC).

2.8.2. Determination of phenolics and TAC

Flavonoids were analysed according to Kim et al. (2003). 4 mL of deionized water was
added to 1 mL of each sample. After adding 300 uL of NaNO, samples were shaken for 5 min,
and 300 plL of AICI; were added. After 6 min, 2 mL of 1M NaOH were added to the flask.
Immediately, the mixture was diluted with 2.4 mL of deionized water and the absorbance was
read at 510 nm using catechin as a standard. Flavonols and hydroxicinnamic acids were
spectrophotometrically determined as described by Boulanouar et al. (2013). Samples (0.5 mL)
were diluted (1:2) with aqueous ethanol (95% v:v) acidified with 0.1% HCI. Then other 4 mL of
2% HCI were added until a total final volume of 5 mL. The absorbance was measured at 360
and 320 nm, and quercetin and caffeic acid were used as standards for flavonols and
hydroxycinnamic acid derivatives, respectively. Procyanidin monomers (flavan-3-ols) were
analysed by the p-dimethylaminocinnamaldehyde (DMACA) method (Arnous et al., 2001). One
mL of DMACA solution (0.1% in 1 N HCI in MeOH) was added to 0.2 mL of 1:20 diluted sample
with 80% aqueous acidified methanol (2% HCI 12N). The mixture was vortex-mixed and kept at
room temperature for 10 min. Afterwards the absorbance was read at 640 nm. Catechin was
used as a standard. Absorbance values were always read in a UV-VIS spectrophotometer (UV
1800, Shimadzu, Tokyo) with a range of 190-1100 nm, and results were expressed as mg of the
standard used for each group of phenolics per gram of leaf DM.

Total antioxidant capacity (TAC) in leaves was evaluated by the free radical scavenging

activity (a, a-diphenil-8-picrylhydrazyl (DPPHe)) assay (Brand-Williams et al., 1995). The
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variation of the absorbance at 515 nm was measured after 30 min. The reaction started after
adding 20 uL of the sample to the cuvette containing 980 uL of 80 uM DPPHe in methanol in
parafilm-sealed glass cuvettes (Llorach et al., 2004). TAC was estimated by interpolation on a

linear regression curve made with gallic acid.

2.9. Statistical analysis

Statistical analyses were carried out using statistical software the Statistical Package for
the Social Sciences (SPSS) (SPSS Inc., Chicago, IL, USA) version 21.0 for Windows. After
establishing the normality of the data with the Kolmogorov-Smirnov normality test due to the
small sample size (n= 4), data were subjected to a two-way analysis of variance (ANOVA)
within each clone. The test allowed assessing the main effect of the factors temperature (T)
(24/14°C, 24 and 28/18°C, 28), and AMF inoculation (M, +M and —M) and the interaction
between them. Means + standard errors (SE) were calculated and when the F ratio was
significant (P<0.05), a Duncan test was applied. Two-way ANOVA was performed to determine
significant differences in measured parameters. To determine general trends within the
different samples, a principal component analysis (PCA) was performed over the leaf minerals,

pigments, phenolic compounds and TAC.

3. Results and discussion

3.1. Mycorrhizal colonization at fruit harvest (E-L38)

Microscopic observations of cleared and stained roots revealed the presence of
mycorrhizal structures in roots from +M plants. In contrast, fungal structures never were found
in roots of —M plants. Percentages of mycorrhizal colonization in +M plants ranged from 41.9%
in CL-1048 grown at 24/14°C to 67.7% in CL-260 cultivated at 28/18°C (Fig. 1). Only in CL-1048
elevated temperature was significantly linked to an enhanced mycorrhizal colonization.
Increased mycorrhizal colonization has been found in most studies performed under warming
temperatures, although fungal activity can decrease under those conditions (Mohan et al.
2014). Contrariwise, some authors have reported decreased AMF colonization as a direct

effect of elevated temperature (Wilson et al., 2016).
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3.2. Chlorophylls, nitrogen balance, anthocyanins and flavonols in leaves during fruit ripening

Optical sensing technologies may be implemented to provide frequent and spatially
widespread monitoring of plant nutrient status as well as, a faster and non-destructive
phenotyping tool (Diago et al., 2016). To the best of our knowledge, this is the first study in
which this tool has been used to monitor the combined effect of elevated temperatures and
mycorrhizal symbiosis on grapevine and it has demonstrated the different behavior of each
Tempranillo clone (Table 1).

In CL-260 the levels of chlorophylls in leaves, estimated as SFR_G, were positively
influenced by mycorrhizal association at early stage of fruit ripening (E-L34) and by warming air
temperatures in a later stage (E-L36). In CL-1048 elevated temperature increased epidermal
chlorophylls in leaves during fruit ripening (E-L35, E-L36 and E-L37). In CL-1089, chlorophylls
were significantly affected by the interaction between elevated temperature and
mycorrhization, this effect being opposite depending on the stage of fruit ripening:
chlorophylls decreased at the beginning (E-L34) and increased later (E-L36).

The NBI; in leaves is related to the nitrogen nutrition of plants and corresponds to the
ratio between chlorophylls and flavonols (Agati et al., 2013a). Only in CL-260 this index was
influenced by the association of plants with AMF and the positive effect was observed at an
intermediate stage of fruit ripening (E-L36). Elevated temperature enhanced NBI; in leaves of
CL-260 and CL-1089 at the final stage of fruit ripening (E-L37).

High air temperatures exerted a negative effect on the anthocyanins (ANTH_RG) present
in the epidermal cells of leaves, especially at final stages of fruit ripening (E-L36, E-L37), CL-
1048 being the most sensitive clone to warming temperatures (Table 1). Accordingly, Rowan et
al. (2009) demonstrated that the loss of anthocyanins due to high temperatures was explained
by the inhibition of the transcription of anthocyanin biosynthetic genes and increased rates of
degradation in Arabidopsis thaliana leaves. However, this negative effect was not clearly
observed in previous studies carried out in Tempranillo subjected to warming temperatures at
berry maturity (E-L38) (Torres et al., 2015). Mycorrhizal symbiosis counteracted the decrease
in anthocyanins in leaves of CL-1089 subjected to elevated temperatures at stage E-L37 of
berry ripening (Table 1), which is of high interest because these pigments are regarded as
important components in human nutrition due to their antioxidant capacities (Stintzing and
Carle, 2004). Similarly, Torres et al. (2015) observed a positive effect of mycorrhizal inoculation
on the levels of anthocyanins in leaves of CL-260 and CL-1048 at stage E-L38.

When compared the levels of flavonols (FLAV) between -M and +M plants under elevated

temperatures, we found higher amount of these phenolic compounds in leaves of plants
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associated with AMF (Table 1). In CL-260 +M28 plants showed higher FLAV levels than —-M28
plants from E-L34 till E-L36. In CL-1048 this beneficial effect of AMF was restricted to stage E-
L36. In contrast, Torres et al. (2015) found reduced FLAV content at stage E-L38 in leaves of
Tempranillo inoculated with AMF and subjected to elevated temperatures. The disagreement
between both studies can be also due to differences in the type of mycorrhizal inocula and in
the level of mycorrhizal colonization achieved in roots of grapevines. While Torres et al. (2015)
used a commercial inoculum derived from an in vitro culture of Rhizophagus intraradices, in
the present study grapevines received a mixture of five AMF (Septglomus deserticola,
Funneliformis mosseae, Rhizoglomus intraradices, Rhizoglomus clarum and Glomus
aggregatum). The percentages of mycorrhizal colonization achieved when applied this mixture
of AMF (Fig. 1) were significantly higher than those observed after inoculating R. intraradices
alone (15% or less). Similarly, Eftekhari et al. (2012) also reported different effectiveness of
different mycorrhizal species applied to different grapevine varieties for inducing the

accumulation of a given compound in leaves.

3.3. Minerals in leaves at fruit harvest (E-L38)

Phenotypic differences within cv. Tempranillo clones were highlighted in their foliar
mineral composition. Even in plants grown at 24/14°C and not inoculated with AMF (-M24) the
concentrations of some macro and micronutrients in leaves differed between clones (Table 2).
Despite the equal mineral nutrition and water regime, CL-260 showed around 40% and 30%
higher amounts of Mg and Mn, respectively, than CL-1048, which suggests different uptake
and translocation rates of water and mineral nutrients from soil to the aerial part among
clones. Similarly, the concentration of Zn in leaves of CL-260 was 40% higher than that found in
leaves of CL-1089. In contrast, warming day/night temperatures produced similar effects on
the three tested clones: the amount of several minerals increased in leaves, regardless
grapevines were or not associated with AMF (Table 2). Such behavior agrees with findings of
Martins et al. (2014) in Coffea arabica subjected to increased air temperature and it was
attributed to an enhanced transpiration in order to promote leaf cooling. However, despite
this general behavior under warming temperatures, there was also intravarietal diversity in the
response, being CL-1089 the most sensitive to high air temperatures. Levels of Ca, P, Mg, Cu,
Zn and Mn significantly increased in leaves of CL-1089 after applying elevated temperatures.
The accumulation of Cu, Zn and Mn would have reinforced the defense mechanisms of these
plants against oxidative stress (Ramalho et al., 2013). From a human point of view, the

increased levels of Ca, Mg, Cu and Zn found in leaves of CL-1089 cultivated under warming
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temperatures clearly improve their nutritional value because their consumption may reduce
the risk of the called ‘hidden hunger’. ‘Hidden hunger’ is the term used to describe the
malnutrition inherent in human diets that are adequate in calories but lack in vitamins and/or
mineral nutrients, and refers to a nutritional problem also present in developed countries
(White and Broadley, 2009). For example, many people in United Kingdom or USA do not
consume adequate quantities of Cu (Copper Development Association, 2011), and nearly 50%
of the world’s population is at risk of inadequate Zn intake (FAOSTAT, 2002). Other minerals
that are sometimes scarce in the diet of people from developed countries are Ca, Mg, Fe, Se
and | (White and Broadley, 2009).

