
1 
 

Title: Bioaccessibility of rutin, caffeic acid and rosmarinic acid: influence of the in vitro 

gastrointestinal digestion models.  

Authors: Lucía Gayosoa, An-Sophie Claerbouta, María Isabel Calvob, Rita Yolanda Caveroc, 

Iciar Astiasarána, Diana Ansorena a,* 

Affiliation and address:  

a Universidad de Navarra, Facultad de Farmacia, Departamento de Ciencias de la Alimentación y 

Fisiología, Irunlarrea s/n, 31008, Pamplona, España.  

IdiSNA- Instituto de Investigación Sanitaria de Navarra 

 

b Universidad de Navarra, Facultad de Farmacia, Departamento de Farmacia y Tecnología 

Farmacéutica, Irunlarrea s/n, 31008, Pamplona, España 

IdiSNA- Instituto de Investigación Sanitaria de Navarra 

 

c Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea s/n, 

31008, Pamplona, España 

IdiSNA- Instituto de Investigación Sanitaria de Navarra 

 

*Corresponding author: email address: dansorena@unav.es; telephone: 0034-948425600 (ext. 

6263); Fax: +34 948 42 56 49. 

 

 

This paper has been published in Journal of Functional Foods 

http://dx.doi.org/10.1016/j.jff.2016.08.003 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dadun, University of Navarra

https://core.ac.uk/display/188602183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dansorena@unav.es


 
 

2 
 

ABSTRACT 

The bioaccessibility and antioxidant activity of rutin, caffeic acid and rosmarinic acid were 

evaluated using three in vitro gastrointestinal digestion models: filtration, centrifugation and 

dialysis. At intestinal level, a significant degradation of all compounds was observed when 

results were expressed on concentration basis (mg/mg lyophilized sample), mainly due to the 

dilution effect that occurs during digestion. However, when results were expressed as 

absolute amounts (total mg in the digested fraction), this degradation was much lower, or 

even absent in the case of rutin. Moreover, bioaccessibility (in terms of total mg) was higher 

in filtration and centrifugation than in the dialysis method. A significant reduction of 

antioxidant activity was observed after intestinal digestion of the three standards, regardless 

of the method used. In conclusion, the methodology and units used to report results are two 

critical parameters to take into account in bioaccessibility studies.  
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1. Introduction 

Phenolic compounds are an extensive family of secondary plant metabolites with multiple 

biological properties. Several epidemiological studies have shown that dietary phenolic 

compounds play a role in the prevention of cancer, and cardiovascular and neurodegenerative 

diseases, among others (Del Rio et al., 2013; Manach, Scalbert, Morand, Rémésy, & Jiménez, 

2004). In order to exert their beneficial effects, phenolic compounds must be available to 

some extent in the target tissue, and this is dependent on their absorption in the gut (Saura-

Calixto, Serrano, & Goñi, 2007). 

In vitro digestion models are widely used in food and nutritional sciences for predicting 

compounds bioaccessibility due to several advantages in respect to the in vivo models, since 

they are relatively inexpensive and simple, more rapid, do not present ethical restrictions, 

conditions can be controlled, sampling is easy and results are reproducible (Minekus et al., 

2014). Furthermore, the evaluation of bioaccessibility using this type of models is well 

correlated with the data obtained in animal and human studies (Biehler & Bohn, 2010). 

Bioaccessibility has been defined as the amount of an ingested nutrient that is released from a 

food matrix and is available for intestinal absorption (Parada & Aguilera, 2007). In the case 

of phenolic compound stability, different food matrices and vegetable extracts have been 

subjected to gastrointestinal digestion, allowing the assessment of their bioaccessibility.  

Nowadays, there are different ways of simulating the bioaccessible fraction of foods at 

intestinal level. The easiest approach is to analyse the resulting content of the entire intestinal 

fraction, just by its filtration to separate the soluble material (fraction available for uptake) 

 (Bermúdez-Soto, Tomás-Barberán, & García-Conesa, 2007). In addition, dialysis and 

centrifugation are two common techniques that have been also used for simulating the 

bioaccessible fraction of food and extracts (Etcheverry, Grusak, & Fleige, 2012). In the 

dialysis model, the dialyzable fraction represents the sample that goes through the semi-
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permeable membrane and is available for absorption; meanwhile the fraction outside the 

dialysis membrane represents the non-absorbable sample. In the solubility model, the 

intestinal sample is centrifuged to obtain a supernatant (soluble components that could be 

potentially absorbed) and a precipitate (unabsorbed compounds). Advantages and 

disadvantages of each model have been described. Separation by centrifugation or filtration, 

followed by analysis of soluble components has been reported as a good estimate of 

compounds available for transport across the intestinal epithelium (Bermúdez-Soto et al., 

2007; Pinacho, Cavero, Astiasarán, Ansorena, & Calvo, 2015; Versantvoort, Oomen, Van de 

Kamp, Rompelberg, & Sips, 2005). In the case of dialysis, data should be carefully studied 

since parameters such as molecule dimensions, polymerization degree and presence of sugar 

in the molecule, or even the membrane washing procedure may modify the amount of sample 

able to permeate through the membrane (Bermúdez-Soto et al, 2007; Chiang, Chen, Jeng, 

Lin, & Sung, 2014). However, when undigested compounds form colloidal dispersions, 

dialysis may be the better choice since centrifugation will only separate the insoluble 

undigested material with sufficient density (Minekus et al., 2014). Moreover, dialysis could 

be a useful tool for coupling the dialyzable fraction with cell lines without further purification 

steps (Bouayed, Hoffmann, & Bohn, 2011). 

