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We present an extensive numerical and experimental study, investigating a three-
dimensional (3D) granular flow of elongated particles down an inclined plane. Similarly to
sheared systems, the average particle orientation is found to enclose a small angle with the
flow direction. In the bulk, this behavior is independent of the shear rate. At the surface,
however, the particles move in more dilute conditions, and the average orientation strongly
depends on the shear rate. A systematic numerical study varying the particle aspect ratio
and the plane inclination reveals that the particle size perpendicular to the flow direction,
deff , is an appropriate length scale to define an effective inertial number Ieff , which fully
captures the impact of the particle shape on the system’s rheology. Like in the case of
spheres, density and friction result in well-defined functions of the effective inertial number
Ieff . Thus, we quantify and explain the dependence of the rheological parameters on the
aspect ratio, based on the micromechanical details.

DOI: 10.1103/PhysRevFluids.3.074301

I. INTRODUCTION

Despite its scientific and technological significance, a general theoretical framework to describe
the rheological response of granular systems is still lacking. However, several promising approaches
have recently been published [1–6]. In particular, it is known that various modes of local energy
dissipation, such as mechanical friction or plastic deformation, may lead to nonequilibrium steady-
state situations.

Examining granular flows of spherical particles experimentally and numerically, the μ(I ) rheology
is successfully used in dense, quasistatic, and inertial regimes [7–14]. This theory postulates that the
macroscopic flow density ρ(I ) and bulk friction μ(I ) are functions of the inertial number I , which
is the ratio of two timescales, I = τp/τs , the pressure-induced inertial time τp, and the inverse shear
rate τs = γ̇ −1. Thus, quasistatic flows result in values I � 1, which denotes a much slower local
deformation rate than a typical inertial relaxation. Exploring the behavior of granular flows, Da Cruz
et al. [8] numerically numerically observed a linear increase of the bulk friction μ(I ) with I and
a linear decrease of the bulk density ρ(I ), starting from the static internal friction value. However,
Jop and coworkers [7] measured a nonlinear response when examining a system at moderate inertial
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numbers, ranging from 0.01 to 0.5. Moreover, Hatano [9] proposed that μ(I ) increases as a power
law, which agrees with Bagnold’s scaling relations [15].

Although granular flows are often composed of nonspherical shapes, most of the research usually
considers spherical particles [13–19]. However, it is known that particle shape may give rise to a
different mechanical response and complex flow patterns [20–30]. Interestingly, the collective motion
of elongated particles usually induces particles to orient themselves along a preferred direction,
forming an angle with the streamlines [20–23]. This shear alignment seems to decrease the system’s
effective friction, compared to the nonordered state [22]. Moreover, its geometric origin makes it a
robust phenomenon, which is even found at molecular length scales such as in nematic liquid crystals
[31–33].

Discrete element method (DEM) simulations of nonspherical granular systems have recently re-
ceived significant attention (see review in Ref. [34]). Implementing particle shape is computationally
expensive. Therefore, to mimic its effects, simple rolling friction has been used in systems of spheres
[35]. Other authors have reproduced particle shape, identifying it directly from digitized images
[36], using polygons or polyhedra [37–40], superquadrics [41], spheropolygons or spheropolyhedra
[42,43], nurbs [44], level sets [45], and clumps of disks or spheres [46–48]. Moreover, advanced
models that include the contact geometry and particle geometry have been developed by combining
DEM with finite element formulations [36,49].

Despite its significance for practical applications, a well-founded μ(I )-rheological formulation for
flows of nonspherical particles is still lacking. Recent numerical studies on two-and three-dimensional
(2D and 3D) systems of frictional dumbbells yielded increasing effective friction with increasing
particle elongation in chute flows, as well as in a Couette shear cell [46,47]. Another numerical study
with frictionless spherocylinders in 3D resulted in a nonmonotonic but predominantly decreasing
effective friction as a function of the particle aspect ratio in Couette shear [50,51].

