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Abstract 

Epigenetics refers to all the modifications that alter gene activity without nucleotide sequence modification, but 

including the chromatin structure alteration as a direct consequence. Indeed, the most widely studied epigenetic 

mechanism is DNA methylation, which involves the addition of a methyl group onto cytosine nucleotide. DNA 

methylation may be modified by environmental stimuli including dietary patterns and nutrients. The DNA 

methylation pattern alteration has been associated with the development of obesity, inflammation and metabolic 

disturbances (type 2 diabetes, hypercholesterolemia, hypertension, cardiovascular disease). In this context, 

obesity is considered a contributing factor to the onset and aggravation of the conditions that lead to metabolic 

syndrome. In the last years it has been reported that low-grade inflammation underlies the pathological processes 

that are tied to obesity and metabolic syndrome, meanwhile the disruption of the circadian system has also been 

associated with higher risk to develop obesity-related comorbidities. Furthermore, in the era of “personalized 

nutrition”, the DNA methylation pattern of each individual has emerged as a promising tool for the prediction, 

screening, diagnosis and prognosis of obesity and related pathologies. Likewise, the modulation of DNA 

methylation marks by different dietary compounds may be a target for newer therapeutic strategies concerning 

the prevention and treatment of these diseases.  

In this context, this research work has taken advantage of “omics” and high-throughput screening technologies in 

order to address the following aims: 1) to analyse the association between DNA methylation in white blood cells 

and the development of obesity in a pediatric population; 2) to investigate the influence of a weight loss 

intervention in the DNA methylation levels of genes involved in the circadian system, and the association 

between DNA methylation and changes in the lipid profile; 3) to identify potential epigenetic biomarkers for 

weight loss within a weight-loss program by integrating transcriptome and methylome microarray data; 4) to 

evaluate whether a low intake of folic acid is related to adverse metabolic features  in obese subjects through 

changes in gene-specific DNA methylation pattern, and 5) to study whether folic acid and other dietary methyl 

donors can prevent the inflammatory response in an in vitro model through epigenetic mechanisms.  

In relation to the first objective, the results of the first chapter of this thesis suggest a role for DNA methylation, 

particularly in PTPRS and PER3 genes, in childhood obesity development. Concerning the second objective, we 

observe that DNA methylation in circadian genes, particularly in BMAL1, is dependent on dietary factors such as 

energy and carbohydrate intake, and could be used as a biomarker of the lipid profile response to the diet. The 

third chapter demonstrates that CD44 may have a role in body weight regulation, and its methylation levels can 

be used as a predictor of the success to a weight-loss intervention. The fourth chapter evidences that subjects 

with lower folate intake showed more adiposity and higher circulating levels of insulin, glucose, PAI-1, and 

cortisol, but lower CAMKK2 methylation levels. Moreover, CAMKK2 methylation was negatively associated 

with HOMA-IR index whereas CAMKK2 expression positively correlated with insulin resistance, suggesting that 

the methylation of this gene could be an epigenetic mechanism underlying low folic acid intake-mediated insulin 

resistance. Finally, in relation to the fifth objective, an in vitro study conducted in THP-1 monocytes and 

macrophages confirms that methyl donors, particularly folic acid, are able to decrease the expression and 

secretion of several pro-inflammatory mediators like IL-1β and TNF-α, which was accompanied by epigenetic 

modifications such as increased methylation of IL1B, SERPINE1 and IL18. 



Resumen 

Epigenética hace referencia a todas las modificaciones que alteran la actividad de los genes sin modificar la 

secuencia de nucleótidos, y sin embargo son capaces de alterar la estructura de la cromatina como consecuencia 

directa. El mecanismo epigenético más ampliamente estudiado es la metilación del ADN, que normalmente 

implica la adición de un grupo metilo en el nucleótido citosina. La metilación del ADN puede ser modificada por 

estímulos ambientales como son los patrones dietéticos y determinados nutrientes. La alteración del patrón de 

metilación del ADN se ha asociado con el desarrollo de obesidad, inflamación y alteraciones metabólicas 

(diabetes tipo 2, hipercolesterolemia, hipertensión, enfermedad cardiovascular). En este contexto, la obesidad se 

considera un factor común que contribuye a la aparcición y agravamiento de las condiciones que conducen al 

síndrome metabólico. En los últimos años se ha observado que la inflamación de bajo grado subyace a los 

procesos patológicos que están vinculados a la obesidad y al síndrome metabólico. También la alteración del 

sistema circadiano se ha asociado con un mayor riesgo de desarrollar comorbilidades relacionadas con la 

obesidad. En la era de la "nutrición personalizada", el patrón de metilación del ADN de cada individuo se ha 

convertido en una herramienta prometedora para la predicción, el cribado, el diagnóstico y el pronóstico de la 

obesidad y las patologías relacionadas. Del mismo modo, la modulación de las marcas de metilación del ADN 

por diferentes compuestos de la dieta puede ser un objetivo para nuevas estrategias terapéuticas relacionadas con 

la prevención y el tratamiento de dichas enfermedades. 

En este contexto, este trabajo de investigación ha aprovechado las tecnologías "ómicas" y de cribado de alto 

rendimiento para abordar los siguientes objetivos: 1) analizar la asociación entre la metilación del ADN en los 

células blancas de la sangre y el desarrollo de obesidad en una población pediátrica; 2) investigar la influencia de 

una intervención dietética de pérdida de peso en los niveles de metilación del ADN de los genes implicados en el 

sistema circadiano y la asociación entre la metilación de estos genes y los cambios en el perfil lipídico; 3) 

identificar posibles biomarcadores epigenéticos de pérdida de peso mediante la integración de datos de 

microarrays de transcriptoma y metiloma; 4) evaluar si una baja ingesta de ácido fólico está relacionada con 

anomalías metabólicas en sujetos obesos a través de cambios en el patrón de metilación del ADN, y 5) estudiar si 

el ácido fólico y otros compuestos donantes de metilo pueden disminuir la respuesta inflamatoria en un modelo 

in vitro a través de mecanismos epigenéticos. 

En relación con el primer objetivo, los resultados del primer capítulo de esta tesis sugieren un papel de la 

metilación del ADN, particularmente en los genes PTPRS y PER3, en el desarrollo de obesidad infantil. Con 

respecto al segundo objetivo, observamos que la metilación del ADN en genes circadianos, particularmente en 

BMAL1, depende de factores dietéticos tales como la ingesta de energía y carbohidratos, y podría usarse como un 

biomarcador de la respuesta del perfil lipídico a la dieta. El tercer capítulo muestra que CD44 puede tener un 

papel en la regulación del peso corporal, y sus niveles de metilación pueden usarse como un predictor del éxito 

de las intervenciones de pérdida de peso. El cuarto capítulo demuestra que los sujetos con una menor ingesta de 

ácido fólico muestran más adiposidad y niveles circulantes más altos de insulina, glucosa, PAI-1 y cortisol, pero 

menores niveles de metilación del gen CAMKK2. Además, la metilación de CAMKK2 se asoció negativamente 

con el índice HOMA-IR mientras que la expresión de CAMKK2 se correlacionó positivamente con la resistencia 

a la insulina, sugiriendo que la metilación de este gen podría ser un mecanismo epigenético subyacente a la baja 

resistencia a la insulina mediada por la ingesta de ácido fólico. Finalmente, en relación con el quinto objetivo, un 



estudio in vitro realizado en monocitos y macrófagos THP-1 confirma que los compuestos donantes de metilo, 

particularmente el ácido fólico, son capaces de disminuir la expresión y secreción de varios mediadores 

proinflamatorios como IL-1β y TNF -α, al mismo tiempo que induce modificaciones epigenéticas como el 

aumento de metilación de IL1B, SERPINE1 e IL18. 
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1. EPIGENETICS

1.1 Definition 

Epigenetics concepts were introduced in the early 1940s by the scientist Conrad Waddington, who 

defined epigenetics such as “the branch of biology which studies the causal interactions between genes 

and their products which bring the phenotype into being”(Waddington, 1968). Epigenetics term is 

born from the sum Greek prefix “epi” that means “over” and the word “genetics”. So literally, 

epigenetics refers all the mechanisms of regulation at a level above those of genetic mechanism. 

Specifically, epigenetics involve all the modifications that alter gene activity without nucleotide 

sequence modification, but including the chromatin structure modifications as a direct consequence 

(Dupont et al., 2009). 

 Epigenetic modifications may be stable and passed on to next generations or may be dynamic 

(plasticity) and alter as a consequence of environmental stimuli (Abdul et al., 2017). Several studies 

observed that exposure to environmental factors in one generation caused phenotypical effects in 

unexposed future generations and considered epigenetic mechanism in origin, calling this phenomenon 

transgenerational epigenetics inheritance. This transfer is caused because epigenetic modifications 

during gametogenesis and early embryogenesis are not completely erased; many of them persist and 

are transferred to the offspring (Campion et al., 2009). Transgenerational epigenetic inheritance has 

been described in embryonic development, ageing, health and disease (Sharma, 2017). On the other 

hand, one of the main advantages of epigenetics is the plasticity that allow modifying the epigenetic 

pattern by the environmental factors, such as dietary intake (Zhang, 2015). Numerous studies have 

shown that some nutrients affect the pathways involved in the epigenetic mechanism and may prevent 

the onset or ameliorate the outcome of some diseases (Cianciulli et al., 2016; Tian et al., 2017). These 

investigations demonstrate that epigenetic mechanisms are involved in the development of a variety of 

diseases and, through the modifications of environmental factors, specifically the diet, would alter 

epigenetic marks for the benefit of the individuals. 
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1.2 Epigenetic mechanisms in gene expression regulation 

The epigenetic mechanisms play an elementary role in the regulation of gene activity (Wolffe & 

Matzke, 1999). From unicellular to eukaryotic organisms, epigenetics is involved in the mechanisms 

of gene expression (Adhikari & Curtis, 2016; Labbé et al., 2017; Pikaard & Scheid, 2014; Zhang & 

Pradhan, 2014). Although the epigenetic mechanisms have been considered gene expression 

repressors, recent studies have described that these mechanisms are also involved  in transcriptional 

activation (Zhang & Pradhan, 2014). 

The epigenetic control of gene expression can be considered a normal regulation of cellular activities, 

which requires the switch on and off of several genes. For example, during embryonic development a 

large number of different and specialized cell types came from a single totipotent stem cell. The 

epigenetic mechanisms allow totipotent stem cell to activate and repress needed genes for 

differentiating into various pluripotent cells. Pluripotent  cells in turn also use the epigenetic 

mechanisms for developing the specialized cell types (Cheedipudi et al., 2014). Sometimes, the 

epigenome (global epigenetic information of one organism) of a cell type becomes abnormal resulting 

in a dysregulation of the gene transcription that can trigger the development of diseases. This 

condition is the case of multiple types of cancer, where the cells gain and lose their epigenomic marks 

(Baylin & Jones, 2011). However, in recent years there are more and more pathogenic situations, such 

as obesity, inflammation or metabolic diseases, in which an abnormal epigenetic pattern has been 

observed  (Holmes et al., 2017; Marques-Rocha et al., 2015; Robertson, 2005). 

The most relevant epigenetic mechanisms involved in gene activity regulation are histone 

modifications, non-coding RNAs (ncRNA) and DNA methylation (Figure 1). 
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Figure 1. The most relevant epigenetic mechanisms involved in gene activity regulation. Adapted 

from Zaidi et al., (2010). Abbreviations: lncRNA, long non-coding RNA; ncRNA, non-coding RNA; 

mRNA, messenger RNA; SAM, S-adenosyl methionine. 
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1.2.1 Histone modifications 

Histones are proteins found in the cell nuclei and are involved in the packaging of DNA into structural 

units named nucleosomes (Luger et al., 1997). There exist five major families of histones (Hs) in the 

chromatin: H1/H5, H2A, H2B, H3, and H4 (Bhasin et al., 2006). The aminoacids-terminal tail 

residues of the histones, specifically serine, lysine and arginine residues, are susceptible of being 

modified by methylation or demethylation, acetylation, phosporilation, ADP-ribosylation, 

biotinylation, O-GlcNAcylation, propionylation, sumoylation, and ubiquitination. These modifications 

play a central role in the epigenetic regulation of gene expression (Zhang & Pradhan, 2014).  The 

trimethylation of H3 lysine 4 (H3K4), H3K79 and H3K36 have been particularly associated with gene 

expression activation, whereas the trymethylation of H4 lysine 27 (H4K27), di- and trimethylation of 

H3K9, and trimethylation of H3K20 have been associated with transcriptional repression (Abdul et al., 

2017). 

1.2.2 ncRNA (microRNAs and long noncoding RNAs) 

ncRNA are RNA molecules that are not translated into proteins. Among others, ncRNA include 

microRNAs (miRNA) and long noncoding RNAs (lncRNA). miRNA is the most studied ncRNA in 

relation to gene regulation. miRNA are small ncRNA, comprised of 18-25 nucleotides, which play a 

role in the post-transcriptional modulation of gene expression. RNA polymerase II transcribes miRNA 

genes into primary miRNAs. Primary miRNAs are processed in the nucleus by ribonuclease III 

Drosha and DiGeorge syndrome chromosomal region 8 (DGCR8) into precursor miRNA, which are 

then translocated to the cytoplasm, where ribonuclease III Dicer modifies precursor miRNA and 

results in mature miRNA products (Abdul et al., 2017). miRNA regulates gene function through 

complementarity to messenger RNA (mRNA) sequences. miRNA binds to complementary mRNA 

sequence. miRNA-mRNA interactions with high degree of match result in mRNA cleavage and 

degradation, whereas low degree of match causes translational repression (Mohr & Mott, 2015). The 

repression of mRNA by a miRNA is not complete. Generally, the union of miRNA-mRNA reduces 

gene expression (Bartel, 2009). Similarly to other epigenetic mechanisms, miRNA expression profiles 

diverge between normal and diseased tissues. miRNA have been also identified in exosomes and 
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extracellular vesicles, which can be taken up by neighboring or distant cells and be involved in cell-to-

cell communication (Théry, 2011). The principal advantage of secreted miRNAs is their stability in 

body fluids (blood, saliva, urine, faeces, bile and other fluids), providing the potential for a non-

invasive biormarker of prognosis and diagnosis in several diseases (Chen et al., 2008; Wald et al., 

2017). 

lncRNA are long transcripts from 200 nucleotides to 100 kilobase (kb) that are not translated into 

protein and are usually spliced, capped and polyadenylated similarly to mRNA molecules (Quinn & 

Chang, 2015). lncRNA are involved in numerous biological processes including gene expression. 

Transcription of lncRNA regulated in close genomic proximity or in distant through targeting 

transcriptional activators or repressors by a variety of mechanisms (Ponting et al., 2009). In the same 

way to miRNA, lncRNA are also being used as biomarkers of diagnosis in a variety of diseases (Bolha 

et al., 2017). 

Epigenetic ncRNA also include small interfering RNA (siRNA) and piwi-interacting RNA (piRNA) 

(Kaikkonen et al., 2011). Both of them are short ncRNA similar to miRNA. siRNA mediates post-

transcriptional gene silencing as a result of mRNA degradation and induces heterochromatin formation 

via RNA-induced transcriptional silencing (RITS) complex, which promotes H3K9 methylation and 

chromatin condensation (Carthew & Sontheimer, 2009). On the other hand, piRNA interacts with piwi 

family of proteins, regulating chromatin and suppressing transposon activity in germline and somatic 

cells (Kaikkonen et al., 2011). 

1.2.3 DNA methylation 

The most extensively studied epigenetic mark in the mammalian genome in relation to gene 

expression regulation has been DNA methylation (Robertson, 2005). DNA methylation is an 

epigenetic mechanism involving the covalent addition of a methyl group (-CH3) onto the 5 position of 

cytosine, resulting in 5-methylcytosine (5mC). Although in mammals methylation generally is 

restricted to cytosine linked by a phosphate to guanine (CpG site),  small percentage of methylation 

may occurs in non-CpG sites (CHG and CHH, where H = A, C or T) (Lister et al., 2009; Smith & 

Meissner, 2013). 
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Dietary folate is reduced to dihydrofolate (DHF) in the intestine and/or liver and subsequently to 

tetrahydrofolate (THF) via the methionine synthase reaction. Vitamin B6 provides the enzymatic 

support to serine hydroxymethyltransferase (SHMT) enzyme necessary for the reversible and 

simultaneous conversion of L-serine to glycine and THF to 5,10-methyleneTHF (Perry et al., 2007). 

Furthermore, vitamin B2 acts as a co-factor of methylenetetrahydrofolate reductase (MTHFR) for the 

transformation of 5,10-methyleneTHF to 5-methylTHF (Goyette et al., 1994).  Cofactor vitamin B12 

provides the enzymatic support to methionine synthase (MTR) enzyme necessary for the 

transformation into THF. This form of folate donates the methyl group to homocysteine (hcy) 

converting it to methionine. In addition, choline by a choline oxidase enzyme is transformed into 

betaine, which donates the methyl group to hcy for the conversion into methionine. Methyl group of 

the methionine becomes activated by adenosine triphosphate (ATP) with the addition of adenosine to 

the sulfur of methionine to transform into S-Adenosyl methionine (SAM). With the help of  DNA 

methyltransferases (DNMTs), methyl group from SAM is finally transferred to cytosine residues of 

the DNA (Anderson et al., 2012) (Figure 2). 

Three principal enzymes of the DNMT family are responsible for establishing and maintaining DNA 

methylation: DNMT1, DNMT3A and DNMT3B. These DNMTs catalyze the transfer of the methyl 

group from methyl donor SAM onto cytosine. DNMT1 plays the role of maintaining DNA 

methylation pattern after cell DNA replication cycle, whereas DNMT3A and DNMT3B mediate de 

novo CpG methylation principally during embryogenesis (Rondelet & Wouters, 2017). The activity of 

these enzymes is connected with a complex regulatory network, in which DNMTs interact with each 

other and with histones and methylcytosine-binding proteins (Gagnidze & Pfaff, 2013). 

Mammalian genomes present approximately 28 million CpG sites, among which 60-80 % is generally 

methylated. Very CpG-dense regions in the genome are known as CpG islands (CGIs). The majority 

of the CGIs are located in gene promoter region, but they also appear in gene bodies, often acting as 

alternative promoters (Saxonov et al., 2006). Contrary to CpG sites, most of the CGIs in promoter 

regions usually are unmethylated to maintain transcription of the active gene. 
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Figure 2. Involvement of dietary micronutrients in one-carbon metabolism. Substrates obtained 

via diet are highlighted in blue rectangle. Enzymes involved in the metabolism are highlighted in blue 

circle. Adapted from Anderson (2012). Abbreviations: DHF, dihydrofolate; THF, tetrahydrofolate; 

SHMT, serine hydroxymethyltransferase; DMG, dimethyl glycine; SAM, S-adenosylmethionine; 

SAH, S-adenosylhomocysteine; MTR, methionine synthase; MTHFR, methylenetetrahydrofolate 

reductase;  MAT, methionine adenosyltransferase; DNMT, DNA methyltransferase. 

In this sense, DNA methylation of CGIs of promoter regions has been associated with transcriptional 

repression, whereas methylation of CGIs in gene body is enriched in highly transcribed genes (Deaton 

& Bird, 2011). DNA methylation could affect gene expression through three ways: i) by modifying 

transcription factor-gene promoter binding affinity; ii) affecting the binding between promoter or gene 

body to methylation-specific recognition factors; and iii) repressing the spatial accessibility of 

transcription factors or DNA binding proteins to promoters by altering chromatin structure (Zhang & 

Pradhan, 2014).  

DNA methylation is a normal and essential gene regulatory mechanism of the cell and is associated 

with a number of key processes such as gametogenesis, embryogenesis and aging. It contributes to 

genomic imprinting, X-chromosome inactivation and repression of transposable elements, but is also 

involved in several diseases (Reik, 2001; Jones, 2012; Smith & Meissner, 2013b; Nilsson & Ling, 

2017). Numerous studies have shown that different stages and types of diseases produce a different 

epigenetic pattern (Belzeaux et al., 2017; Goel et al., 2017; Leygo et al., 2017; Nicoletti et al., 2017). 
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In this sense, DNA methylation is a promising biomarker not only for diagnosis, but also for prognosis 

of different malignancies.  

Differentially methylated region (DMR) is an area of the genome where multiple adjacent CpGs show 

different methylation status between phenotypes; they are regarded as possible functional regions 

involved in gene transcriptional regulation (Shen et al., 2017). Differential methylation measured 

regionally is more biologically interpretable and statistically powerful than CpGs  measured 

individually (Zhang et al., 2011). These characteristics allow DMR to be powerful biomarker of 

biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. 

DNA methylation profiles might also be modified by environmental factors.  Several studies have 

investigated the CpG methylation dynamics changes as a consequence of the restriction or 

supplementation with different nutrients. Moreover, physical activity, lifestyle, metals, chemicals, 

pesticides, and air pollution also alter DNA methylation signature (reviewed in (Abdul et al., 2017). 

Noteworthy, DNA methylation is being applied as a therapeutic tool in a variety of pathologies 

through the correct changes of these environmental factors. 

Another important epigenetic modification in DNA of mammalian cells has been described: cytosine 

hydroxymethylation. Hydroxymethylation replaces the hydrogen atom at the C5-position in cytosine 

with a hydroxymethyl group (Figure 3). Wanunu et al., (2011) suggested that hydroxymethylation 

may affect the flexibility and stability of DNA duplexes differently than common methylation. In 

addition, it has been demonstrated that hydroxymethylation is involved in gene expression regulation 

(Severin et al., 2013). 

Figure 3.  Schematic view of the cytosine hydroxymethylation process. (Kinde, 2015). 
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A series of current publications demonstrated the existence of non-CpG methylation, including 

methylation at cytosines followed by adenine (CpA), thymine (CpT) or another cytosine (CpC) in a 

variety of multi-cellular organism (Chlamydomonas, Caenorhabditis elegans and Drosophila) and, in 

a very low levels, in mammalian cells (Koziol et al., 2016; Kigar et al., 2017). Non-CpG methylation 

could be the result of the hyperactivity of non-specific de novo methylation of CpGs by DNMT3A and 

DNMT3B (Jang et al., 2017).  Different reports have indicated that non-CpGs methylation levels in 

promoter regions are correlated with gene repression (Jang et al., 2017) by affecting chromatin 

availability to transcription factors and other regulatory protein binding (Pinney, 2014). 

New investigations reported the methylation of adenine nucleotide. Adenine is methylated on the 

exocyclic NH2 group at the 6-position of the purine ring (Iyer et al., 2016). Increased   N6-

methyladenine (6mA) has been associated with gene repression and described as an epigenetic 

biomarker of the development of stress-induced neuropathology (Kigar et al., 2017). 

1.2.4 Other epigenetic modifications 

The packaging of DNA into nucleosomes may affect all stages of transcription, thereby regulation 

gene expression (Portela & Esteller, 2010). Indeed, nucleosomes might block the access of activators 

and transcription factors to their sites on DNA. Thus, the nucleosome positioning determines 

accessibility of the transcription factors. Several groups of large molecular complexes are known to 

modify, destabilize or restructure nucleosomes in an ATP hydrolysis-dependent manner. The 

chromatin remodelling complexes are classified into four families: switch/sucrose non fermentable 

(SWI/SNF), chromodomain helicase DNA binding (CHD), and INO80 (Portela & Esteller, 2010). 

Nucleosome positioning has been reported to be involved in several diseases such as cancer, 

neurodevelopmental disorders, neurodegenerative and neurological diseases, and autoimmune diseases 

(Portela & Esteller, 2010). 

1.3 Factors associated with DNA methylation 

1.3.1 Genetic factors 

DNA methylation is involved in a variety of biological processes. The DNA methylation regulation 

depends on a complex machinery interaction that includes DNMTs, methylated DNA-binding proteins 
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(MBDs) and methyl group metabolism pathway. Mutations in DNMTs, MBDs and methyl group 

metabolism genes result in an aberrant DNA methylation pattern that may cause numerous human 

diseases. 

Mutations in genes encoding methyltransferases 

DNA methylation, as explained before, is mediated principally by DNMT1, DNMT3A and DNMT3B 

enzymes. Several studies have found numerous mutations in these genes that cause different diseases. 

For example, there have been described 10 missense mutations (point mutation in a nucleotide results 

in an aminoacid changing) in DNMT1 that result in global hypomethylation but site-specific 

hypermethylation. These mutations are involved in the development of dementia, hearing loss type IE, 

autosomal dominant cerebellar ataxia, deafness, or Alzheimer’s disease (reviewed in (Hamidi et al., 

2015). However, the homozygous deletion of Dnmt1 in mice results in embryonic lethality (Chen & 

Li, 2006). The missense, nonsense (point mutation in a nucleotide results in a stop codon) and 

insertion mutations in DNMT3A result in hematologic abnormalities and overgrowth syndrome by the 

focal hypomethylation of specific genes such as Hox genes. Similarly, different mutations in DNMT3B 

have been hypothesized that produce mislocalization of the gene, leading to aberrant de novo 

methylation by affecting SAM binding, methyl group transfer or DNA association. Immunodeficiency 

and centromeric instability with hypogammaglobulineamia or agammaglobulinemia are some of the 

diseases produced by mutations in DNMT3B.  (reviewed in (Hamidi et al., 2015) (Table 1). 