Recent literature reports a diversity of studies where the effects of in vitro digestion on 

dietary polyphenols has been studied by using the three above-mentioned techniques: 

filtration (Chen et al., 2016; Pinacho et al., 2015), dialysis membrane (Carbonell-Capella, 

Buniowska, Esteve, & Frígola, 2015; Mosele, Macià, Romero, & Motilva, 2016), and 

centrifugation (He et al., 2016; Pineda-Vadillo et al., 2016). These different methods gave 

rise to different conclusions about the bioaccessibility of phenolic compounds.  

Finally, another relevant methodological consideration is worthy to be mentioned. Although 

the stability of pure compounds may be not representative of their stability within a food 
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matrix (Bermúdez-Soto et al., 2007; Siracusa et al., 2011), working with standards allows 

studying digestive stability in a simplified way, avoiding interferences with other factors.  

The aim of this work was to determine the bioaccessibility of different standard phenolic 

compounds after an in vitro gastrointestinal digestion comparing different digestion models 

(filtration, centrifugation and dialysis membrane). In addition, evaluation of the evolution of 

the antioxidant activity during the digestion process was also performed.  

2. Materials and methods 

2.1. Materials 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid 97%), DPPH (2,2-

diphenyl-1-picrylhydrazyl), ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), 

rutin, caffeic acid, rosmarinic acid, dialysis cellulose membrane (molecular weight cut-off of 

14000), alpha-amylase from human saliva (A1031, 852 units/mg protein), pepsin from 

porcine gastric mucosa (P7000, 674 units/mg protein), pancreatin from porcine pancreas 

(P1750, 4 × United States Pharmacopeia specifications) and bile extract (B8631) were 

purchased from Sigma-Aldrich (Steinheim, Germany). All the solvents employed, analytical 

and HPLC grades were purchased from Panreac (Barcelona, Spain). 

2.2. In vitro digestion 

Three standard compounds were selected for the digestion model systems carried out in this 

work: rutin, caffeic acid and rosmarinic acid (Fig. 1). Rutin (quercetin-3-rutinoside) is a 

flavonoid glycoside present in many vegetables, fruits and plants; caffeic acid is the most 

abundant phenolic acid widely found in coffee beans and fruits; and rosmarinic acid is found 

in different aromatic herbs from the Lamiaceae family. They were chosen due to their well-

recognized antioxidant capacity. 

The in vitro digestion model for each standard compound included three steps (oral, gastric 

and intestinal digestion) (Fig. 2) and it was based on the procedure described by Pinacho et 
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al. (2015) with some modifications. The amount of standard subjected to digestion was 

chosen taking into account the minimum average content of phenolic compounds in one 

serving of vegetable foods (Manach et al., 2004). 50 mg of standard were dissolved in 20 mL 

of distilled water, the mixture was then placed in a Falcon tube and warmed at 37 ºC (water 

bath) to initiate the simulated oral digestion. Then, 12.5 µL of alpha-amylase (1.3 mg/mL 

solution in 1 mM CaCl2) was added. The pH was adjusted to 6.5 with 1 M NaHCO3 and the 

sample was incubated in a water bath at 37 ºC for 2 min with magnetic stirring to complete 

the oral step. For the gastric digestion, on the same tube, 16.5 µL of pepsin (160 mg/mL 

solution in 0.1 M HCl) was added, pH was adjusted to 2.5 with 3M HCl and the incubation 

time was 2 h at 37 ºC.  

In the simulated intestinal phase, three independent procedures (A, B and C) were carried out 

(Fig. 2). In digestion A, 125 µL of pancreatin-bile extract (4 mg of pancreatin + 25 mg of bile 

extract mL/solution in 0.1 M NaHCO3) was added to the gastric mixture. The digestion 

continued for another 2 h at 37 ºC after adjusting the pH to 7.5 with 1 M or 0.1 M NaHCO3. 

At this step, the sample is called intestinal fraction (IF) and was analysed as a whole. In the 

digestion B, after the intestinal digestion, samples were centrifuged (51070 g, 4 ºC, 60 min) 

to obtain the soluble fraction (SF) and the residual fraction (RF). In the digestion C, the 

intestinal phase was performed with a dialysis membrane. A segment of a dialysis membrane 

(5-8 cm), previously hydrated with deionized water for 3 hours, was filled bubble-free with 

the amount of NaHCO3 (1 M or 0.1 M) required to reach pH 7.5 in the intestinal sample 

(postgastric mixture with pancreatin-bile extract). In the case of rutin, 1 mL 1 M NaHCO3 

was added, 3 mL for caffeic acid and 2 mL 0.1 M NaHCO3 plus 0.3 mL 1 M NaHCO3 for 

rosmarinic acid. As it can be seen, the different acid-base properties of the three standards 

caused a different response to the NaHCO3 addition. The dialysis bag was placed inside the 
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digestion flask for 2 h at 37 ºC. Afterwards, the solution outside the dialysis membrane (OUT 

fraction) and the content of the dialysis membrane (IN fraction) were collected. 