In this paper, we present an extensive numerical and experimental study, investigating a frictional
3D granular flow of elongated particles down an inclined plane. Similarly to sheared systems, the
average particle orientation is found to enclose a small angle with the flow direction. Interestingly,
this is significant when explaining the rheological response of those systems. Using a mathematically
consistent averaging technique, the numerical data reveal that the particle size perpendicular to the
flow direction is an appropriate length scale to define an effective inertial number Ieff , introducing a
generalized μ(I ) rheological formalism. Additionally, our outcomes clearly indicate that the effective
friction of an assembly of frictional 3D spherocylinders increases with aspect ratio. The paper is
organized as follows: In Sec. II, we describe the experimental setup, in Sec. III, we mention the
numerical model and its implementation, and Sec. IV includes the main results and its discussion.
At the end, conclusions and outlook are presented.

II. EXPERIMENTAL SYSTEM

We examine experimentally granular flows on an inclined plane of length 2 m and width 0.4 m
[Fig. 1(a)]. The surface of the plane is covered with coarse sandpaper (grit P40) to ensure uniform
roughness. A hopper at the top of the plane provides grains at a uniform flow rate, independent
of the plane inclination α. The motion of the grains in the surface layer is recorded by two fast
cameras (Mikrotron EoSens CL MC1362) using a frame rate of 1000 fps and a spatial resolution
of 10 pixel/mm. Camera 1 records the xy plane while camera 2 records the xz′ plane, which is
inclined at a small angle β = 17◦ ± 1◦ with respect to the vertical xz plane. We use cylindrical
glass rods of diameter d = 1.9 mm and length-to-width ratio ξ = L/d = 3.5. The granular sample
contained 6% of black tracer particles. The image sequences taken by the two cameras are analyzed
separately. In both cases, the orientation of the black tracer particles (θ ′ and φ) with respect to the
flow direction (see Fig. 1) is determined. This is done with a specially developed algorithm. We
take advantage of the cylindrical grain shape, where the two-dimensional projection of a particle
consists of two nearly parallel sides. After the algorithm detects the appropriate sized black areas on
an image, it calculates the direction of the gradient around the particle contour. For a clearly visible
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FIG. 1. Sketch of the experimental setup. Dimensions of the inclined plane: 2 m × 0.4 m. Granular material:
glass rods with length of 6.6 mm and diameter of 1.9 mm. Sample images taken with cameras 1 and 2 and the
definitions of the two angles (θ ′ and φ) are shown.

grain, the distribution of these orientations consists of a high and sharp peak perpendicular to the
particle orientation (corresponding to the long side) and a second peak parallel to it (corresponding
to the ends). If the grain is fully visible, or only slightly hidden by an overlapping white particle, the
method easily determines the grain orientation. If the overlap is larger, the method recognizes this in
the distribution of the gradients. In the current analysis, we do not consider grains where the second
largest peak is outside the range of 90◦ ± 2◦ with respect to the main peak.

III. NUMERICAL MODEL

Numerically, a chute flow of spherocylinders is modeled using a hybrid GPU-CPU discrete element
algorithm (DEM) [42,52]. The aspect ratio of the spherocylinders is defined by ξ = L/d = (l +
2r)/2r , where l is the cylinder length and r is the spheroradius. The chute is inclined at an angle
α such that gravity acts in the direction [sin(α),0,−cos(α)]. The size of the simulation cell was
Sx = Sy = 16 L and Sz = 32 L, and periodic boundary conditions were used in the x and y directions;
i.e., after leaving one of the boundaries, the particles are put back at the other with the same velocity
and inclination.

Initially, Np particles are inserted into the simulation cell at a random location and with random
orientation. In each case, the number of particles Np is adjusted to the choice of ξ such that the height
of the flow in steady-state conditions is roughly H = 20 L.

The equation of motion of particle i (i = 1,...,N ) reads as

Nc∑

j=1

�Fij + m�g = �Fi = m �ai (1)
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for the translational degrees of freedom. Complementarily, Euler’s equations describe the rotational
motion,

Nc∑

j=1

�τij = �Mi = I �̇ω + �ω × (I �ω), (2)

where m is the mass of the particle and I is the moment of inertia tensor. �Fij is the force exerted
by particle j on particle i, and τij accounts for its corresponding torque. The total force �Fi and
momentum �Mi acting on particle i are obtained as sums of the pairwise interaction of particle i with
its contacting neighbors.

The translational equations of motion are integrated using a velocity Verlet numerical algorithm
implemented as CUDA-thrust functions, which are inside the DEM loop. The set of Eqs. (2) defines
the particle’s angular velocity �ω, in the body frame. Additional equations are necessary to compute
the particle orientation. We adopted the quaternion representation and the rotational equations of
motion are integrated using a leap-frog numerical algorithm implemented as CUDA-thrust functions
(see details in Ref. [42]).