Mutations in the gene encoding methyl-CpG binding protein 2 

The genetic variants of methyl-CpG binding protein 2 (MECP2) gene have been extensively studied. 

More than 600 missense as well as numerous intronic and untranslated region (UTR) mutations have 

been described. The loss of function of MECP2 protein inhibits the union of different molecules to 

5mC. These mutation are associated for example with the Rett syndrome (Hamidi et al., 2015). 
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Mutations in genes of the methyl group metabolism pathway 

Several single nucleotide polymorphisms (SNPs) in MTHFR are associated with the development of 

obesity-related non-alcoholic steatohepatitis (NASH) (Mehta et al., 2014). The patients present low 

levels of methylation and aberrant gene expression (Sazci et al., 2008; Mehta et al., 2014). Moreover, 

different SNPs in the genes MTR, methionine synthase reductase (MTRR), cystationine betha-syntase 

(CBS), transcobalamin-II (TCN2) and paraoxonase-1 (PON1) have been associated with obesity 

(Bokor et al., 2011). In addition, the missense mutation with the substitution of an arginine for a 

glutamine  (R239Q) in betaine-homocysteine methyltransferase (BHMT) gene has been associated 

with coronary artery disease (Weisberg et al., 2003). Although these genes affect directly the methyl 

group availability, the effect in genome DNA methylation is still unknown. 

Molecule Mutation Phenotype 

DNMT1 

D506E 

P507Y 

Y511C 

Y511H 

K521def 

H569R 

A570V 

C596R 

G605A 

V606F 

Dementia and hearing loss type IE 

Alzheimer's disease 

Autoinmune attack of some neurons and mitochondrial 

dysfunction 

Autosomal dominant cerebellar ataxia, deafness and 

narcolepsy 

DNMT3A 

> 50 % R882 to histidine or other 

residues 

86 more mutations: frameshift 

deletion, frameshift substitution, 

deletion, missense and nonsense 

Acute myeloid leukemia 

Myeloproliferative neoplasms 

Myelodysplastic syndrome 

T-cell acute lymphoblastic leukemia 

Angioimmunoblastic T-cell lymphoma 

Overgrowth disorders 

Intellectual disability 

Distintive facial appearance 

DNMT3B S270P 

Immunodeficiency, centromeric instability and facial 

anomalies 

Defects in B cell maturation and immunoglobulin 

production 

Table 1. Different diseases-related phenotypes associated with mutations in DNMT1, DNMT3A 

and DNMT3B. 

Data from Hamidi et al., (2015). 
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1.3.2 Environmental factors 

A number of environmental factors have been related to the modification of DNA methylation profile 

(Figure 4). 

1.3.2.1 Diet 

Prenatal maternal diet 

Methylation marks are critical for cellular differentiation of individual’s tissues (Bird, 2002). During 

gametogenesis and embryogenesis, demethylation and remethylation is occurring each time. In this 

period of high dynamic flux of methylation, any endogenous or exogenous factor could be able to 

induce changes in methylation. A number of studies have demonstrated existing links between 

prenatal nutrition and future individual health in early and later life, and the risk of disease (Barker, 

2007; Wadhwa et al., 2009). Several researchers have proposed an “epigenetic programming 

hypothesis”, which explains that suboptimal maternal diet induces epimutations in offspring during 

early embryonic development, and this is maintained during adulthood, sometimes producing diseases 

(Li et al., 2010). Epimutations may occur in somatic cells and germ cells of the embryo, so the effects 

of the DNA methylation changes could be seen in the adulthood.   

Numerous studies in animals have described a genome-wide alteration in hepatic DNA methylation 

and gene expression of the offspring after the maternal exposure to high-fat diet (HFD) during 

pregnancy, and the consequent development of metabolic syndrome (MetS) in early postnatal life 

(Altmann et al., 2013; Ge et al., 2014; Marco et al., 2014; Seki et al., 2017).  In addition, female mice 

fed a high fat-sucrose diet (HFSD) during pregnancy resulted in DNA methylation changes of genes 

involved in renin-angiotensin system (RAS) leading to autonomic dysfunction in the male offspring 

(Mukerjee et al., 2017). 

In humans the classical example of the association between maternal diet and DNA methylation was 

the analysis of individuals born during the Dutch Hunger Winter of 1944-1945. The study showed that 

the people who were conceived during the famine presented lower methylation of the insulin-like 

growth factor (IGF) 2 even 6 decades later (Heijmans et al., 2008). On the other hand, the seasonal 

fluctuation in nutrient intake and the maternal nutritional status of Gambian women modified the DNA 

methylation pattern of several metastable epialleles in hair follicles and lymphocytes in the offspring 
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(Waterland et al., 2010; Dominguez-Salas et al., 2014). A recent study has demonstrated the 

association between circulating cytokine concentrations during pregnancy as a consequence of 

maternal pro-inflammatory diet, and maternally expressed 3 (MEG3) gene methylation in the offspring 

(McCullough et al., 2017). In addition, the supplementation or the restriction of a range of dietary 

factors such as folate, methionine, betaine or choline, in maternal diet, has been shown to modify the 

establishment of DNA methylation profile in the offspring (Pauwels et al., 2017b). 

Early postnatal diet 

Nutritional programming in infant development may explain the predisposition of some individuals to 

suffer some chronic diseases such as obesity, type 2 diabetes (T2D), MetS, cognitive and behavioural 

disorders (Oken & Gillman, 2003; Martínez et al., 2012; Vaag et al., 2012). There are increasing 

evidences that abnormal DNA methylation is one of the mechanisms by which the early postnatal and 

infancy nutrition may cause these health problems. For example, a study about the effect of childhood 

malnutrition demonstrated that the individuals who had moderate to severe protein-energy 

malnutrition at the first year of life, presented epigenetic dyresgulation associated with attentional and 

cognitive deficits in adults (Peter et al., 2016). Moreover, the suboptimal diet in early infancy is 

associated with DNA methylation profile changes and increased risk of obesity in later life (van Dijk 

et al., 2015). Finally, longer breastfeeding duration is associated with lower levels of infant leptin 

(LEP) methylation and, as a consequence, with lower risk of deficient appetite regulation and obesity 

in adulthood (Obermann-Borst et al., 2013). 

Diet in adulthood 

Numerous studies have evidenced that nutrition in adulthood is associated with changes in CpG 

methylation profile that can translate in beneficial or pernicious outcome. For example, DMRs have 

been reported in adult adipose tissue in response to calorie restriction (Bouchard et al., 2010). In 

addition, healthy young men presented widespread DNA methylation modifications in skeletal muscle 

after a high-fat overfeeding (HFO) diet and, interestingly, changes partially reversed 6-8 weeks after 

returning to control diet (Jacobsen et al., 2012). A dietary pattern characterized by a high intake of 

vegetables and fruits prevented against the global DNA hypomethylation caused by high intake of 

meats, refined products, sweets, deserts, oils, and potatoes (Bouchard-Mercier et al., 2013). Moreover, 
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seven weeks of diets rich in either polyunsaturated or saturated fat increased mean levels of 

methylation in human adipose tissue, evidencing different DNA methylation modifications between 

both diets (Perfilyev et al., 2017). An energy restriction diet also modified pro-inflammatory gene 

interleukin-6 (IL6) methylation after a 6 month treatment (Nicoletti et al., 2016). The change of dietary 

pattern to a hypocaloric diet altered the DNA methylation of ATPase phospholipid transporting 10A 

(ATP10A) and Wilms tumor 1 (WT1) genes in human peripheral blood mononuclear cells (PBMCs) 

(Milagro et al., 2011). Numerous studies about anorexia, an eating disorder characterized by intense 

restriction of energy intake and nutrients deficiency, have associated this disease with methylation 

modifications of norepinephrine transporter (SLC6A2), dopamine transporter (SLC6A3), dopamine 

receptor D2 (DRD2), LEP, brain-derived neurotrophic factor (BDNF), oxytocin receptor (OXTR) and 

proopiomelanocortin (POMC) genes, and global DNA hypomethylation (reviewed in (Thaler & 

Steiger, 2017). 

1.3.2.2 Physical activity 

The benefits of physical activity on health are well known. Exercise prevents or reduces the risk 

factors for the development of cardiovascular diseases (CVDs), inflammation, obesity, insulin 

resistance (IR) and other diseases (reviewed in (Ntanasis-Stathopoulos et al., 2013). Recent studies 

described how the regular physical activity modulated the DNA methylation profile of several genes 

related with muscle development and metabolism. For example, a study analysing skeletal muscle 

biopsies of healthy sedentary subjects after an aerobic exercise showed a general hypomethylation of 

DNA (Barrès et al., 2012). Moreover, acute exercise in healthy men and women produced an 

intensity-dependent promoter hypomethylation of peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha (PPARGC1A), pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome 

proliferator-activated receptor delta (PPARD) linked with increasing in mRNA expression of these 

genes (Barrès & Zierath, 2016). Notably, these are genes involved in glucose and lipid metabolism. 

But not only DNA methylation is altered in skeletal muscle; other organs also response to physical 

activity. For example, some studies found that adipose tissue also remodelled the CpG methylation 

pattern after an exercise training program (Rönn et al., 2013; Kanzleiter et al., 2015). 
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1.3.2.3 Others influencing factors 

Stress, drugs or air pollution are examples of factors that may also alter global epigenome signature. 

Environmental stress studies have described modifications in DNA methylation markers that alter 

gene transcription in the brain and neuroendocrine systems (Cadet, 2016). A recent review 

summarized the evidence association between traumatic stress and stress-related disorders (anxiety 

and depression), and DNA methylation in subjects during prenatal period, early life environment and 

adolescence/adulthood. A high number of gene methylation and mRNA expression differences were 

found between health individuals and subjects that suffered a stress episode in the different periods 

across the life span (Vinkers et al., 2015; Bartlett et al., 2017). 

Several studies have described potential DNA methylation modifications that are secondary to drug 

consumption. For example, subjects that consume alcohol usually presented higher methylation in the 

genes histone cluster 2 H2A family member c (HIST2H2AC) and histone cluster 1 H4 family member 

e (HIST1H4E), altering histone regulation, as compared with controls. Moreover, cocaine 

administration also increased the expression of MECP2 and upregulated DNMT3A and DNMT3B in 

mouse brain resulting in de novo DNA methylation. In addition, methamphetamine increased DNA 

methylation by enhancing DNMT1 expression in the brain. Nicotine also modified the DNA 

methylation pattern of numerous genes (reviewed in (Brown & Feng, 2017). The exposure to air 

pollution may be the origin of inflammation, oxidative damage or mitochondrial dysfunction. Some 

genome-wide DNA methylation studies found an inverse association between long-term exposure to 

air pollution and global methylation of long interspersed nuclear element (LINE) and Alu transposable 

elements and other functional regions on the genome including CGI shores and shelves, and gene 

bodies (De Prins et al., 2013; Janssen et al., 2013; Sanchez-Guerra et al., 2015; Plusquin et al., 2017). 



Introduction 

18 

2. MODULATION OF DNA METHYLATION BY SPECIFIC

NUTRIENTS

The role of nutrition as the base of individual health is widely recognized. In the 19
th
 century the 

philosopher and anthropologist Ludwig Feuerbach stated that “You are what you eat”, without being 

conscious that his affirmation would literally be true in the area of health. Nowadays, our 

comprehension is deeper, and the science has studied the associations that exist between the diet intake 

and its influence in the onset of diseases (National academy of Sciences, 1989). 

The relationship with the diet might be beneficial or detrimental for the individual health. A numerous 

research has been investigated the role of the food and food components in the activation of pathways 

and mechanisms related to cardiovascular and metabolic health, inflammation, cancer or behavioural 

disorders (Baker et al., 2017; Manning, 2017; Yusufov et al., 2017). However, scientific research has 

demonstrated how the adherence to specific diets and the consumption of specific foods have positive 

Figure 4. Different environmental factors that modify DNA methylation profile in humans.
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health outcomes and improve several diseases (Alissa & Ferns, 2015; Martín-Peláez et al., 2017; 

Vanamala, 2017). 

The discovery of the DNA methylation mechanism and its linker role between food and health 

enlarged the knowledge in the nutrition study area. More and more research evidence how nutrients 

act activating pathways that modify the methyl profile. This results in gene expression alterations and 

in the last instance in beneficial or harmful effects on health (Shimizu, 2017). 

2.1 Methyl donors 

Methyl donors are substances involved in the DNA methylation process. By definition, methyl donors 

donate a methyl group to an acceptor molecule. The methyl group can be directly delivered by diet 

from methionine, choline, betaine, and folate (Figure 2). The metabolic pathways of these sources of 

methyl groups interact and participate in the DNA methylation process. For this reason, folate, choline 

and betaine supplementation have usually been associated with increased DNA methylation, whereas 

low intake of these compounds is linked to hypomethylation. 

2.1.1 Folate 

Folate is a water-soluble member of the B vitamin family with a group of heterocyclic compounds 

based on the 4-[(pteridin-6-ylmethyl)amino]benzoic acid base conjugated with L-glutamate units 

(Figure 5). The “folate” name includes the many forms of the vitamin, such as THF (activated form of 

the vitamin), 5-methyl THF, methenyl THF, folic acid (artificial folate), and folinic acid (Cornish-

Bowden, 1987). 

Folate is present naturally in a wide variety of foods, including green leafy vegetables, fruits, nuts, 

beans, peas, dairy products, liver and meat, eggs, seafood, and grains (database from Spanish Food 

Composition Database). Folic acid is the oxidized monoglutamate form that rarely is present in nature 

Figure 5. Folate chemical structure. 
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but is contained in fortified foods and vitamin supplements. The bioavailability of food folates 

depends on the intestinal environment, food matrix, chemical stability, and the presence of other food 

components (McNulty & Pentieva, 2004). 

Folate deficiency is caused by several factors, such as dietary insufficiency. Nowadays, the increasing 

consumption of HFD and the lower accessibility of folate-rich foods in undeveloped countries result in 

a reducing intake of folate. This is the case of Mediterranean countries that, although are characterized 

by a high consumption of vegetables and fish, in the last years the consumption of these products is 

decreasing, which may explain the current folate deficiency in Mediterranean population (Samaniego-

Vaesken et al., 2017). 

Folate deficiency has been associated with an increased risk pregnancy complications and birth 

defects, anemia, depression cancer, CVDs, obesity, and IR (McKay & Mathers, 2016; Li et al., 2017; 

Thomas-Valdés et al., 2017). The folate deficiency may contribute to an increased susceptibility to 

develop diseases through the modification of specific gene or genome-wide DNA methylation pattern. 

Some examples of diseases attributed to folate deficiency acting by DNA methylation mechanism are 

summarized in Table 2. 

In the same way, the use of folic acid supplementation for preventing or reducing  numerous diseases 

by DNA methylation mechanisms has been studied (Remely et al., 2015; Fu et al., 2017; Tian et al., 

2017). Different studies in animals evidenced the beneficial effect of folic acid. For example, folic 

acid supplementation reduced the liver lipid accumulation after a HFS diet in rats (Cordero et al., 

2011a). Moreover, folic acid normalized DNMTs and methylation levels resulting in an amelioration 

of brain damage in neurovascular diseases in mice (Kalani et al., 2014). In addition, new studies 

suggest that folic acid supplementation might be useful in the management of Alzheimer-like disease 

(Kalani et al., 2014). In humans, folic acid supplementation in Nepalese women during pregnancy 

resulted in a reduction of MetS prevalence in school-age children (Stewart et al., 2009). Furthermore, 

folic acid supplementation in overweight and obese men with T2D improved biochemical indices 

(Gargari et al., 2011), and was effective for stroke prevention in patients with CVDs (Tian et al., 

2017). Nonetheless, few studies in humans have analysed the effect of folic acid supplementation on 

DNA methylation for the prevention and treatment of diseases. 
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2.1.2 Choline and Betaine 

Choline and betaine are metabolically-related quaternary ammonium compounds (Figure 6). Choline 

is a water soluble molecule that is considered an essential nutrient since 1998 by the “Food and 

Nutrition Board” of the American Institute of Medicine (Subcommittee on Upper Reference Levels of 

Nutrients., 1998). Choline can be acquired from the diet and via de novo biosynthesis which occurs in 

liver. However, de novo synthesis is not enough for the human requirements. Choline is present in 

higher concentrations in chicken, milk, salmon, eggs, wheat germ, and quinoa (Unites States 

Department of Agriculture Database). However, numerous studies in different populations have found 

that choline consumption is usually below the adequate intake (Shaw et al., 2004; Bidulescu et al., 

2009). Choline is the major dietary source of methyl groups for DNA methylation via SAM (Stead et 

al., 2006). In addition, choline is involved in the production of phosphatidylcholine, 

Sample type Target gene Outcome 
Methylation 

alteration 
Reference 

Blood (human) IGF-2 Growth alteration hypomethylation 
(Heijmans et al., 

2008) 

Blood (human) 

INSIGF, IL10, 

LEP, ABCA1, 

GNASAS 

Metabolic disorders hypomethylation (Tobi et al., 2009) 

Blood (mouse) genome-wide Atherogenesis hypomethylation (McNeil, 2011) 

WBC (human) 
TFAP2A, STX11, 

CYS1, OTX 

Potential tumorigenic 

effects in offspring 
hypomethylation 

(Gonseth et al., 

2015) 

serum (human) telomeres 
Shorter telomeres in 

newborn 
hypomethylation 

(Entringer et al., 

2015) 

WIL2-NS cells 

(human) 
telomeres 

Increase chromosome 

fusions and terminal 

deletion 

hypomethylation (Bull et al., 2014) 

Sputum (human) 

p16, MGMT, 

DAPK, RASSF1A, 

GATA4, GATA5, 

PAX5a, PAX5b 

Higher risk of lung cancer 
abnormal 

hypomethylation 

(Stidley et al., 

2010) 

Tumor tissue 

(human / in vitro) 
genome-wide Gliomagenesis hypomethylation 

(Hervouet et al., 

2009) 

Tumor tissue 

(human) 

APC-1A, P14ARF, 

P16INK4A, 

Hmlh1, O6-

MGMT, RASSF1A 

Sporadic colorectal 

cancer 

abnormal 

hypomethylation 

(Van Den Donk et 

al., 2007) 

Neonatal immune 

cells (human) 
ZFP57 

Higher risk of cancer in 

the offspring 
hypomethylation 

(Amarasekera et 

al., 2014) 

Liver (mouse) 
ApoE, Foxa1, 

Foxa2 

Higher severity of 

NAFLD 
hypermethylation 

(Tryndyak et al., 

2011) 

Table 2. Studies analyzing the association between DNA methylation and folate deficiency. 

Notes: WBC, white blood cells; WIL2-NS, non secreting B lymphocyte variant of WIL-2 cell line; NAFLD: non-

alcoholic fatty liver disease. 
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lysophosphatidylcholine, choline plasmalogen, and sphigomyelin, which are essential components of 

the cell membranes (Zeisel et al., 1991). 

Betaine is specially obtained from wheat bran, wheat germ and spinach but is also synthesized by 

oxidation of choline (Figure 5) (Sakamoto et al., 2002). This is a two-step enzymic reaction in which 

choline is transformed by choline oxidase into betaine aldehyde, and then betaine aldehyde is 

converted into betaine by means of betaine aldehyde dehydrogenase (Lin & Wu, 1986).  The synthesis 

of betaine links choline to folate-mediated one-carbon metabolism given that betaine donates one 

methyl group to hcy for the formation of methionine. Several studies have shown that the diminished 

folate availability increases the demand of choline/betaine as a methyl group donor, and on the 

contrary, decreased choline availability increases folate demand, demonstrating the interchangeable 

sources of methyl donors for the methionine formation (Holm et al., 2007; Fox & Stover, 2008; Ganz 

et al., 2016). 

Figure 6. Choline and betaine chemical structures. 

Choline and betaine deficiency is involved in the increase of plasma hcy, fatty liver, liver and muscle 

damage, neural tube defects in offspring, anxiety, CVD, and cancer (reviewed in (Ueland, 2011)). On 

the contrary, choline/betaine supplementation has been related with amelioration of the adverse effects 

of alcohol consumption on liver, may prevent liver steatosis, normalizes very-low density lipoprotein 

(VLDL) secretion, has dose-dependent antiatherogenic effect, improves memory and learning tasks in 

Alzheimer’s disease patients, reduces inflammatory markers in plasma, and might protect against 
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progression of certain cancers and obesity (reviewed in (Ueland, 2011)) (Gao et al., 2016; Kritis et al., 

2016). 

The role of betaine and choline in all these functions appears to be beyond their effect on gene 

methylation. Several studies have looked into the effect of the deficiency and supplementation of 

choline/betaine on health (Table 3). 

Studies have demonstrated that the maternal choline and betaine status specially affects DNA 

methylation pattern in the fetus (Pauwels et al., 2017a). Studies in animals and humans have shown 

that choline and betaine deficient diets alter the methylation status of Igf2, corticotropin-releasing 

hormone (Crh), glucocorticoid receptor (Nr3c1), cyclin-dependent kinase inhibitor 3 (Cdkn3), 

vascular endothelial growth factor C (Vefgc), angiopoietin 2 (Angpt2), ephrin type-B receptor 2 

(EphB2), and von Willebrand factor (VWF) resulting in growth abnormalities, blood vessel 

malformation and enhanced predisposition to develop steatohepatitis in offspring (Kovacheva et al., 

2007; Medici et al., 2014; Pauwels et al., 2017a; Wankhade et al., 2017; Zeisel, 2017). In addition, 

adult deficiency is related to risk of cancer (Tsujiuchi et al., 1999; Tryndyak et al., 2011). However, 

choline and betaine supplementations are related to the correct regulation of lipid, glucose and 

cholesterol metabolism (Chen et al., 2015; Idriss et al., 2016; Jiang et al., 2016; Zeisel, 2017), 

reducing lipogenesis (Xing et al., 2011) and regulating offspring body weight (Medici et al., 2014). In 

humans, maternal choline/betaine supplementation has been associated with offspring genome-wide 

hypermethylation, IGF2 DNA methylation and prenatal growth (Pauwels et al., 2017b). Meanwhile, 

paternal methyl-group donor intake on offspring global and IGF2 DMR DNA methylation, and 

prenatal growth (Pauwels et al., 2017b). 

2.1.3 Vitamin B12 

Vitamin B12 (also called cobalamin) is a water-soluble vitamin that contains cobalt element positioned 

in the centre of a corrin ring (Figure 7). Humans are not capable to synthesize B12, only some bacteria 

and archaea have the needed enzymes for its production. We naturally obtain B12 from animal products 

consumption, such as liver, meat, eggs, milk and shellfish (data from National Institutes of Health). 

Some gut bacteria are able to produce B12 but humans cannot absorb it since the location of the 

production (colon) is too far from the location of absorption (small intestine) (Gille & Schmid, 2015). 
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Vegetarians and vegans, who restrict or eliminate consumption of animal-source foods, need to 

consume B12 supplements for avoiding the development of B12 deficiency (Pawlak et al., 2013). 

The results of B12 deficiency are a pernicious anemia with megaloblastic anemia and neuropathy. The 

neuropathy symptoms include degeneration of the spinal cord, decrease of proprioceptive sensation, 

spastic in the lower limbs, and sometimes, depression and loss of memory (Truswell, 2007). 

Vitamin B12 is involved in DNA methylation as it acts as a co-factor of the enzyme methionine 

synthase, for the transformation of hcy into methionine (Toohey, 2006). In this sense, B12 is involved 

in several health questions derived from this function (Table 4).  

Numerous studies have demonstrated that B12 is associated with obesity. For example, B12 

supplementation was associated with mouse body weight and liver DNA methylation (Sabet et al., 

2016), in agreement with other human study in which hypoxia-inducible factor 3 alpha (HIF3A) gene 

hypermethylation modified body mass index (BMI) (Huang et al., 2015).  In addition, B12 deficiency 

has also been associated with metabolism, affecting intestinal absorption and function through 

hypermethylation of peptide transporter 1 (Pept1) in pigs (Liu et al., 2017), modifying hepatic 

triglycerides (TGs) and cholesterol levels via global DNA methyaltion in mice (Sabet et al., 2016), and 

also by altering lipid profile after hypomethylation of sterol regulatory element-binding transcription 

factor 1 (SREBF1) and low density lipoprotein receptor (LDLR) genes in human adipocytes 

(Adaikalakoteswari et al., 2015). Moreover, B12-related DNA methylation has been associated with 

cancer (Ba et al., 2011; Piyathilake et al., 2014), cognitive and behavioural functions (Caramaschi et 

Figure 7. Vitamin B12  chemical structure.
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al., 2017; McKee et al., 2017), telomere length (Pusceddu et al., 2016), oxidative stress and 

inflammation (Zhong et al., 2017), and offspring outcomes (McKay et al., 2012; Khot et al., 2017). 