On the other hand, CL-1048 was the most responsive to the combination of elevated
temperatures and mycorrhizal symbiosis (Table 2). The interaction between these two factors
(T x M) was significant for the concentrations of N (P < 0.05), P (P £ 0.01), Mg (P £ 0.01) and
Mn (P < 0.01), but only the amount of N increased when both factors were applied together,
which may be a surprising result. Since grapevine root has low density and large diameter fine
roots, mycorrhizal symbiosis is expected to be very beneficial for the mineral nutrition of
grapevines by extending the volume of the explored soil allowing an adequate uptake of water
and mineral nutrients (Trouvelot et al., 2015). Our experiment, however, was performed with
potted plants. Consequently, the limited soil volume would have restricted the ability of AMF
for enhancing the absorption of minerals, which could explain the low impact of mycorrhizal
inoculation on the accumulation of mineral nutrients in leaves of grapevines (Table 2; M, ns).
In a review that included papers published over three decades, Schreiner (2005) reported that
mycorrhizal symbiosis always improved the growth of grapevines cultivated under controlled
conditions in pots but the concentrations of mineral nutrients in leaves only increased in few
of these studies. In addition, as previously commented, the increased percentage of
mycorrhizal colonization under warming temperatures is not always associated with enhanced

fungal activity (Mohan et al., 2014).

3.4. Primary metabolites in leaves at fruit harvest (E-L38)

Except for CL-1089, the application of elevated temperatures provoked significant
increases in the concentrations of soluble proteins in leaves, being these increases especially
marked in CL-1048 (Fig. 2A). Although heat stress down-regulates proteins involved in the
photosynthetic electron transport, carbon metabolism and glycolytic pathway, high
temperatures increase the abundance of chaperones and enzymes implied in the antioxidant

metabolism of plants (Rocco et al., 2013).
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Proline concentrations in leaves were significantly affected by air temperature and
mycorrhizal symbiosis in CL-1089 (Fig. 2B). In these plants proline decreased under elevated
temperatures, being the reduction more pronounced in +M than in —M plants. This behavior
contrasts with the enhanced proline levels found by Torres et al. (2017) in berries of CL-1089
subjected to high air temperature. Since leaves were the site of synthesis of proline
accumulated in citrus fruits during cold hardening (Purvis and Yelenosky, 1982), we can
hypothesize that proline synthetized in grapevine leaves may be translocated to fruits when
plants are undergoing elevated temperatures.

When compared the levels of soluble sugars in leaves of grapevines collected from
semiarid and temperate regions in Palestine, Harb et al. (2015) did not find big differences.
Similarly, the concentrations of sugars (TSS and starch) (Figs. 2C and 2D) in leaves of
Tempranillo were not drastically affected by elevated temperatures and/or mycorrhizal
inoculation. The only exception was CL-1089, in which high temperatures induced an increase
in the levels of TSS in leaves, especially in -M plants (Fig. 2C), in accordance with the enhanced
concentrations of glucose and fructose found in berries of CL-1089 under high temperatures
(Torres et al., 2017). Those increases in TSS, however, were not associated with a decrease in
the concentrations of starch (Fig. 2D). Changes in sugars may reflect changes in the rate of
photosynthesis and/or acclimation in response to stressful conditions (Harb et al., 2015).
Accumulation of TSS can be also a consequence of decreased levels of glycolytic enzymes or
proteins implied in energy-generating reactions when plants undergo heat stress (Rocco et al.,
2013). In our study, the most relevant differences between the amounts of sugars were due to
intravarietal diversity. At moderate temperatures (24/14°C), the concentration of sugars
accumulated in leaves of CL-260 (around 50 mg g DM) was more than double than that in
leaves of CL-1089 (below 20 mg g™ DM) (Fig. 2C). Therefore, from a nutritional point of view,
leaves from CL-260 would be adequate for supplying energy through the diet whereas leaves

from CL-1048 and CL-1089 would be a better food source for diabetic people.

3.5. Chlorophylls and carotenoids in leaves at fruit harvest (E-L38)

Natural and semi-synthetic chlorophyll derivatives are mainly used as food colorants but
they could also be used as food supplements that may delay the development of several
chronic diseases (Fernandes et al., 2007). Moreover, they have shown anti-inflammatory
activity in vitro (Mulabagal et al., 2010). Carotenoids are thought to be responsible for the
beneficial properties of fruits and vegetables in preventing, among others, cardiovascular

dysfunctions and cancer in human beings (Rao and Rao, 2007).
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In agreement with the information collected through the fruit ripening process (Table 1),
data obtained at fruit harvest (E-L38) (Fig. 3) showed that the application of elevated
temperatures (28/18°C) enhanced the levels of chlorophylls and carotenoids in CL-260,
increased those of chlorophylls in CL-1048 and had not significant effect on the concentrations
of pigments in CL-1089. The levels of carotenoids also increased in leaves of CL-260 as a
consequence of mycorrhizal inoculation, which agrees with findings of Baslam et al. (2011)
working with lettuce. All these observations corroborate that the clonal diversity of
Tempranillo results in different abilities to respond to elevated temperatures and AMF
inoculation (Torres et al.,, 2016). Together with their potential benefits for human health,
chlorophylls and carotenoids are also intrinsically related to the color, a relevant aspect that
consumers take into account. However, the contents of carotenoids and chlorophylls in
grapevine leaves are drastically reduced with boiling during cooking processes (Lima et al.,
2017). Therefore, an increased level of those pigments in fresh leaves may counteract, to some
extent, the loss during culinary treatments. Regarding a potential use of leaves from
Tempranillo for nutritional purposes, information on the intra-varietal differences in the basal
levels of chlorophylls and carotenoids and their responsiveness to biotic or abiotic factors
could be used as criteria for deciding which clones would be the most suitable to be consumed

in fresh or to be submitted to culinary process.

3.6. Phenolic compounds and antioxidant activity in leaves at fruit harvest (E-L38)

The term ‘flavonoids’ includes a large number of pigments (flavonols, flavan-3-ols,
flavones, anthocyanidins, flavanones, isoflavones) which are present in fruits, vegetables, nuts
and beverages consumed in the human diet. These secondary metabolites are small organic
compounds with anti-inflammatory, anti-cancer and antiviral properties, so that they are seen
as one of the safest non-immunogenic drugs (Lee et al., 2007). According to epidemiological
studies and data from animal models and clinical trials, flavonoids may beneficially affect
disease etiology and pathophysiology (Graf et al., 2005).

At ambient temperatures (24/14°C), the highest amount of flavonoids (59.99 mg g™ DM)
was found in leaves of non-mycorrhizal plants (-M24) belonging to CL-1048 (Table 3). However,
this concentration was reduced by half (29.14 mg g DM) under elevated temperatures
(28/18°C). The levels of flavonoids in leaves of -M plants from CL-260 also tended to diminish
when applied high temperatures because the concentration of these compounds decreased
from 31.89 mg g DM at 24/14°C till 26.34 mg g DM at 28/18°C, which meant a reduction of

17%. In contrast, flavonoids in leaves from CL-1089 were not significantly affected by elevated
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temperature. Loss of flavonoids in leaves from CL-1048 under elevated temperatures was
avoided by the association of plants with AMF.

The flavonols reported in leaves of some red varieties of grapevine are quercetin and
derivatives, rutin, luteoline-glucoside, myricetin-glucoside and kaempferol (Andelkovi¢ et al.,
2015). Torres et al. (2017) found myricetin-3-O-glucoside, quercetin-3-0O-galactoside,
guercetin-3-O-glucoside, laricitrin-3-O-glucoside, kaempferol-3-O-glucoside and isorhamnetin-
3-0-glucoside in berries from CL-1089 and CL-843 of Tempranillo. The present study shows the
levels of total flavonols in leaves. At E-L38 stage the concentrations in leaves from mycorrhizal
plants grown at ambient temperatures (+M24) were 22.28, 25.03 and 39.14 mg g DM in CL-
260, CL-1048 and CL-1089, respectively, while the levels of these compounds in leaves of their
respective non-mycorrhizal controls (-M24) were 16.13, 22.64 and 19.68 mg g DM (Table 3).
This means that mycorrhizal symbiosis induced the accumulation of flavonols in leaves of
Tempranillo cultivated at 24/14°C day/night temperatures, which agrees with findings of
Eftekhari et al. (2012), who measured higher levels of quercetin in Keshmeshi and Shahroodi
varieties of grapevine following inoculation with AMF. This positive effect of mycorrhizal
symbiosis on the levels of flavonols was also observed under elevated temperatures, and it
was especially evident in CL-1089 (Table 3). Moreover, in CL-1048, mycorrhizal association
counteracted the negative effect of elevated temperature on the amount of flavonols in
leaves.