In our numerical approach, the contacting force between particles i and j has a normal and
a tangential component �Fij = �Fn

ij + �F t
ij . The normal force �Fn

ij depends linearly on the particles’
overlap δ. Moreover, the normal dissipation is proportional to the normal relative velocity �vn

rel. Hence,
the total normal force reads as �Fn

ij = −knδn̂ − γn�vn
rel, where kn and γn represent elastic and damping

coefficients. F t
ij also includes elastic and viscous contributions, �F t

ij = −kt
�ξ − γt �vt

rel, where γt is a

damping coefficient and �vt
rel is the tangential relative velocity of the overlapping pair. |�ξ | represents

the elongation of an imaginary spring with elastic constant kt . As long as there is an overlap between
i and j , �ξ increases as d�ξ/dt = �vt

rel [53]. The elastic tangential elongation �ξ is kept orthogonal to
the normal vector and it is truncated as necessary to satisfy the Coulomb constraint | �F t

ij | < μp| �Fn
ij |.

The majority of the numerical results presented here correspond to glass beads; in the simulation,
we use kt = 2

7kn, γt = γn, en = 0.88, ρp = 2500 kg/m3, and kn = 2 × 105(mpg/l) [13,16]. The
microscopic friction coefficient is set to μp = 0.5 and μp = 0.8 (rough particles). To compare with
the experimental results, we set gravity to g = 10 m/s2 and executing a systematic study of the
system response we used g = 1m/s2. Moreover, in some specific cases we have simulated steel
beads with ρp = 7850 kg/m3.

DEM provides the forces experienced by each grain and also tracks their velocities and positions.
From this data, the macroscopic mass density ρ(�r,t) and velocity �V (�r,t) fields are computed using
a coarse-graining methodology [54,55]. Here, we use a truncated Gaussian coarse-graining function
φ(�r) = A−1

w e−(|�r|/2w)2
with cutoff rc = 6w where the value of w = l/4 defines the coarse-grained

scale. Aw is numerically calculated so that the normalization condition holds. The data are confirmed
to be homogeneous in x, y, and t , and therefore averaged over these dimensions. The velocity field
in the flow direction, Vx(z), is then used to calculate the macroscopic shear rate γ̇x(z) by central
finite differencing. Additionally, we compute the macroscopic stress tensor σαβ , which is split into a
contact and kinetic stress contribution, σαβ = σ c

αβ + σ k
αβ . σ c

αβ is deduced using the relative position
of the contacting particles, the contact point, and their interaction force, while σ k

αβ accounts for the
velocity fluctuations of a single particle with respect to the macroscopic flow [54–56].

IV. RESULTS AND DISCUSSION

A. Steady-state flow

In the experimental system, the hopper feeds the grains at a constant flow rate. Thus, after a short
transient, a steady-state granular flow with a given height establishes on the inclined plane. Figure 2
shows the surface velocity as a function of time obtained by PIV analysis for α = 26◦ and α = 33◦
at two locations x = 158 cm and x = 165 cm below the hopper. This figure demonstrates that at
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FIG. 2. The surface velocity from laboratory measurements for α = 26◦ and α = 33◦ taken at two locations
x = 158 cm (continuous lines) and x = 165 cm (dashed lines) below the hopper.

the location where the data were taken the flow essentially does not accelerate any more, even for
the highest inclination angle. Note that the steady-state momentum balance requires that the stress
divergence and gravitational forces are in balance [13],

∂σxz/∂z = −ρgx, (3)

and thus

μ = −σxz/σzz = tan(α), (4)

where μ is known as a basal friction coefficient.
The simulations are executed until the system’s kinetic energy reaches a constant value, i.e., when

the ratio of mean kinetic energy and the mean elastic potential energy becomes time independent
[13], reproducing the experimental conditions. For all particle elongations, the run time was at least
t = 2000 × td , where td = √

L/g. After that period of time, we sample the system evolution each
�t = td/4 s.