Each standard was digested in duplicate for each procedure (A, B and C). Individual tubes for 

oral, gastric and intestinal digestion were used to ensure homogeneity in the sample in each 

step. The stock solutions for all enzymes were freshly prepared. Samples obtained from each 

digestion step were lyophilized (Cryodos-50, Telstar, Barcelona, Spain), accurately weighed 

and then dissolved in methanol/water/formic acid (79.9/20/0.1; v/v/v) (González-Barrio, 

Borges, Mullen, & Crozier, 2010) for determining the remaining amount of standard after 

each digestion phase and also for the antioxidant activity analysis. Different dilutions were 

prepared to perform the tests. 

2.3. DPPH assay 

DPPH assay was performed as described by García-Herreros, García-Iñiguez, Astiasarán and 

Ansorena (2010) with slight modifications. Briefly, a DPPH solution (0.04 mg/mL) was 

prepared in methanol and diluted to obtain an absorbance of 0.8 ± 0.02 at 516 nm. Then, 1 

mL of diluted sample was mixed with 1 mL of DPPH solution. Two controls were prepared: 

control 1 (1 mL of the sample solvent + 1 mL of DPPH) and control 2 (1 mL of sample 

solvent + 1 mL of methanol). After 30 min in the dark at room temperature, 200 µL of each 

solution (sample, control 1 and control 2) were transferred into a 96 well micro-plate and the 

absorbance was measured at 516 nm (FLUOStar Omega spectrofluorometric analyser, BMG 

Labtechnologies, Offenburg, Germany). The average absorbance for each sample was then 

calculated as the percentage of inhibition (% I) calculated according to the equation (1): 

% I = [[(Abscontrol 1- Abs Control 2) - (Abssample – Abscontrol 2)]/(Abscontrol 1- Abscontrol 2)] x100 (1) 

Where Abscontrol 1, Abscontrol 2 and Abssample were the absorbance after 30 min incubation of the 

control 1, control 2 and sample, respectively. The percentage of inhibition versus the 

concentration of samples was then plotted. A calibration curve with Trolox was used for 
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obtaining the antioxidant capacity. Results were expressed as μg Trolox/mg lyophilized 

digested sample. Four measurements were done per replicate (n=8).  

2.4. ABTS assay 

ABTS assay was carried out following the procedure described by García-Herreros et al. 

(2010). Briefly, ABTS.+ chromogenic radical was generated by a chemical reaction mixing an 

aqueous solution of ABTS with potassium persulphate (140 mM). The mixture was kept in 

the dark for12 hours and its absorbance was adjusted with solvent sample to 0.7 ± 0.02 at 741 

nm. In a 96 well micro-plate, ABTS.+ working solution (182 µL) was allowed to react with 

18 µL of each dilution of the sample or control (sample solvent) for 6 min. The absorbance 

was then measured at 741 nm using a FLUOStar Omega spectrofluorometric analyzer (BMG 

Labtechnologies, Offenburg, Germany). The decrease in absorbance was recoded as 

percentage of inhibition (% I), according to the equation (2): 

% I = [(Abscontrol - Abssample)/Abscontrol ] x 100 (2) 

Where Abscontrol was the absorbance of the control and Abssample was the absorbance of the 

sample. The percentage of inhibition versus the concentration of the samples was plotted. A 

calibration curve with Trolox was used for calculating the antioxidant capacity. Results were 

expressed as μg Trolox/mg lyophilized digested sample. Four measurements were done per 

replicate (n=8).  

2.5. High-performance liquid chromatography (HPLC) 

The amount of phenolic standard compounds present after each digestion step and after the 

three different intestinal digestion conditions tested (A, B or C) were determined by HPLC. 

20 µL of sample properly diluted and filtered through a 0.45 µm membrane filter were 

injected in a HPLC unit model 1200 (Agilent Technologies, Palo Alto, CA, USA) coupled to 

a diode array detector (DAD). Chromatographic separation was performed using a Kinetex 5 



 
 

9 
 

µm RP 250 x 4.6 mm reversed phase column (Phenomenex, Macclesfield, UK). The mobile 

phase was acetonitrile (solvent A) and 0.1% aqueous formic acid (solvent B). Gradient 

elution was 5-40% of solvent A over 55 min and finally increased to 90% for 10 min as 

reported by Juániz et al. (2016). The flow rate was 1 mL/min. Detection was performed by 

DAD at 360 nm for rutin and at 325 nm for caffeic acid and rosmarinic acid. A calibration 

curve was obtained from each phenolic compound to quantify the amount of each standard in 

the samples. Standards were diluted in methanol/water/formic acid (79.9/20/0.1; v/v/v), and 

concentrations ranged from 0.005 to 0.3 mg/mL for rutin, from 0.01 to 0.44 mg/mL for 

caffeic acid, and from 0.02 to 0.3 mg/mL for rosmarinic acid. The results were expressed 

both as concentration (w/w) in mg/mg lyophilized digested sample and as total mg of 

standard in the digested sample. Total mg of standard in the digested fraction was obtained 

multiplying the concentration determined by HPLC (mg/mg lyophilized digested sample) by 

the lyophilized sample weight. These data were used to calculate the bioaccessibility. All 

samples were injected in duplicate. 