Among the flavonoids subgroups, flavan-3-ols were less abundant than flavonols in leaves
of all studied Tempranillo clones (Table 3), which agrees with findings of Doshi et al. (2006).
Except for the CL-1048, these phenolic compounds increased as a consequence of mycorrhizal
symbiosis or elevated temperatures. Andelkovié et al. (2015) observed that the infection of red
grapevines with the fungus Plasmopara viticola, the causal agent of downy mildew, induced
the accumulation of flavan-3-ols in leaves. However, when combined high temperatures and
mycorrhization, there was a significant interaction (T x M, P < 0.01) that reduced the
enhancement of flavan-3-ols observed when these factors acted separately.

Hydroxycinnamic acids are polyphenolic compounds that possess antioxidant, anti-
inflammatory, anti-collagenase, antimicrobial and anti-tyrosinase activities. All these
properties make these natural compounds good potential candidates to fight against obesity
and the associated health problems (Alam et al., 2016), to apply as cosmeceutical ingredients
in skin anti-aging and hyperpigmentation-correcting products (Taofiq et al., 2017), and to use
as additives to new functional foods (Budryn and Rachwal-Rosiak, 2013). In our study, the
amount of flavonols and hydroxycinnamic acids in leaves of different Tempranillo clones were

quite similar (Table 3), which contrasts with the lower levels of hydroxycinnamic acids
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compared with those of flavonols found by Lima et al. (2016) in leaves comparing ten white
and red varieties of grapevines. Application of elevated temperatures had not a significant
effect on the concentrations of hydroxycinnamic acids in leaves of Tempranillo, although a
slight increase was observed in CL-260 and CL-1089 (Table 3). By contrast, the association of
grapevine with AMF clearly induced the accumulation of these phenolic compounds in leaves
from CL-1089 (Table 3). Hydroxycinnamic acids can exert an antifungal activity in some plant-
pathogen interactions (Morrissey and Osbourn, 1999), although not in others (Latouche et al.,
2013). Host plants can react by activating defense mechanisms in response to the colonization
of their roots by AMF (Garcia Garrido and Ocampo, 2002) and this defense response may
include the accumulation of phenolic substances in the aerial part (Baslam et al., 2011).

Krél et al. (2015) reported that the application of chilling diminished the ability to
scavenge the DPPHe radical in grapevine leaf extracts. Contrariwise, the TAC in CL-260 showed
an increasing tendency when applied high temperatures, mycorrhizal inoculum or both
together (Table 3). Moreover, CL-1089 was the most sensitive to the elevated temperatures
and the radical-scavenging capacity of its leaf extracts significantly increased at 28/18°C. In CL-

1048, mycorrhizal symbiosis was the factor that improved TAC in leaves.

3.7. Principal component analysis of minerals and metabolites in leaves at fruit harvest (E-L38)

In order to obtain general trends concerning the effects of elevated temperatures and
mycorrhizal symbiosis on primary and secondary metabolites as well as on mineral nutrients
present in leaves of Tempranillo clones a principal component analysis (PCA) was performed.
Fig. 4 shows the score (A) and the loading (B) plots of the PCA. The first principal component
(PC1) covered about 33.48 % of the total variance and it clearly separated temperature
treatments (Fig. 4A), some minerals (Ca, Mg, N, P, Mn and Cu) and proline (Fig. 4B). Otherwise,
CL-1089 was separated from the other two clones (CL-260 and CL-1048) by the second
principal component (PC2) which accounted for the 18.48% of the variance (Fig. 4A). CL-1089
clone is characterized in the PCA by a higher content in flavonols, flavan-3-ols and
hydroxycinnamic acids and lower content in Zn. Mycorrhizal symbiosis was not distinguished
by PCA. Thus, clonal diversity mainly affected the secondary metabolism and Zn concentration
while air temperature modified primary metabolism and the concentrations of several
minerals in Tempranillo leaves. Phenolic compounds can function as antioxidants in plants
subjected to stressful conditions (Oh et al., 2009). In our study, however, the PCA showed a
strong correlation between TAC and carotenoids and chlorophylls in leaves and, to a lesser

extent, a relationship between TAC and phenolic compounds (Fig. 4B).
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In summary, elevated air temperatures induced the accumulation of several mineral
nutrients in leaves of Tempranillo grapevines, especially in the CL-1089. In this clone, also TAC
and TSS increased in leaves under warming temperatures. Leaves from CL-260 showed higher
amounts of chlorophylls and carotenoids when subjected to high temperatures, while
chlorophylls and TSP increased in leaves of CL-1048 under those conditions. Mycorrhizal
symbiosis induced the accumulation of flavonols in leaves of the three studied clones,
increased the levels of hydroxycinnamic acids in leaves from CL-1089 and those of carotenoids

in leaves of CL-260.

4. Conclusion

In general, the nutritional value of leaves from Tempranillo grapevines may enhance
under the predicted warming climate. However, the diversity in the response to increased
temperatures suggests different applications for each clone: leaves from CL-260 and CL-1048
would be more adequate than those of CL-1089 for diabetic people and leaves from CL-260 -
and to a lesser extent those from CL-1048- may be more suitable for culinary processes than
leaves from CL-1089. The association of Tempranillo grapevines with AMF would provide an
additional improvement of the nutritional value of leaves because it can induce the

accumulation of flavonols in these three clones.
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Capitulo 6

Figure legends

Figure 1. Mycorrhizal colonization of roots from fruit-bearing cuttings of Tempranillo clones (CL)
grown at 24/14°C (24) or 28/18°C (28) (day/night) temperatures (T) during berry ripening. Data were
collected at final fruit harvest (E-L38). Values are means * SE (n = 4). Within each CL, histograms with
the same letter indicate that values are not significantly different (P > 0.05) between treatments
according to Duncan’s test. One-way ANOVA was performed to evaluate the effect of temperature

(T). ns, and * indicate non-significance or significance at 5% probability levels, respectively.

Figure 2. Total soluble proteins (TSP) (mg g DM) (A), proline (Pro) (umol g* DM) (B), total soluble
sugars (TSS) (mg g DM) (C), and starch (mg g™ DM) (D) in leaves from fruiting cuttings of Tempranillo
clones (CL) grown at 24/14°C or 28/18°C day/night temperatures (T) during berry ripening. Data
were collected at final fruit harvest (E-L38). Values represent means + SE (n = 4). Two-way ANOVA
analysis was made to evaluate temperature (T), mycorrhizal inoculation (M) and interaction (TxM)
effects within each CL. ns, *, and ** indicate non-significance or significance at 5%, and 1%
probability levels, respectively. Within each graph (A, B, C or D) and CL, different letters indicate

significant differences (P < 0.05) according to Duncan’s test. DM = dry matter.

Figure 3. Total chlorophylls (a+b) (mg g™ DM) (A) and total carotenoids (mg g™ DM) (B) in leaves from
fruiting cuttings of Tempranillo clones (CL) grown at 24/14°C or 28/18°C day/night temperatures (T)
during berry ripening. Data were collected at final fruit harvest (E-L38). Values represent means + SE
(n = 4). Within each CL, two-way ANOVA analysis was made to evaluate temperature (T), mycorrhizal
inoculation (M) and their interaction (TxM) effects. ns, and * indicate non-significance or significance
at 5% probability levels, respectively. Within each graph (A or B) and CL, different letters indicate

significant differences (P < 0.05) according to Duncan’s test. DM = dry matter.
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Capitulo 6

Figure 4. Principal component analysis score (A) and loading plot (B) obtained from the statistical
analysis of minerals, primary and secondary metabolites, and total antioxidant capacity (means of 48
studied samples) in leaves from fruit-bearing cuttings of Tempranillo clones (CL) inoculated (+M) or
not (-M) with arbuscular mycorrhizal fungi and grown at 24/14°C or 28/18°C day/night temperatures.
Data were collected at final fruit harvest (E-L38). TAC = total antioxidant capacity; TSP = total soluble

proteins; TSS = total soluble sugars.