Given the micromechanical data of all particles, one captures entirely the steady-state kinetics
using the coarse-graining methodology, described earlier in the text. For instance, computing the
averaged stress fields σ̄xz and σ̄zz we validate the steady-state conditions, comparing with Eq. (4).
Note that we obtain excellent accuracy for all the types of particles. Figure 3 illustrates results for a
range of inclinations in which the flow slowly evolves to a steady state. For higher inclinations, no
steady state is reached, and for lower inclinations, the flow quickly arrests.

B. Flow morphology

As discussed further below in the text, details of the flow morphology can be used for clarifying the
system’s rheological response. We study the flow morphology experimentally and numerically for
particles with elongation ξ = 3.5 and inclination angles of α ∈ [28.5◦,32.5◦] (numerically) and α ∈
[26.0◦,33.0◦] (experimentally). First, we compare data obtained at the surface of the flow from exper-
iments and numerical simulations. The average alignment angles θ ′

av and φav as a function of the plane
inclination are shown in Fig. 4(a). As expected, when looking from above, the particles are in average
aligned with the streamlines, i.e., φav = 0, independent of the plane inclination. When looking from
the side, however, the particles orient along a nonzero angle with respect to the streamlines. The angle
θav has a small positive value for lower plane inclinations (denser flows), as was observed in sheared
systems experimentally and numerically [20–23]. However, increasing plane inclination leads to a
decreasing alignment angle, which even changes sign for large inclinations. Remarkably, this trend
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FIG. 3. Average friction μ̄ as a function of the plane inclination α, obtained numerically, in steady-state
conditions. Outcomes corresponding to glass particles, several-particle elongation ξ , and g = 1m/2 are shown.
The inset illustrates the numerical system.

is similarly observed both in experiment and simulation. In the simulations, in the limit of low plane
inclination the system is at rest and consequently the particle inclination angle should be zero.
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FIG. 4. (a) The average alignment angles θ ′
av and φav as a function of α at the surface from experiment

(empty symbols) and simulation (full symbols). (b) The average surface velocity of the flow as a function of the
plane inclination α. Experimental data are shown with empty symbols, while the simulation data are indicated
with full symbols. All data are obtained with glass particles of aspect ratio ξ = 3.5.
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FIG. 5. The average alignment angles θav obtained numerically as a function of α for various layers. Red
symbols indicate regions at z < hm and black symbols indicate those at z > hm. The data correspond to glass
particles and g = 10 m/s2.

In Fig. 4(b), the surface velocity is shown as a function of the plane inclination. It is noticeable
that the experimental and numerical data show similar trends: The velocity increases as the angle
of inclination is increased. We argue that the small disagreement is understandable given that in
the experimental system the particle volumetric flow rate is imposed. Accordingly, the height of the
granular flow is different for each inclination angle. However, the simulation is done using a constant
number of particles.

While the experimental data are limited to observations at the flow surface, DEM simulations
allow access to the bulk statistics. Figure 5 shows the average alignment angle θav in different layers
of the flow as a function of the plane inclination α. The layers have a thickness of �z = L/2 and
are located at a different distance from the mean surface height h. Black symbols represent regions
at z > hm, while red symbols stand for regions below the mean surface height. It is noticeable that
the bulk behavior varies distinctly from the surface behavior, where the system is more dilute (more
detailed density data are shown later in the text). While in the surface region θav changes with height
(above and below hm) and the chute inclination α (above hm), it is practically independent of α in
the bulk region. Remarkably, the result in the bulk is in excellent agreement with observations in
sheared systems [21–23], which also found that the alignment angle is independent of the velocity
gradient γ̇ . Nevertheless, we observe that just above the mean surface, θav increases with height,
which correlates with a decrease of the velocity gradient γ̇ (data not shown). Below the mean surface,
however, θav diminishes with increasing height and starts to depend on the plane inclination α, which
correlates with an abrupt increase of the velocity gradient γ̇ (data shown later in the text). Similar
trends were obtained analytically [33] and experimentally [32] at molecular length scales for a single
Brownian rod subjected to shear flow. It is important to remark that higher inclination angles lead to
larger momentum transfer and, consequently, when a particle leaves the surface it can reach a higher
elevation where its orientation is less determined by the global flow.
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FIG. 6. Angle of repose αc1 obtained numerically for glass particles with different elongations ξ and g =
10 m/s2. Black markers show the highest angle at which the flow arrests, and red markers show the lowest angle
at which steady flow is observed.