2.6. Bioaccessibility 

The bioaccessibility (amount of compound available for absorption) was determined in the 

three intestinal methodologies assayed: filtration, centrifugation and dialysis that resulted in 

obtaining the IF (intestinal fraction), the SF (soluble fraction) and the IN fraction, 

respectively. In order to compare the bioaccessibility results using data expressed as A) total 

mg in the digested fraction or B) concentration (mg/mg lyophilized digested sample), two 

formulas were used:  

A) Bioaccessibility (%) = (total mg of standard in the digested fraction/ initial amount of 

standard) x 100 (3)                   
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B) Bioaccessibility (%) = (concentration of standard in the digested fraction/ initial 

concentration of standard) x 100 (4) 

IF, SF and IN samples were considered as the bioaccessible fractions and the RF and OUT 

fraction as the non-absorbable fractions (D'Antuono, Garbetta, Linsalata, Minervini, & 

Cardinali, 2015; McDougall, Dobson, Smith, Blake, & Stewart, 2005; Pinacho et al., 2015).    

2.7. Statistical analysis 

Mean and standard deviation of data obtained from each replicate of digestion were 

calculated. One-way analysis of variance (ANOVA) followed by Scheffé post hoc test (p < 

0.05) was applied to evaluate the statistically significant differences of the samples along the 

digestion process. Pearson correlation coefficients between DPPH and ABTS and between 

antioxidant activity and amounts of phenolic compounds detected by HPLC were calculated. 

All statistical analyses were performed using Stata12 (StataCorp LP, Texas, U.S.A.). 

3. Results and discussion 

Compound stability  

The effect of different in vitro gastrointestinal digestion methods on the stability and 

bioaccessibility of three different phenolic compounds was evaluated: a flavonol (rutin) and 

two hydroxycinnamic acids (caffeic acid and rosmarinic acid).  

Table 1 shows the evolution of the amount of the three compounds (total mg of standard) 

during the different digestion steps. No remarkable differences were observed between the 

initial amount subjected to digestion and the amounts recovered during the oral and gastric 

steps, showing that these processes hardly altered the stability of the three phenolic 

compounds studied. These results are in agreement with previous studies where compounds 

present in foods (Rodríguez-Roque, Rojas-Graü, Elez-Martínez, & Martin-Belloso, 2013) , 

plant extracts (Pinacho et al., 2015) and in pure phenolic compounds (Bermúdez-Soto et al., 
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2007; Tagliazucchi, Verzelloni, Bertolini, & Conte, 2010), such as phenolic acids and 

flavonols, demonstrated their stability under gastric conditions. Table 1 also shows the 

evolution of the three compounds expressed as mg/mg lyophilized digested sample. In this 

case, after the oral and gastric steps, the concentration of caffeic and rosmarinic acids 

decreased significantly (p < 0.05) although the one of rutin did not. This decrease could be 

due to the NaHCO3 used to adjust the pH in the oral digestion of both phenolic acids. In these 

cases, the lyophilized sample, in addition to the remaining phenolic standard, contained the 

NaHCO3, leading to a certain “dilution effect” or a lower proportion of the standard in the 

analysed sample. It means that, per gram of lyophilized sample, lower amount of standard is 

found. Indeed, this effect was clearly shown when the results were calculated as % of the 

initial sample. Using absolute amounts of standards in the digested samples, rutin and caffeic 

acid showed recoveries around 100% and rosmarinic acid around 85-92%. However, when 

the results were referred to mg/mg lyophilized digested sample, the remaining % of sample 

decreased to 75% and 78% (oral and gastric, respectively) in the case of caffeic acid, and 

67% and 68% (oral and gastric, respectively) for rosmarinic acid, maintaining the 100% in 

the case of rutin.  

Even though some studies have also described significant losses of some phenolic 

compounds during salivary and gastric digestion (Kamiloglu et al., 2016; Siracusa et al., 

2011; Vallejo, Gil-Izquierdo, Pérez-Vicente, & García-Viguera, 2004), most phenolic 

compounds remain stable. In fact, the oral step lasts a few minutes, and polyphenol 

degradation is usually a time-depending process. Moreover, it has also been described that 

acid pH during the gastric step protects polyphenols against degradation (Pineda-Vadillo et 

al., 2016). 

Our results point to a higher compound degradation at intestinal level. Furthermore, some 

differences were found depending on the methodology (A, B or C) used. For method A 
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(filtration to obtain the IF), when results were expressed as concentration (mg/mg lyophilized 

digested sample), a significant decrease in the amount of rutin, caffeic acid and rosmarinic 

acid was observed, recovering only 37%, 8% and 27% of the initial concentration, 

respectively. This loss of phenolic compounds after gastro-intestinal digestion is supported by 

several studies (Bermúdez-Soto et al., 2007; Celep, Charehsaz, Akyuz, Acar, & Yesilada, 

2015; Chiang et al., 2014; Siracusa et al., 2011). These compounds are highly sensitive to the 

mild alkaline conditions present at the small intestine where most dietary polyphenols are 

degraded or transformed into other compounds (Bermúdez-Soto et al., 2007). Nevertheless, 

other studies have reported high stability after in vitro pancreatic digestion of compounds 

such as rosmarinic acid (Costa, Grevenstuk, da Costa, Gonçalves, & Romano, 2014), pure 

quercetin and catechin (Tagliazucchi et al., 2010), ellagic acid (Gil-Izquierdo, Zafrilla, & 

Tomás-Barberán, 2002) or ferulic acid (Kamiloglu et al., 2016). In general, the differences 

among studies may result from the effect of the food matrix and also from the different 

experimental conditions applied.  