Sample type Target gene Outcome 
Methylation 

alteration 
Reference 

Choline and betaine deficiency 

Placenta 

(human) 
CRH, NR3C1 

Higher cord blood, 

leukocyte promoter 

methylation, higer cord 

plasma cortisol 

Hypomethylation (Jiang et al., 2012) 

Fetal brain 

(mouse) 
Cdkn3 Cell cycling inhibition Hypomethylation (Niculescu, 2006) 

Fetal brain 

(mouse) 
Vefgc, Angpt2 

Reduction of blood vessel 

formation 
Hypomethylation 

(Mehedint et al., 

2010) 

Liver (mouse) Igf2 Epigenome modification Hypermethylation 
(Kovacheva et al., 

2007) 

Liver (mouse) c-myc Risk for hepatocarcinoma Hypomethylation 
(Tsujiuchi et al., 

1999) 

Liver (mouse) 

p53, p16
INK4α

, 

PtprO, Cdh1, 

Cx26 

Decrease of tumor-

suppresors expression 
Hypermethylation 

(Tryndyak et al., 

2011) 

Liver (mouse) EphB2, VWF 

Enhance of offspring 

predisposition to 

steatohepatitis 

Hypermethylation 
(Wankhade et al., 

2017) 

Choline and betaine supplementation 

HepG2 human 

cell line 
ACOX1 

Modification of the 

transcription of fatty acid 

and glucose metabolism 

Hypermethylation (Jiang et al., 2016) 

Liver (rat) 
Srebf2, 

Agpat3, Esr1 

Protective effect on liver 

fat accumulation 
Hypomethylation 

(Cordero et al., 

2013a) 

Liver (rat) FASN NAFLD improvement Hypermethylation 
(Corderoet al., 

2013b) 

Liver (tx mouse) genome-wide 
Rescue the lower body 

weight 
Hypermethylation (Medici et al., 2014) 

Fat mass 

(chicken) 
LPL Decreases of lipogenesis Hypomethylation (Xing et al., 2011) 

Fat (mouse) FTO 
Diminishes of hepatic fat 

accumulation 
Hypomethylation (Chen et al., 2015) 

Neurons (rat) POMC 
Prevents the adverse 

effects of etanol in neuron 
Hypermethylation 

(Bekdash et al., 

2013) 

Hhypothalamus 

(cockerel) 

HMGCR, 

ABCA1, 

ACAT1 

Regulate cholesterol 

metabolism in brain 
Hypomethylation (Idriss et al., 2016) 

Blood (human) Genome-wide 
Regulation of birth weight 

in offspring 
Hypermethylation 

(Pauwels et al., 

2017b) 

Buccal cells 

(human) 
RXRA Metabolism regulation Hypermethylation 

(Pauwels et al., 

2017c) 

Table 3. Studies analyzing the association between DNA methylation and choline/betaine 

deficiency and supplementation.  

Abbreviations: NAFLD, non alcoholic fatty liver disease. 
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2.1.4 Vitamin B6 and B2 

Vitamin B6 consists of a 2-methyl-3-hydroxypyridine and exists in different isoforms. Pyridoxal 5’-

phosphate (PLP) is the metabolically active form of vitamin B6 (Figure 8) and is involved in 

macronutrient metabolism, one-carbon metabolism, hemoglobin synthesis, regulation of immune 

system, and also has anti-oxidative and anti-inflammation properties, and effects on carcinogenesis 

(Wit, 2011). Vitamin B6 is present in vegetables, whole grain cereals, nuts, and muscle meats (Wit, 

2011). 

Vitamin B2 or riboflavin is an essential heat-stable and water-soluble nutrient belonging to the vitamin 

B family. Vitamin B2 is involved in fat, carbohydrate and protein metabolism, cell respiration, and 

erythrocyte integrity. Vitamin B2 is found in small amounts in many foods, including organ meats, 

milk, eggs, whole grains and leafy vegetables (Powers, 2003).  

 Figure 8. Vitamin B6 and its metabolically active isoform (pyridoxal 5’-phosphate), 

 and vitamin B2.   

Regarding the role of these vitamins in one-carbon metabolisms, only a few human studies have 

demonstrated modulating effects on DNA methylation. For example, maternal PLP was positively 

associated with MEG3 DMR methylation in a cohort of 496 mother-infant pairs (McCullough et al., 

2016). In addition, a prospective cohort study of 254 mother-infant pairs demonstrated that maternal 

vitamin B2 intake was positively associated with DMR methylation of the gene encoding the zinc 

finger protein pleomorphic adenoma gene 1 (PLAG1) (Azzi et al., 2014).  
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2.2. Fatty acids 

A fatty acid (FA) is a carboxylic acid with an aliphatic chain, which can be saturated (no double bond) 

or unsaturated (minimum one double bond). Natural FAs commonly have a chain from 4 to 28 carbons 

(IUPAC, 2012). FAs are present in a variety of foods and oils from animal and vegetal sources. Some 

examples of FAs, their length and sources are shown in Table 5. 

There are some FAs that cannot be synthesized de novo in sufficient quantities for normal 

physiological function. Linoleic acid (LA) and linolenic acid (ALA) are essential for humans and are 

able to convert to subsequent polyunsaturated FAs (PUFAs). However, there are other PUFAs whose 

requirements are sometimes increased and are known as conditionally essential FAs (Cunnane, 2003). 

Sample type Target gene Phenotypic effect 
Methylation 

alteration 
Reference 

Vitamin B12 plasma levels 

Liver (mouse) Genome-wide 

Body weight regulation, 

modification of hepatic 

triglycerides and 

cholesterol levels 

Hyper and 

hypomethylation 
(Sabet et al., 2016) 

Cord blood (human) Genome-wide Gestational length 
Hyper and 

hypomethylation 
(McKay et al., 2012) 

Cord blood (human) APOL2 Childhood intelligence Hypermethylation (Caramaschi et al., 2017) 

Vitamin B12 deficiency 

Cord blood (human) IGF2 
Weight gain during 

pregnancy 
Hypermethylation (Ba et al., 2011) 

Placenta (human) MTHFR, MTR Preterm birth Hypermethylation (Khot et al., 2017) 

Human adipocyte 

cells (in vitro) 
SREBF1, LDLR Lipid profile alteration Hypomethylation 

(Adaikalakoteswari et al., 

2015) 

Vitamin B12 supplementation 

Prefrontal cortex 

(mouse) 
Genome-wide 

Improve cognitive and 

motivational behaviour 
Hypermethylation (McKee et al., 2017) 

Blood (human) Genome-wide 

Attenuated acute exposure 

to fine particles-related 

inflammation and oxidative 

stress 

Hyper and 

hypomethylation 
(Zhong et al., 2017) 

Blood (human) LINE-1 Increase in telomere length Hypomethylation (Pusceddu et al., 2016) 

Blood (human) HIF3A Greater increase in BMI Hypermethylation (Huang et al., 2015) 

Cervical cells 

(human) 
E6 enhancer 

Lower risk of cervical 

intraepithelial neoplasia 
Hypomethylation (Piyathilake et al., 2014) 

Abbreviations: BMI, body mass index. 

Table 4. Studies analyzing the association between DNA methylation and B12 levels, deficiency 

and supplementation.  
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 For example, newborn infants or breast-fed children need  higher levels of docosahexanoic acid 

(DHA) or arachidonic acid (AA) for normal development (Birch et al., 1998; Carlson & Neuringer, 

1999; Cunnane et al., 2000). 

 

Saturated FAs (SFAs), especially shorter-chain SFAs, such as lauric, myristic and palmitic acids (PA), 

have been associated with damages in intestinal permeability, inflammatory processes, carcinogenesis 

and cardiovascular damage (Fattore & Fanelli, 2013; Wang & Hu, 2017). However, many 

monounsaturated FAs (MUFAs) and PUFAs may have beneficial effects on obesity-related 

comorbidities, dyslipemias, inflammation, non-alcoholic fatty liver disease (NAFLD), and IR (Ma et 

al., 2016; Silva Figueiredo et al., 2017). In addition, industrially produced trans FAs (TFAs) 

(unsaturated fatty acids with the double bond in the trans configuration) promote inflammation and 

increase the risk of CVD (Wang & Hu, 2017). Numerous studies have evidenced a role of SFAs and 

unsaturated FAs on DNA methylation, maybe by affecting the enzymes involved in the processes or 

by modifying the availability of the substrates necessary for the processes (Milagro et al., 2013). 

Name Length 
Nº of double 

bonds 

Position of the 

double bond 
Food source 

Monounsaturated 

Myristoleic acid 14 1 ω-5 Butter, beef, cheese, cream 

Palmitoleic acid 16 1 ω-7 Chicken, beef, turkey, buffer 

Oleic acid 18 1 ω-9 Olive oil, rape oil, hazelnut, corn margarine 

Polyunsaturated 

Linoleic acid 18 2 ω-6 
Grape seed oil, walnut oil, sunflower oil, soy 

oil 

α-Linolenic acid 18 3 ω-3 
Flaxseed oil, rape oil, soy oil, corn 

margarine 

Arachidonic 

acid 
20 4 ω-6 Pork, pork brain, veal brain, lamb brain 

EPA 20 5 ω-3 Salmon, mussel, trout, herring 

DHA 22 6 ω-3 Herring, trout, salmon, albacore 

Saturated 

Lauric acid 12 0 - 
Coconut oil, commercial biscuits, butter, 

cheese 

Myristic acid 14 0 - Coconut oil, butter, biscuit, cheese 

Palmitic acid 16 0 - Oil palm, meats, cotton oil, butter 

Stearic acid 18 0 - Chocolate, butter, sesame oil, palm oil 

Arachidic acid 20 0 - Nuts, peanut butter, vegetable oil, corn oil 

Table 5. Examples of fatty acids, characteristics, lenght and sources. 

Notes: Length, number of carbon atoms; ω, omega symbol denotes the carbon atom furthest from the carboxyl 

group of a fatty acid; Food source, food with higher fatty acid (grams) content per 100 g. 
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Recent studies on the effect of FAs on DNA methylation are summarized in Table 6. Some FAs, 

generally SFAs and TFAs, through DNA methylation, are involved in the outcome of several diseases. 

For example, PA supplementation in animals models induced global hypermethylation in pancreatic 

tissue, impaired insulin secretion and higher risk of T2D (Hall et al., 2014). In addition, 

supplementation with AA increased global DNA methylation resulting in a methylation profile similar 

to the initial phase of atherosclerosis (Silva-Martínez et al., 2016) and decreased the methylation of 

angiogenesis and carcinogenesis-related genes, promoting carcinogenesis (Kiec-Wilk et al., 2011). 

SFAs supplemented-diet induces tumor necrosis factor (TNF) hypomethylation and overexpression in 

mice, resulting in adipose tissue inflammatory response and adipogenic profile, in agreement with a 

similar study in which elaidic acid (trans modification) supplementation resulted in a pro-

inflammatory and adipogenic transcriptional profile in human monocytes and mouse fat tissue (Flores-

Sierra et al., 2016). 

Different studies have demonstrated that the supplementation with omega 3 (n-3) PUFAs may 

improve the symptoms caused by several diseases, such as cancer, obesity, T2D, inflammation, and 

neurodegenerative disease. The supplementation with these FAs in overweight and obese patients 

resulted in changes in the global methylation profile of obesity-related genes, and also decreased 

plasma TGs, total cholesterol (TC) and the ratio TC/high-density lipoprotein cholesterol (HDL-C). 

Similarly, an inverse association has been detected between BMI and global DNA methylation after 

the supplementation (de la Rocha et al., 2016; Tremblay et al., 2017). Moreover, studies in animals 

and humans have observed that n-3 PUFAs change the methylation pattern in brain and blood and 

improve long-term memory and learning, decrease cognition deterioration in AD, and increase 

neurogenesis (Fan et al., 2016; Chakraborty et al., 2017; Karimi et al., 2017). 

Some studies have mentioned possible mechanism attributed to maternal FAs blood levels and the 

effect on the DNA methylation profile of the offspring. n-3 PUFA supplementation during pregnancy 

might modify the availability of the key metabolites of one carbon cycle in the fetus, which may have 

a direct effect on the fetus methylation profile (Kulkarni et al., 2011). The n-3 PUFAs imprint long-

term changes that may persist until 5 years of age of the offspring (Fan et al., 2016; Dijk et al., 2016). 



Introduction 

30 

To identify the causal mechanism of association between FAs, DNA methylation and outcome 

phenotype, gene expression has been evaluated. The supplementation with eicosapentaenoic acid 

(EPA) was accompanied by demethylation and consequently higher expression of the tumour 

suppressor gene CCAAT/enhancer-binding protein delta (C/EBPδ) in human promonocytes U937, 

showing the importance of FAs in cancer, and in agreement with studies in human umbilical vein 

endothelial cells (HUVECs) that found demethylation and higher expression of the carcinogenic genes 

kinase insert domain receptor (KDR) and neurogenic locus notch homolog 4 (Notch4) following the 

supplementation with AA (Ceccarelli et al., 2011; Kiec-Wilk et al., 2011). The gene Bdnf was found 

hypomethylated and its expression increased in mouse pups after maternal n-3 PUFAs 

supplementation during pregnancy. BDNF gene is important for the long-term potentiation, 

maintaining neuronal populations and connections, concluding that n-3 FAs during pregnancy are 

important for the correct brain development in the offspring (Fan et al., 2016). Additional studies have 

found associations between FAs and inflammation-related genes in several diseases. For instance, n-3 

FAs were inversely associated with IL6 methylation in human blood, reducing pro-inflammatory gene 

expression. In animals, SFAs reduce Tnfa and increase peroxisome proliferator-activated receptor 

gamma (Pparγ1) methylation, increasing and decreasing the expression of these genes and leading to 

an inflammatory environment in adipose tissue. These findings provide the possible mechanistic basis 

for how obesity increases inflammation and leads to the development of obesity-associated metabolic 

diseases, including IR (García-Escobar et al., 2017; Wang & Hu, 2017). Moreover, rats fed a mostly 

saturated fat diet showed lowest methylation and highest expression on Vegfb gene. In contrast, 

PUFAs supplementation was associated with higher methylation and lower expression of this gene. 

Vegfb is involved in angiogenesis and these results provide the evidence of the role of FAs via DNA 

methylation in the formation of new blood vessels in adipose tissue, which is very important for 

preadipocyte differentiation and adipose tissue expansion (Monastero et al., 2017). In mice, HFD diet 

supplementation with EPA and DHA decreased global DNA methylation in the adipose tissue and 

increased Pparγ2 promoter methylation in adipose tissue and muscle, attenuating the obesogenic 

effects of the HFD (Amaral et al., 2015). 
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2.3 Other dietary bioactive compounds 

There are evidences that other dietary bioactive compounds are also involved in changes in the 

epigenetic profile. For example, during the last decade much attention has been paid to the potential 

epigenetic regulatory role of polyphenols. These phenolic compounds are widely distributed in fruits, 

vegetables, red wine, and plants, and are converted to secondary metabolites by microbial metabolism 

in gut (Bhat, 2017). Emerging evidence suggests that dietary polyphenols from soy, green tea, coffee 

or apples modify the epigenetic state, leading to gene activation or repression (Ayissi et al., 2014). 

Many polyphenols such as curcumin, resveratrol, and catechins have been reported to prevent the 

development of cancer, neurodegenerative diseases and metabolic disorders via epigenetic 

modifications (Ayissi et al., 2014). The beneficial effects of dietary polyphenols can be linked to their 

ability to inhibit DNMT activity by increasing SAH levels or inhibiting the catalytic site of DNMT 

(Lim, 2012). Understanding the role and mechanism of action of polyphenols in epigenetic regulation 

may allow the identification of new therapeutic options against obesity-related diseases (Ayissi et al., 

2014). 

2.4 Future perspectives 

While these epigenetic studies demonstrated the effects of nutrients on genome-wide and gene-specific 

DNA methylation status, it is still needed to clarify how each specific nutrient targets specific genes to 

be methylated and demethylated. In addition, although the role of FAs has been more extensively 

evaluated, until now, few studies have investigated the folate and choline direct effects on gene-

specific DNA methylation in humans. It is also necessary to investigate how DNA methylation affects 

the pathophysiology of specific diseases, and the real effect on health and disease outcomes. Finally, 

these studies could also help guide the use of DNA methylation regulation as a new therapeutic target 

for the prevention and treatment of obesity and other metabolic diseases. 
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Name 
Sample type Target gene Main results Reference 

SFA and PUFA 

Adipose tissue 

(human) 

Metabolism-related genes such as 

NFAM1, ACO1, SLC37A2, MC2R 

Distinct DNA methylation profile between SFA and PUFA 

The baseline DNA methylation can predict weight increase in response to diet (Perfilyev et al., 

2017) 

SFA and PUFA Adipose tissue (rat) Vegfb SFA associated with hypomethylaton of Vegfb and with angiogenic effects PUFA associated with hypermethylation of Vegfb 
(Monastero et al., 

2017) 

SFA 
Mouse 3T3-L1 cells 

(in vitro) 
Tnfα 

Hypomethylation. 

Increase the adipose tissue inflammatory response. 

(García-Escobar et 

al., 2017) 

SFA 
Mouse MD1KO cells 

(in vitro) 
Dnmt1 and Pparγ1 

Hypomethylation of Dnmt1 and hypermethylation of Ppar γ1 

Macrophage phenotypic switch to a more proinflammatory M1 phenotype 

Development of insulin resistance 

(Wang et al., 

2016) 

OA 
Human THP-1 cells 

(in vitro) 
Genome-wide and specific genes 

Global hypomethylation 

Participates in shaping 

metabolic disease-specific DNA methylomes through b-oxidation, PPAR-a, and sirtuin 1 signaling, has potential implications for 

diet-oriented therapy and prevention 

(Silva-Martínez et 

al., 2016) 

EA (Trans) 

Human THP-1 cells 

(in vitro) and 

epididymal fat 

(mouse) 

Genome-wide 
Causes global DNA hypermetilation 

Induces a pro-inflammatory and adipogenic transcriptional profile 

(Flores-Sierra et 

al., 2016) 

ω-3 fatty acids Blood (human) Genome-wide 
Changes of DNA methylation profile of genes involved in obesity-related pathways 

ω-3 fatty acids supplementation decrease plasma TG, TC and the ratio TC/HDL-c in overweight and obese adults 

(Tremblay et al., 

2015) 

ω-3 fatty acids 
Left hemibrain 

(mouse) 
Genome-wide Hypermethylation of genes related to long-term potentiation, memory, cognition and learning 

(Chakraborty et 

al., 2017) 

ω-3 fatty acids Brain (mouse) Bdnf 
Hypomethylation and upregulation of Bdnf gene 

Increases neurogenesis. 
(Fan et al., 2016) 

ω-3 fatty acids Blood (human) IL-6 
Hypomethylation and downregulation of IL-6 

Ameliorate systematic inflammation. 
(Ma et al., 2016) 

ω-3 + ω-6 fatty acids 
Left hemibrain 

(mouse) 
Genome-wide Hypermethylation of genes related to the formation of neuronal precursors 

(Kulkarni et al., 

2011) 

AA 
Human THP-1 cells 

(in vitro) 
Genome-wide and specific genes Hypermethylation profile similar to atherosclerosis DNA methylation profile in the initial phases 

(Silva-Martínez et 

al., 2016) 

AA 
Human HUVECs 

cells (in vitro) 
KDR, Notch4 

Hypomethylation of these genes 

Control angiogenesis and carcinogenesis 

(Kiec-Wilk et al., 

2011) 

EPA and AA Blood (human) Genome-wide 
Global hypermethylation. 

Inverse association between BMI and global DNA methylation 

(de la Rocha et al., 

2016) 

EPA 
Human U937 cells 

(in vitro) 
C/EBPδ Hypomethylation and upregulation of the tumor suppressor C/EBPδ 

(Ceccarelli et al., 

2011) 

DHA Blood (human) Genome-wide 
DNA methylation profile alteration during pregnancy that persist until 5 years of age, supporting the role of epigenetics in 

developmental programming 

(van Dijk et al., 

2016) 

DHA Placenta (rat) Genome-wide 
Changes in maternal fatty acids levels could alter one carbon metabolism in the fetus 

Reverse the DNA methylation alteration by a folic acid and vitamin B12 deficiency 

(Kulkarni et al., 

2011) 

EPA and DHA 
Liver and muscle 

(mouse) 
Pparγ2 and global methylation 

Decrease global DNA methylation and increase Pparγ2 promoter methylation. 

Attenuate body weight gain after a HFD 

(Amaral et al., 

2015) 

EPA, DPA and DHA Blood (human) Genome-wide Global hypomethylation that reduces cognitive deterioration in AD 
(Karimi et al., 

2017) 

PA 
Pancreatic islets 

(human) 
Genome-wide Impaires insulin secretion and contributes to the development of T2D (Hall et al., 2014) 

Abbreviations: SFA, saturated fatty acid; PUFA, polyunsaturated fatty acid; OA, oleic acid; EA, elaidic acid; ω, position of double bond; TG, triglyceride; TC, total 

cholesterol; HDL-c, high density lipoprotein-cholesterol; AA, arachidonic acid; EPA, eicosapentaenoic acid; BMI, body mass index; DHA, docosahexanoic acid; HFD, high 

fat diet; DPA, docosapentaenoic acid; AD, Alzheimer’s disease; PA, palmitic acid; T2D, type 2 diabetes. 

Table 6. Studies analyzing the association between DNA methylation and fatty acids. 
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3. DNA METHYLATION MARKERS IN OBESITY AND RELATED

COMORBIDITIES

Biomarkers can help to predict the outcome and may be a useful tool for the development of new 

therapeutic targets in the fight against diseases (Neidhart, 2016). In this context, and as it has been 

evidenced during this introduction, important links between DNA methylation deregulation and 

several metabolic-related diseases have been reported. In the era of “personalized medicine”, DNA 

methylation markers have emerged as a useful tool for the risk prediction, screening, diagnosis and 

prognosis of obesity and metabolic diseases. Deepening into the knowledge about the molecular 

mechanisms involved in disease development is essential for finding biomarkers involved in them and 

more personalized therapeutic strategies. 

The next paragraphs provide a concise review of the role of DNA methylation in obesity, metabolic 

syndrome and weight regulation. 

3.1 Obesity, related comorbidities and DNA methylation 

Obesity has been defined as an abnormal or excessive fat accumulation that contributes to increase 

morbidity and mortality (WHO, 2017). Obesity is attributed to a chronic positive energy imbalance 

between calories intake and calories expenditure (Chatzigeorgiou et al., 2014), although, several 

factors could affect the energy equation, such as lifestyle behaviours (dietary habits, exercise, sleep 

behaviour) (Forouzanfar et al., 2015; Biddle et al., 2017; St-Onge, 2017), social factors (educational 

level, economic status) (Kim et al., 2017), endocrine disorders (hypothyroidism) (Weaver, 2007) or 

prescription of certain medication (corticosteroids) (Martínez de Morentin et al., 2013). However, not 

all individuals under the same environmental factors develop obesity, so it has been suggested a role 

of genetics (Singh et al., 2017), epigenetics (Campion et al., 2009) and gut microbiota (Khan et al, 

2016). 

Obesity may represent a risk that contributes to the development of many comorbidities such as T2D, 

CVD, dyslipidemia, hypertension, liver steatosis, respiratory problems and certain types of cancer 

(reviewed in (Guh et al., 2009)). 
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Obesity is considered the pandemic of XXI century. The prevalence of obesity closely tripled between 

1975 and 2016. In 2016, more than 1.9 billion adults were overweight and 650 million were obese 

(WHO, 2017). Also among children and adolescents the obesity prevalence has hugely increased in 

the last decades. A recent meta-analysis of 2416 population-based studies in 128.9 million children 

and adolescents described an increase of prevalence of worldwide obesity from 0.7 % in 1975 to 5.6 % 

in 2016 in girls, and from 0.9 % in 1975 to 7.8 % in 2016 in boys, postulating that in 2022 child and 

adolescent obesity would surpass moderate and severe underweight (Abdeen et al., 2017). 

Despite extensive efforts, obesity prevalence continues increasing in every country. At the same time, 

new evidence of novel biomarkers has risen to understanding the pathophysiology of obesity and 

associated health problems. In this sense, a number of studies have discovered associations between 

genome-wide or gene-specific DNA methylation levels and individual’s response to the development 

of obesity and other related disorders  (Campion et al., 2009; Wang et al., 2010; Milagro et al., 2011, 

2013; Remely et al., 2015; van Dijk et al., 2015; Wahl et al., 2016; Abdul et al., 2017; Castellano-

Castillo et al., 2017; Nilsson & Ling, 2017). These studies allow understanding, at least in part, the 

variability in obesity-related phenotypes and the interactions between genetics and environmental 

factors, and might be the base for the development of novel biomarkers and therapies. 

3.1.1 DNA methylation markers in obesity 

Cross-sectional studies 

Numerous cross-sectional studies reported a significant association between obesity or adiposity 

status, and DNA methylation (Table 7). 