C. Uniform steady flow of elongated particles

In order to clarify the inter-relation between the flow morphology and the system’s rheological
behavior, a numerical study is performed, varying the particle aspect ratio ξ and the plane
inclination α.

It is known that granular flows down inclined surfaces can be characterized by two critical angles.
First, αc1 is the angle at which the material comes to rest; for angles below, friction dominates over
gravity. On the contrary, there is a value αc2 above which gravity dominates over friction and the
material accelerates. Between these two angles, steady flow is possible. In general, the exact values
of αc1 and αc2 depend on polydispersity, particle shape, the basal surface, and the mean height of the
bed. However, the location of the free surface of a granular flow, i.e., the exact flow height, is not
well defined. For the sake of simplicity, simulations are computed using rods with ξ ∈ [1.01,3.0],
but always keeping the rod longer side L and the total mass of particles. In each case, the values of
r and number of particles Np are adjusted to the choice of ξ . With these conditions, the height of
the bed is roughly H = 20 × L in all cases. The base of the system is a rough surface consisting
of Nb = 385 fixed spherical particles of radius R = L/2. These conditions resemble one particular
surface roughness of Ref. [57] and similar microscopic parameters.

First, we measured the angle of repose αc1 and its dependence on ξ ; the data obtained for particles
with various ξ are shown in Fig. 6. For the sake of clarity, the plot illustrates the highest angle at
which the flow arrests and the lowest angle in which the system is slightly moving. The data indicate
that αc1 increases with the particle elongation. This result is expected as nonsphericity is known to
increase the stability of a static packing, leading to higher angles of repose [58–60]. However, it also
noticeable that the rate of increase is reduced for aspect ratios above 1.5, in agreement with previous
findings for rough ellipsoids [60].

As a second step, steady-state situations with α > αc1 for different ξ are explored. Using the
coarse-graining methodology, we calculate the macroscopic mass density ρ(�r,t)(z) and velocity
�V (�r,t)(z) profiles. Because of symmetry reasons, those macroscopic profiles are uniform (data not
shown) on the whole domain of x and y within our numerical accuracy. Moreover, we find that the
mean velocities in the y and z directions are diminished as a result of the absence of forces in those
directions. Figure 7 displays in detail the field profiles in the z direction that are obtained for each
particle elongation and several inclination angles. The density and velocity profiles [see Figs. 7(a)
and 7(b)] of these flows are very similar to those observed for spherical particles. The mass density
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FIG. 7. Numerical results: the vertical profiles of volume fraction φ(z) (a), macroscopic velocity on the x

direction Vx(z) (b), effective inertial number Ieff (z) (c), and angular stress eigendirection �σ (z) (d). Results
for glass particles and several particle elongations are shown, ξ ∈ (1.01,3.0); in each figure, different lines
correspond to different plane inclinations. Larger inclinations correspond to smaller volume fraction and larger
velocity and effective inertial number values.

throughout the flow is practically constant in the bulk, decreasing slightly close to the base. Note that
a constant density profile is a feature of all steady flows (varying α and ξ ). Moreover, in all cases
we obtain Bagnold-type velocity profiles Vx(z) and the maximum velocity increases with increasing
chute inclination.

Next, the values of Vx(z), are used to calculate the macroscopic shear rate γ̇x(z) by central finite
differencing (data not shown). Moreover, their corresponding Ieff (z) values are calculated via Eq. (5).
The Ieff (z) profiles obtained for several particle elongations and plane inclinations are illustrated in
Fig. 7(c). As seen earlier with spherical particles, we find that the Ieff (z) and ρ(z) profiles are
practically constant in the bulk region, with larger variations only in the basal and surface layers.
The latter is a key assumption of depth averaging and it justifies the use of a μ(I )-rheology scheme.