Table 2 summarizes some published studies in which the stability of commercial phenolic 

standards was assessed after in vitro digestion processes. Despite all of them work with pure 

compounds, the data showed high variability. For instance, the % of loss after intestinal 

digestion for rutin was found to be from only 3% (Bermúdez-Soto et al., 2007) to total loss 

(Siracusa et al., 2011). In the case of chlorogenic acid, it was from 44% (D'Antuono et al., 

2015) to 95.7% (Siracusa et al., 2011), and for quercetin, from 5.8% (Tagliazucchi et al., 

2010) to total loss (Siracusa et al., 2011). Therefore, the digestion methodology seems to be a 

key factor for assessing bioaccessibility. As described by Minekus et al. (2014) there is 

significant variation in the use of in vitro parameters between the individual models described 

in the literature, hardening the comparison of results among studies. Apart from that, we also 
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observed that there was no uniformity in the units used to express the results, contributing to 

the heterogeneity in the data. 

Interestingly enough, in our work, expressing HPLC results as total mg of standard measured 

in the digested sample (Table 1), we observed no effect on rutin by the simulated digestion, 

reaching a recovery of approximately 100% during all the digestive phases, in comparison to 

the recovery 60% and 76% in the IF for caffeic acid and for rosmarinic acid, respectively. 

This information highlights the importance of the units used to express the results of this type 

of experiments. When our results were expressed as concentration (mg standard/mg 

lyophilized digested sample), the observed decrease in the presence of rutin, caffeic acid and 

rosmarinic acid might be due to the previously mentioned dilution effect, but do not imply a 

real loss of the compound. In fact, this is in agreement with Bermúdez-Soto et al. (2007) 

where the results were expressed as total mg and only 3% loss were reported for pure rutin. 

Bioaccessibility 

A prerequisite for bioavailabilty of any compound is their bioaccessibility in the gut (Holst & 

Williamson, 2008). Normally, dietary polyphenols are poorly absorbed (in a range of 2-20%) 

(Hu, 2007), therefore the analysis of how digestion affects their stability is crucial for 

understanding their absorption and metabolism. Although it is difficult to exactly mimic the 

physiological conditions of the in vivo digestion, the potential bioaccessible phenolic 

compounds fractions after the complete digestion process were obtained by different 

approaches. IF was obtained using the easiest approach (filtration), IN fraction was obtained 

by applying the dialysis method and SF was recovered using the centrifugation method. Fig. 

3 compares the three different fractions for determining the bioaccessibility. In Fig. 3A 

(expressed as total mg of standard in the corresponding fraction) the lowest amount of the 

phenolic compounds was detected in the IN fraction, being rutin the least dialyzable 

compound (1.65%), followed by caffeic acid (7.69%) and rosmarinic acid (7.92%). The 
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recovery of phenolic compounds in the IF and in the SF was significantly higher than in the 

IN fraction, since not every soluble compound was able to penetrate the membrane. The 

bioaccessibility of rutin in these two conditions was 100%, without significant differences 

between the IF and the SF. Caffeic and rosmarinic acids, behaved similarly, being the 

bioaccessibility in IF significantly higher (60% and 76%, respectively) than in SF (46% and 

69%, respectively). Our results correlate with previous studies that show lower recovery of 

phenolic compounds using dialysis membrane (Bermúdez-Soto et al., 2007). For instance, 

Pinacho et al. (2015) analysed the soluble intestinal fraction after filtration and the recovery 

of caffeic acid was very high (only 5% loss) and rutin was only partially degraded (40% 

loss). Bermúdez-Soto et al. (2007) also found a high recovery of flavonols, ranging between 

70% and 85% and also for caffeic acid derivatives (72-76%), using filtration as methodology. 

However, phenolic acids and rutin were not detected in the dialyzed fraction in Rodríguez-

Roque et al. (2013) and total dialyzable polyphenols were lower than total soluble 

polyphenols in the intestinal phase in Bouayed, Deusser, Hoffmann and Bohn (2012). The 

low recovery by dialysis matches the low bioavailability of phenolic compounds, although 

many factors affect the process and not all of them can be associated with the absorption of 

the compound. Some hypothesis to explain the low recovery of standards in the IN fraction 

could be the formation of complexes of  phenolic compounds with digestive enzymes, giving 

rise to higher molecular weight compounds, not able to pass through the dialysis membrane. 

In addition, it has to be considered that the inside volume of the dialysis bag is small, 

affecting the osmotic distribution, and probably limiting the pass of the compounds through 

the membrane. Namely, the amount of compound (total mg) that passes through the 

membrane is dependent on the volume of the dialyzed fraction.  

In order to determine the amount of compound that reaches the intestine, the use of 

concentration units is quite common in the literature (Bouayed et al., 2012; Pinacho et al., 
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2015; Rodríguez-Roque, Rojas-Graü, Elez-Martínez, & Martín-Belloso, 2014). Fig. 3B 

shows the bioaccessibility calculated as concentration (mg/mg lyophilized digested sample), 

instead of a whole (total mg in the digested fraction). In this case, the most bioaccessible 

compound was rosmarinic acid (27-46% of recovery), the less stable was caffeic acid (7-

11%) and in a middle position rutin (32-39%). The differences observed between the two 

different ways for reporting bioaccessibility highlight again the importance of how to express 

the results. When the results were expressed as concentration, the % of recovery rose 

significantly in the dialyzable fraction (IN), showing rosmarinic acid the highest recovery. 