299



00¢

630T-10 8v0T-1D 09Z-10

- 0T
- 0¢
- 0€
- O
- 09

- 09
i |

O

- 08
- 06

(%) uoneziuo|od |eziya102A

2,8T/8¢0O su . su 1
2.7T/vcOd 680T-10 8¥0T-10 09¢-1D0

*T 24n314

9 omde)



9 oymyde)

10¢€

680T-10 8Y0T-10 09¢-10
2,81/82 2,VT/¥T 2,81/82 2VT/¥T 2,81/8¢ 2VT/¥T 00
Lot &
su  £90T SO'0T 20T 6V0T 680T-1D -0V g
su  ST'OT ¥S0T £0OT T90T 8yOT-1D 09 5
su  (T'TT SETT  S90T /8TT  09Z-10 o @
W+ - 87 V¥Z  (NQ.8 00T &
XL W 1 8w) youers L ozT m
VAONY s1affa u -ovT T
m=
Loz =
«x 60°LT 8T'TV OT'LS LTTT 680T-1D 5 E E 00T o
« LV ¥S'9T TIS6C ISET 8pOT-1 qe 2q ? ooy 3
su 8005 08'7S 9/%S TU'SY 09z-10 q iy
Wt W- 8T VT (ng .S 009 &
INXL W 1 Sw)ssL ~o0s =
VAONV spaffa uiw e
00
" =2
su Q00T eS8T dT60 BE6T 680T-10 S0 S
. . . . ~ =
" 0T LTT  ¥60 STT 8y0T-1 ; q 01 3
" 80T 860 SOT 00T 09z-10 q qe =X
W+ W 87 ¥T (nNg .8 qe e e FST W
X o
INXL W 1 jowr) oud e ot £
VAONY GEEVENTTI -
00
su  IT'S ¥I'S QE€TY BT09 630T-1D -o.N b7,
su G9T'9 0.8 BTOTI 4S8BT 8pOT- =
su qOSYeSE/L BEYY GZOS  09Z-1D 09 m
-0'8
N+ IN- 8¢ ¥vC (nN@.8 00T na....
INXL W 1 Sw) ds1 N+ @ . 9
VAONY $109ffa UIbN n-O ot 2
F0vT
*Z @1n314



0¢

680T-10 870T-10
2,81/8¢ 2,vT/T 2,81/8¢ 2.VT/¥T 1,81/8C 2T/
00
su  6CT GET T¥T ¢TT 68011 -
. Q
su  OyT TYT €ST 6T  8YOTDD - -0 H% 3
-+
su  eQETq/80 BOETAS60 091D oy
i L0z 9 9
W+ - 8T ¥ 2
TR 1 (War3auw =7
spiouajole) | IN+m | -0°€
VAONV s1affauroy No q
00
«+ YOS 6V'S ¥LS 6L%  680T-1D 2
Su  68'G 86'G BT99497'S  8YOT-1D i .oeMm
su  TTS 8TY BELSQ9LE 09T q o Mu.
ge ==
+ - <9 &
- [\ . N 8¢ ; 144 (WG L5 5w) e qe | 083 m.q
sjAydouojyd = +
VAONV s1affa uibiN v z
i 0Tl
*€ 94n314

9 oymyde)



€0¢

(%8v°€€) T0d M v v s
’ e (%81°€€) T2d * © o 8TA-
a ° S O TN+
l0z- u a o vIAN-
‘e 680110 8YOT-1D  097-T
S'T-
dSL L4 .
n e ° .
Je e 0t
24 @ yoJeis @ p] o
1 G T m v y . m
d "o ST 0T ¢ S0 C S0- 0T- o't 0 —~
3(®® e 0 N4 _ _ o . o m = B
N [1Aydoio|yd |e301 0id m o
) ® L = ]
une Sploudioied S0 e
Jvli @ splouone
e p! He .
¢ 0T
ST
[ ]
v .
suluue| ¢ -0c
sploe ojweuuldAxolpAH )
sjouone| @ 1 ST
d v
*f @4n314

9 oymyde)






CAPITULO 7

Potential biomedical reuse of vegetative residuals from mycorrhized
grapevines subjected to warming.
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Capitulo 7

Abstract

Grapevine leaves are by-products widely discarded in open fields despite their known
antioxidant properties and potential reuse as organic fertilizers or for human or animal
nutrition. This study tests the cytotoxicity of leaf extracts from Tempranillo grapevine against
four human cancer cell lines and assesses the effect of air temperature and mycorrhizal
association on the cytotoxic activity. Leaf extracts were obtained from three clones (CL-260,
CL-1048, CL-8) of Vitis vinifera L. cv. Tempranillo cultivated at either ambient (24/14°C) or
elevated (28/18°C) day/night temperatures, and inoculated (+M) or not (-M) with arbuscular
mycorrhizal fungi (AMF). MTT assays were performed to analyze the cytotoxicity against colon
(HT-29) and breast (MCF-7) adenocarcinomas, lung carcinoma (HTB-54), and lymphoblastic
leukemia (CCRF-CEM). The increase of four degrees in the air temperature enhanced the
cytotoxicity of leaf extracts from CL-260 against HT-29, CCRF-CEM and HTB-54 and that from
CL-8 against MCF-7. Mycorrhization improved the cytotoxicity of leaf extracts from CL-1048
against HT-29, CCRF-CEM, HTB-54 and MCF-7. The cytotoxic activities of extracts from CL-260
against HTB-54 and from CL-1048 against HT-29 were correlated, respectively, with total
phenols and total antioxidant capacity. Levels of phenols and antioxidant activity, however, did
not completely explain the cytotoxicity of Tempranillo leaf extracts. We conclude that the
predicted increase in the air temperature for the future climate change and the association of
grapevines with AMF may enhance the cytotoxicity of leaves, which strengthens the potential
application of these agricultural residuals for biomedical purposes. The clonal diversity in the
response to AMF and air temperature, however, highlights the importance of choosing the

most adequate Tempranillo clone for a concrete environmental scenario.

Keywords: arbuscular mycorrhizal fungi, climate change, cytotoxicity, DPPH assay, vegetative

by-products, MTT assay, phenols, Vitis vinifera
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Capitulo 7

1. Introduction

The agricultural sector produces huge amounts of wastes known as ‘vegetative
agricultural residuals (VAR)" with high disposal costs imposed on the producers (Raviv et al.,
2018). Grapes are one of the most important crops in Europe with a production of 23.7 million
tons in 2016 (Eurostat, 2017) and their cultivation generates high volumes of by-products such
as stems and leaves, usually discarded in the field. Only a small portion of these vegetative
residuals are used as animal feed and/or in the production of natural organic fertilizers
(Arvanitoyannis et al., 2006), although their use as feedstock of an economic feasible waste
management may transform them into a valuable resource (Raviv et al., 2018). Only in some
Mediterranean countries grapevine leaves are consumed in the human diet (Abed et al., 2015)
in spite of having demulcent, laxative, refrigerant, stomachic, diuretic and cooling effects (El-
Hawary et al., 2012). Moreover, grapevine leaves have shown antihyperglycaemic, antioxidant,
anti-inflammatory, analgesic and antipyretic activities (Orhan et al., 2006; Aouey et al., 2016).
Other in vitro studies have demonstrated effective cytotoxic activity of grapevine leaves
against breast (Esfahanian et al., 2013), leukemia (Handoussa et al., 2013) and lung (Abed et
al., 2015) cancer cells. Many of these properties have been attributed to the phenolic
compounds accumulated in grapevine leaves (Handoussa et al., 2013; Aouey et al., 2016; Lima
et al., 2016). Phenolic metabolism in tissues can be strongly modified in response to biotic and
environmental factors. Esfahanian et al. (2013) observed increased cytotoxic activity for leaf
extracts obtained from virus infected grapevines and suggested that this effect could be due to
the high levels of polyphenols in the infected leaves. Within biotic factors, special attention
should be paid to the arbuscular mycorrhizal fungi (AMF), which normally colonize grapevine
roots in the field (Balestrini et al., 2010). Mycorrhizal symbiosis can stimulate key genes of the
phenylpropanoid biosynthesis in grapevine (Bruisson et al., 2016) thus inducing the

accumulation of phenolic compounds (Eftekhari et al., 2012). Phenylalanine ammonia-lyase
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(PAL) catalyzes the deamination of the aminoacid phenylalanine to give cinnamic acid, which is
the first step in the phenylpropanoid pathway. PAL gene expression is responsive to biotic and
abiotic environmental stimuli, including extreme temperatures (Dixon and Paiva, 1995). Global
temperature average is predicted to increase between 1.8 and 4.0°C by the end of the present
century (IPCC, 2014), which presumably will influence the synthesis and levels of phenolic
substances in plant tissues. Torres et al. (2015) found that both phenolic content and
antioxidant activity of grapevine leaves were stimulated by the combination of elevated
temperatures and mycorrhizal inoculation, although results were highly dependent on the
intra-varietal diversity of grapevine.

Taking all together, our hypothesis was that leaves of grapevines associated with AMF
and/or grown under elevated temperatures may have improved cytotoxic potential against
cancer cells by means of an enhanced accumulation of phenolic compounds, which would

increase their interest to be reused for pharmacological and biomedical purposes.

2. Materials and methods

2.1. Biological material and growth conditions

Dormant Vitis vinifera (L.) cuttings of Tempranillo with 400-500 mm long were obtained in
the winter of 2014 from an experimental vineyard of the Institute of Sciences of Vine and Wine
(Logrofio, Spain) (Denomination of Origin Rioja, North of Spain). Three clones (CL-260, CL-1048,
and CL-8) with different agronomic traits (Table 1) and whose leaves showed increased
phenolic content and antioxidant activity when subjected to elevated temperature and/or
mycorrhizal inoculation (Torres et al., 2015) were chosen for the study.

Fruit-bearing cuttings were obtained according to steps originally outlined by Mullins

(1966) and modified by Ollat et al. (1998) and Antolin et al. (2010). Rooting was made in a
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heat-bed (27°C) kept in a cool room (4°C). One month later, the cuttings were planted in 6.5 L
plastic pots containing vermiculite-sand-peat (2.5:2.5:1, v:v:v). Peat (Floragard, Vilassar de
Mar, Barcelona, Spain) had a pH of 5.2-6.0, 70-150 mg L™ of N, 80-180 mg L™ P,Os and 140-220
mg L™ K,0 and it was previously sterilized at 100°C for 1 h on three consecutive days.