In the analysis performed in 2861 children who participated in the Avon Longitudinal Study of Parents 

and Children (ALSPAC) cohort study, 28 CpG sites were differentially methylated in cord blood from 

offspring of obese mothers in comparison with offspring of normal weight mothers (Sharp et al., 

2015). Other case-control study in 12 children also described 19 differentially methylated regions 

(involving 18 genes) in obese individuals’ blood cells. These regions were mainly hypomethylated in 

obese and located in the gene body region and revealed a unique cluster of obese individuals that was 

differentiated from the normoweight children (Rhee et al., 2017). Similarly, a recent study involving 

374 children found 212 differentially methylated CpGs in blood cells associated with adiposity and 
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230 associated with fat mass, but finally only 13 genes were significantly associated after Bonferroni 

correction. These genes are involved in lipid and glucose metabolism, differential body size and body 

composition in children (Rzehak et al., 2017). However, any of the genes matched with the genes 

found in the case-control study of 12 children. 

The majority of cross-sectional studies have investigated DNA methylation in blood cells from adult 

population. An interesting study in 547 subsaharians described 15 differentially methylated positions 

associated with BMI and 7 with obesity (Meeks et al., 2017). Similar to other cross-sectional study 

involving 991 individuals, that found 8 differentially methylated positions associated with BMI and 

waist circumference (WC), although finally, only carnitine palmitoyltransferase 1A (CPT1A), cluster 

of differentiation (CD38) and phosphoglycerate dehydrogenase (PHGDH) genes were validated in 

blood samples taken from two additional independent studies (Aslibekyan et al., 2015). Interestingly, 

CPT1A gene also was found in the EWAS analysis of Arab population and monozygotic and dizygotic 

twins’ cohort blood samples, where CPT1A gene was associated with T2D and obesity. CPT1A is 

implicated in several metabolic processes, including fasting TG and VLDL levels (Irvin et al., 2014). 

These studies suggest an important role of this gene in obesity. 

Several studies also associated gene-specific and global methylation with obesity and obesity-related 

parameters. In this sense, melanin concentrating hormone receptor 1 (MCHR1) gene, involved in the 

control of energy metabolism, was associated with BMI in humans and rodents (Stepanow et al., 

2011). POMC gene, which is involved in the regulation of appetite, showed hypermethylation in obese 

subjects (Kuehnen et al., 2012). Global DNA (LINE-1) hypermethylation and adiposity genes 

association was described in 40 healthy subjects. Global DNA hypermethylation was associated with 

higher circulating levels of glucose, insulin and homeostatic model assessment (HOMA)-IR, and 

lower adiponectin concentration. These results suggested global methylation as an early epigenetic 

marker of metabolic outcomes and obesity (Carraro et al., 2016). 

Not only blood cell methylation profile has been associated with obesity, but also methylation of other 

tissues and body fluids. An epigenome-wide association study (EWAS) identified predominantly DNA 

hypermethylation in white adipose tissue (WAT) from obese subjects related with gene expression of 

pro-inflammatory pathways. This suggests that DNA methylation mechanisms may link dysfunctional 
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adipocytes to WAT inflammation and IR in obesity (Petrus et al., 2017). Hypermethylation of beta-3 

adrenergic receptor (ADRB3) gene was also observed in WAT of obese subjects, and increased the 

susceptibility to visceral obesity and altered body fat distribution (Guay et al., 2014). This gene 

methylation was previously described in blood cells (Guay et al., 2014), suggesting that the 

methylation changes of ADRB3 gene in blood reflect obesity-related DNA methylation changes of this 

gene in WAT. In addition, a case-control study demonstrated an association between hypomethylation 

of LEP gene in obese individuals, measured in saliva, and obesity-related parameters (Dunstan et al., 

2017). Likewise, an EWAS performed in 92 children’s saliva samples described 17 CpGs associated 

with maternal BMI (Oelsner et al., 2017). The saliva sample analysis in 50 girls with and without 

obesity found two interesting genes neuron navigator 3 (NAV3) and melanocortin 2 receptor (MC2R) 

whose methylation levels were associated with BMI (Rounge et al., 2016). These studies revealed that 

saliva is a probable viable medium for epigenetic testing in obesity. However, further testing would 

have to include both saliva and blood samples for demonstrating that saliva is consistent to whole 

blood findings. With this purpose, a recent study provided a novel application of non-invasive buccal 

samples for the identification of DNA methylation markers in relation to overweight management and 

insulin sensibility (San-Cristobal et al., 2016). 

All these studies evidenced that DNA methylation is linked to obesity and obesity-related measures. 

However, the causal direction of phenotypic outcomes and DNA methylation profile remains unclear 

and longitudinal analyses in other populations is required. 
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Study population 
Sample 

type 
Target gene Major finding Reference 

n = 2861 children 
Cord 

blood 
Genome-wide 

28 CpG differentially methylated between offspring of 

obese and normal weigh mothers. 

Maternal weight modifies offspring epigenome 

(Sharp et al., 2015) 

n = 6 obese and n = 6 non obese 

children 
PBC 

21orf56, ZNF154, SDK1, KIAA0146, SKIV2L, 

GPR125, SORBS2, C14orf70, 

POLR3E,CTBP2,DLGAP2,CAPS2,GIMAP1,RNF

213,MND1,SRM,TGM6,WDR27 

Different DNA methylation profile between obese/non 

obese children 

Markers for early diagnosis of obesity 

(Rhee et al., 2017) 

n = 374 children PBC 

SNED1(IRE-

BP1), KLHL6, WDR51A(POC1A), CYTH4-

ELFN2, CFLAR, PRDM14, SOS1, ZNF643(ZFP6

9B), ST6GAL1, C3orf70, CILP2, MLLT4 

Association between DNA methylation and BMI, fat 

mass, lipid and glucose metabolism 
(Rzehak et al., 2017) 

n = 24 obese and n = 23 non 

obese 
PBC 

CERCAM, DPYD, IL12A, ZNF35, ZNF362, 

TSC22D2, CBX6, FOXF1, PSMD7, H1FX, 

PRRC2C, MSI1, COL4A1, NBPF3, USP5, 

PLOD2, TLE3, RPS24, DVL3, POLD3 

20 genes differentially methylated between obese and 

non obese adults 

Biomarkers for the understanding of obesity 

(Almén et al., 2012) 

n = 547 adults Blood 15 DMP and CPT1A 
Association between DNA methylation and BMI, 

obesity, and abdominal adiposity 
(Meeks et al., 2017) 

3 cohort: GOLDN (n = 991), 

ARIC (n = 2,106) and FHS (n = 

442) 

CD4+ T- 

cells 
CPT1A, CD38, PHGDH 

Association between DNA methylation and BMI and 

waist circumference 
(Aslibekyan et al., 2015) 

n = 49 from Popgen biobank PBC MCHR1 

DNA methylation associated with BMI 

DNA methylation contributes to the age-related 

specific effects 

(Stepanow et al., 2011) 

Non obese n = 90 and obese n = 

171  children 
PBC POMC 

Hypermethylaton associated with obesity 

Appetite regulation 
(Kuehnen et al., 2012) 

Obese n = 7 and non-obese n = 7 

adults 
PBL UBASH3A, TRIM3 

Hypermethylation of UBASH3A and hypomethylation 

of TRIM3 genes in obese subjects compared with lean 

controls 

(Wang et al., 2010) 

n = 40 healthy subjects PBMC SERPINE1, LINE-1 
Association between  hypermethylation  of LINE-1 and 

SERPINE1, and WC and BMI 
(Carraro et al., 2016) 

Two cohort: RESMENA n = 48 

and OBEPALIP n = 25 
WBC GPR13, ITGB5 Association between DNA methylation and BMI (Mansego et al., 2015) 

Two cohort: Qatari descent from 

15 families n = 30 and TwinsUK 

cohort n = 32 

Blood CPT1A, TXNIP, ABCG1 

Asocciation between hypomethylation of CPT1A and 

TXNIP and obesity 

Association between hypermethylation of ABCG1 and 

BMI 

(Al Muftah et al., 2016) 

Table 7. Cross-sectional studies analyzing the association between DNA methylation and obesity. 
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Study population 
Sample 

type 
Target gene Major finding Reference 

Two cohort: n = 61 men with 

hypercholesterolemia and n = 30 

morbid obese men 

VAT and 

Blood 
ADRB3 

Association between hypermethylation of ADRB3 gene 

and visceral obesity and fat distribution in VAT 

Association between hypermethylation of ADRB3 and 

LDL-c and higher waist-to-hip ratio in blood 

(Guay et al., 2014) 

Obese n = 50 and non obese girls 

n = 50 
Saliva NAV3, MC2R Association between hypermethylation and BMI (Rounge et al., 2016) 

n = 431 adults Saliva LEP Association between DNA methylation and BMI (Dunstan et al., 2017) 

n = 92 children Saliva Genome-wide Association between 17 CpGs methylation and BMI (Oelsner et al., 2017) 

n = 43 adults 

Blood and 

oral 

mucosa 

GAP43, ATP2A3, ADARB2 Association between genes methylation and overweight (San-Cristobal et al., 2016) 

NEST cohort n = 92 Blood PLAGL1, NEG3 
Hypermethylation of PLAGL1 and hypomethylation of 

NEG3 in obese mothers 
(Soubry et al., 2015) 

n = 88 children 
Cord 

blood 
MMP7, KCNK4, TRPM5, NFKB1 

Association between GWG and hypermethylation of 

genes 
(Morales et al, 2014) 

BBC cohort n = 309 
Blood 

leukocytes 
Genome-wide 

Association between maternal BMI and DNA 

methylation of 20 CpGs 
(Liu et al., 2014) 

Four cohorts: Cardiogenic 

Consortium cohort n = 479, 

MARTHA cohort n = 339, 

KORA F4 cohort n = 1789 and 

MuTHER cohort n = 635 

Blood and 

adipose 

tissue 

HIF3A 
Association between DNA hypermethylation of gene 

and BMI 
(Dick et al., 2014) 

n = 84 MZ twin pairs PBC SLC6A4 
Association between DNA hypermethylation of gene 

and BMI, body weight and WC 
(Zhao et al., 2013) 

ARIC cohort n = 2097 WBC Genome-wide 
Association between 8 CpG methylation and BMI 

changes 
(Demerath et al., 2015) 

Table 7. Cross-sectional studies analyzing the association between DNA methylation and obesity (continuation). 

Abbreviations: CpG, cytosine linked by a phosphate to guanine; PBC, peripheral blood cells; BMI, body mass index; DMP, differentially methylated positions; GOLDN, 

Genetics of Lipid Lowering Drugs and Diet Network; ARIC, Atherosclerosis Risk in Communities; FHS, Framingham Heart Study; PBMC, peripheral blood mononuclear 

cells; WC, waist circumference; RESMENA, Metabolic Syndrome Reduction in Navarra; OBEPALIP, Effects of Lipoic Acid and Eicosapentaenoic Acid in Human Obesity; 

WBC, white blood cells; VAT, visceral adipose tissue; LDL-c, low-density lipoprotein cholesterol; NEST, The Newborn Epigenetic Study; GWG, gestational weight gain; 

BBC, Boston Birth Cohort; MARTHA, MARseille THrombosis Association; KORA, Cooperative Health Research in the Region of Augsburg; MuTHER, Multiple Tissue 

Human Expression Resource; MZ, monozygotic. 
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Longitudinal studies 

Few longitudinal studies have tried to establish the causal effect of DNA methylation in the 

development of obesity. In addition, the majority of longitudinal and prospective studies have been 

focused on pediatric population (Table 8). 

A prospective study in 483 children, who were monitored for 5 years, identified 65 DMRs at birth that 

were associated with obesity parameters in childhood (van Dijk et al., 2017). This was in agreement 

with other prospective study that described DNA methylation of several weight-linked loci in 

newborns that continued to show a longitudinal association with adiposity in early children (Lin et al., 

2017). In addition, the site-specific methylation of cyclin dependent kinase inhibitor 1C (CDKN1C) at 

birth in 178 newborns was associated with body size at childhood (Relton et al., 2012). Similarly, 

other longitudinal and prospective studies, identified the effect of methylation of retinoid X receptor 

alpha (RXRA) and tumor associated calcium signal transducer 2 (TACSTD2) genes at birth with later 

adiposity and fat mass (Godfrey et al., 2011; Groom et al., 2012). Global DNA methylation also was 

associated with development of adiposity in boys who participated in a longitudinal study (Perng et 

al., 2013). 

To identify the causal nature of association between DNA methylation and obesity in later life, a 

prospective study was performed in 258 individuals. DNA methylation in ATP binding cassette G1 

(ABCG1) and phosphoethanolamine/phosphocholine phosphatase (PHOSPHO1) genes in blood were 

correlated positively with BMI, glycated haemoglobin (HbA1c), fasting insulin, and TGs levels after a 

mean of 8 years in adult population (Dayeh et al., 2016). 

In summary, the advances in the study of DNA methylation and the establishment of longitudinal 

relevant models in the study of obesity, may now allow to detect novel DNA methylation markers for 

obesity. Mainly, the first potential DNA methylation markers at birth have been detected. This might 

help to predict obesity risk, adiposity and body size at a young age and gives the opportunity for the 

development of prevention strategies. 
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3.1.2 DNA methylation markers in pathologies associated with obesity 

As it has been previously noted, obesity amplifies the risk of developing various diseases. The risk 

depends especially on excess body weight and accumulation of adiposity, mainly in the visceral area, 

and the inflammation associated with the condition. The most frequent pathologies associated with 

adiposity and body weight are metabolic disorders (T2D, hypertension, and dyslipemia), CVDs and 

liver disorders (hepatic steatosis, NASH and cirrhosis) (Salas-Salvadó et al., 2007). 

The characteristic accumulation of visceral adiposity in obesity is associated with metabolic 

dysregulation including IR, hyperglycaemia, dyslipidaemia and hypertension and increased risk of 

developing T2D, contributing thus to the mortality and morbidity of obesity (Salas-Salvadó et al., 

2007). The epigenetic mechanism underlying metabolic disorders include DNA methylation 

Study population 
Sample 

type 
Target gene Major finding Reference 

Botnia prospective 

study n = 129 who 

developed T2D; 

 n = 129 controls, 8 

years 

Blood 
PHOSPHO1, 

ABCG1 
Associated with BMI, insulin, TG. 

(Dayeh et al., 

2016) 

438 children, 5 years Blood Genome-wide 

Associated with obesity, BMI z-

score, HOMA-IR, insulin and 

glucose 

(van Dijk et 

al., 2017) 

GUSTO cohort n = 

987, 48 months 
Blood 

CDKN2B/P4HA

3 
Associated with BMI 

(Lin et al., 

2017) 

CHAMACOS study 

n= 373, 9 years 
Blood PPARγ Associated with body size 

(Volberg et 

al., 2017) 

Two birth cohorts: 

ALSPAC  n = 178, 7 

years, and PTBGS 

n=24, 11-13 years 

Blood 

CDKN1C, 

EPHA1, 

CASP10, HLA, 

NID1 

2.08% and 0.80% increase in BMI 

per 1% increase in methylation at 

CDKN1C and EPHA1 respectively 

Increase of 5.16% and 1.84% in fat 

mass per 1% increase in 

methylation respectively. 

Associated with BMI and fat mass 

(Relton et al., 

2012) 

Two prospective 

cohorts: PAH, n = 78, 

9 years and SWS n = 

239 6 years 

Blood RXRA 

Higher methylation of RXRA, was 

associated with lower maternal 

carbohydrate intake and neonatal 

adiposity  and fat mass 

(Godfrey et 

al., 2011) 

Two cohort: NPBGS n 

= 94, 11 years and 

ALSPAC n = 161, 7 

years 

Blood TACSTD2 
Hypomethylation associated with 

higher fat mass  

(Groom et al., 

2012) 

BSCC study, n = 600 

children, 30 months 
Blood LINE-1 

Hypomethylation associated with 

adiposity 

(Perng et al., 

2013) 

Abbreviations: T2D, type 2 diabetes; BMI, body mass index; TG, triglycerides; HOMA-IR, homeostasis model 

assessment - insulin resistance; GUSTO, Growing Up in Singapore Towards healthy Outcomes; CHAMACOS, 

Center for the Health Assessment of Mothers and Children of Salinas; ALSPAC, Avon Longitudinal Study of 

Parents and Children; PTBGS, Preterm Birth Growth Study; PAH, Princess Anne Hospital; SWS, Southampton 

Women’s Survey; NPBGS, Newcastle Preterm Birth Growth Study; BSCC, Bogota School Children Cohort. 

Table 8. Longitudinal studies analyzing the association between DNA methylation and obesity. 
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modification (Barrès & Zierath, 2016) (Table 9). DNA methylation profile alteration has been 

observed in individuals with metabolic disorders, CVD and digestive disorders, suggesting that DNA 

methylation could be used as a biomarker in obesity comorbidities. Moreover, this contributes to a 

better insight into the pathophysiology of these illnesses. 

3.1.2.1 DNA methylation and hypertension 

Two meta-analyses including 17010 individuals from European, African-American and Hispanic 

ancestry identified three CpGs whose methylation alteration explained 1.4 % and 2 % of the 

interindividual variation in systolic and diastolic blood pressure (BP), respectively. In addition, the 

study showed that the methylation of TATA box-binding protein-associated factor RNA polymerase I 

subunit B (TAF1B)-Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, theta 

polypeptide (YWHAQ) gene influenced BP, while BP altered the methylation status of zinc finger 

MIZ-type containing 1 (ZMIZ1), CPT1A and solute carrier family 1 member 5 (SLC1A5) genes 

(Richard et al., 2017). These findings suggest that DNA methylation plays a role in hypertension. 

3.1.2.2 DNA methylation and T2D 

DNA methylation changes are described in the tissues that undergo metabolic alteration in obese and 

diabetic patients, including adipose tissue, liver, skeletal muscle, and pancreas (Cheng et al., 2018). A 

recent article reviewed all these DNA methylation alterations associated with metabolic disorders in 

the different metabolic tissues (Table 9) (Cheng et al., 2018). 

Concerning adipose tissue, 15627 CpGs were differentially methylated between monozygotic twin 

pairs discordant for T2D. Interestingly, these CpGs were involved in insulin signaling, adipogenesis 

and metabolism (Nilsson et al., 2014). Another EWAS analysis in 190 healthy subjects’ adipose tissue 

discovered several genes including nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), 

plasminogen (PLG), ELOVL fatty acid elongase 2 (ELOVL2), kruppel like factor 14 (KLF14), glycine 

receptor alpha 1 (GLRA1), alpha-ketoglutarate dependent dioxygenase (FTO), inter-alpha-trypsin 

inhibitor heavy chain family member 5 (ITIH5), C-C motif chemokine ligand  18 (CCL18), 

mitochondrial carrier 2 (MTCH2), insulin receptor substrate 1 (IRS1), four and a half LIM domains 2 

(FHL2), HIF3A and secreted phosphoprotein 1 (SPP1) associated with T2D. Some of these genes have 
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a function in critical pathways,  such as IRS1 and FHL2 in insulin signaling and secretion, and HIF3A 

in adipocyte differentiation and function (Rönn et al., 2015).    

When analysing the possible associations between DNA methylation changes in liver and metabolic 

disorders, two studies have come to the same conclusion. A case-control study including 35 T2D and 

60 non-diabetic subjects presented 251 CpGs representing 162 different genes that had discordant 

DNA methylation profile. The 94 % of the significant CpGs were hypomethylated in liver from T2D 

subjects. Growth factor receptor bound protein 10 (GRB10), ABCC3, monoacylglycerol O-

acyltransferase 1 (MOGAT1) and PR/SET domain 16 (PRDM16) were validated as important genes 

involved in T2D development (Nilsson et al., 2015). Likewise, Kirchner et al., (2016) identified 

hypomethylation of genes involved in hepatic glycolysis and IR in liver of obese diabetic individuals 

in comparison with non-diabetics (Kirchner et al., 2016). 

Three DNA methylation studies in pancreas, the most relevant tissue for diabetes, associated 

epigenetic alterations with T2D. In a T2D case-control study, Dayeh et al., (2016) identified 

methylation alterations of the genes ABCG1, PHOSPHO1, SREBF1 and thioredoxin interacting 

protein (TXNIP) in pancreatic islets. Noteworthy, these genes’ methylation differences also were 

identified in blood and skeletal muscle, and were associated with future risk of the development of 

T2D (Dayeh et al., 2016). Another EWAS study in blood and pancreatic islets from non-diabetic and 

individuals with risk to develop T2D described differently methylated CpGs between groups. 

Identified CpGs were involved in mitochondrial function, insulin secretion and glucose homeostasis 

pathways, and were located in the genes cyclin D2 (CCND2), cartilage intermediate layer protein 2 

(CILP2), FHL2, glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1), helicase like transcription 

factor (HLTF), KLF14, PBX homeobox 4 (PBX4), SH2B adaptor protein 3 (SH2B3), serotonin 

transporter (SLC6A4), transcription factor 7 (TCF7) and zinc finger protein 518B (ZNF518B). 

Notably, the DNA methylation changes observed in the human pancreatic islets were further validated 

in blood samples (Bacos et al., 2016). Finally, a case-control study with 34 non-diabetic and 15 

diabetic subjects found 457 genes differently methylated in T2D individuals’ pancreatic islets, 

including insulin promoter factor 1 (PDX1), adenylate cyclase 5 (ADCY5), glucose transporter 2 

(SLC2A2) and the nuclear receptor subfamily 4 group A member 3 (NR4A3) tumor suppressor. 
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Study population 
Tissue 

sample 

Methylation 

strategy 
Target gene Major results Reference 

Two meta-

analysis: n = 

17010 individuals 

Blood EWAS 

TAF1B-YWHAQ, 

ZMIZ1, CPT1A, 

SLC1A5 

TAF1B-YWHAQ gene 

methylation influences BP 

BP modifies DNA methylation 

status of ZMIZ1, CPT1A, 

SLC1A5 

(Richard et 

al., 2017) 

N = 14 pairs of 

MZ twins 

diabetic-healthy 

subjects, n = 176 

diabetic-healthy 

subjects 

Adipose 

tissue 
EWAS 15627 CpGs 

15627 CpGs differentially 

methylated in diabetic subjects 

Association between 15627 

CpGs methylation and insulin 

signalling, adipogenesis and 

metabolism 

(Nilsson et al., 

2014) 

Cross-sectional 

study n = 294 

individuals 

Adipose 

tissue 
EWAS 

FHL2, NOX4, 

PLG, ELOVL2, 

KLF14, GLRA1, 

FTO, ITIH5, 

CCL18, MTCH2, 

IRS1 and SPP1, 

HIF3A 

Association between genes 

methylation and glucose and 

fatty acid metabolism, 

mitochondrial function, 

oxidative stress, insulin 

signalling and adipocyte 

differentiation 

(Rönn et al., 

2015) 

Cross-sectional 

study n = 133 

individuals 

Adipose 

tissue 
Gene-specific PPARGC1A 

Association between gene 

methylation and mitochondrial 

biogenesis, energy expenditure 

and balance, browning of 

adipose tissue 

(Gillberg & 

Ling, 2015) 

n = 129 who 

developed T2D 

and n = 129 who 

did not develop 

T2D 

Blood Gene-specific 
ABCG1, 

PHOSPHO1 

Association between genes 

methylation and lipogenesis, 

dyslipemia, cytokine signaling, 

redox and insulin resistance 

(Dayeh et al., 

2016) 

n = 7 non obese, n 

= 7 obese non 

diabetic and n = 8 

obese T2D 

subjects 

Liver EWAS 

PRKCE, ABR, 

PDGFA, 

ARHGEF16, 

ADCY6 and 

RPS6KA1 

Hypomethylation of the genes 

associated with insulin 

signaling, hepatic glycolysis 

and de novo lipogenesis in 

obese T2D subjects 

(Kirchner et 

al., 2016) 

n = 60 healthy 

controls and n =5 

T2D subjects 

Liver EWAS 

251 CpG 

representing 162 

genes, GRB10, 

ABCC3, 

MOGAT1, 

PRDM16 

Association between DNA 

methylation and insulin 

sensitivity, hepatic glycogen 

synthesis and glucose 

homeostasis 

(Nilsson et al., 

2015) 

n = 12 healthy 

control and n = 12 

T2D subjects 

Skeletal 

muscle 
EWAS DAPK3 

Association between DNA 

hypomethylation with high 

glucose levels 

(Mudry et al., 

2017) 

n = 87 healthy 

controls, n = 112 

subjects with risk 

of T2D, n = 105 

converters to T2D 

and n = 194 non-

converters to T2D 

Blood 

and 

pancreat

ic islets 

EWAS 

CCND2, CILP2, 

FHL2, 

GNPNAT1, 

HLTF, KLF14, 

PBX4, SH2B3, 

SLC6A4, TCF7, 

ZNF518B 

Association between gene 

methylation and mitochondrial 

function, insulin secretion and 

glucose homeostasis 

(Bacos et al., 

2016) 

n = 34 healthy 

controls and n = 

15 T2D subjects 

Pancreat

ic islets 
EWAS 

PDX1, TCF7L2, 

ADCY5, NR4A3, 

PARK2, PID1, 

SLC2A2, SOCS2 

and more 

Association between DNA 

methylation and β-cell 

proliferation, mitochondrial 

function and insulin secretion 

(Volkov et al., 

2017) 

Table 9. Studies analyzing the association between DNA methylation and metabolic disorders. 