This could be explained by the osmotic equilibrium on both sides of the membrane that 

occurs during dialysis, compensating the concentration of the compound on both sides. In this 

sense, % of bioaccessibility in mg/mg lyophilized digested sample was reduced in IF and SF 

in comparison with % bioaccessibility in absolute values (total mg in the digested fraction). 

This implies that the soluble fraction is not purely phenolic compound, pointing to a dilution 

of the sample along the digestion which might be responsible for the decrease in the 

concentration.   

The bioaccessibility of a compound is influenced by many factors, such as the chemical state 

of the compound, the food matrix, interactions with other components or the presence of 

suppressors or cofactors (Parada & Aguilera, 2007). All these variables, as well as the 

methodology to obtain the bioaccessible fraction could explain the wide variability of results 

present in the literature. Nevertheless, the existing data are not conclusive enough to 

recommend which method is the most appropriate for the assessment of bioaccessibility in 

polyphenols (Etcheverry et al., 2012).  

The presence of a significant amount of phenolic compounds, (more than 50% of the initial 

amount for caffeic and rosmarinic acids and practically the totality of rutin) in the OUT 

fraction and in the case of rutin, also in the RF implies a large amount of available sample 
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that can reach the colon. This means that unabsorbed compounds may be metabolized by the 

microflora, increasing polyphenol bioavailability and possibly, their presumed biological 

activity (Tuohy, Conterno, Gasperotti, & Viola, 2012). In fact, polyphenol glycosides such as 

rutin, require a hydrolysis by intestinal or microbial enzymes for their absorption in vivo 

(Manach et al., 2004). 

Antioxidant activity  

DPPH and ABTS assays were performed to measure the free radical scavenger ability in the 

samples during the digestion process (Table 3 and Table 4).  Results were expressed as µg 

Trolox/ mg lyophilized digested sample in order to know the antioxidant activity in each step, 

regardless of the compound or compounds responsible for this activity. Although ABTS 

values were higher than the ones of DPPH, a good correlation was observed between both 

techniques (rutin, r= 0.97; caffeic acid, r=1; rosmarinic acid, r=0.96; p < 0.001). High 

correlation coefficients were also found between the antioxidant activity of each compound 

during the digestion and their concentration, which was evaluated by HPLC. These results 

confirm that the measured antioxidant activity was dependent on the phenolic compounds 

concentrations (DPPH vs rutin r= 0.95; ABTS vs rutin r= 0.96; DPPH vs caffeic acid r= 1; 

ABTS vs caffeic acid r= 1; DPPH vs rosmarinic acid r= 0.99; ABTS vs rosmarinic acid r= 

0.95; p < 0.001).  

After the oral and gastric phases, a slight decrease in the antioxidant activity for caffeic acid 

and rosmarinic acid was observed (19-12% and 36-24%, respectively), whereas rutin showed 

no loss in ABTS values and even higher antioxidant activity assessed by DPPH compared to 

the initial sample. However, after intestinal digestion the decrease in antioxidant activity was 

significant in the three compounds, especially in the case of caffeic acid. Similar trend (loss 

in antioxidant capacity during intestinal digestion) was previously reported in the digestion of 

different foods (Carbonell-Capella et al., 2015; Celep et al., 2015; Rodríguez-Roque et al., 
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2013; Rodríguez-Roque et al., 2014). However, other studies have indicated a high 

antioxidant capacity of intestinal digested samples (Oliveira & Pintado, 2015; Pineda-Vadillo 

et al., 2016; Tagliazucchi et al., 2010), attributed to the deprotonation of the hydroxyl 

moieties present on the aromatic ring of the phenolic compounds due to the mild alkaline 

intestinal environment (Bouayed et al., 2011) or to the formation of derived products with a 

higher antioxidant capacity than that of their precursors (Pineda-Vadillo et al., 2016). 

Regarding the bioaccessible fractions (IF, SF and IN), there were no significant differences in 

the antioxidant activity among samples in the case of caffeic acid. Nevertheless, rosmarinic 

acid showed high DPPH and ABTS values in the IN fractions, in contrast to rutin, which 

presented the lowest values in this fraction. Therefore, the antioxidant activity found in the 

each bioaccessible fraction was mostly dependent on the compound itself rather than on the 

methodology used. 

Moreover, antioxidant activity values were also considerable in the OUT and the RF samples. 

This fact could lead to a discussion in which the unabsorbed fractions could also play an 

important role in protecting the gastrointestinal tract from reactive oxygen species (ROS) 

generated during digestion processes (Bouayed et al., 2011). 

4. Conclusions 

Bioaccessibility studies are difficult to be compared due to the many variables that may 

influence the gastrointestinal digestion, such as the fraction used for their quantification and 

the units used for reporting the results. Therefore, the information obtained from the in vitro 

digestion processes should be carefully analysed. In particular, expression the results as 

concentration of a compound in the digested fractions could be compromised by a dilution 

effect. Consequently, it would be very interesting to give also the absolute amount of this 

compound. Regarding the bioaccessible fraction, we have demonstrated that it its strongly 
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affected by the methodology used at the intestinal level. Results obtained with the filtration 

and centrifugation techniques were quite similar and gave rise to higher values than those 

obtained by a dialysis membrane. Despite the fact that the antioxidant activity in the 

bioaccessible fractions decreased significantly, a remarkable antioxidant activity could still 

reach the colon and protect the gastro-intestinal tract from oxidative damage. 