At transplanting, half of the plants (+M plants) were inoculated with the mycorrhizal
inoculum ‘GLOMYGEL® vid, olivo, frutales’ (Mycovitro S.L., Pinos Puente, Granada, Spain).
GLOMYGEL® inoculum derived from an in vitro culture of Rhizophagus intraradices (Schenck
and Smith) Walker & Schiifler comb. nov., and contained inert pieces of roots colonized by
AMF, spores and vegetative mycelium as propagules. It was diluted with distilled water in
order to have an inoculum with around 250 propagules per mL. Each +M plant received 8 mL
of the diluted inoculum close to the roots thus making a total of 2,000 propagules. A similar
volume of a filtrate was added to plants that did not receive the mycorrhizal inoculum (-M
plants) in an attempt to restore other soil free-living microorganisms accompanying AMF. The
filtrate was obtained by passing diluted mycorrhizal inoculum through a layer of 15-20 um
filter paper with particle retention of 2.5 um (Whatman 42, GE Healthcare Life Sciences, Little
Chalfont, UK).

Plants were transferred to glasshouses adapted to simulate climate change conditions
(Morales et al., 2014). Initial growth conditions (day/night temperatures and relative humidity,
photosynthetic photon flux density, photoperiod, irrigation and fertilization) were those

explained by Torres et al. (2015).

2.2. Experimental design

At fruit set (Eichhorn and Lorenz (E-L) fruit stage 27) (Coombe, 1995), 20 fruit-bearing
cuttings per clone with 4-5 fully expanded leaves were exposed to two temperature regimes:

24/14°C or 28/18°C (day/night). The 24/14°C temperature regime was selected according to
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the average temperatures registered in La Rioja (1971-2000) (AEMET, Spain) during grapevine
growing season. The 28/18°C temperature regime was selected according to predictions of a
rise of 4.0°C by the end the present century (IPCC, 2014). Both temperature regimes were
maintained to harvest that corresponded to commercially ripe berries (approximately 22°Brix)
(E-L 38 stage). Harvested leaves were frozen at -80°C for further analysis. To avoid excessive

soil warming sides of pots were covered with a reflecting material (Passioura, 2006).

2.3. Mycorrhizal colonization

Root samples were cleared and stained (Phillips and Hayman, 1970) and mycorrhizal
colonization was determined by examining 1 cm root segments (n = 45 per pot) under the
microscope. Extension, incidence and intensity of mycorrhizal colonization were calculated as
described by Torres et al. (2015) and results were expressed as percentage of infection

(Hayman et al., 1976).

2.4. Preparation of foliar extracts

Extracts were obtained according to Esfahanian et al. (2013) with some modifications.
Leaves were dried in oven at 70°C and then powdered in liquid nitrogen. Afterwards, 15 g of
dry matter (DM) were placed in a stopped conical flask and macerated with 250 mL of 98%
(v/v) methanol (Panreac, Spain) at room temperature for three days with stirring. After
evaporation, a new extraction was performed with 100 mL of 98% (v/v) methanol for one day.
Then, solvent was filtered and evaporated in a vacuum rotary evaporator (Heidolph OB2000,
Gemini BV Laboratory, Apeldoorn, Netherlands) at 45°C. Residue was placed in the freeze-
dryer (VirTis BenchTop 2K, SP Industries Inc., Warminster, PA, USA) until complete dryness.

The crude extract was stored at 4°C in darkness.
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2.5. Determination of phenolic compounds and antioxidant activity

Phenolic compounds and antioxidant activity were determined in 100 mg of crude leaf
extracts dissolved in 1 mL of 98% methanol and sonicated for 15 min. All determinations were
made in triplicate. Absorbance was read in a UV-VIS spectrophotometer (UV 1800, Shimadzu,
Tokyo) with a range of 190-1100 nm, and results were expressed as mg of the standard used

per gram of extract DM.

2.5.1. Determination of phenolic compounds

Total phenols (TP), flavonols, anthocyanins, and hydroxycinnamic acids were determined
by the method of Lima et al. (2016) adapted to grapevine leaves. Briefly, 0.5 mL of diluted
extracts was added to the same volume of aqueous ethanol (95% v:v) acidified with 0.1% HCI.
Then other 4 mL of 2% HCI were added until a total final volume of 5 mL. The absorbance was
measured at 280, 320, 360 and 520 nm, using gallic acid, caffeic acid, quercetin and malvidin as
standards for TP, hydroxycinnamic acids, flavonols, and anthocyanins, respectively. Flavan-3-
ols were analysed by the p-dimethylaminocinnamaldehyde (DMACA) method (Arnous et al.,
2001). One mL of DMACA solution (0.1% in 1 N HCl in methanol) was added to 0.2 mL of 1:20
diluted sample with 80% aqueous acidified methanol (2% HCl 12N). The mixture was vortex-
mixed and kept at room temperature for 10 min. Afterwards the absorbance was read at 640

nm. Catechin was used as a standard.

2.5.2. Determination of total reducing capacity (TRC) and total antioxidant capacity (TAC) in

foliar extracts

Total reducing capacity (TRC) was spectrophotometrically determined at 760 nm with
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Folin-Ciocalteau reagent (Waterman and Mole, 1994) using gallic acid as a standard.

Total antioxidant capacity (TAC) was evaluated by the free radical scavenging activity (o,
a-diphenil-8-picrylhydrazyl, DPPH) assay (Brand-Williams et al., 1995). The scavenging activity
using the free radical DPPHe was evaluated by measuring the variation in absorbance at 515
nm after 30 min of reaction in parafilm-sealed glass cuvettes at 25°C (Espin et al., 2000). The
reaction was started by adding 20 pL of each sample to a cuvette containing 80 uM methanol
(980 pL) of DPPHe (Llorach et al., 2004) until a final volume of 1 mL. Gallic acid was used as a

standard.

2.6. In vitro cytotoxic assays

Extracts were obtained by dissolving 25 mg of leaf DM in 1 mL of dimethyl sulfoxide
(DMSO0), followed by sonication. Then extracts were screened for its cytotoxic activity against
five human tumor cell lines provided by the American Type Culture Collection (ATCC,
Manassas, VA) and the European Collection of Cell Cultures (ECACC, Porton Down, Salisbury,
UK): lymphoblastic leukemia (CCRF-CEM), colon carcinoma (HT-29), lung carcinoma (HTB-54),
and breast adenocarcinoma (MCF-7). Moreover, one non-malignant mammary gland derived
(184B5) cell line was used to determine the selectivity of Tempranillo leaf extracts. The cell
lines CCRF-CEM, HT-29, and HTB-54 were grown in RPMI-1640 medium (Life Technologies,
Barcelona, Spain) supplemented with 10% fetal calf serum, 2 mM L-glutamine, 100 units mL™
penicillin, 100 pg mL™* streptomycin and 10 mM HEPES buffer (pH 7.4). The cell line MCF-7 was
grown in EMEM medium (Clonetics™, Lonza Biologics Porrifio, S.L., Barcelona, Spain)
supplemented with 10% fetal calf serum, 2 mM L-glutamine, 100 units mL™ penicillin and 100
pug mL' streptomycin. The 184B5 cell line was cultured in Hams F-12/DMEM (50:50)

supplemented as described by Li et al. (2007).
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Cytotoxic effect of leaf extracts was tested at five different concentrations ranging
between 15 and 250 pg mL* by consecutive dilutions with the respective culture medium. Cells
were seeded in 96-well plates at a density of 10 cells per well and incubated for 48 h at 37°C
in a humidified atmosphere containing 5% CO,. Cytotoxicity assays were performed by the
MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] method (Encio et al.,
2005) with little modifications. Results were obtained from at least 3 independent experiments
performed in quadruplicate and the half maximal inhibitory concentration (ICs;) was
calculated. The selectivity index (SI) for breast adenocarcinoma cells was calculated as the ratio

between ICsq (184B5) and ICsq (MCF-7) values.

2.7. Statistical analyses

Statistics was carried out using the Statistical Package for the Social Sciences (SPSS) (SPSS
Inc., Chicago, IL, USA) version 21.0 for Windows. Data were subjected to Kolmogorov-Smirnov
normality test due to the small sample size. Data followed a normal distribution; therefore a
two-way analysis of variance (ANOVA) within each clone was applied. The test was performed
to assess the main effect of the factors temperature (T) (24°C/14°C, 24, and 28°C/18°C, 28) and
mycorrhizal inoculation (M) (uninoculated, -M and inoculated, +M) and the interaction
between them (T x M). The main factors for data concerning mycorrhizal colonization were
temperature (T), and clone (CL); the interaction between both factors (T x CL) was also studied.
Means + standard errors (SE) were calculated and, when the F ratio was significant (P < 0.05), a
Duncan test was applied. Within each cancer cell line and clone, Pearson’s analyses were
performed to test the effect of TP, TRC and TAC of foliar extracts on their cytotoxic activity

(ICs0). Significant levels were always set at P < 0.05.
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3. Results and discussion

3.1. Mycorrhizal colonization

Hyphae and fungal vesicles were visible, indicating that the mycorrhizal association was
not incipient but mature (Fig. 1A). Colonization rates (which ranged from 10 to 15%) did not
significantly differ between clones and were not strongly influenced by the air temperature

(Fig. 1B).