 Abbreviations: EWAS, epigenome-wide association studies; BP, blood pressure; MZ, monozygotic; CpG, 

cytosine linked by a phosphate to guanine; T2D, type 2 diabetes. Data from Cheng et al., (2018). 
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These genes participate in β-cell proliferation, mitochondrial function and insulin secretion (Volkov et 

al., 2017). These studies highlight the importance of DNA methylation alterations in metabolic tissues 

and blood and the pathogenesis of metabolic disorders. 

3.1.2.3 DNA methylation and cardiovascular disease 

CVDs are the first cause of mortality and morbidity worldwide, being responsible of 31 % of deaths. 

These deaths are mainly due to coronary heart disease (CoHD) and stroke (“WHO | CVDs,” 2017). Of 

17.7 million people who die due to CVDs, an estimated 7.4 million were because of CoHD and 6.7 

million of stroke. Atherosclerosis is the main underlying mechanism for the development of CoHD. 

Increasing evidence suggests an important role for DNA methylation in the development of 

atherosclerosis. A recent review summarized all available evidence related to the association between 

DNA methylation and CoHD (Fernández-Sanlés et al., 2017). The studies were classified depending 

on the region of DNA methylation analysis: (a) global methylation studies, (b) specific-gene 

methylation studies, and (c) EWAS.  For assessing global methylation, the majority of the studies used 

repetitive elements such as LINE-1 or Alu. The results of these studies were inconsistent. Thus, six 

studies described an association between hypomethylation and CoHD or atherosclerosis, whereas 

other studies associated the global hypermethylation with same traits (Table 10). The studies of 

specific-gene methylation were performed in blood and vascular tissues. The review described that 

there were some genes that appear in more than one study such as estrogen receptor 1 (ESRA), 

ABCG1, apolipoprotein E (APOE), forkhead box P3 (FOXP3) and IL6. The hypermethylation of 

ESRA, ABCG1 and FOXP3 were associated with CoHD, whereas the hypomethylation of IL6 was 

associated with CoHD. However, in other study the association between ABCA1 methylation and 

CoHD and atherosclerosis was not significant. 
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Study population Sample type Conclusion Reference 

Atherosclerotic vascular patients (n 

= 17) and healthy controls (n = 15) 
Blood 

Association between global DNA 

hypomethylation and CHD 

(Castro et al., 

2003) 

Ischemic stroke cases (n = 280) and 

healthy controls (n = 280) 
Blood 

Association between global DNA 

hypomethylation by LINE-1 and 

ischemic stroke 

(Lin et al., 

2014) 

CHD subjects (n = 334) and 

healthy controls (n = 788) 
Blood 

Association between global DNA 

hypomethylation by LINE-1 and 

CHD 

(Wei et al., 

2014) 

Prevalent CHD subjects (n = 292), 

healthy controls (n = 247) incident 

CHD subjects (n = 317) and 

healthy controls (n = 262) 

Blood 

Association between global DNA 

hypomethylation by LINE-1 and 

CHD and MI 

(Guarrera et 

al., 2015) 

Prevalent CVD subjects (n = 242), 

CVD free at baseline subjects (n = 

470), incident CVD subjects (n = 

44) and n = 86 deaths

Blood 

Association between global DNA 

hypomethylation by LINE-1 and 

CHD and stroke 

(Baccarelli et 

al., 2010) 

Postmenopausal women (n = 90) Blood 

Association between global DNA 

hypomethylation and higher risk 

of development of CVD  

(Ramos et al., 

2016) 

CHD patients (n = 137) and healthy 

controls (n = 150) 
Blood 

Association between global DNA 

hypermethylation and CHD, 

especially in elderly 

(Sharma et al., 

2008) 

Prevalent CHD subjects (n = 101) 

and incident CHD subjects (n = 52) 
Blood 

Association between global DNA 

hypermethylation with prevalence 

and incidence of CHD, MI, stroke 

and hypertension  

(Kim et al., 

2010) 

15 atherosclerotic and 15 normal 

donor-paired samples, 19 carotid 

samples 

Aorta and carotid 

Association between genome-

wide DNA hypermethylation and 

atherosclerosis 

(Zaina et al., 

2014) 

6 individuals with 4 donor-paired 

samples for 3 tissues 

Atherosclerotic 

right coronary 

artery, internal 

mammary arteries 

and great 

saphenous veins 

Association between genome-

wide DNA hypermethylation and 

coronary athrosclerosis 

(Nazarenko et 

al., 2015) 

CHD subjects with high hypoxia (n 

= 13) and with low hypoxia (n = 

13) 

Right atrial 

appendages 

Association between global DNA 

hypermethylation in hypoxic 

subjects and fibrotic burden 

(Watson et al., 

2014) 

Table 10. Studies analyzing the association between DNA methylation (measured by global and 

genome-wide approaches) and CVD. 

Abbreviations: CoHD, coronary heart disease; MI, myocardial infarction; CVD, cardiovascular disease. Adapted 

from Fernández-Sanlés et al., (2017). 
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The list of candidate genes was summarized in Table 11. All EWAS that examine the association 

between DNA methylation and CoHD or atherosclerosis, identified 2625 CpGs and 111 CpG islands 

showing differential methylation in CoHD or atherosclerosis. Only 60 genes were identified in the 

same methylation direction in more than one EWAS (Table 12).  In addition, recent EWAS analyzing 

the link between DNA methylation, obesity and coronary artery disease (CAD) identified 83 CpG sites 

that presented differential methylation depending on the BMI in CAD. Only SREBF1 gene was found 

with differential methylation and expression that could be implicated in BMI, adiposity-related traits 

and CAD (Table 12) (Mendelson et al., 2017). 

Gene Methylation status Outcomes 

ESRβ Hypermethylated Associated with atherosclerosis 

AMT, CBS, EC-SOD, 

NPC1, p15INK4b, TCN2 
Hypermethylated Associated with CoHD 

ABCA, PLA2G7 Hypermethylated Associated with CoHD and aging 

DDAH2 Hypermethylated 
Associated with CoHD and dysfunction of endothelial 

progenitor cells in CoHD 

MCT3, MT-CO1, MT-

CO2, MT-CO3, MT-TL1 
Hypermethylated Associated with CVD 

TIMP1 Hypermethylated Associated with CVD and aging 

GNASAS, INS Hypermethylated Associated with incidence of MI in women 

ANRIL Hypermethylated 
Associated with increased arterial stiffness and higher 

CVD risk 

FOXP3, GALNT2, ABCG1 Hypermethylated Associated with increased risk of CoHD 

MTHFR Hypermethylated Associated with ischemic stroke 

ESRα Hypermethylated Associated with atherosclerosis, aging and CVD 

COL15A1 Hypomethylated Associated with atherosclerosis 

BNIP3 Hypomethylated Associated with CoHD 

COMT Hypomethylated Associated with CoHD and aging 

F7 Hypomethylated Associated with CoHD in wild-type A1A1 genotypes 

F2RL3 Hypomethylated Associated with higher CVD mortality 

GCK, IL-6 Hypomethylated Associated with increased risk of CoHD 

TNF-α Hypomethylated Associated with stroke development 

ANGPTL2 Hypomethylated 
Associated with the pro-inflammatory environment in 

post-acute coronary patients 

Table 11. Studies analyzing the association between specific-gene methylation levels and CVD. 

Abbreviations: CoHD, coronary heart disease; CVD, cardiovascular disease; MI, myocardial infarction. Data 

from Fernández-Sanlés et al., (2017). 
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3.1.2.4 DNA methylation and liver diseases 

NAFLD involves a variety of liver disorders associated with obesity (Chalasani et al., 2012). The 

steatosis is the benign condition that can be complicated to NASH, which can progress to cirrhosis and 

finally liver failure (Chalasani et al., 2012). The relevance of DNA methylation in NAFLD has been 

reported (Table 13). 

Two EWAS analyses in the literature studied the DNA methylation profile in the different stages of 

NAFLD. In the first one, Ahrens et al., (2013) identified 74 CpGs to be differentially methylated in 

liver between healthy individuals, healthy obese, subjects with steatosis and NASH. NAFLD-specific 

metylation differences were found in 9 genes that participate in glucose metabolism, FA synthesis and 

Gene Reference 

Hypermethylated 

GRIP1, KCNJ14, PKD2, HRH2, NGEF, TNS1, ABCB4, KCNJ14, 

ACOT2, DLG2, SH2D4B, NGEF, SLC6A6, C1QTNF7, OLFML3, 

PART1, CALD1, THSD4, TNS1, PKD2, CORT, GRIP1, HRH2 

(Nazarenko et al., 2015; 

Zaina et al., 2014) 

SFRP4, MECOM, DOCK5, SMOC2, DYSF, SYTL3, PDZD2, 

PHACTR2, TRANK1, VWC2, RASGRF1, HMCN1, DFNA5 

(Rask-Andersen et al., 2016; 

Zaina et al., 2014) 

FYN, RNF216, SEPT9, CAMTA1 (Yamada et al., 2014; Zaina et al., 2014) 

DSCAML1, PKNOX2, CTNNA3, DFNA5, DIP2C (Sharma et al., 2008; Zaina et al., 2014) 

FOXJ3, ZBTB16 (Ek et al., 2016; Zaina et al., 2014) 

DLC1 
(Oudejans et al., 2016; Rask-Andersen et 

al., 2016) 

GATA3-AS1, AR 
(Nazarenko et al., 2015; Sharma et al., 

2008) 

HAND2 
(Rask-Andersen et al., 2016; Sharma et al., 

2008) 

C4orf48 
(Oudejans et al., 2016; Rask-Andersen et 

al., 2016) 

CBFA2T3 (Guarrera et al., 2015; Zaina et al., 2014) 

Hypomethylated 

AIM2, F2RL3 (Ek et al., 2016; Nazarenko et al., 2015) 

CRELD2 (Ek et al., 2016; Yamada et al., 2014) 

GPR143 
(Castillo-Díaz et al., 2010; Nazarenko et 

al., 2015) 

HOXC5 (Nazarenko et al., 2015; Zaina et al., 2014) 

MLC1 
(Ek et al., 2016; Nazarenko et al., 2015; 

Zaina et al., 2014) 

SREBF1 (Mendelson et al., 2017) 

Table 12.  Epigenome-wide association studies (EWAS) analyzing the association between DNA 

methylation and CVD. 
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liver metabolism (pyruvate carboxylase (PC), ATP citrate lyase (ACLY) and phospholipase C gamma 

1 (PLCG1)), and insulin signaling pathway (IGF1, insulin-like growth factor binding protein 2 

(IGFBP) and protein kinase C epsilon (PRKCE)) (Ahrens et al., 2013). 

The second study used liver biopsies from 33 mild NAFLD and 28 advanced NAFLD subjects and 

found 52,830 CpGs hypomethylated and 16,417 hypomethylated in advanced NAFLD comparing with 

mild NAFLD individuals. The hypomethylated genes in NAFLD were associated with matrix 

remodeling functions including those associated with fibrosis and cirrhosis (collagen type I alpha 1 

chain (COL1A1), collagen type I alpha 2 chain (COL1A2), collagen type IV alpha 1 chain (COL4A1), 

collagen type IV alpha 2 chain (COL4A2), laminin subunit alpha 4 (LAMA4), laminin subunit beta 1 

(LAMB1), connective tissue growth factor (CTGF) and platelet derived growth factor subunit A 

(PDGFA)), chemokines (C-C motif chemokine receptor 7 (CCR7) and CCL5, and associated with 

inflammation (signal transducer and activator of transcription 1 (STAT1), TNF alpha induced protein 8 

(TNFAIP8) and caspase 1 (CASP1)). However, the hypermethylated genes in NAFLD were APOC4, 

cytochrome P450 family 2 subfamily C member 19 (CYP2C19), sodium/bile acid cotransporter 

(SLC10A), and acyl-CoA oxidase 1 (ACOX) among others (Murphy et al., 2013). 

Moreover, a global methylation analysis using LINE showed 59 NASH-associated CpG sites 

correlated with fasting insulin levels, but not in subjects with simple steatosis (de Mello et al., 2017). 

Furthermore, gene-specific DNA methylation studies also identified several genes with an important 

role in the development and progression of NAFLD. The demethylation of dipeptidyl peptidase 4 

(DPP4) gene in obese subjects might contribute to deteriorations in hepatic functions and the 

development of hepatosteatosis (Baumeier et al., 2017). In addition, the DNA methylation status of tet 

methylcytosine dioxygenase (TET), PPARGC1A and transcription factor A mitochondrial (TFAM) 

genes were different in NAFLD subjects comparing with healthy subjects (Sookoian et al., 2010; 

Pirola et al., 2015). 

Mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 6 (MT-ND6) gene 

methylation was different between steatosis and NASH (Pirola et al., 2015). In addition, a study that 

included 14 mild NAFLD and 12 advanced NAFLD blood and liver samples, described 

hypermethylation of peroxisome proliferator-activated receptor gamma (PPARG) and 
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hypomethylation of PDGF genes in severe NAFLD in comparison to mild NAFLD (Hardy et al., 

2017). Zeybel et al., studied the DNA methylation differences of transforming growth factor beta 1 

(TGFβ1), PDGFA, peroxisome proliferator-activated receptor alpha (PPARA) and PPARD between 

mild and advanced liver fibrosis. The investigation concluded that the combination of higher 

methylation at TGFβ1 and PDGFA with lower methylation at PPARA and PPARD could be a useful 

tool for determining progression to liver fibrosis (Zeybel et al., 2015). These data suggested that DNA 

methylation play an important role in the development of liver diseases and may be used as putative 

biomarkers for the progression and severity of NAFLD. 

3.1.2.5 DNA methylation and MetS 

MetS is characterized by a cluster of risk factors associated with CVD, diabetes, obesity and stroke, 

which include visceral adiposity, IR, hypertension, hypertriglyceridemia and low HDL-C (“What Is 

Metabolic Syndrome?, NIH,” 2016). There are several criteria for diagnosis of MetS. According to 

World Health Organization (WHO) criteria, the diagnosis of MetS requires hyperinsulinemia plus two 

or more other parameters. However, the most used definition is the revised Adult Treatment Panel-III 

(ATP-III), which requires at least three or more alterations (Table 14). 

The prevalence of MetS is rapidly increasing in most countries, affecting more than 20% of the global 

adult population (Onat, 2011). Spanish adult population presented higher prevalence of MetS, 

specifically, 38.37 % in men and 29.62 % in women, and these percentages increased in the elderly 

(Marcuello et al., 2013). The high prevalence of MetS makes necessary to implement new strategies 

for its prevention. 
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Study population 
Tissue 

sample 

Methylation 

strategy 
Target gene Major results Reference 

Cross sectional n= 48 

obese  
Liver Gene-specific DPP4 

Association between gene hypomethylation and early deterioration in 

hepatic function. 

(Baumeier 

et al., 2017) 

Cross sectional n = 141 

subjects 
Liver EWAS DNAm age Association between DNAm age and insulin resistance and liver cancer 

(Horvath et 

al., 2014) 

n = 23 subjects with SS 

and n = 23 with NASH 
Liver Gene-specific MT-ND6 

 Association between gene hypermethylation and histological severity 

of NAFLD 

(Pirola et 

al., 2013) 

n = 11 healthy controls 

and n = 63 NAFLD 
Liver Gene-specific 

PPARGC1A, 

TFAM 
Association between genes hypermethylation and peripheral IR 

(Sookoian et 

al., 2010) 

n = 23 healthy control and 

n = 67 NAFLD 
Liver Gene-specific TET Association between gene methylation and pathogenesis of NAFLD 

(Pirola et 

al., 2015) 

n = 12 healthy control, n = 

12 NASH subject and n = 

12 with SS 

Liver 
Global-

methylation 
LINE-1 Association between lower DNA methylation and NASH, but not SS 

(de Mello et 

al., 2017) 

n = 14 mild NAFLD 

fibrosis and n = 12 

advanced NAFLD fibrosis 

Liver and 

blood 
Gene-specific PPARγ, PDGFα 

Association between PPARγ hypermethylation and disease progression 

and development of fibrosis. 

PDGFα becomes hypomethylated with increasing fibrosis severity. 

(Hardy et 

al., 2017) 

n = 18 healthy controls, n 

= 18 obese, n = 12 SS and 

n = 15 NASH  

Liver EWAS 

GALNTL4, ACLY, 

GRID1, IGFBP2, 

PLCG1, PRKCE, 

IGF1, IP6K3, PC 

Genes differentially methylated between phenotypic groups. 

IGFBP2 hypermethylation associated with liver metabolism 

(Ahrens et 

al., 2013) 

n = 8 NAFLD with 

minimal fibrosis and n = 9 

NAFLD with advanced 

fibrosis  

Liver Gene-specific 
PPARα, PPARδ, 

TGFβ1, PDGFα 

Association between TGFβ1, PDGFα hypermethylation and 

PPARα, PPARδ hypomethylaton with minimal fibrosis in NAFLD 

(Zeybel et 

al., 2015) 

n = 33 mild NAFLD and 

 n = 23 advanced NAFLD 
Liver EWAS 69,247 CpGs 

Association between DNA hypomethylation with matrix remodeling 

factors, fibrosis and cirrhosis, several chemokines and pro-inflammatory 

immune response in advanced NAFLD 

(Murphy et 

al., 2013) 

Table 13. Studies analyzing the associations between DNA methylation and liver diseases. 

Abbreviations: NASH, non alcoholic steatohepatitis; NAFLD, non alcoholic fatty liver disease; IR, insulin resistance; SS, simple steatosis; CpGs, cytosine linked by a 

phosphate to guanine. 
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Numerous studies in human populations have looked into the possible association between DNA 

methylation and MetS features, including visceral adiposity, IR, hypertension, HDL-C and 

hypertriglyceridemia.  Most of them observed that the DNA methylation pattern of different genes 

were associated with MetS parameters, resulting in a worse prognosis or a higher risk of presenting 

other several diseases (Table 15). Moreover, several studies have evidenced that MetS risk factors are 

likely to play a role in the DNA methylation pattern and this modification of gene methylation 

suggests an initial phase of the development of MetS.  

Two prospective case-control studies in newborns from mothers who suffered a hyperglicemia during 

pregnancy, presented changes in guanine nucleotide binding protein alpha stimulating (GNAS), 

mesoderm specific transcript (MEST) and NR3C1 genes methylation pattern supporting the hypothesis 

that these alterations contribute to the life-long risk of development of obesity and other metabolic 

disorders ( El Hajj et al., 2013; Chen et al., 2014). In addition, an EWAS involving 8,165 participants 

integrating data from six independent cohorts, 2 case-control and 8 retrospective studies,

Parameter WHO ATPIII 

Obesity BMI ≥ 30 Kg/m
2
 or WC ≥ 100 cm in males 

WC ≥ 100 cm in males WC ≥ 88 cm in females 

WC ≥ 88 cm in females 

BP Hypertension or Hypertension or 

SBP ≥ 130 mm Hg SBP ≥ 130 mm Hg 

DBP ≥ 85 mm Hg DBP ≥ 85 mm Hg 

Cholesterol HDL ≤ 35 mg/dL in males HDL ≤ 40 mg/dL in males 

HDL ≤ 39 mg/dL in females HDL ≤ 50 mg/dL in females 

TG TG ≥ 150 mg/dL TG ≥ 150 mg/dL 

Glucose Diabetes or fasting glucose ≥ 110 mg/dL 
Diabetes or fasting glucose ≥ 100 

mg/dL 

Insulin* Hyperinsulinemia 

Table 14. WHO and ATPIII criteria for diagnosis of metabolic syndrome. 

Abbreviations: BMI, body mass index; WC, waist circumference; SPB, systolic blood pressure; DBP, diastolic 

blood pressure; HDL, high density lipoprotein; TG, trygliceride.  

* WHO requires hyperinsulinemia plus two or more other parameters. ATPII requires three or more parameters
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Study population Sample type 
Methylation 

strategy 
Target gene Major results Reference 

n = 87 with GDM women 

and n = 81 healthy pregnant 

women 

Umbilical cord 

blood 
Gene-specific GNAS 

GDM increases methylation level at fetal GNAS 

Hypermethylation of GNAS associated with high risk for 

diseases in offspring 

(D. Chen et al., 2014) 

n = 88 GDM dietetically 

treated, n = 98 GDM insulin-

dependent, n = 65 healthy 

pregnant  

Cord blood and 

chorionic villi 
Gene-specific MEST 

GDM decreases MEST methylation in newborn 

MEST hypomethylation contributes to risk of development 

MetS 

(El Hajj et al., 2013) 

n = 70 healthy controls and n 

= 64 MetS subjects 
VAT Gene-specific LPL 

Association betwen LPL hypermethylation and etiology of 

MetS 

(Castellano-Castillo et al., 

2017) 

n = 82 GDM and n = 67 T1D 

in pregnancy 

Skeletal muscle, 

SAT and blood 
Gene-specific TXNIP 

Association between intrauterine hyperglycemia and 

changes in TXNIP methylation 

(Houshmand-Oeregaard 

et al., 2017) 

n = 48 healthy controls and n 

= 12 T2D  
Pancreatic islets Gene-specific PPARGC1A 

PPARGC1A hypermethylation in T2D subjects 

Association between PPARGC1A hypermethylation and 

lower insulin secretion 

(Ling et al., 2008) 

n =61 subjects with FH and n 

= 30 severely obese non-FH 
Blood and VAT Gene-specific ADRB3 

Association between ADRB3 hypomethylation and higher 

LDL-c, WC and apoB levels 
(Guay et al., 2014) 

n =13 healthy middle-age 

sedentary men 
Muscle biopsies Gene-specific ANGPTL4 

Association between ANGPTL4 hypomethylation and low 

blood glucose and insulin sensitivity 
(Laker et al., 2017) 

Three cohort: n = 96, n = 94 

and n = 104 
SAT and blood EWAS 2825 genes, 711 CpGs 

Association between 2825 gene methylation and BMI 

Association between 711 CpGs methylation and HbA1c 
(Rönn et al., 2015) 

8 retrospective studies n = 

8,061, 2 case-control study n 

= 687 and 3 cohorts n = 

1,490 

Blood EWAS 187 CpGs 
Association between 187 CpGs methylation and BMI 

Future risk for the development of T2D 
(Wahl et al., 2016) 

n = 185 adults Blood EWAS CPT1A, TXNIP, ABCG1 
Association between CPT1A and TXNIP hypomethylation 

and T2D and BMI 
(Al Muftah et al., 2016) 

LOLIPOP study n = 25,372 Blood EWAS 
ABCG1, PHOSPHO1, 

SOCS3, SREBF1 

Association between gene methylation and BMI, WC, 

insulin concentration and HOMA-IR 
(Chambers et al., 2015) 

n = 438 children Neonatal blood EWAS 69 CpGs 
Association between 69 CpGs methylation and HOMA-IR, 

insulin and glucose levels 
(van Dijk et al., 2017) 

Three prospective cohorts: n 

= 355, n = 167 and n = 645 
Blood EWAS TXNIP 

Association between DM and hypomethylation of TXNIP 

gene. 

TXNIP hypomethylation is a consequence of hyperglycemia 

levels 

(Soriano-Tárraga et al., 

2016) 

Table 15. Studies analyzing the association between DNA methylation and MetS features. 
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Study population Sample type 
Methylation 

strategy 
Target gene Major results Reference 

Newborns categorized in 

LBW n = 3, NBW n = 3 and 

HBW n = 3 

Cord blood and 

placenta 
EWAS 

360 DMR in LBW and 

773 DMR in HBW 

Genes encoding p38 MAPK signaling components are 

hypermethylated in LBW and HBW 

PI3K/AKT pathway components hypomethylated in HBW 

Association between DNA hypomethylation and glucose 

transport in HBW 

(Mao et al., 2017) 

ESTHER study n =527 Blood EWAS TXNIP 
Association between TXNIP hypomethylation and 

increasing fasting glucose and HbA1c 
(Florath et al., 2016) 

n = 276 subjects with FH 

and n = 26 healthy subjects 
Blood EWAS TNNT1 

TNNT1 methylation is related to 10 % of the interindividual 

variation in HDL-c levels 
(Guay et al., 2012) 

Three independent cohorts 

n = 99,994  
WBC EWAS 

IGFBP3, KCNK3, 

PDE3A, 

PRDM6,ARHGAP24,OSR

1,SLC22A7,TBX2 

Association between gene methylation and BP and 

hypertension 
(Kato et al., 2015) 

n = 850 subjects Blood EWAS CPT1A, ABCG1 Association between gene methylation and TG storage (Mamtani et al., 2016) 

n = 59 healthy subjects and 

n = 58 obese 
SAT EWAS Genome-wide 

Association between global DNA hypermethylation and 

WAT inflammation and IR 
(Petrus et al., 2017) 

Botnia study: n = 129 

subjects who developed 

T2D and n = 129 who did 

not develop T2D 

Blood Gene-specific PHOSPHO1, ABCG1 

Association between PHOSPHO1 methylation and HDL-c 

levels. 