Interesting micromechanics features can be deduced from the eigenvectors of the mean stress
tensor σαβ , which, for instance, allows us to compare the main plane of action of the stress and
strain tensors. The idea is to clarify the impact of the particle shape on local stress transmission
and its relation with the shear strain. Note that in plane strain conditions the eigenvector of the
shear strain points to �ε = 45◦. Similar to the case of spheres, we find that the z components of
the n1 and n3 eigenvectors nearly vanish, except for statistical fluctuations. Moreover, the x and
y components of the second eigenvector n2 also vanish. Then, the angular stress eigendirection
was defined as �σ = tan−1(n1

y/n1
x). Thus, the eigendirection �σ (z) profiles obtained for several

particle elongations and plane inclinations are illustrated in Fig. 7. First, we obtain that the stress
eigendirections are virtually unchanged in the bulk region (see Fig. 7). Moreover, the values of �σ (z)
do not practically vary when changing the plane inclination (macroscopic shear rate). However, the
value of �σ notably decreases when increasing particle elongation. Thus, similar to the case of
spheres, the stress and strain eigendirections are nonaligned in the shear plane. Interestingly, the
angular shift ��σε = �σ − �ε increases with particle elongation (inset of Fig. 8), which correlates
with the tendency of elongated particles to form an angle between their orientation and the shear
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FIG. 8. Numerical results: alignment angle θ , mode, and mean, as functions of particle’s aspect ratio ξ . The

confidential intervals include particles in the bulk region z ∈ (2L,hm − 2L) and several inclinations. The inset
shows the angular shift ��σε between maximal eigendirection of stress and strain, depending on ξ . The sketch
illustrates the definition of deff.

direction. This finding is in accordance with results of Campbell [21], who suggested that in dense
ellipsoidal flows, the individual particles choose a preferential orientation to minimize rotation.

D. Flow rheological response

Next, we investigate the dependence of the alignment angle θ on particle elongation ξ , as well as
its significance in the system micromechanics. For simplicity, this analysis is done only for particles
in the bulk region. Figure 8 shows conclusively that the alignment angle, θ (mean and mode) obtained
in the bulk region decreases with particle elongation, for ξ > 1.5. Similar to sheared systems [21],
we find that the variances of the angular distributions (data not shown) are lower for greater ξ and the
peaks are better defined, which suggests that particle shape determines the preferred orientation [21].
It is also interesting to note that while the average alignment angle changes considerably (decreases by
about 20◦ as the aspect ratio increases from 1.3 to 3.0), the shift between the maximal eigendirection
of stress and strain is much less.

We go now one step further and examine the significance of particle alignment on the particle layer
thickness, which is a crucial parameter in the theoretical formalism of the μ(I ) rheology. To quantify
this effect, we define the effective particle size, deff, as the length of the particle’s projection onto
the z axis, deff := 2r + l〈sin(θp)〉, as illustrated by the inset of Fig. 8, where θp is the most probable
alignment angle (mode) represented in Fig. 8. Note that deff is a good measure for the thickness of a
particle layer, as the flow is dense and thus the mean free path is much lower than the particle size
[57]. Thus, the flow of nonspherical particles should be governed by the effective inertial number,

Ieff := γ̇ deff√
σzz/ρp

. (5)

As we pointed out earlier, the μ(I ) rheology reproduces experimental and numerical observations
from a number of setups [7–14]. It has been empirically shown that the macroscopic friction μ and
the density ρ can be expressed as a function of the inertial number I and the expressions read as [2]

μ(I ) = μ1 + (μ2 − μ1)
I

I + Io

, (6)

ρ(I ) = ρo − �ρI, (7)
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FIG. 9. Numerical results: (a) Depth-averaged friction μ̄ as a function of depth-averaged inertial number,
Īeff . (b) Depth-averaged bulk density from the low-inertia limit ρ̄ − ρ0, as a function of Īeff . Insets show the
dependence of the bulk density at the static limit ρ0 and the slope �ρ on the particle aspect ratio ξ .

where μ1 = tan(αc1) and μ2 = tan(αc2). Note that αc1 and αc2 are defined earlier in the text. Besides,
Io represents a scaling parameter for the inertial number, ρo is the bulk density at the static limit, and
�ρ is the rate of decrease in density with increasing I . These parameters are material dependent [2].
Next, we postulate that for the case of rods the effective inertial number I = Ieff , defined in Eq. (5),
fully captures the impact of the particle shape, using the same theoretical formalism.