5. Abbreviations 

DAD, diode array detector; HPLC, high-performance liquid chromatography; IF, intestinal 

fraction; IN, dialyzed fraction; RF, residual fraction; OUT, non-dialyzed fraction; SF, soluble 

fraction; w/w, weight/weight. 
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Figure 1. Chemical structures of rutin, caffeic acid and rosmarinic acid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Sigma-Aldrich. 

Rutin (Quercetin 3-O-rutinoside) Rosmarinic acid Caffeic acid (3,4-dihydroxycinnamic acid) 
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Figure 2. Scheme of the three procedures of in vitro gastrointestinal digestion applied to phenolic compounds standards. IF: intestinal fraction; 

SF: soluble fraction; RF: residual fraction; OUT: non-dialyzed fraction; IN: dialyzed fraction.  
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Fig. 3 Bioaccessibility (%) in the intestinal fraction (IF), soluble fraction (SF) and dialyzed fraction (IN) for 

rutin, caffeic acid and rosmarinic acid. A) Bioaccessibility (%) calculated with data expressed as total mg in the 

digested fraction. B) Bioaccessibility (%) calculated with data expressed as concentration (mg/mg lyophilized 

digested sample). 
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Within each standard, different letters indicate significant differences (p < 0.05) among fractions. Vertical bars indicate 
standard deviation. 
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Table 1. Evolution of rutin, caffeic acid and rosmarinic acid (mean ± standard deviation) determined by HPLC during in vitro gastrointestinal 
digestion. Results are expressed either as total mg in the digested sample or as concentration (mg/mg lyophilized digested sample).  

 

 
 
Samples 

Rutin Caffeic acid Rosmarinic acid 

 
Total mg 

mg/mg 
lyophilized 

digested 
sample 

 
Total mg 

mg/mg 
lyophilized 

digested 
sample 

 
Total mg 

mg/mg 
lyophilized 

digested 
sample 

Initial 50.25 ± 0.36 b 1.00 ± 0.06 c 49.93 ± 0.54de 1.15 ± 0.11c 50.53 ± 0.67e 1.01 ± 0.07e 

Oral 48.90 ± 1.05b 1.02 ± 0.01cd 47.52 ± 2.30d 0.85 ± 0.03b 42.95 ± 0.84cd 0.68 ± 0.02d 
Gastric 51.50 ± 0.61bc 1.05 ± 0.01cd 54.22 ± 1.00e 0.91 ± 0.03b 46.39 ± 3.38de 0.69 ± 0.05d 
Intestinal fractions:       
(A) Filtration IF 49.93 ± 2.72b 0.37 ± 0.02a 29.80 ± 3.75c 0.10 ± 0.01a 37.97 ± 2.13bc 0.27 ± 0.01a 

(B) Membrane IN 0.83 ± 0.03a 0.33 ± 0.04a 3.77 ± 0.038a 0.10 ± 0.001a 4.09 ± 0.43a 0.47 ± 0.01c 
OUT 55.34 ± 0.45c 0.45 ± 0.03b 26.36 ± 1.69bc 0.12 ± 0.005a 35.04 ± 2.42b 0.37 ± 0.02b 

(C) Centrifugation SF 52.11 ± 3.30bc 0.40 ± 0.01ab 23.09 ± 0.94b 0.08 ± 0.003a 34.83 ± 0.78b 0.30 ± 0.02a 
RF 3.71 ± 0.20a 1.09 ± 0.06d -- -- -- -- 

 

Different letters in the columns indicate significant differences (p < 0.05) among samples. IF: intestinal fraction; SF: soluble fraction; RF: residual fraction; OUT: non-

dialysed fraction; IN: dialysed fraction. A, B and C indicate the intestinal methodology applied in each case.  
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Table 2. Stability of commercial standards subjected to an in vitro gastrointestinal digestion: 
compilation of published research papers. 

Reference Method Compounds 
Units used for reporting 
results 

After gastric 
digestion 
%  of loss 

After intestinal 
digestion 
% of loss 

Costa et al. 
(2014) 

F Rosmarinic acid µg/mL 12-28 
 

- (0.93-1.7) 

Siracusa et al. 
(2011) 

F Chlorogenic acid 
Rutin 
Quercetin 3-O-glucoside 
Quercetin 

µg/mL 58.10 
88.11 
Total 
Total 

95.70 
Total 
Total 
Total 

Bermúdez-Soto 
et al. (2007) 

F Cyanidin 3-rutinoside 
Quercetin-3-rutinoside (Rutin) 
(+)Catechin 
Chlorogenic acid 

Total mg - 6 
0 

3.1 
- 4.2 

9.1 
3.1 
58.0 
5.1 

Boyer et al. 
(2005) 

F Quercetin 
Quercetin-3-glucoside 

µg/g non-digested sample  25.7 
13.6 

D´Antuono et 
al. (2015) 

C Chlorogenic acid 
1,5-O-Dicaffeoylquinic acid 
3,5-O-Dicaffeoylquinic acid 

µg/mL  44.3 
34.6 
45.7 

Işik et al. 
(2014) 

C Quercetin-4´-O-glucoside 
Phloretin-2´-O-glucoside 

µg/mL - 3 
0 

- 5 
- 5 

Tagliazucchi et 
al. (2010) 

C Gallic acid 
Caffeic acid 
Catechin 
Quercetin 
Reveratrol 

Absorbance at the 
wavelength of  maximum 
absorption 

4.6 
0.1 
0.7 
0.9 

- 2.3 

43.3 
24.9 
7.2 
5.8 
69.5 

 
Negative values indicate an increment in the compound. The standards highlighted in bold are the same as those 
used in our study. F: Filtration; C: Centrifugation 
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Table 3. Evolution of rutin, caffeic acid and rosmarinic acid antioxidant activity (DPPH assay) during in vitro gastrointestinal digestion.  