Association between ABCG1 methylation and BMI, 

HbA1c, fasting insulin and TG levels 

(Dayeh et al., 2016) 

Human SW62 cell line (in 

vitro) 
Cell Gene-specific HSD11B2 

Association between HSD11B2 methylation and blood 

pressure 

(Alikhani-Koopaei et al., 

2004) 

Human NCI H295R cell 

line (in vitro) 
Cell Gene-specific AGT 

Association between AGT hypomethylation and angiotensin 

II enzyme activity 

Hypomethylation of AGT may result in hypertension and 

kidney injury. 

(Wang et al., 2014) 

C57BL/6J mice with IH Endothelial cells Gene-specific Ace1, Agt 
Association between gene methylation and systolic 

hypertension in mice exposed to IH 
(Chu et al., 2015) 

Table 15. Studies analyzing the association between DNA methylation and MetS features (continuation). 

.

Abbreviations: GDM, gestational diabetes mellitus; MetS, metabolic syndrome; VAT, visceral adipose tissue; T2D, type 2 diabetes; SAT, subcutaneous adipose tissue; FH, 

familiar hypercholesterolemia; LDL-c, low density lipoprotein cholesterol; WC, waist circumference; apoB, apolipoprotein B; EWAS, epigenome-wide association study; 

CpG, cytosine linked by a phosphate to guanine; BMI, body mass index; HbA1c, hemoglobin A1C; LOLIPOP, London Life Sciences Prospective Population Study; HOMA-

IR, homeostasis model assessment-insulin resistance; WAT, white adipose tissue; IR, insulin resistance; LBW, low birth weight; HBW, high birth weight; DMR, 

differentially methylation region; ESTHER, Epidemiologische Studie zu Chancen der Verhütung, Früherkennung und optimierten THerapie chronischer ERkrankungen in 

der älteren Bevölkerung; HDL-c, high density lipoprotien cholesterol; TG, triglycerides; BMI, body mass index, SW62, colon carcinoma cell line; NCIH295R, adrenocortical 

cell line; IH, intermitent hipoxia. 
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 showed a causal relationship between adiposity and DNA methylation alteration in blood and adipose 

tissue. These data support an important function of altered DNA methylation mediated by visceral 

adiposity, in the development of several diseases, such as T2D, obesity, CVD and cancer (Rönn et al., 

2015; Wahl et al., 2016). Moreover, a case-control study with 64 subjects with hypertriglyceridemia 

found an association between lipoprotein lipase (LPL) gene promoter methylation, which was higher 

in these individuals, with poor metabolic profile and the development of MetS (Castellano-Castillo et 

al., 2017). 

An EWAS performed in 483 children identified a number of DMRs at birth that were associated with 

insulin sensitivity in childhood. Many of these changes in DNA methylation were causally related to 

the health outcomes (van Dijk et al., 2017). In addition, methylation pattern of different genes have 

been associated with the risk of development of MetS. The DNA methylation alteration of 

PPARGC1A, CPT1A, TXNIP, ABCG1, PHOSPHO1, suppressor of cytokine signaling 3 (SOCS3) and 

SREBF1 were associated with increased IR and the future development of T2D (Ling et al., 2008; 

Chambers et al., 2015; Al Muftah et al., 2016). Some of these genes, such as CPT1A, TXNIP, ABCG1 

and PHOSPHO1 were also involved in the dysregulation of glucose metabolism, hypertriglyceridemia 

and decreased HDL-C levels, suggesting a role in the development of T2D and CVDs (Florath et al., 

2016; Dayeh et al., 2016; Mamtani et al., 2016).  Furthermore, the methylation patterns of IGFBP3, 

potassium two pore domain channel subfamily K member 3 (KCNK3), phosphodiesterase 3 A 

(PDE3A), PR/SET domain 6 (PRDM6), Rho GTPase activating protein 24 (ARHGAP24), odd-skipped 

related transciption factor 1 (OSR1), solute carrier family 22 member 7a (SLC22A7), t-box 2 (TBX2) 

and hydroxysteroid 11-beta dehydrogenase 2 (HSD11B2) were associated with BP and alteration in 

endothelial vascular function resulting in hypertriglyceridemia (Alikhani-Koopaei et al., 2004; Kato et 

al., 2015). 

As a summary, it has been shown that DNA methylation is altered in subjects with one or various risk 

factors of MetS. The assessment of DNA methylation could be a good predictor of MetS and related 

diseases. Conversely, the majority of genes that were found are not validated among different 

populations, suggesting that may be weak biomarkers of MetS. 
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3.2 DNA methylation and chronobiology in the context of obesity 

In mammals, the synchronization between circadian rhythms and environmental stimuli, including 

daily rhythms of natural light, external temperature and food intake, is driven by the circadian system, 

a hierarchical multilevel organization (Tarquini & Mazzoccoli, 2017). The most frequent biological 

rhythms are hallmarked by a 24-hour period with the solar illumination. The light/darkness is 

perceived by the retina via melanopsin-containing ganglion cells and transferred to the 

suprachiasmatic nuclei (SCN) of the hypothalamus (Tarquini & Mazzoccoli, 2017). Although photic 

cue is the main signal, alternative signals such as feeding time can also disengage central and 

peripheral oscillators present in most tissues and cells (Tarquini & Mazzoccoli, 2017). 

Circadian oscillation is regulated by the molecular circadian clockwork that consists on a positive and 

negative transcription-translation feedback loop (Figure 9). It is initiated by the transcription factor 

aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1), that dimerizes with circadian 

locomoter output cycles kaput (CLOCK) or neuronal PAS domain protein 2 (NPAS2) to activate the 

expression of the negative regulators of period circadian regulator (PER) and cryptochrome 1 (CRY1) 

genes through E-box elements (5’-CACGTG-3’) (Kim et al., 2015). PER/CRY proteins in a negative 

feedback suppress BMAL1/CLOCK activity (Garaulet & Gómez-Abellán, 2013). Additional 

components of the core clock stimulated by BMAL1/CLOCK include receptor tyrosine kinase-like 

orphan receptor (ROR) and Rev-erbα, which bind ROR DNA elements (ROREs) for stimulating or 

repressing transcription. The BMAL1/CLOCK heterodimer also can stimulate the transcription of DP 

beta (DPB) and E4 promoter–binding protein 4 (E4BP4), which bind to D-box elements contributing 

to the circadian output of the molecular clock (Papazyan et al., 2016). 

Recent studies have reported the interaction between the circadian clock and energy regulation and 

metabolism. Indeed, disruption of circadian rhythms compromises metabolic homeostasis and 

contributes to the development of obesity and obesity-related pathologies (Antunes et al., 2010; Bass 

& Takahashi, 2010; Garaulet et al., 2010). Many metabolic functions such as glucose homeostasis, 

lipid metabolism and fasting/feeding cycles, are regulated by the internal clock system (Tarquini & 

Mazzoccoli, 2017). Furthermore, an online database (CircaDB) of circadian transcriptional profiles in 
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mammalian tissues disclosed that numerous epigenetic genes such as histone deacetylase 4 (Hdac4), 

Dnmt3a, Dnmt3b, and Tet2, present rhythmic tissue-specific expression patterns in male Siberian 

hamsters (Stevenson, 2017). In addition, a comprehensive review discussed the evidence 

demonstrating that chromatin remodeling and other epigenetic mechanisms, including histone 

modifications and DNA methylation, regulate the expression of the main circadian clock genes by 

(Sahar & Sassone-Corsi, 2013). 

Figure 9. Molecular circadian clock mechanisms in a cell. Adapted from Albrecht, (2012). 

A crossover clinical study in 15 healthy men who followed acute total sleep deprivation presented 

hypermethylation of CRY1 and period circadian regulator 1 (PER1) genes in adipose tissue and were 

associated with metabolic disruption  (Cedernaes et al., 2015). In addition, children with obstructive 

sleep apnea exhibited FOXP3 gene hypermethylation and higher systemic inflammatory response 

(Kim et al., 2012). In relation to obesity, a study performed in 60 normoweight, overweight and obese 

women described hypermethylation of three CpGs in CLOCK and two CpGs in BMAL1 genes in 

overweight/obese women in comparison to normal-weight. Moreover, the methylation of these genes 

were associated with BMI, body fat, WC, HOMA, and MetS score (Milagro et al., 2012). These 
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findings suggest that the circadian system might be implicated in the onset of obesity through a DNA 

methylation mechanism.  

3.3 DNA methylation markers in weight loss 

As obesity has been attributed to a positive energy balance (Chatzigeorgiou et al., 2014),   reduction of 

energy intake, changes in macronutrient distribution, increase of physical activity, behavioural 

approaches, and pharmacological or surgical treatments are the strategies followed in order to induce a 

negative energy balance (Salas-Salvadó et al., 2007; Biddle et al., 2017). Although many strategies 

have been investigated for inducing a weight reduction, individual response vary widely. 

As it has been described previously, DNA methylation has been described to be associated with body 

weight regulation, since it is involved in appetite, adiposity, adipogenesis and glucose and lipid 

metabolism (Cheng et al., 2018). In addition, dietary factors, such as FAs, polyphenols or methyl 

donors, exercise and pharmacological and surgical treatments can induce changes in the DNA 

methylation pattern (Milagro et al., 2012; Barres et al., 2013; Milagro et al., 2013; Fiorito et al., 2014; 

Remely et al., 2015; Tremblay et al., 2017). In this context, several studies have identified DNA 

methylation as a regulatory mechanism of inter-individual metabolic response to weight loss (Table 

16). 

Several studies based on energy-restricted treatments for weight loss reported many CpGs whose 

methylation was associated with the response to the intervention. Thus, 35 different loci were 

differentially methylated between high and low responders to an energy-restricted diet in adipose 

tissue from overweight and obese women. Moreover, the methylation status of potassium voltage-

gated channel subfamily A member 3 (KCNA3), GLI similar 3 (GLIS3), E26 transformation-specific 

(ETS), nuclear factor 1 X-type (NFIX), insulinoma-associated protein 1 (INSM1), corticotropin 

releasing hormone receptor 2 (CHRH2), enoyl coenzyme A hydratase short chain 1 (ECHS1) and 

cholecystokinin B receptor (CCKBR) genes were associated with weight control and insulin secretion 

(Bouchard et al., 2010). 
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Weight loss 

strategy 
Sample study 

Sample 

type 
Target gene Main results Reference 

Genotypic 

information 
n = 95 obese and 

overweight 
Blood Global DNA 

Association between global 

DNA hypomethylation  and 

increased weight loss 

(Pirini et al., 

2018) 

Physical 

activity 
n  = 20 healthy 

women 
Blood 

NAMPT, 

RUNX3, BR, 

SLCO4C, 

WNT7A, 

RASGRP3, 

CYP2E, CA13, 

KANK4, 

SMOC2, SLIT3, 

GABRG3 

Baseline DNA methylation 

was able to predict the 

percent body weight change 

over the six-month period 

(McEwen et al., 

2017) 

Behavioural 

and ER 

n = 20 NW, n = 20 

overweight/obese 

and n = 20 morbid 

obese women 

Blood 
CLOCK, 

BMAL1, PER2 

Association between the 

baseline methylation of genes 

and the magnitude of weight 

loss. 

( Milagro et al., 

2012) 

No 

treatment 
n = 51 subjects Blood POMC 

Association between POMC 

hypermethylation and 

individuals body weight. 

(Kühnen et al., 

2016) 

RYGB 
n = 5 obese and n 

= 6 non-obese 

women 

Skeletal 

muscle 
409 DMR 

409 DMR after weight loss. (Barres et al., 

2013) 

ER 
n = 14 overweight 

and obese women 

Adipose 

tissue 
35 CpGs 

Association between 35 loci 

methylation and weight 

control. 

(Bouchard et al., 

2010) 

ER 
n = 27 obese 

women 

Adipose 

tissue 
LEP, TNF 

Association between 

hypomethylation of LEPTIN 

and TNF-α at baseline with 

better response to the dietary 

intervention.  

(Cordero et al., 

2011b) 

ER 
n = 24 overweight 

and obese 

adolescents 
Blood 

AQP9, 

DUSP22, 

HIPK3, TNNT1, 

TNNI3 

Association between basal 

DNA methylation in QP9, 

DUSP22, HIPK3, TNNI3, 

and TNNT1 with changes in 

body weight, BMI-SDS, WC, 

and body fat mass after the 

weight loss intervention. 

(Moleres et al., 

2013) 

ER n = 18 obese men Blood POMC, NPY 

Association between  

baseline NPY 

hypomethylation with weight-

loss regain  

Association between POMC 

hypomethylation with success 

in weight-loss maintenance 

(Crujeiras et al., 

2013) 

BS 

n = 9 healthy 

control, n = 22 

obese + ER, n = 14 

obese + BS 

Blood SERPINE1 

Baseline SERPINE1 

methylation may be a 

predictor of weight loss after 

BS 

(Nicoletti et al., 

2016) 

ER 
n = 12 obese and 

overweight 
Blood 

ATP10A, CD44, 

WT1 

ATP10A and CD44 genes 

showed baseline methylation 

differences depending on the 

weight-loss outcome.  

DNA methylation levels of on 

the WT1 gene were 

hypermethylated in the high 

than in the low responders.  

( Milagro et al., 

2011) 

 

 

Table 16. Studies aznalyzing the association between DNA methylation and weight loss. 

Abbreviations: ER, energy-restriction; NW, normal weight; RYGB, Roux-en- Y gastric bypass; DMR, 

differentially methylated region; CpG, cytosine linked by a phosphate to guanine; BMI-SD, body mass index-

standard deviation; WC, waist circumference; BS, bariatric surgery. 
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In addition, the methylation status in adipose tissue and blood of several genes that participate in the 

regulation of BP, inflammation, lipid metabolism, appetite and energy homeostasis, such as TNF, 

POMC, neuropeptide Y (NPY), ATP10, CD44 molecule (Indian blood group) (CD44) and LEP have 

been related to significant differences in the weight loss response after a low calorie diet (30 % of 

energy-restriction) (Cordero et al., 2011b; Milagro et al., 2011; Crujeiras et al., 2013). Moreover, 

clock genes, such as CLOCK, BMAL1 and period circadian regulator 2 (PER2), are implicated in the 

regulation of circadian clockwork and one study associated baseline methylation of these genes with 

body-weight loss in a women population within a behavioural and energy-restricted intervention 

(Milagro et al., 2012). 

Some studies have analyzed other factors, such as physical activity or gastric surgery, in relation to the 

interaction between weight loss and DNA methylation. DNA methylation analysis in blood samples 

from 20 healthy women within a physical activity program identified significant associations between 

the methylation profile of 12 CpGs and weight loss (McEwen et al., 2017). A lifestyle and nutritional 

educational weight loss program in 24 overweight and obese adolescents associated the methylation 

status of genes related to glucose metabolism, IR, inflammation and CVD, such as aquaporin-9 

(AQP9), dual specificity protein phosphatase 22 (DUSP22), homeodomain-interacting protein kinase 3 

(HIPK3), slow skeletal muscle troponin T 1 (TNNT1) and TNNI3, with weight loss modifications 

(Moleres et al., 2013). Moreover, two investigations with bariatric surgery intervention identified 409 

differentially methylated regions (DMR) after weight loss, and specifically, methylation of 

PPARGC1A, serpin family E member 1 (SERPINE1) and PDK4 were involved in weight control and 

glucose and lipid metabolism (Barres et al., 2013; Nicoletti et al., 2016). 

Although genetic factors are involved in the regulation of body weight, genetic variants only partially 

explain the individual variation observed in the response to weight loss treatment. Thus, DNA 

methylation could play a role in the environment-gene interaction in weight regulation. Pirini et al., 

(2018) studied the genetic and epigenetic alterations associated with weight loss within a personalized 

weight reduction program designed on the basis of genotypic information. The investigation identified 

an inverse association between global DNA methylation and weight loss depending on individual 

genetic variants for insulin induced gene 2 (INSIG2), melanocortin 4 receptor (MC4R), ADRB2, 
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APOA4 and guanine nucleotide-binding protein 3 (GNB3) (Pirini et al., 2018). In summary, all these 

studies confirm that DNA methylation, in combination with genetic variants and other biomarkers, 

could be useful in the personalization of the clinical management of obesity. 

4. DNA MARKERS IN INFLAMMATION

Inflammation is a normal physiological response of a body to harmful stimuli, such as pathogens, 

damaged cells and chemical irritants (Larsen & Henson, 1983). Acute inflammation is a crucial 

component of the immune response, but when inflammation persists for a long period, it becomes 

chronic. Although the symptoms in chronic inflammation are not as severe as in acute inflammation, 

the persistent condition is involved in the development of numerous diseases including inflammatory 

bowel disease (IBD), T2D, atherosclerosis, obesity, and/or  MetS (Solas et al., 2017).   

Inflammation is a complex response in which a variety of interacting pathways, molecules and 

different cells types are implicated (Larsen & Henson, 1983). The response involves three major steps: 

i) An increased blood supply to the damage tissue; ii) Migration and recruitment of cells from

bloodstream to inflamed regions by the signaling of chemoattractants from the site of inflammation 

and by the adhesion molecules on the endothelium; iii) Secretion of mediators from cells at the site of 

inflammation (figure 10) (Calder et al., 2009). The inflammatory response requires a sophisticated 

regulatory mechanism to carry out functions at signal- and gene-specific levels. In addition, cells must 

be able to phenotypically adapt continuously their response by the expression, production and 

secretion of the different inflammatory mediators (Shi & Pamer, 2011). In this context, transcription 

factors such as nuclear factor-kappa B (NF-κB), FOXP3, interferon regulatory factor (IRF) and STAT 

families, in combination with epigenetics and, specifically, DNA methylation, have been suggested as 

the mechanisms involved in the regulation of inflammatory response. 

Several groups have shown that DNA methylation modulate mediators of inflammation including 

immune cells and inflammatory molecules. In addition, it is well documented that DNA methylation 

may also be involved in the development of chronic inflammation-related diseases (Stenvinkel et al., 

2007), including obesity and MetS 
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.  

4.1 DNA methylation and immune cells 

Monocytes and macrophages are the main cells involved in the inflammatory response. Monocytes are 

involved in the homeostasis during infection and tissue repair (Saeed et al., 2014). Commonly, 

circulating monocytes migrate to inflamed tissues and transform into monocyte-derived macrophages 

(Mantovani et al., 2013). Macrophages have been classified as classic M1 and alternative M2 

phenotypes. Activated M1 macrophages are proinflammatory cells whose activation is induced by 

interferon (IFN) γ or biological pathogens. The continuous activity of M1 macrophages results in 

chronic inflammatory diseases and tissue damage (Hoeksema et al., 2012). On the other hand, M2 

phenotype is induced by IL-4 and IL-10 and is involved in the decrease of inflammatory response and 

the promotion of tissue repair. In this context, numerous studies have shown that DNA methylation 

Figure 10. Generalised view of the inflammatory process including interaction between T cells 

and macrophages, and M1 and M2 macrophage polarization profiles. Adapted from Calder et 

al., (2009) and Sima et al., (2013) 
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has a functional role in the monocyte-to-macrophage differentiation and macrophage polarization 

(Saeed et al., 2014; Fogel et al., 2017). 

On the other hand, T cells have been identified as key players in inflammation-related diseases; 

specifically, T helper (Th) 1 and Th17 participate in cell-mediated immunity (Fogel et al., 2017). 

Similarly to monocyte/macrophage cells, dynamic DNA methylation and demethylation are necessary 

to develop and differentiate T lineage (Ansel et al., 2003). The alteration of the DNA methylation 

landscape during these processes may produce several diseases. For example, the inhibition of the 

methylation of T cells results in a lupus-like disease (Teitell & Richardson, 2003). In contrast to 

monocyte/macrophages and T cells, B cells have been scarcely studied in inflammatory diseases. 

However, these cells are involved in the physiopathology of IBD, Crohn’s disease or ulcerative colitis 

(Fogel et al., 2017). In this context, DNA methylation regulates Toll-like receptor (TLR) 2 and IL-8 

expression, which are necessary for the function of B cells (Noronha et al., 2009). 

4.2 DNA methylation and mediators of inflammation 

It is known that inflammation is controlled by cellular and extracellular mediators that are produced by 

immune cells. These molecules are cytokines, growth factors, eicosanoids, and several peptides 

(Turner et al., 2014). TLRs are also inflammatory regulators that are expressed in the membranes of a 

great variety of cell types including immune cells. The TLR family includes 11 proteins, from TLR1 

to TLR11. One of the major functions of these molecules is to induce signalling pathways which 

ultimately lead to the expression of inflammatory cytokines, chemokines, and IFNs (Chen et al., 

2007). 

Cytokines are essential modulators of inflammation via complex networks of interactions.  Cytokines 

are classified based on the nature of immune response, cell type or location. Key inflammatory 

cytokines include IL-1, IL-6 and TNF-α. The IL-1 family includes 11 protein members, expressed by 

numerous cells types and comprise pro- and anti-inflammatory proteins such as IL-1β, IL-1 receptor 

antagonist (IL-1Ra), IL-18, IL-6, and IL-10. Except for IL-1Ra, all the anti-inflammatory cytokines 

have also some proinflammatory properties (Opal & DePalo, 2000). TNF-α is a potent inflammatory 

mediator, involved in cytokine production, adhesion molecule activation and growth factor stimulation 
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(Turner et al., 2014). Under the stimulation of IL-1, TNF-α or lipopolysaccharide (LPS), cells produce 

chemokines, which are small cytokines with a chemotactic function. These molecules participate in 

the inflammatory response attracting leukocytes, monocytes and other effector cells to the site of 

inflammation. Some examples are C-X-C motif ligand (CXCL) 8, CCL2 and CCL4, among others.  In 

addition, IFNs are another group of signaling proteins that contribute to the inflammatory cytokine 

production (Chen, 2017). 

Although it is widely known that DNA methylation is involved in the regulation of inflammation, little 

is known about the role of DNA methylation in the expression control of inflammatory genes during 

the inflammatory response. In this context, Table 17 summarizes the studies that evidence the 

regulation of inflammatory mediators by DNA methylation. 

Molecule Main sources Major function DNA methylation modulation Reference 

TLR2 Leukocytes 
Stimulation of 

NF-κB 

Association between promoter 

methylation and higher pro-

inflammatory response in cystic 

fibrosis 

(Shuto et al., 2006) 

TLR4 Macrophages 
Stimulation of 

cytokines 

DNA methylation regulates TLR4 

expression in intestinal epithelial 

cells 

(Takahashi et al., 2009) 

IL1β Macrophages 

Pyrogenic, pro-

inflammatory, 

proliferation 

and 

differentiation 

IL1β acts as demethylating agent 

and changes DNA methylation of 

IL6 and IL8 

(Caradonna et al., 2017) 

IL6 

Th cells, 

macrophages, 

fibroblasts 

Differentiation 

into plasma 

cells 

Promoter hypomethylation 

decreases IL6 expression  
(Ma et al., 2016) 

TNFα Monocytes and 

macrophages 

Phagocyte cell 

activation, 

endotoxic shock 

Association between higher DNA 

methylation and TNFα low 

expression in monocytes 

Association between TNFα 

demethylation and pluripotent 

stem cells differentiation to 

hematopoietic stem cells 

(Sullivan et al., 2007) 

CCL2 

Endothelium, 

monocytes, 

macrophages 

Recruits 

monocytes, 

memory T cells 

and DC 

Association between global DNA 

hypermethylation and higher 

expression of CCL2 

(Petrus et al., 2017) 

IFN 

Leukocytes, 

fibroblast, T 

cells 

Anti-viral, 

macrophage 

activation, 

increases 

monocyte 

function 

Aberration of IFN methylation is 

associated with autoimmune 

diseases 

(Chen et al., 2017) 

Table 17. Studies analyzing association between DNA methylation and inflammatory mediators. 

Abbreviations: NF-κB, nuclear factor kappa B; DC, dentritic cells. 
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4.3 DNA methylation role in obesity and other chronic inflammation-

related diseases 

The excess adiposity characteristic of obesity is an established risk factor for the development of IR, 

T2D, hypertension, NAFLD, polycystic ovarian diseases, and some cancers (Hotamisligil & Erbay, 

2008). Hypertrophied adipocytes and adipose tissue-resident immune cells (i.e lymphocytes and 

macrophages) contribute to the inflammatory condition by increasing the secretion of proinflammatory 

cytokines, which enhance tissular inflammation (Makki et al., 2013). A number of studies have 

evidenced that the inflammatory trigger in obesity is mainly caused by an excess of nutrient 

consumption (Gregor & Hotamisligil, 2011). For example, several animal studies have suggested that 

changes in body weight, adiposity and inflammatory response occur very early after a short-term HFD 

feeding. When the obesogenic diet lasts in time, animals become glucose intolerant and IR in all 

metabolic tissues including liver and muscle (Sun et al., 2012). 