3.2. Phenolic compounds and antioxidant activity (TRC and TAC)

Table 2 shows data on phenols, TRC and TAC in Tempranillo foliar extracts. Mycorrhizal
symbiosis can promote the accumulation of phenols in leaves of crops such as lettuce (Baslam
and Goicoechea, 2012) and grapevine (Eftekhari et al., 2012; Torres et al., 2015), this effect
being dependent on the variety, cultivar or clone and also on the incidence of environmental
factors such as drought (Baslam and Goicoechea, 2012) or temperature (Torres et al., 2015). In
CL-260, mycorrhization increased hydroxycinnamic acids and anthocyanins in leaves, although
this effect disappeared under elevated temperatures (Table 2). Warming (28/18°C) and
mycorrhizal inoculation (+M) increased, respectively, the levels of flavonols and anthocyanins
in leaves of CL-1048. In these clones (CL-260 and CL-1048) the applied biotic (AMF) or abiotic
(high temperatures) factors did not strongly affect the foliar accumulation of flavan-3-ols and
TP. Contrariwise, the amounts of hydroxycinnamic acids, flavonols, anthocyanins and TP in
leaves of CL-8 were reduced by the incidence, alone or in combination, of high temperatures
and mycorrhization.

The values of TRC or TAC did not significantly varied in any grapevine clone after applying

elevated temperatures and/or AMF inoculation (Table 2). In line with these results, working
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with grapevine stem extracts, Apostolou et al. (2013) observed that none of the eighteen

identified individual polyphenols was clearly correlated with DPPH radical scavenging activity.

3.3. Cytotoxicity of leaf extracts

Vegetative by-products of vineyards, such as stems and leaves, have been tested for their
anticarcinogenic activity, results being very promising for limiting the growth of cells from
several types of cancer. While the application of stem extracts from Greek varieties of V.
vinifera inhibited the growth of liver, cervical, colon, breast, renal and thyroid (Rice-Evans et
al., 1996; Sahpazidou et al., 2014) cancer cells, foliar extracts from a variety cultivated in arid
regions of Palestine were effective against lung cancer (Abed et al., 2015). In all these studies,
plant material was collected from grapevines grown in field. In our study, the cultivation of
plants under controlled conditions allows to assess if some abiotic (temperature) or biotic
(mycorrhization) factors can modulate the cytotoxic potentiality of grapevine foliar extracts.
Results, expressed as ICsq, are shown in Table 3.

The cell line CCRF-CEM (lymphoblastic leukemia) was the most sensitive to the application
of foliar extracts regardless the clone of Tempranillo and the abiotic or biotic factors applied to
grapevines. In this case, ICso values ranged from 22.16 ug mL™" in +M24 from CL-1048 to 45.68
ug mL™in +M24 from CL-260. These ICs, values are clearly lower than those obtained by Abed
et al. (2015) working with foliar extracts against lung cancerous cells and to ICsq values
measured after adding stem extracts to breast, colon, renal and thyroid cancer cells
(Sahpazidou et al.,, 2014). The application of abiotic and biotic factors modulated the
cytotoxicity of foliar extracts against lymphoblastic leukemia cells. The study of the main
effects (T and M) showed that the ICs, value in CL-260 was significantly decreased by elevated
temperatures (42.02 ug mL™" at 24/14°C and 24.77 ug mL™" at 28/18°C) and increased by

mycorrhizal inoculation (29.13 pug mL™ in =M plants and 37.66 pg mL" in +M plants). In
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contrast, ICso for CCRF-CEM cell line in CL-1048 was lower when applied extracts collected from
mycorrhizal (+M, 23.17 pg mL") than from non-mycorrhizal (-M, 33.48 ug mL™) grapevines. In
CL-8, both factors interacted significantly (T x M, P < 0.001), so that mycorrhization only
increased ICs, value when plants were cultivated at 24/14°C.

The higher values of ICs, demonstrate that the cytotoxic effect of foliar extracts from
Tempranillo against colon adenocarcinoma (HT-29), lung carcinoma (HTB-54) and breast
adenocarcinoma (MCF-7) cell lines was lower than that found against lymphoblastic leukemia
(CCRF-CEM). Those values, however, were sometimes reduced by the application of abiotic or
biotic factors. In CL-260, elevated temperatures decreased ICsy against HT-29 and HTB-54 cell
lines and mycorrhizal inoculation enhanced the cytotoxicity of foliar extracts from CL-1048
against HT-29, HTB-54 and MCF-7 cell lines. In CL-8, ICsy diminished against MCF-7 cell line
when applied high temperatures and against HTB-54 when combined elevated temperatures
and mycorrhizal inoculation.

An anticancer compound should be, in first instance, safe for normal cells. The selectivity
index (SI) reflects the differential cytotoxicity of a given compound against tumor and normal
cells. In our study the Sl was performed against the breast cancer cell line (Table 4). Leaf
extracts from CL-260 were the most selective, showing values of Sl above 2 when obtained
from —M plants cultivated at ambient (24/14°C) temperatures, which indicates good selective
toxicity (Badisa et al., 2009). Elevated air temperatures decreased the S| of foliar extracts from
CL-1048 and the combination of high temperatures and mycorrhizal inoculation reduced the SI

in CL-260.

3.4. Correlation between TP, TRC, TAC and cytotoxicity
In order to assess the possible mechanisms underlying the cytotoxic activity of the
Tempranillo leaves, Pearson correlation analyses were carried out between TP, TRC, TAC and

cytotoxicity for every human cancer cell line and Tempranillo clone (Figs. 2, 3 and 4).
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In CL-260 (Fig. 2), negative correlation between TP and I1Csy was found for three cancer cell
lines, correlations being significant in MCF-7 and HTB-54. Working with MCF-7 breast cancer
cell line, Lin et al. (2006) concluded that resveratrol (also detected in the phenolic profile of
Tempranillo leaf extracts, Fig. S1) can interact with the aVa3 integrin receptor in these cells
and induce apoptosis. Furthermore, Nagappan et al. (2016) demonstrated that flavonoids from
Citrus platymamma caused apoptosis and G2/M arrest of lung cancer cells by activating
caspase-3. Xingyu et al. (2016) concluded that quercetin (a flavonol identified in high
concentration in Tempranillo leaf extracts, Fig. S1) may suppress lung cancer by inhibiting the
aurora B kinase, an enzyme which promotes tumorigenesis and progression.

On the other hand, the higher cytotoxicity of foliar extracts from CL-1048 against HT-29
may be due to antioxidant activities (TRC and TAC) (Fig. 3). It has been recently shown that
extracts of white tea (Camellia sinensis) with high antioxidant activity inhibited HT-29 colon
cancer cells by the death receptor and mitochondrial apoptotic pathways as demonstrated by
increased expression levels of caspases-3/7, -8, and -9 (Hajiaghaalipour et al., 2015).

Finally, although negative correlation coefficients were found between TP, TRC, TAC and
ICso for almost all cancer cell lines in CL-8 (Fig. 4), none of them were significant. The lack of a
significant correlation between TP and ICs, suggests that the cytotoxic activity of the leaf
extract from CL-8 may be the resulting synergic action of many compounds, some of them

different from phenols.

4, Conclusions

Our results have shown that the cytotoxicity of leaf extracts from Tempranillo against
several cancer cell lines was higher than that detected when used other grapevine varieties. To
our knowledge this is the first study in which cytotoxicity is evaluated after applying biotic and

abiotic factors under controlled conditions and simulating the predicted global warming.
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Elevated temperatures and mycorrhizal inoculation, separately or in combination, can enhance
the cytotoxic activity of grapevine leaves, which strengthen the potential application of these
by-products for biomedical purposes. There were, however, important differences among
Tempranillo clones that should be taken into account for a hypothetical use of their vegetative
residuals. The mycorrhization of CL-1048 would be an interesting resource for improving the
cytotoxic effect of its foliar extracts against several human cancer types. Leaves from CL-260
appear as an interesting product for pharmacological purposes under the future warming
conditions and foliar extracts from CL-8 associated with AMF and grown under elevated

temperatures may be a promising tool against lung carcinoma cells.
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Table 1. Summary of the agronomic characteristics of Tempranillo clones used in this study.

Clone Agronomic traits City of origin (Region)

CL-260 Short cycle-Low vyield San Vicente de la Sonsierra (La Rioja)
CL-1048 Short cycle-Medium yield Laguardia (Alava)

CL-8 Long cycle-Low yield Sorzano (La Rioja)
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Capitulo 7
Table 4. Selectivity index (Sl) for breast adenocarcinoma (MCF-7) cells of leaf extracts from fruit-bearing
cuttings of Tempranillo clones inoculated (+M) or not (-M) with arbuscular mycorrhizal fungi, and grown at

24/14°C or 28/18°C day/night temperatures.

CL-260 CL-1048 CL-8
Treatments
-M24 2.16 a 1.64 1.06b
+M24 1.63b 1.61 0.96 b
-M28 1.18 b 1.49 1.18 a
+M28 1.57b 1.43 0.82c
Main effects
Temperature (T)
24 1.90 1.63a 1.01
28 1.38 146 b 1.00
Mycorrhizal inoculation (M)
-M 1.67 1.56 1.12
+M 1.60 1.52 0.89
ANOVA
TxM * ns *x

Values represent means (n = 12) separated by Duncan’s test (at P < 0.05). Within clones, means followed by
different letters are significantly different as affected by the main factors temperature (T, 24, 28),
mycorrhizal inoculation (M, +M, -M), and their interaction (T x M). * P <0.05; ** P <0.01; ns, not significant

(P>0.05).
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Figure legends

Fig. 1. Mycorrhizal colonization of Tempranillo fruiting cuttings roots. Microscopic image (x 100) (A) of
roots belonging to Tempranillo fruiting cuttings inoculated (+M) with arbuscular mycorrhizal fungi (AMF)
and intensity of mycorrhizal colonization (%) (B) of roots from fruit-bearing cuttings of Tempranillo clones
(CL) grown at normal (24/14°C) (white histograms) or elevated (28/18°C) (black histograms) day/night
temperatures at berry ripening. Values of mycorrhizal colonization are means (n = 4-6) + SE. Means not
followed by different letters are not significantly different as affected by the main factors temperature (T,

24, 28), clone (CL, CL-260, CL-1048, CL-8) and their interaction (T x CL). ns, not significant (P > 0.05).