DPPH 
 
Samples 

Rutin Caffeic acid Rosmarinic acid 
µg Trolox/mg lyophilized  

digested sample % of AA  µg Trolox/mg lyophilized  
digested sample % of AA µg Trolox/mg lyophilized  

digested sample % of AA 

Initial 261.03 ± 17.3c 100 971.53 ± 22.06d 100 951.64 ± 37.90e 100 
Oral 291.65 ± 10.63d 112 854.29 ± 13.52c 88 741.25 ± 40.32 d 78 
Gastric 326.86 ± 0.93e 125 858.31 ± 15.78c 88 724.80 ± 3.49 d 76 
Intestinal fractions:       
(A) Filtration  IF 102.08 ± 3.79b 39 171.06 ± 8.40ab 18 258.50 ± 0.03 a 27 

(B) Centrifugation SF 104.90 ± 0.14b 40 134.84 ± 1.36a 14 270.66 ± 10.10 a 28 
RF 242.67 ± 0.97c 93 -- -- -- -- 

(C) Membrane IN 57.54 ± 4.00a 22 154.72 ± 3.33ab 16 459.27 ± 4.72 c 48 
OUT 127.46 ± 2.79b 49 180.77 ± 3.53b 19 373.35 ± 12.27 b 39 

             

Data are expressed as mean ± sd and as %. Antioxidant activity before digestion was considered as 100%. Different letters in the columns indicate significant differences (p < 

0.05) among samples. IF: intestinal fraction; SF: soluble fraction; RF: residual fraction; OUT: non-dialysed fraction; IN: dialysed fraction. A, B and C indicate the intestinal 

methodology applied in each case. AA: antioxidant activity 
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Table 4. Evolution of rutin, caffeic acid and rosmarinic acid antioxidant activity (ABTS assay) during in vitro gastrointestinal digestion.   

ABTS 
 
Samples 

Rutin Caffeic acid Rosmarinic acid 
µg Trolox/mg lyophilized 

digested sample % of AA µg Trolox/mg lyophilized 
digested sample % of AA µg Trolox/mg lyophilized 

digested sample % of AA 

Initial 471.11 ± 37.54c 100 1826.99 ± 4.97e 100 1871.72 ± 70.18e 100 
Oral 488.61 ± 0.69c 104 1485.85 ± 11.53c 81 1530.66 ± 26.76d 82 
Gastric 472.57 ± 10.37c 100 1526.43 ± 14.77d 84 1193.23 ± 89.29c 64 
Intestinal fractions:       
(A) Filtration IF 151.60 ± 7.82a 32 303.24 ± 5.68a 17 657.17 ± 20.37a 35 

(B) Centrifugation SF 151.56 ± 2.73a 32 297.21 ± 10.01a 16 602.58 ± 13.62a 32 
RF 392.32 ± 21.08b 83 -- -- -- -- 

(C) Membrane IN 131.56 ± 4.34a 28 319.48 ± 6.24a 17 850.44 ± 17.48b 45 
OUT 167.27 ± 6.92a 36 352.72 ± 3.73b 19 933.69 ± 73.18b 50 

 

Data are expressed as mean ± sd and as %. Antioxidant activity before digestion was considered as 100%. Different letters in the columns indicate significant differences (p < 

0.05) among samples. IF: intestinal fraction; SF: soluble fraction; RF: residual fraction; OUT: non-dialysed fraction; IN: dialysed fraction. A, B and C indicate the intestinal 

methodology applied in each case. AA: antioxidant activity 

 

 

 

 

 

 

 


	DPPH assay was performed as described by García-Herreros, García-Iñiguez, Astiasarán and Ansorena (2010) with slight modifications. Briefly, a DPPH solution (0.04 mg/mL) was prepared in methanol and diluted to obtain an absorbance of 0.8 ± 0.02 at 516...
	Where Abscontrol 1, Abscontrol 2 and Abssample were the absorbance after 30 min incubation of the control 1, control 2 and sample, respectively. The percentage of inhibition versus the concentration of samples was then plotted. A calibration curve wit...
	ABTS assay was carried out following the procedure described by García-Herreros et al. (2010). Briefly, ABTS.+ chromogenic radical was generated by a chemical reaction mixing an aqueous solution of ABTS with potassium persulphate (140 mM). The mixture...
	% I = [(Abscontrol - Abssample)/Abscontrol ] x 100 (2)
	Where Abscontrol was the absorbance of the control and Abssample was the absorbance of the sample. The percentage of inhibition versus the concentration of the samples was plotted. A calibration curve with Trolox was used for calculating the antioxida...