Adipose tissue macrophages (ATMs) are categorized into M1 or M2 phenotypes based on their 

differential expression of surface markers and cytokines. Obesity is associated with a positive 

deregulation of ATM polarization into M1 macrophages, which are characterized by a more 

proinflammatory phenotype and contribute to obesity-induced inflammation (Wang et al., 2016). In 

this context, several investigations have associated DNA methylation with the inflammatory state in 

obesity. A study in animals demonstrated that DNMT1-mediated Pparg1 promoter DNA methylation 

in macrophages was significantly enhanced in obesity and switched to a more pro-inflammatory M1 

phenotype (Xianfeng Wang et al., 2016). Another study in mice described the association between the 

hypomethylation of Tnf and higher adipose tissue inflammatory response (García-Escobar et al., 

2017). A study in the human monocyte/macrophage THP-1 cell line associated global DNA 

hypermethylation with the induction of pro-inflammatory and adipogenic transcriptional profile 

(Flores-Sierra et al., 2016). In addition, the hypermethylation of IL-6 was correlated with increased 

childhood adiposity in cord blood of Mexican children (Wu et al., 2018) and with overweight and 

obesity in blood cells of Korean women (Na et al., 2015). 
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On the other hand, MetS is characterized by a chronic low-grade inflammatory condition that is 

associated with the pathophysiological consequences of the syndrome (Monteiro & Azevedo, 2010). 

For example, high circulating levels of IL-6 and TNF-α have been associated with MetS in women and 

men cohorts. Interestingly, low circulating levels of the anti-inflammatory cytokine IL-10 have been 

found to be associated with higher inflammation and risk for MetS (Esposito & Giugliano, 2004). And 

elevated levels of C-reactive protein (CRP), an inflammatory biomarker, are a strong predictors of 

diabetes and CVD (Esposito & Giugliano, 2004). 

DNA methylation and inflammation may together affect the susceptibility to MetS. For example, an 

EWAS identified an association between global DNA hypermethylation and WAT inflammation and 

IR in obese subjects in comparison with healthy subjects (Petrus et al., 2017). DNA methylation 

influences inflammatory-related gene transcription and pathways, and subsequently different organ 

function. An extensive review has described that DNA methylation of inflammatory genes regulates 

circulating cholesterol and TG levels, and is associated with obesity (Khyzha et al., 2017). 

Specifically, Lopez-Legarrea et al., (2013) described the association between high methylation levels 

of SERPINE1 at baseline in peripheral white blood cells and higher changes in body weight, fat mass, 

TC and TG after a dietary program (Lopez-Legarrea et al., 2013). In addition, other studies have found 

that IL-6 methylation in peripheral blood presented a negative association with BP (Mao et al., 2017), 

meanwhile IL-10 hypomethylation in blood was associated with the development of MetS (Tobi et al., 

2009). 
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1. Hypothesis

This work is based on the hypothesis that the DNA methylation patterns of some genes are related to 

life style factors including the diet (e.e., calorie intake, nutrients and other bioactive compounds), and 

can have an effect on the onset of obesity and its comorbidities, as well as associated with the 

individualized response to different weight loss programs. As suggested by previous investigations, 

the identification of novel epigenetic biomarkers may help to determine the risk of obesity and related 

pathologies, and to design more personalized weight loss strategies in the framework of precision 

nutrition. Some of these diseases are characterized by a low-grade chronic inflammatory state. In this 

study, we also hypothesize that dietary methyl donors are able to modify the inflammatory response 

through the epigenetic regulation of inflammation mediators. 

2. General objective

The general aim of this work was to identify DNA methylation patterns that are associated with 

obesity and the response to specific weight-loss treatments, deepening into the interactions between 

epigenetic marks and dietary patterns and nutrients in order to link them with the development of 

obesity and inflammation. 

3. Specific objectives

1. To analyse the association between the DNA methylation pattern in white blood cells and the

development of obesity in a pediatric population (chapter 1).  

2. To investigate the influence of a weight loss intervention in the DNA methylation levels of genes

involved in the circadian system, and the association between DNA methylation and changes in the 

lipid profile (chapter 2). 

3. To identify potential epigenetic biomarkers for weight loss within a weight-loss program by

integrating transcriptome and methylome microarray data (chapter 3). 

4. To evaluate whether a low intake of folic acid is related to adverse metabolic features in obese

subjects through changes in gene-specific DNA methylation patterns (chapter 4). 

5. To study whether folate and other dietary methyl donors can prevent the inflammatory response in a

human monocyte/macrophage in vitro model through epigenetic mechanisms (chapter 5). 
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In order to study the possible DNA methylation marks underlying obesity and related disorders as well 

as potential interactions between DNA methylation patterns with dietary patterns and nutrients 

different populations were used in the present work (Figure 11): the GENOI (“Grupo de Estudio 

Navarro de la Obesidad Infantil”) study, the Women cohort and the RESMENA (“REducción del 

Síndrome Metabólico en Navarra”) study. In addition, THP-1 cells were used for the in vitro study.

Figure 11. Overview of the experimental designs conducted from Chapter 1 to 

Chapter 5. 
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The objectives proposed for the present work have been addressed in different chapters (Chapters 1 to 

Chapter 5). In this section a brief explanation of each experimental design and the most relevant 

laboratory techniques and procedures used will be given. 

1. STUDY POPULATIONS

 GENOI study (Chapter 1)

The GENOI study is a cross-sectional study of cases and controls started in 2001 and finished in 2003. 

The study was designed to understand the role of lifestyle and genetics factors on obesity development 

in children and adolescents in the region of Navarra, Spain. 

The obese (cases) and non-obese (controls) participants were recruited from Virgen del Camino 

Hospital, Clinica Universidad de Navarra and other primary care centers when they were attended for 

routine medical examinations or vaccinations.  The study was approved by the Ethics Committee of 

the University of Navarra. Consequently, the parents and adolescents aged above 12 years gave 

written informed consent for participation in agreement with the Declaration of Helsinki. 

The GENOI project recruited 370 children and adolescents between 5 to 19 years old. Cases (n = 185) 

were Spanish children of Caucasian ethnicity with BMI above the age- and sex-specific 97
th
 percentile 

according to the Spanish BMI reference charts (Sobradillo, Aguirre, & Aresti, 2000). Controls (n = 

185) were healthy subjects with the BMI below the 97
th
 percentile for the same references charts.  

Exclusion criteria were exposure to hormonal treatment or development of secondary obesity diseases 

due to endocrinopathies or serious intercurrent illness. Further aspects of the design of the GENOI 

study have previously been detailed elsewhere (Ochoa et al., 2007). 

 Women cohort (Chapter 2)

The study was designed as a randomized, longitudinal and controlled trial to study the influence of a 

weight loss nutritional intervention in the methylation status of clock system.  The participants 

followed a weight reduction program named Garaulet method (Corbalán et al., 2009). 

 The clinical investigations were conducted in accordance with the guidelines of the Declaration of 

Helsinki and were approved by the Ethics Committee of the Virgen de la Arrixaca Hospital (2011-01-

26). The experimental protocol was conformed to international ethical standards (Portaluppi et al., 
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2010). The study was explained to the participants before starting, and the volunteers provided signed 

informed consent prior to participating in the study. Patient data were codified to guarantee 

anonymity. 

The study sample was composed by 61 overweight/obese women between 16 and 77 years old, with 

an average BMI of 28.6 ± 3.4 kg/m
2
 who voluntarily attended 5 nutrition clinics during 2009-2010 in 

the city of Murcia, southeastern Spain. Those women who were out of this range of age, under 

treatment with thermogenic or lipogenic drugs, following a special diet at the beginning of the study, 

or pre-diagnosed with diabetes mellitus, chronic renal failure, hepatic diseases such as NAFLD, 

steatohepatitis or cirrhosis, or cancer were excluded from the study. 

A total of 68 potential participants were asked to attend a screening session. Finally, 9 % of the 

volunteers were dropped out and 61 women were included in the study. 

 Characteristics of the intervention

The characteristics of the weight reduction program (Garaulet method) have been described 

completely elsewhere (Corbalan et al., 2009) and are represented in the Figure 12. 

The study was divided into two phases: initial period for the first 4 months, followed by a maintenance 

period for 5 months. In the initial period, subjects attended a weekly 60-min therapy session in support 

groups (n = 10). During the maintenance phase, the group therapy was fortnightly initially and 

monthly subsequently. Sessions were conducted by a nutritionist. Treatment was based on the 

following issues: 

 Dietary treatment:  At the beginning of the dietary intervention, total energy intake was 2079 ± 

701 kcal/day (43% of energy was supplied by carbohydrate (CH) and 41% by fat). During weight loss 

management, the total energy intake was reduced to 1408±297 kcal/day (50% of energy was supplied 

by CH and 35% by fat). Total energy intake and macronutrient composition were determined using 

Grunumur software (version 2.0; University of Murcia, Murcia, Spain) (Perez-Llamas et al., 2012), a 

nutritional evaluation program, in conjunction with Spanish food composition tables. Dietary 

individual energy requirements were assessed by calculating 1) resting energy expenditure according 

to the Harris-Benedict formula and 2) total energy expenditure (TEE) according to the type and 

duration of physical activity. Next, about 2.6 MJ/day was subtracted from the TEE. The final dietary 



Subjects and methods 

76 

energy content ranged from 1200 to 1800 kcal/day for women to induce an approximate loss of 0.5 to 

1 kg/week. The recommendations were based on the Mediterranean dietary pattern (Corbalan et al., 

2009), in which the distribution of macronutrients followed the recommendations of the Spanish 

Society of Community Nutrition. 

 Nutritional education: Nutritionist provided guidelines during group therapy for helping 

subjects plan their own menu and adopt appropriate lifetime eating habits. 

 Physical activity: Individualized long-term goals were accentuated with 15 to 30 min or more 

of moderate-intensity physical activity, and preferably, 2 or 3 times a week, unless medically 

contraindicated. Patients were encouraged to use a pedometer to reach at least 10,000 steps per day. 

  Behavioral techniques: Different behavioral techniques were included in the group therapy, 

such as stimulus control, self-monitoring, positive reinforcement, and cognitive behavioral therapy. 

Mediterranean dietary 

pattern (50 % CH, 35 %

fat, 15-20 % protein)

Behavioral techniques:

-Stimulus control
-Self-monitoring

-Positive-reinforcement

-Cognitive behavioral therapy

Weight reduction program – Garaulet Method 

4-month weight loss phase 5-month weight maintenance

0 we 16 we 36 we

Blood collection:

-DNA isolation

-Biochemical variables

Anthropometric measurements

Blood pressure

Body composition analysis

Questionnaire 

implementation

Chronodisruptors:

-Sleep duration
-Snacking frequency

-Morningness/Eveningness

Follow-up visits

(Weekly)

Physical 

activity:

-15-30 min

- 2-3 times/week

Nutritional education

Treatment 

structure

Follow-up visits

(Fortnightly; Monthly)

Figure 12. Main characteristics of the Garaulet Method for weight management. 

Abbreviations: we, week; CH, carbohydrate. 
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 Morningness-Eveningness Score

The score was developed using the Morning-Evening Questionnaire (MEQ) elaborated by Horne and 

Ostberg (1976) (Horne & Ostberg, 1976). The final score is divided into five behavioural categories: 

definitively morning times, moderately morning types, neither types, moderately evening times and 

definitively evening types. The score is useful to characterize subjects depending on individual 

preferences of wake/sleep patterns and the time of day people feel best. The complete questionnaire 

methodology was completely described by Garaulet et al., (2011). 

 RESMENA study (Chapter 3 and 4)

The RESMENA study is a randomized, longitudinal and controlled trial that was designed to compare 

the effects of two dietary strategies on improving the comorbidities of MetS such as body 

composition, biochemical, hormonal, oxidative stress or epigenetics parameters over a six-month 

period (Zulet et al., 2011). 

The CONSORT (CONsolidated Standards Of Reporting Trials) 2010 guidelines (Moher et al., 2012) 

were followed to design this intervention. The study was approved by the Research Ethics Committee 

of the University of Navarra (ref.065/2009). All the volunteers gave written informed consent before 

starting the intervention trial (www.clinicaltrials.gov; NCT01087086). The exclusion criteria (Perez-

Cornago et al., 2014) are detailed in Table 19. 

Exclusion criteria of the RESMENA study 

 Subjects with difficulty for changing dietary habits.

 Having psychiatric or psychological disorders.

 Eating disorders.

 Subjects with weight instability for 3 months before the study.

 Pharmacological treatment (except drugs included in the IDF diagnostic criteria for the MetS).

 Pre-existing chronic diseases related to the metabolism of energy and nutrients (gastric ulcer, disorders of the

digestive system, hyperthyroidism or hypothyroidism). 

 Following special diets.

 Food allergies or intolerances.

Table 19. Exclusion criteria. 



Subjects and methods 

78 

The RESMENA project recruited 109 volunteers with MetS symptoms, but only 93 subjects were 

diagnosed with the MetS according to the International Diabetes Federation criteria (Alberti et al., 

2006). Finally, 84 participants completed whole intervention. 22 % of the volunteers were dropped 

out.  Participants were divided randomly in two groups to follow one of the two energy-restricted 

diets, the Control diet or the RESMENA diet. The Control diet followed the recommendations of the 

American Heart Association (AHA). In addition, the main characteristics if the RESMENA diet were: 

high intake of dietary antioxidants from natural sources, low glycemic index and a macronutrient 

distribution if 40 % of CH, 30 % of fat and 30 % of protein distributed with 7 meals per day that 

compete to conventional AHA-recommendations (Zulet et al., 2011). 

The study lasted for 6 months divided in two sequential stages: during the first period of 2 months the 

subjects received nutritional assessment every two weeks (Lopez-Legarrea et al., 2013), followed by a 

4 months self-control period in which the volunteers applied the first period acquired dietary habits (de 

la Iglesia et al., 2014). During the whole study, the professionals asked the participants to maintain 

their habitual physical activity (Lopez-Legarrea et al., 2014) (Figure 13). 

 

Control diet (55 % CH, 30 % fat, 15 % protein)

6-months nutritional intervention

2 months

Intervention stage
4 months

Self-control stage

0 mo 2 mo 6 mo

Measurements

Anthropometry

Body composition

Blood pressure

Blood collection

48 hours weighed food records

Every two weeks:

Anthropometry

BIA body composition

Blood Pressure

RESMENA diet (40 % CH, 30 % fat, 30 % protein)

Figure 13. Design of the RESMENA study. Abbreviations: mo, month; CH, carbohydrate; 

BIA, bioelectrical impedance analysis. 
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 Dietary assessment

The habitual dietary intake of the volunteers was assessed using a validated food frequency 

questionnaire that includes the daily servings of cereals, vegetables, fruits, dairy products and meat 

and it also considers the percentage of energy provided by total and SFAs, the amount of cholesterol 

and the variety of the diet expressed by the number of different foods consumed daily. The energy, 

nutrient content and variety of the diet were determined using DIAL software (Alce Ingeniería, 

Madrid, Spain)(de la Iglesia et al., 2013). 

2. CLINICAL AND BIOCHEMICAL ASSESSMENT (Chapter 1, 2, 3 and

4)

 Anthropometric measurements

Subjects were weighed to the nearest 100 g with a digital balance and height was measured using a 

stadiometer. BMI was calculated as the body weight divided by height squared (kg/m
2
). In GENOI 

study, BMI z-score was computed by the conversion of BMI values into standard deviation scores 

using age and sex according to the criteria by Cole (2000) (Cole, 2000).  Total body fat mass was 

determined by bioelectrical impedance (TANITA, Tanita corporation, Japan) and DEXA (DEXA 

Lunar Prodigy, GE Medical Systems, WI, USA). 

 Biochemical measures

Biochemical parameters were determined in blood samples. Plasma and serum were separated by 

centrifugation at 1,400 xg, 5 ºC, 15 min. VLDL-C was separated by ultracentrifugation (Havel et al., 

1955), whereas HDL-C was determined after precipitation of apoB-containing lipoproteins with 

dextran sulfate and magnesium (Warnick et al., 1982). LDL-C was calculated using Friedewald 

equation (Friedewald et al., 1972): LDL-C = TC – HDL – TG/5. Plasma glucose, TC and TG values 

were obtained by automated chemical analysis (Roche Diagnostics GmbH, Mannheim, Germany) and 

in a Pentra C-200 autoanalyser (HORIBA ABX, Madrid, Spain). Serum fasting insulin was measured 

with three different radioimmunoassay kits: DPC (LA, CA, USA), TKIN1 (Diagnostic Products, 

Madrid, Spain) and Mercodia (Sweeden). HOMA was stimated as [fasting insulin (µU/mL) x fasting 

glucose (mM)]/22.5. 
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3. CELL MODEL AND EXPERIMENTAL DESIGN (Chapter 5)

Human monocyte THP-1 cells were treated with folic acid (11.3 µM) dissolved in NaOH 1 M, choline 

chloride (105 µM), vitamin B12 (18.5 nM) and a mix of methyl donors that consisted in a combination 

of folic acid, choline chloride and vitamin B12 in the concentrations previously indicated. The 

concentrations of the treatments were chosen multiplying ten times the basal concentration present in 

RPMI-1640 medium for each compound. After 24 h, cells were differentiated into macrophages by 

incubation with 25 ng/ml 12-O-tetradecanoylphobol-13-acetate (TPA) for 48 h, and then were 

activated by incubation with 100 ng/ml LPS for 24 hours. Finally, RNA and DNA were extracted, and 

supernatants were collected for enzyme-linked immunosorbent assay (ELISA) analysis (Figure 14). 

 Evaluation of cell viability

For the study of cell viability after treatments, 20 µl 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) (5 mg/ml) was added to each well and plates were incubated for 

2 h at 37 ºC. Formazan crystal formation was solubilised in 100 µL/well dimethylformamide (DMF)-

glacial acetic acid-SDS solution consisting in 40 % DMF, 2 % glacial acetic acid and 16 % w/v 

sodium dodecyl sulfate (SDS). Formazan production was quantified by absorbance at 570 nm using a 

microplate reader (Multiskan Spectrum, Thermo Electron Corporation, Finland). The results were 

expressed as relative cell viability (%). 

 Chromatin Immunoprecipitation (ChIP) Assay

ChiP assay was performed with the ChIP-IT
TM

 Express Enzymatic Kit (Active Motif, CA, USA) 

following the manufacturer’s instruction. Chromatin was immunoprecipitated using rabbit polyclonal 

Figure 14. In vitro experimental design for chapter 5. 
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antibody for NF-κB (ab7970, Abcam, MA, USA). Real time quantitative PCR was performed using 

primers for IL1B: sense 5’-agcaacaaagctgccactta-3’ and antisense 5’-tgacgtgctgtgtgaatttg-3’, and TNF: 

sense 5’-ggagaatgtccagggctatg-3’ and antisense 5’-tcctggaggctctttcactc-3’. 

4. DNA METHYLATION ANALYSIS

 Genome-wide methylation (Chapter 1, 3 and 4)

Array-based specific DNA methylation analysis was performed with the Infinium 

HumanMethylation450 BeadChip kit (Ilumina, CA) and scanned using Illumina iScanSQ platform 

(Mansego et al., 2013). The GenomeStudio methylation module software (v1.9.0, Illumina) was used 

to extract the intensity of the images. Pre-processing and analysis of the Infinium 450k data was 

performed using the R package. Methylation values were represented as β-values calculated using the 

formula β-value = M/(U+M), where M and U are the raw “methylated” and “unmethylated” signals, 

respectively. Methylation array data were normalized using Subset Quantile Normalization in R 

program. The algorithm of Houseman et al. (2012) incorporated in R program was used to estimate 

cell type composition (Houseman et al., 2012). 

 Gene-specific methylation (Chapter 1, 2, 3 and 5)

Specific sequence methylation was quantified using MassARRAY® EpITYPER™ (Bruker-

Sequenom, CA, USA). This method uses matrix-assisted laser desorption ionization time-of-flight 

(MALDITOF) mass spectrometry in combination with RNA base-specific cleavage (MassCLEAVE). 

Polymerase chain reaction (PCR) primers for the regions of interest were designed using EpiDesigner 

software (Bruker-Sequenom, CA, USA) (Figure 20). PCR products were purified from 2% agarose 

gels by Qiagen Gel Extraction Kit (Qiagen), and eluted with 1X Roche FastStart high-fidelity reaction 

buffer (Roche). Unincorporated dNTPs in the PCR products were dephosphorylated by adding 2 µl 

shrimp alkaline phosphatase (SAP) (37ºC, 20 min), and SAP was then heat-inactivated for 5 min at 

85ºC. Subsequently, samples were incubated for 3h at 37ºC with 5 µl of Transcleave reaction mix 

(Sequenom) for simultaneous in vitro transcription and base-specific cleavage. The cleaved fragments 

were deionized with 20 µl of deionized water and then were spotted onto silicon matrix-preloaded 

chips (Spectro-CHIP, Sequenom) by nanodispensation. The fragments were analyzed using MALDI-
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TOF MS Compact Unit. Matched peak data were exported using EpiTyper software. Methylation 

percentages were calculated using the ratio of the unmethylated versus methylated peaks. In addition, 

DNA methylation standards were used to control for amplification bias. 

5. mRNA EXPRESSION ANALYSIS

 Genome-wide mRNA expression analysis (Chapter 3 and 4)

Total RNA was extracted from WBC by using TRIzol Reagent (Life Technologies, Carlsbad, CA). A 

total of 1 µg of RNA from each sample was reverse-transcribed using High Capacity Complementary 

DNA reverse transcription kit (Life Technologies, Carlsbad, CA) and hybridized to a HumanHT-12 v4 

Expression BeadChip kit (Illumina Inc., San Diego, CA, USA) containing annotated 31,000 genes 

with more than 47,000 probes and scanned using the Illumina HiScan SQ platform. Illumina 

Gene symbol Primer sequence bp Genebank number 

PTPRS 5’-TTTTTTTTGGTTTTTGTGTTTTTGT-3’ 
3’-AAACCACACCAACCTTAATCCTC-5’ 

272 NC_000019.9 

PER3 5’-TGATTTTTTTTAATTGGATGTTAGA-3’ 
3’-CAAAAACTCACCAAAACATTCATAA-5’ 

365 NC_000001.11 

BMAL1 5’-TGAGATTTTGGTAAATTAGGGATTTT-3’ 
3’-ACTACTTTCCTACCACCAATCATTTAAC-5’ 

376 NC_000011.9 

CLOCK 5’-TTTTTTTAGGAGATGGGAGAAGATG-3’ 
3’-CCTAAAAACTCTTTAACTTTCCCCC-5’ 

271 NC_000004.11 

NR1D1 5’-AGAGTTTTTTGTTTTAGGGAAAGGT-3’ 
5’-TTACCCCCTAAACACTAACTAAAAA-3’ 

477 NC_000017.11 

CD44 5’-GGGGTGAAGTAATGGATAGTAATTAGG-3’ 
3’-AATTATATATTCCAAAAAATCCCA-5’ 

312 NC_000011.10 

IL-1β 5'-GTGTTTGTAGTTTTAGTTGTTGGG-3' 
3'-TCTCTTAATAATACCAACCAAAAATTATCA-5' 

331 NC_000002.12 

TNF 5'-TTTGGTTTTTAAAAGAAATGGAGGT-3' 
3'-TCCTTAATAAAAAAACCCATAAACTCA-5' 

273 NC_000006.12 

SERPINE1 5'-TTTGGTATAAAAGGAGGTAGTGGTT-3' 
3'-ACTCTCCTACAATCACCCCTAAAAC-5' 

343 NC_000007.14 

IL-18 5'-TTTGTTGAGTTTTTTGTTTTTTTGG-3' 
3'-CCTCTAATTACCATAACTAACTTTCCA-5' 

251 NC_000011.10 

Table 20. Primer sequences of the MassARRAY EpiTYPER analyses in chapters 1, 2, 3 

and 5.

GenomeStudio v2011.1 software was used to extract the data (v1.9.0, Illumina Inc., San Diego, CA, 

USA). 
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 Gene-specific expression analysis (Chapter 3 and 5)

For the gene individual expression study, 2 µg of RNA was reverse-transcribed using MultiScribeTM 

Reverse Transcriptase kit following the manufacturer’s instruction (Thermo Fisher Scientific Inc., 

Waltham, MA, USA). cDNA was amplified with the predesigned Taqman primers for glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) (Hs02758991_g1), CD44 (Hs01075861_m1), IL1B 

(Hs01555410_m1), TNF (Hs00174128_m1), IL18 (Hs01038788_m1), SERPINE1 (Hs01126606_m1), 

cluster of differentiation 40 (CD40) (Hs01002913_g1) and TLR4 (Hs00152939_m1). Gene mRNA 

levels were normalized to the endogenous control GAPDH. The comparative 2-ΔΔCT method was 

used for quantification of relative expression. Real-time PCR was performed using an ABI Prism 

7900HT Sequence Detection System (Applied Biosystems, Foster City, CA, USA). 

6. OTHER TECHNIQUES

 Protein analysis (Chapter 3 and 5)

For the protein analysis plasma samples (Chapter 3) and culture supernatants (Chapter 5) were 

collected and stored at – 80 ºC. IL-1β, TNF-α, plasminogen activator inhibitor-1 (PAI1), CD40 and 

CD44 protein concentrations were measured with standard ELISA kits (R&D Systems Europe, UK) 

according to manufacturer’s instructions (Table 21). Absorbance was measured at 450 nm using a 

microplate reader (Multiskan Spectrum, Thermo Electron Corporation, Finland). 