Fig. 2. Correlation between total phenols (TP, squares), total reducing capacity (TRC, circles), antioxidant
capacity (TAC, triangles) and cytotoxic activity (ICso) in leaf extracts from Tempranillo CL-260 inoculated
(+M) or not (-M) with arbuscular mycorrhizal fungi (AMF) and grown either at 24/14°C or 28/18°C day/night
air temperatures. Relationships were tested against four cancer cell lines (HT-29, CCRF-CEM, HTB-54 and
MCF-7). For each cell line, straight lines correspond to the regression lines fitted for the joint data of all

treatments. ns indicates not significant (P > 0.05); * P < 0.05.

Fig. 3. Correlation between total phenols (TP, squares), total reducing capacity (TRC, circles), antioxidant
capacity (TAC, triangles) and cytotoxic activity (ICsq) in leaf extracts from Tempranillo CL-1048 inoculated
(+M) or not (-M) with arbuscular mycorrhizal fungi (AMF) and grown either at 24/14°C or 28/18°C day/night
air temperatures. Relationships were tested against four cancer cell lines (HT-29, CCRF-CEM, HTB-54 and
MCF-7). For each cell line, straight lines correspond to the regression lines fitted for the joint data of all
treatments. ns indicates not significant (P > 0.05); * P < 0.05.

Fig. 4. Correlation between total phenols (TP, squares), total reducing capacity (TRC, circles), antioxidant
capacity (TAC, triangles) and cytotoxic activity (ICso) in leaf extracts from Tempranillo CL-8 inoculated (+M)
or not (-M) with arbuscular mycorrhizal fungi (AMF) and grown either at 24/14°C or 28/18°C day/night air

temperatures. Relationships were tested against four cancer cell lines (HT-29, CCRF-CEM, HTB-54 and MCF-
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7). For each cell line, straight lines correspond to the regression lines fitted for the joint data of all

treatments. ns indicates not significant (P > 0.05).
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Original research article

Potential biomedical reuse of vegetative residuals from mycorrhized

grapevines subjected to warming
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* Corresponding author: Nieves Goicoechea

Supplementary methods. (Poly)phenolic compounds in foliar extracts from Tempranillo
clones

Supplementary Figure (Fig. S1). Profile of hydroxycinnamic and hydroxybenzoic acids,

flavonols and stilbenes in Tempranillo grapevine leaf extracts.
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Supplementary methods

(Poly)phenolic compounds in foliar extracts of Tempranillo grapevine

Foliar extracts were obtained according to Esfahanian et al. (2013) with some modifications.
Afterwards, 1 mL of methanol/acidified water (0.1% formic acid) (80:20 v/v) was added to
100 mg of each lyophilized extract, sonicated for 15 min, filtered through a 0.2 um syringe
filter and stored at 20°C until analyzed. Qualitative analysis of (poly)phenolic compounds were
carried out using an HPLC unit model 1200 (Agilent Technologies, Palo Alto, CA, USA) equipped
with a triple quadrupole linear ion trap mass spectrometer (3200 Q-TRAP, AB SCIEX). The
column used was a CORTECS® C18 (3 x 75 mm, 2.7 um) from Waters. A preliminary analysis
was carried out in a full scan MS?, scanning from m/z of 100 to 1000, and a consecutively
selective product ion mode analysis. Finally, for the identification of the phenolic compounds,
ion multiple reaction monitoring (MRM) mode was used. For HPLC separation, mobile phase A
was 0.1% (v/v) formic acid in water and mobile phase B was acetonitrile. Separations were
carried out with an injection volume of 4 pL, column oven temperature of 30°C and elution
flow rate of 0.35 mL min™. The mobile phases comprised a program of 0-1.20 min, 5% B; 1.20—-
8.80 min, 5-11.4% B; 8.80-10 min, 11.4-11% B; 10-30 min, 11-28% B; 30-32 min, 28-100% B
and then return to 5% B in 2 min and maintained isocratic until the end of the analysis (38 min)
to re-equilibrate the column. The MS functioned in negative ionization mode, with the turbo
heater maintained at 500°C and lonSpray voltage set at -3500. Nitrogen was used as
nebulizing, turbo heater and curtain gas and was set at the pressure of 40, 50 and 35 psi,
respectively. Chromatograms and spectral data were acquired using Analyst software 1.6.3 (AB

SCIEX).
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DISCUSION GENERAL







Discusion general

Grapevine (Vitis vinifera L.) is an important perennial crop worldwide, covering several regions
where rising temperatures have been recorded during the last century and will be accentuated
in the future (IPCC, 2014). South Mediterranean Europe, an important wine production area, is
characterized by climate variability and stressful environments, so that the projected climate
change scenario is expected to have detrimental impact on its viticulture suitability (Fraga et
al., 2016). Consequently, winemaking sector is aware of adaptation measures may be required
for maintaining the current varietal distribution. Among the potential measures that could be
adopted appear appropriate clonal selections due to the broad variability within varieties, an
adequated management of irrigation strategies in order to save water and the implementation
of measures to promote the symbiosis with AMF in vineyards.

Therefore, in this PhD Thesis a characterization of the intra-varietal response of grapevine cv.
Tempranillo to elevated air temperature and deficit irrigation, applied alone or in combination,
as well as, an analysis of the potential benefits of mycorrhizal symbiosis on plant metabolism,
and thus fruit quality, under the future stressful conditions have been assessed. Experiments
were performed on fruit-bearing cuttings from different clones of V. vinifera cv. Tempranillo
grown under controlled conditions in greenhouses. Potted vines were used to ensure that all
clones experienced the same conditions, to facilitate the imposition of a similar water deficit
procedure and to control mycorrhizal inoculation. Fruit bearing cutting technique has been
validated in field as a valuable model to study grapevine phenology, physiology and also as a
useful tool to study predicted climate change conditions (Morales et al., 2016). Nevertheless,
working with potted vines in greenhouses could have some drawbacks such as abrupt changes
in temperature cycles, lack of wind, limited soil volume or warming of roots above air
temperature (Bonada and Sadras, 2015), which were prevented as possible throughout the
experiments of this work. In spite of these limitations, this model allowed avoiding, in many
cases, the year-to-year variations recorded in field-grown grapevines, and therefore obtaining
similar results within each clone when environmental or biotic factors were applied. However,
conclusions obtained along this dissertation require that extrapolations to field-grown
grapevines should be made with caution.

Grapevine phenology is driven by temperature and the warming trends are shortening the
phenological cycles. Likewise, they are impairing the balance between phenolic and
technological maturity leading to more alcoholic wines due to the increased sugar content and
the decreased acidity and anthocyanins in berries in detriment of wine quality (Teixeira et al.,
2013). In dry regions of Mediterranean Europe, irrigation of vineyards is being expanded to
mitigate the effects of warming and more stressful environment where water scarcity may

constrain grapevine production. Therefore, deficit irrigation has emerged as a potential

343



Discusion general

strategy to guarantee viticulture suitability under these conditions (Costa et al., 2016). Smart
irrigation strategies such as the timing of water deficit could be applied to guarantee a good
balance between vegetative growth and berry quality, as well as the economic viability and
environmental sustainability of viticulture (see Chaves et al., 2010, for further details). Under
this scenario, our first goal was to evaluate the impact of pre- and post-veraison deficit
irrigation on berry metabolism of two Tempranillo clones (CL) subjected to elevated
temperatures. The clonal variability within cv. Tempranillo resulted in different responses to
deficit irrigation under warm temperatures due to changes in berry skin metabolism. Thus,
although temperature and irrigation strategy modified the profile of amino acids, anthocyanins
and flavonols, CL-1089 stood out as quite tolerant to warm temperatures. In line with the
detrimental effects of climate change previously described, elevated temperature accounted
for increased levels of hexoses while early deficit (ED) irrigation diminished the antioxidant
properties of must by means of losses of anthocyanins and flavonols at 24/14°C. This result
evidenced that late deficit (LD) irrigation performed better than ED, although such differences
were clearly attenuated at warmer temperatures. Given these results, a reasonable strategy of
adaptation to climate change might be the optimization of timing of water deficit and the
appropriate selection of clones.

The symbiosis between arbuscular mycorrhizal fungi (AMF) and plants is widespread with 80%
of plants colonized (Smith and Read, 2008), including grapevines. In fact, AMF are known to
increase grapevine nutrient uptake, growth and resistance to abiotic or biotic stresses (see
Trouvelot et al., 2015, for further details). Therefore, our second purpose was to determine
whether mycorrhizal inoculation can improve berry antioxidant properties in three
Tempranillo clones and thus ameliorate the deleterious effect of elevated air temperature on
fruit quality. Again, the clonal diversity within cv. Tempranillo resulted in different abilities to
respond to AMF inoculation under warming temperatures. Thus, the protective role of AMF on
berry quality was particularly evident in CL-1048, in which fruit quality and antioxidant
properties were maintained or even improved under elevated temperatures. These results
highlighted the importance of adopting measures to protect the indigenous cohorts of AMF in
vineyards.