In Fig. 9(a), we plot the depth-averaged macroscopic friction μ̄ against the depth-averaged inertial
number Īeff for several particle elongations. Remarkably, in all cases the behavior of the internal
friction μ̄ agrees very well with Eq. (7), including the measured angle of repose αc1(ξ ), while
keeping θ2 = 41.0◦ and Io = 0.617 fixed. Our outcomes indicate that while the shape of the particle
is an important factor in dense flows, it is plausible to expect a negligible dependence on αc2, as it
accounts for the friction at high-inertia, low-density flows. Also, the bulk friction notably increases
as the particle aspect ratio ξ increases, while keeping constant the inertial number Īeff . Thus, we find
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FIG. 10. Numerical results, data collapse obtained when plotting the relative friction versus the depth-
averaged inertial number Īeff . The continuous lines represent Eq. (7). Results for glass and steel particles with
different frictions and g = 1m/s2 are shown.

that deff is an appropriate length scale to define an effective inertial number Ieff , which fully captures
the impact of the particle shape on the system’s rheology.

In order to ensure the validity of our statement, in Fig. 10 we plot the relative friction versus the
depth-averaged inertial number Īeff in terms of Io, which is fixed for all ξ . Remarkably, all curves
collapse onto a master curve, even including numerical data obtained for different types of materials
and particle friction. Hence, results representing different aspect ratios are in excellent agreement
with the μ(I )-rheology law, Eq. (7). Note that obtaining the data collapse is achieved with only
the critical angle αc1(ξ ) depending on particle elongation. The values of Io and αc2 are kept fixed
and thus are considered as material constants. This is achieved by the appropriate selection of the
particle’s characteristic size deff(ξ ) when defining Ieff. In our case, the careful description of the flow
morphology allows obtaining deff(ξ ) accurately. Thus, the consistency of our results validates the
use of the μ(I ) theoretical scheme [7] when describing flows of elongated particles.

As we pointed out earlier, when formulating a granular constitutive model in terms of the inertial
number, the behavior of the macroscopic density is also a key point. Thus, we examine the relation
between depth-averaged macroscopic density ρ̄ and Īeff , for various particle aspect ratios ξ [see
results shown in Fig. 9(b)]. We find that the decrease in the macroscopic density ρ̄ correlates with
the decrease of inertial number, and thus it can be fitted to Eq. (7). However, we observe that the
particle elongation ξ significantly affects the rate of decrease, �ρ [inset of Fig. 9(b)].

Moreover, when plotting the estimation of the low inertia limit ρ0 as a function of ξ [inset of
Fig. 9(b)], we find nonmonotonic behavior, similar to the ξ dependence of the random close packing
density [61]. Note that increasing ξ from the spherical limit leads to increase in the number of contacts
and, as a result, more dense structures are obtained [61]. For ξ > 1.5, however, ρ0(ξ ) decreases with
increasing elongation, which is also consistent with previous experimental findings in 2D [62] and
3D [61] packings. In that regime, the decrease in the density is explained by strong excluded-volume
effects, induced by the orientation disorder [61]. In Fig. 9(b), we plot the difference between the
depth-averaged density, ρ̄, and ρ0 as a function of the depth-averaged effective inertial number, Īeff .

V. CONCLUSIONS AND REMARKS

In conclusion, a granular flow of nonspherical particles down an inclined plane is investigated in
detail. First, the flow morphology is characterized, exploring the particle orientation θ and its relation
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to the direction and magnitude of the shear rate γ̇ . As expected, particle orientation in the bulk varies
distinctly from the behavior at the surface. In the bulk, the orientation of particles is slightly inclined
with respect to the flow, and this behavior is independent of the shear rate. At the surface, however,
the particles move in more dilute conditions, and we find that θav decreases with increasing γ̇ . This
trend is similar to the behavior of a single Brownian rod embedded in a sheared liquid [32,33].
Second, we explore the impact of particle shape on the system’s rheological response by varying the
particle aspect ratio and the plane inclination. A careful analysis of the system’s characteristic time
and length scales reveals that the particle size perpendicular to the flow direction is an appropriate
length scale to define an effective inertial number Ieff . Our outcomes indicate conclusively that Ieff

fully captures the impact of the particle shape, in the μ(I ) theoretical formalism [7]. Furthermore,
similarly to the case of spheres, density and friction are well-defined functions of Ieff . Hence, we
quantify and explain the dependence of the rheological parameters on particle aspect ratio, based
on the micromechanical details. We expect that the present findings will help to better characterize
more complex flows, e.g., in funnels or silos. Moreover, our outcomes raise new questions about
whether this kind effective inertial number scheme captures the effect of the particle shape in systems
composed of complex elongated shapes. These questions will be addressed in future works.
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