These benefits derived from the association of Tempranillo with AMF did not occur in all
studied clones (i.e. the tolerance of the CL-1089 to elevated temperatures decreased, in terms
of berry quality, when inoculated with AMF). On the other hand, AMF symbiosis was known to
alleviate grapevine water stress by enhancing water uptake or drought tolerance (Trouvelot et
al., 2015). However, it was unknown if this potential benefit would be maintained under future

constraints. Consequently, our third aim was to characterize the quality and antioxidant
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properties of fruits in three clones of Tempranillo when subjected to the combination of
different water deficit irrigations (ED and LD) and AMF inoculation under elevated
temperatures. Results confirmed that AMF inoculation may improve the beneficial effect of LD
under warming conditions, where the loss of anthocyanins detected in the non-mycorrhizal
plants did not occur when plants were inoculated with AMF, especially in CL-1089. Thereby,
the implementation of measures to promote the association of grapevines with AMF may

optimize the irrigation strategy effects under warming conditions.

Berry ripening and consequently berry quality (mainly anthocyanins) are very dependent on
abscisic acid (ABA) metabolism. Thus, ABA plays a major role on the ripening process because
it peaks around veraison, the stage where many ripening related processes, such as sugar
accumulation, berry softening or colour development, take place (Fortes et al., 2015; Pilati et
al., 2017). However, recent researches have pointed out that compounds derived from ABA
catabolism/conjugation could also be involved in berry ripening (Wheeler et al.,, 2009;
Castellarin et al., 2016) and that they may be affected by heat and drought (Zarrouk et al.,
2016). Moreover, it is known that ABA is involved in the establishment and functioning of the
mycorrhizal symbiosis (Pozo et al., 2015). Taking all into account, we hypothesized that ABA
metabolism could be implied in the ability of AMF for improving berry quality under global
warming scenarios in CL-1048 and CL-1089. Our data indicated that the ABA
catabolism/conjugation along berry development was modulated by AMF inoculation and by
climate change conditions. Under elevated temperatures, plants inoculated with AMF had
higher ABA glucose ester (ABA-GE), 7'-hydroxy-ABA (7'OH-ABA) and lower phaseic acid (PA)
content than uninoculated plants. Besides, an important role of 7°0OH-ABA in the fruit quality
of Tempranillo berries was evidenced. Under the most stressful conditions (elevated
temperatures and deficit irrigation), berry quality (namely, anthocyanins) was improved by
AMF inoculation, which also led to increased ABA hydroxylation at the position 7’ in detriment
of position 8’, providing an explanation to the ability of AMF for improving berry quality under

global warming scenarios.

A complementary aspect developed in this PhD thesis was the suitability of grapevine wastes
for their reutilization in the future climate change scenario. With few exceptions in some
Mediterranean countries, grapevine leaves are usually discarded as wastes of the grapes
processing industry. However, they are rich in phenolics and antioxidant compounds that help
plants to cope with abiotic stresses, being these secondary compounds increased by the
association of grapevines with AMF (Eftekhari et al., 2012). In the last years, there is an

increasing interest in the study of these wastes due to the possibility of taking profit from
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them for nutritional or biomedical industries (Fernandes et al., 2013; Lima et al.,, 2017).
However, it remains unclear if the composition and properties of leaves could be maintained
under global warming conditions. Taking all into account, we aimed to evaluate the effect of
AMF inoculation and elevated temperatures on phenolic composition and antioxidant activity
of leaf extracts from the cultivar Tempranillo. A first screening of Tempranillo clones
highlighted the different intra-varietal responses to elevated temperatures and AMF
inoculation with regard to phenolic composition and antioxidant properties. In some clones,
AMF inoculation enhanced total soluble phenolic, flavonol and anthocyanin content and the
antioxidant capacity when grown under warm temperatures. Given these results, our last
objective was to assess the potential application of these vegetative wastes in the human diet
or for pharmacological and biomedical purposes. The nutritional value of leaves from
Tempranillo was improved under the projected warming climate. Thus, elevated temperatures
increased the contents of several minerals and those of soluble sugars, photosynthetic
pigments and soluble proteins. Mycorrhizal symbiosis enhanced the accumulation of flavonols
and hydroxycinnamic acids. However, the intra-varietal diversity in such responses suggests
different applications for each studied clone. On the other hand, Tempranillo foliar extracts
were more active against some human cancer cell lines than other extracts from different
varieties of grapevine (Esfahanian et al., 2013; Handoussa et al., 2013; Abed et al., 2015).
Besides, cytotoxic activity was enhanced by AMF inoculation, elevated temperatures or their
combination. Preliminary data obtained in this PhD Thesis strengthen the potential application
of these agricultural wastes for pharmaceutical and biomedical purposes.

Altogether, this dissertation demonstrates the broad diversity of responses to biotic (AMF) or
environmental (high temperature or water deficit irrigation strategies) factors within the
cultivar Tempranillo, which ultimately determines the metabolism, hormonal balance, quality
of berries and leaf composition. Moreover, it has been highlighted the importance of
protecting the mycorrhizal fungal communities in vineyards in order to promote their
association with grapevines and thus, optimize the effects of a late water deficit irrigation

under future warming conditions.
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Conclusions

1.

The responses to deficit irrigation under warm temperatures were explained by clonal-
specific changes in berry skin metabolism of Tempranillo. Under our experimental
conditions, early deficit (ED) irrigation performed worse than late deficit (LD) at 24/14°C
regarding anthocyanin and flavonol levels and berry traits, even though such differences
were clearly attenuated at 28/18°C.

The extent of alteration in primary metabolism due to temperature was higher than in
secondary metabolism, which was mainly affected by deficit irrigation. Temperature
increased levels of hexoses which could enhance the content of alcohol in wine, whereas
ED at 24/14°C decreased anthocyanin and flavonol levels, which probably diminished the
antioxidant properties.

Temperature and irrigation modified the amino acid, anthocyanin and flavonol metabolite
profiles, with CL-1089 appearing to be more tolerant than CL-843 to elevated temperature.
These results suggested that the optimization of timing of water deficit, as well as the
proper clonal selection might guarantee the adaptation of grapevines to warming trends in
South Mediterranean Europe.

Clonal diversity of Tempranillo also resulted in different abilities to respond to arbuscular
mycorrhizal fungi (AMF) inoculation under elevated temperature. Thus, the protective role
of AMF in avoiding warming effects on berry quality was particularly evident in CL-1048.
The association of CL-1048 with AMF allowed maintaining or improving berry quality and
antioxidant properties in spite of the earlier ripening. Thus, CL-1048 associated with AMF
may be an interesting alternative to typical clones of Tempranillo used to make wine
within future climate-change scenario. These results highlighted the relevance of adopting
measures to protect the indigenous cohorts of AMF in vineyards.

The association of grapevines with AMF could impair the detrimental effect of water
restriction and elevated temperatures. Thereby, AMF inoculation may improve the
potential benefits of LD at 28/18°C, due to the loss of anthocyanin detected in the non-
mycorrhizal plants never occurred in those inoculated with AMF, however, this benefit
differed between Tempranillo clones. Results emphasized the importance of implementing
measures to promote the association of grapevines with AMF which may contribute to
optimize effects of irrigation strategy on berry properties under elevated temperatures.
Throughout berry ripening, the catabolism and conjugation of abscisic acid (ABA) was
affected by AMF inoculation and climate change conditions evidencing the important role

of 7°"OH-ABA in anthocyanin accumulation of Tempranillo berries. Thus, plants inoculated
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with AMF had higher ABA-GE and 7°OH-ABA and lower PA content than uninoculated
plants at 28/18°C.

Under the most stressful climate change conditions (elevated temperature and deficit
irrigation), AMF inoculation improved anthocyanins by means of increasing ABA
hydroxylation at the position 7’ in detriment of position 8’.

Intra-varietal-diversity of Tempranillo clones was also showed in their responses to AMF
inoculation and elevated temperature with regard to phenolic composition and
antioxidant properties of leaf extracts. Thus, in some clones grown at 28/18°C, AMF
inoculation improved antioxidant power of leaf wastes by enhancing total soluble
phenolics, flavonols and anthocyanins.

Under future warming conditions, the nutritional value of leaves from Tempranillo may be
improved. Elevated temperatures induced the accumulation of several minerals, soluble
sugars, photosynthetic pigments and soluble proteins, while AMF inoculation increased
the accumulation of flavonols and hydroxycinnamic acids. However, the intra-varietal
diversity in such responses suggested different applications of leaves from each studied
clone when included in the human diet.

Foliar extracts of Tempranillo exhibited high cytotoxic activity against some cancer cell
lines, which was modulated by mycorrhizal inoculation and elevated temperature.
Preliminary data obtained in this PhD Thesis suggested that both, biotic and abiotic factors
may enhance the cytotoxic properties of grapevine leaves, which strengthened the
potential application of these agricultural wastes for pharmaceutical and biomedical

purposes.
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