 

Antibody Manufacturer Reference Sample type 

CD44 R&D DY7045-05 Human plasma 

IL-1β R&D DLB50 Culture supernatant 

TNF-α R&D DTA00C Culture supernatant 

PAI1 R&D DTSE100 Culture supernatant 

CD40 R&D DCCD40 Culture supernatant 

Table 21. List of ELISA kits used in Chapters 3 and 5. 
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 Bioinformatic analyses of transcription factors (Chapter 1, 2 and 5)

The bioinformatic analysis for the putative transcription factor binding site in the sequence of genes of 

interest was performed using LASAGNA Search 2.0 TRANSFAC (Lee & Huang, 2014). 

 Pathway analysis (Chapter 1)

Potential pathways in which the genes receptor-type tyrosine-protein phosphatase S (PTPRS) and 

period circadian regulator 3 (PER3) participate were detected using Ingenuity Pathway Analysis (IPA) 

software (Ingenuity Systems, Redwood City, CA). 



RESULTS
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Supplementary Table S1. CpG sites differently methylated between cases and controls (p<0.001) in the methylation array (n=24).

Probe ID Gene p value 
p 

adjusted 

Control 

methylation 

(%) 

Case 

methylation 

(%) 

Mean 

diff. 
Chr Gene region CpG island 

cg06842518 FYTTD1;KIAA0226 2.473E-06 0.309 6.3 5.3 -1.0 3 
TSS200; 1stExon; 5'UTR; TSS1500; 

TSS1500 
Island 

cg04757389 PTPRS 2.641E-06 0.309 91.6 88.6 -3.0 19 Body; Body; Body; Body Island 

cg24927646 CHSY1 3.337E-06 0.309 88.6 92.0 3.5 15 Body Open sea 

cg12513481 SKAP1 3.470E-06 0.309 13.3 10.8 -2.5 17 TSS1500; TSS1500 S_Shore 

cg04902474 KIAA1522 3.841E-06 0.309 21.2 25.4 4.2 1 Body N_Shelf 

cg12943082 CCL26 4.097E-06 0.309 28.2 42.8 14.6 7 TSS1500 Open sea 

cg26433494 PLXNA4 6.049E-06 0.309 75.1 71.0 -4.1 7 Body; 3'UTR Open sea 

cg01878214 TBRG4;SNORA5C;SNORA5A 6.947E-06 0.309 79.5 85.5 6.0 7 
Body; TSS1500; TSS1500; Body; 

Body 
Open sea 

cg11210138 MIR1203;SKAP1 7.899E-06 0.309 38.1 51.8 13.6 17 TSS200; Body; Body Open sea 

cg01109012 DYNLT3 8.413E-06 0.309 33.8 25.2 -8.6 X TSS1500 S_Shore 

cg18797923 AMT;NICN1 1.074E-05 0.309 88.5 85.4 -3.1 3 
TSS1500; TSS1500; TSS1500; 3'UTR; 

TSS1500; TSS1500 
Open sea 

cg00252701 CDC73 1.230E-05 0.309 6.2 5.3 -0.8 1 TSS200 Island 

cg23912763 PWP1 1.359E-05 0.309 2.9 3.8 0.9 12 Body Island 

cg03448938 PIKFYVE 1.418E-05 0.309 6.1 5.1 -1.0 2 TSS1500; TSS1500 Island 

cg19558848 MYH3 1.425E-05 0.309 78.8 87.0 8.2 17 5'UTR Open sea 

cg04531202 MTHFSD;FLJ30679 1.459E-05 0.309 4.6 3.8 -0.8 16 
TSS200; TSS200; TSS200; TSS200; 

TSS200; TSS200; TSS200; Body 
Island 

cg27104173 PTPRN2 1.495E-05 0.309 95.6 94.6 -1.0 7 Body; Body; Body Open sea 

cg14925137 IQCB1;EAF2 1.519E-05 0.309 6.2 5.3 -0.9 3 TSS200; TSS200; TSS200 Island 

cg00565090 SNORD23;GLTSCR2 2.029E-05 0.396 34.7 40.1 5.3 19 TSS1500; Body Open sea 

Note: the rest of the table can be accessed in link ijpo12224-sup-0001-SI.pdf. 

http://onlinelibrary.wiley.com/store/10.1111/ijpo.12224/asset/supinfo/ijpo12224-sup-0001-SI.pdf?v=1&s=ae6525c30e649317943d5688412c0a424c8eceae
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Supplementary Table S2. Linear Regression Models of Association between BMI z-score and 

gene methylation levels. 

              

  

BMI z-score as dependent 
Standardized B 

coefficient 
95 % CI adj R

2
 p value 

  

              

  cg_04757389 (PTPRS) - 0.804 (-1.660; -0.940) 0.747 < 0.001   

  age - 0.309 (- 4.118; - 0.557)   0.013   

  gender 0.021 (-1.305; 1.553)   0,858   

              

              

  cg_10059324 (PER3) -0.751 (-0.469; - 0.201 0.582 < 0.001   

  age - 0.159 ( -3.178; 1.059)   0.308   

  gender - 0.059 (- 1.985; 1.358)   0.698   

              

  Note: Adjusted by age and gender.         
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Supplementary Table S3. Associations between the methylation levels of the different CpG 

sites of PTPRS and PER3 genes.  

            

  CpG site PTPRS 
CpG_6   

  n R coefficient p value   

  cg_04757389 (array) 24 0.637 0.001   

  CpG_2 91 0,297 0.004   

  CpG_3 91 0,602 < 0.001   

  CpG_5 91 0,567 < 0.001   

  CpG_7 91 0,712 < 0.001   

  CpG_8.9 91 0,105 0,322   

  CpG_10 91 0,342 < 0.001   

  CpG_11 91 0,476 < 0.001   

  CpG_13 91 0,088 0,409   

  R = Pearson's correlation coefficient; p = probability value     

      

  CpG site PTPRS 
CpG_3   

  n R coefficient p value   

  cg_04757389 (array) 24 0.641 0.001   

  R = Pearson's correlation coefficient; p = probability value     

      

            

  CpG site PER3 
CpG_1   

  n R coefficient p value   

  cg_10059324 (array) 24 0.256 0.238   

  CpG_2 91 -0,054 0.614   

  CpG_3 91 -0,057 0.594   

  CpG_4 91 -0,107 0.312   

  CpG_15 91 0,020 0.852   

  R = Pearson's correlation coefficient; p = probability value     
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Supplementary Table S4. Transcription factors that putatively bind to the selected PTPRS and PER3 

sequences.   

       
PTPRS             

Name (TRANSFAC ID) Sequence Strand Score p-value E-value CpG binding site 

SRF(M00215) CCTTTTTTGGTTTT + 13.38 0.000775 0.222 - 

Sp1(M00008) CAGGCAGGAA - 6.72 0.000875 0.255 CpG_1 

AP-2(M00189) CTCCCCCAGGCA - 7.93 0.000575 0.166 CpG_1 

Zic1(M00448) GGGGTCGTC + 6.4 0.000975 0.285 CpG_1 

MEIS1B:HOXA9(M00421) TGACGGTTTTTGAG + 7.67 0.0008 0.230 CpG_2 

Brn-2(M00145) CACATGGAAAAACAAC - 8.13 0.000775 0.221 - 

N-Myc(M00055) TTCCATGTGAAT + 8.11 0.000575 0.166 - 

Oct-1(M00195) TTCCATGTGAATCGG + 7.99 0.000875 0.250 CpG_3 

USF(M00217) TCACATG - 10.9 0.00065 0.190 - 

GATA-6(M00462) CCCGATTCAC - 7.97 0.00065 0.189 CpG_3 

GATA-1(M00075) CCCGATTC - 12.53 0.000475 0.138 CpG_3 

AREB6(M00415) GGGTTTGAA + 8.44 0.000275 0.080 - 

Zic1(M00448) GGGGTGGTC - 6.81 0.0006 0.175 CpG_4 

Zic2(M00449) GGGGTGGTC - 7.19 0.000325 0.095 CpG_4 

MZF1(M00084) GGGCGAGGGGGTC - 7.25 0.0008 0.230 CpG_6, CpG_7 

Ik-2(M00087) CGCTGGGACCCC + 9.75 0.000275 0.079 CpG_9 

NF-kappaB(M00194) CTGGGACCCCCCGG + 7.18 0.00095 0.273 CpG_10 

CREB(M00113) TCGGTGACGAGA + 9.08 0.0007 0.202 CpG_11, CpG_12 

ATF(M00017) CGGTGACGAGAAGA + 9.52 0.00035 0.100 CpG_11, CpG_12 

STATx(M00223) TTCTCGTCA - 7.39 0.001 0.292 CpG_12 

GR(M00205) GTTTCCAGCTCTTCT - 11.3 0.000825 0.235 - 

NF-AT(M00302) AGCTGGAAACCA + 7.85 0.0009 0.260 - 
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ZID(M00085) TGGCTCTGGTTTC - 7.17 0.0008 0.230 - 

Tal-1beta:E47(M00065) CGCTCCAGCTGGCTCT - 6.1 0.00095 0.271 CpG_13 

Tal-1beta:ITF-2(M00070) CGCTCCAGCTGGCTCT - 8.36 0.000125 0.036 CpG_13 

AP-4(M00005) AGAGCCAGCTGGAGCGTG + 12.63 0.0001 0.0283 CpG_13 

AP-4(M00005) GAGCCAGCTGGAGCGTG + 8.77 0.000875 0.248 CpG_13 

MyoD(M00184) TCCAGCTGGC - 9.61 0.000325 0.095 - 

Lmo2 complex(M00277) GCCAGCTGGAG + 12.39 0.000325 0.094 - 

E2(M00181) ACACCAGCCTTGGTCC - 9.47 0.000225 0.064 - 

E2(M00107) GGACCAAGGCTGGTGT + 10.39 0.000225 0.064 - 

Poly A downstream element(M00211) TGTGGTCCC + 9.1 0.000175 0.051 - 

Sp1(M00008) CAGGCAGGTT - 6.83 0.000825 0.240 - 

Note: Transcription factors that bind to CpG sites of interest are highlited in bold. CpG analysed by sequenom are 

underlined. 
    

              

PER3             

Name (TRANSFAC ID) Sequence Strand Score p-value E-value CpG binding site 

FOXO4(M00472) AAAAACAGGC - 10.62 0.0009 0.34 - 

NF-AT(M00302) CAGAGGAAAAAC - 9.93 0.0001 0.037 - 

v-ErbA(M00239) CAGGAAGGTCTCGCCT - 9.06 0.0005 0.185 CpG_1 

Zic2(M00449) AGGAAGGTC - 6.23 0.001 0.38 - 

NF-kappaB(M00208) GAGACTCTCCT - 9.52 0.000475 0.178 - 

Lyf-1(M00141) TCTGGCGGA + 7.79 0.001 0.38 CpG_2 

MRF-2(M00454) CGGAATAGTGC - 16.38 0.00075 0.279 CpG_4 

AhR(M00139) TCCGCAGCTTGCGTGAG + 13.64 0 0 CpG_4, CpG_5 

AhR(M00139) CCGCAGCTTGCGTGAGC + 11.11 0 0 CpG_4, CpG_5 

AhR(M00139) CGCAGCTTGCGTGAGC + 6.7 0.000975 0.36 CpG_4, CpG_5 

CREB(M00177) GCTCACGCAAGC - 8.51 0.000675 0.252 CpG_5 
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CP2(M00072) GCTCACGCAAG - 9.1 0.00035 0.131 CpG_5 

v-ErbA(M00239) GCTGAAGCTCACGCAA - 7.9 0.000775 0.287 CpG_5 

AP-4(M00175) TTCAGCTCTT + 8.44 0.0009 0.34 - 

AP-4(M00175) TCAGCTCTT + 8.44 0.0009 0.34 - 

COMP1(M00057) TGAGAGGATTAGCAGGAACA - 19.78 0.00085 0.308 - 

Note: Transcription factors that bind to CpG sites of interest are highlited in bold. CpG analysed by sequenom are 

underlined. 
    



Supplementary data chapter 1 

97 

Supplementary Figure S1. 

A) Genomic DNA position of targeted CpG and sequences of the amplicons. Number of the left of

the sequence represents the position with respect to the first nucleotide of the mRNA (start of 

transcription). Underlined and consecutively numbered CpGs were reliably quantified by 

EpiTYPER. The CpG that was present in the methylation array is framed in a box. B) Polymerase 

chain reaction (PCR) primers covering 13 CpG sites of the PTPRS gene and 5 CpG sites of the 

PER3 gene were designed using Epidesigner software (Bruker-Sequenom). 

A) PTPRS (NC_000019.9) chr19: 5,250,515-5,250,814

+ 89975 CCCTTTTTTGGTTTTTGTGTTTCTGCCTCTTCCTGCCTGGGGGAGGGGTCGTCTCCTGGT

+ 90035 TGCTTTGACGGTTTTTGAGTTGTTTTTCCATGTGAATCGGGGTTTGAAGCGACCACCCCC

+ 90095 CACAACCTGCCACCCCCCCACCCCACCGCCCACCCTCCCGACCCCCTCGCCCAAGCGGGT

+ 90155 CCCCCCGCTGGGACCCCCCGGCTACTCGGTGACGAGAAGAGCTGGAAACCAGAGCCAGCT

+ 90215 GGAGCGTGCTGAGGACCAAGGCTGGTGTGGTCCCCTTATAACCTGCCTGGACCCTCCATT

PER3 (NC_000001.11) chr1: 7,884,624-7,885,010

+ 40212 GTGATTCTTTCTAATTGGATGCCAGATACTGTGAATGGGTACCAAATATATTTGTATTCC

+ 40272 TATAAATATTCTTGATCTTTATTCTGGGTCCCAGTGAAGTTACCTGTAAACAGATTGATC

+ 40332 CTTTCAGGCTTTGCTTTTTAAATTTGCTAGGCAGGACAAATAGTGTGTAGTCTAGGCCTG

+ 40392 TTTTTCCTCTGCTACAAAGGCGAGACCTTCCTGAGTGCTCCTTGTGATGCCTCAGGAGTT

+ 40452 AGGAGAGTCTCTAGTCTGGCGGATGGGAACCGGCACTATTCCGCAGCTTGCGTGAGCTTC

+ 40512 AGCTCTTGTTCCTGCTAATCCTCTCAGGTGGTTTTTTCCTCCCATGAATGCCCTGGTGAG

+ 40572 TCCTTGGAAGCCCTCCAGGCTGCAC   

B) For PTPRS (272 bp length)

Left, TTTTTTTTGGTTTTTGTGTTTTTGT

Right, AAACCACACCAACCTTAATCCTC

For PER3 (365 bp length) 

Left, TGATTTTTTTTAATTGGATGTTAGA 

Right, CAAAAACTCACCAAAACATTCATAA 

1 
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5 6 7 8 

9 10 11 12 

13 

1 

2 3 4 5 



Supplementary data chapter 1 

98 



99 

CHAPTER 2 

Methylation on the circadian gene BMAL1 is associated with the effects of a 

weight loss intervention on serum lipid levels 

Mirian Samblas
1
, Fermin I. Milagro

1,2
, Purificación Gómez-Abellán

3
, J. Alfredo Martínez

1,2,4 
and 

Marta Garaulet
3 

1 
Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research. University of 

Navarra. Pamplona, Spain

2 
CIBERobn, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain 

3 
Department of Physiology, Faculty of Biology, University of Murcia; IMIB, Murcia, Spain 

4 
IdiSNA, Navarra’s Health Research Institute, Pamplona, Spain 

Journal of Biological Rhythms, 2016 

DOI: 10.1177/0748730416629247 

Impact Factor (2016): 3.5 

13/85 in Biology, Q1 

19/84 in Physiology, Q1



 

 

 



Samblas M, Milagro FI, Gomez-Abellan P, et al, Methylation on the Circadian Gene 
BMAL1 Is Associated with the Effects of a Weight Loss Intervention on Serum Lipid 
Levels. Journal of Biological Rhythms, 20(10):1-10. 
https://doi.org/10.1177/0748730416629247  

 

 

 

 



 

101 

 

 

 

Supplementary data CHAPTER 2



 

 

 



Supplementary data chapter 2 
 

103 

 



 

 

 



 

105 

 

CHAPTER 3 

 

An integrated transcriptomic and epigenomic analysis identifies CD44 gene 

as a potential biomarker for weight loss within an energy-restricted 

program 

Mirian Samblas
1
, Maria Luisa Mansego

1,2
, Maria Angeles Zulet

1,2,3
, Fermín I. Milagro

1,2
, J. Alfredo 

Martínez
1,2,3

 

 

1 
Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research. University of 

Navarra. Pamplona, Spain.
 

2 
CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III. Madrid, 

Spain
. 

3 
Navarra Institute for Health Research (IdiSNA), Pamplona, Spain 

 

 

 

European Journal of Nutrition 

Under review (EJON-D-18-00027) 

Impact Factor (2016): 4.37 

14/81 in Nutrition & Dietetics (Q1)



 

 

 



An integrated transcriptomic and epigenomic analysis identifies CD44 gene as a potential biomarker for 1 

weight loss within an energy-restricted program 2 

 3 

Mirian Samblas 
1
, Maria Luisa Mansego 

1,2
, Maria Angeles Zulet

 1,2,3
, Fermín I. Milagro 

1,2*
, J. Alfredo Martínez 4 

1,2,3 5 

1 
Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research. University of Navarra. 6 

Pamplona, Spain. 7 

2
 CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III. Madrid, Spain. 8 

 
3
 Navarra Institute for Health Research (IdiSNA), Pamplona, Spain 9 

Address of the authors: Irunlarrea 1, 31008 Pamplona, Navarra, Spain 10 

*
Corresponding author: 11 

Fermín I. Milagro. Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 12 

31008 Pamplona, Navarra, Spain. E-mail: fmilagro@unav.es. Phone: +34-948-425-665. Fax: +34-948-425-740. 13 

ORCID: 14 

Mirian Samblas: 0000-0003-0866-2300 15 

Maria Luisa Mansego: 0000-0001-8914-7890 16 

Maria Angeles Zulet: 0000-0002-3926-0892 17 

Fermin I. Milagro: 0000-0002-3228-9916 18 

J. Alfredo Martinez: 0000-0001-5218-6941 19 

Conflict of interest 20 

The authors have nothing to declare.  21 

Acknowledgments 22 

We thank the participants of the RESMENA project and technical assistance of Enrique Buso (UCIM, 23 

University of Valencia) for the MassARRAY measurements. The technical assistance of Veronica Ciaurriz and 24 

Ana Lorente is gratefully acknowledged. We credit the financial support of Ministry of Economy, Industry and 25 

Competitiveness (Nutrigenio Project reference AGL2013-45554-R) and Spanish Biomedical Research Centre 26 

CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn). Mirian Samblas holds a FPI grant from the 27 

Ministry of Education, Culture and Sport (BES-2014-068409). 28 

 29 

 30 

https://orcid.org/0000-0002-3926-0892
https://www.scopus.com/redirect.uri?url=http://www.orcid.org/0000-0002-3228-9916&authorId=6603364057&origin=AuthorProfile&orcId=0000-0002-3228-9916&category=orcidLink


Abstract 31 

Purpose: The interindividual variable response to weight-loss treatments requires the search for new predictive 32 

biomarkers for improving weight-loss programs success. The aim of this study is to identify novel genes that 33 

distinguish individual responses to a weight loss dietary treatment by using the integrative analysis of mRNA 34 

expression and DNA methylation arrays. 35 

Methods: Subjects from Metabolic Syndrome Reduction in Navarra (RESMENA) project were classified as 36 

Low (LR) or High (HR) responders depending on their weight loss.  Transcriptomic and epigenomic patterns 37 

were determined by array-based genome-wide technologies in human white blood cells at the baseline of the 38 

treatment period. CD44 expression was validated by qRT-PCR and methylation degree of CpGs of the gene was 39 

validated by MassARRAY
®
 EpiTYPER

TM
 CD44 protein levels were measured by ELISA in human plasma. 40 

Results: Different expression and DNA methylation profiles were identified in LR in comparison to HR. The 41 

integrative analysis of both array data identified four genes: CD44, ITPR1, MTSS1 and FBXW5 that were 42 

differently methylated and expressed between groups. CD44 showed higher expression and lower DNA 43 

methylation levels in LR than in HR. Although differences in CD44 protein levels between LR and HR were not 44 

statistically significant, a positive association was observed between CD44 mRNA expression and protein levels. 45 

Conclusions: In summary, the combination of a genome-wide methylation and expression array dataset can be a 46 

useful strategy to identify novel genes that might be considered as predictors of the dietary response. CD44 gene 47 

transcription and methylation may be a possible candidate biomarker for weight loss prediction. 48 

Keywords: mRNA, methylation, weight loss, obesity, metabolic syndrome 49 

Introduction 50 

Metabolic syndrome (MetS) encompasses a group of manifestations, such as obesity, insulin resistance and 51 

abnormal lipid profile, that are associated to quality of life and longevity [1]. Indeed, MetS is the consequence of 52 

a combination of genetic, epigenetic, environmental, and lifestyle factors including inactivity or unbalanced 53 

diets. One of the main strategies for managing MetS features are dietary and lifestyle programs [2]. Given that 54 

most MetS subjects are overweight or obese, dietary strategies are focused on weight reduction and include 55 

energy restriction and changes in macronutrient distribution, which subsequently may improve lipid profile and 56 

serum glucose concentrations [3]. Nevertheless, many factors influence the effectiveness of low-calorie diets for 57 

body weight loss, and patients could be more or less sensitive to these treatments. Therefore, it is mandatory to 58 

improve the success of weight loss strategies, being necessary to deepen into the knowledge of all the factors 59 



involved in the metabolic processes in order to implement more personalized health care programs. In this 60 

context, genetic and epigenetic markers have been suggested as promising tools for diagnosis, prognosis, 61 

monitoring, and management of metabolic diseases [4]. 62 

In order to explain the inter-individual variability of the metabolic response to specific diets, several association 63 

studies have been carried out to identify those genetic variants that may be implicated in the process (reviewed in 64 

[5]). In this sense, a number of genes have been identified as important players in the heterogeneous response to 65 

diet [6–8]. For example, the metabolic response to different weight loss diets has been associated to specific 66 

genetic variants located in obesity (FTO and NPY) or MetS (IRS1)-related genes [9, 10]. On the other hand, 67 

several dietary factors, such as methyl donors or polyphenols, can induce changes in the epigenetic marks [11, 68 

12]. The epigenetic mechanisms, including DNA methylation, contribute to regulate gene expression [13]. Thus, 69 

epigenetics could represent a mechanistic link in the diet-gene interaction, since specific nutrients or bioactive 70 

compounds may modify gene expression via epigenetic mechanisms [14–16]. In this context, research 71 

concerning personal genome, epigenome and transcriptome may be useful to identify new potential biomarkers 72 

that predict the inter-individual response to specific dietary treatment. For example, the study of the 73 

transcriptomic profile from adipose tissue of obese and overweight individuals during a low-calorie diet 74 

identified predictors of body weight and glycemic evolution [17]. In the last years, genome-wide array 75 

technologies (GWAS and EWAS) have facilitated the discovery of gene alterations influencing the success of 76 

weight loss dietary treatments, and are describing novel candidates for explaining successful weight reduction 77 

[18]. In this context, the present study aimed to evaluate white blood cell transcriptome and methylome before an 78 

energy-restricted diet, and to identify novel genes that are able to distinguish individual’s responses by using the 79 

integrative analysis of mRNA expression and DNA methylation arrays.   80 

Methods  81 

Study design 82 

The RESMENA study (“REducción del Síndrome Metabólico en Navarra”) is a Spanish, randomized controlled 83 

and longitudinal trial (NCT01087086) over a six-month period that aimed to improve the parameters related with 84 

the MetS, including body fat composition, biochemistry, inflammation, or oxidative stress. The volunteers were 85 

recruited from Navarra Hospital, “Clínica Universidad de Navarra” and other Navarrese primary care centres. 86 

The volunteers who presented difficulties for changing dietary habits, psychological or eating disorders, weight 87 

instability the last 3 months before the study, pharmacological treatment, metabolism of energy- or nutrients-88 

related chronic diseases, and food allergies or intolerances were excluded from the study. The volunteers were 89 



randomly ascribed to one of the two following groups: the control diet was based on the American Heart 90 

Association (AHA) criteria and the RESMENA diet was characterized by a higher meal frequency and a 91 

different macronutrient distribution (40% carbohydrates, 30% lipids and 30% proteins). The prescribed diets had 92 

the same energy restriction (-30% of the studied requirements). The study design has been explained in detail 93 

previously [19]. 94 

Participants 95 

For all the analyses performed in this research, both control and RESMENA group were mixed together as a 96 

unique observational cohort group, as both diets were equally successful for weight loss. Subjects were classified 97 

in two groups depending on their weight loss at the end of the treatment: low responders (LR) when the weight 98 

loss was < 8 % of the initial weight, and high responders (HR) when the volunteers lost >8% of initial weight. 99 

The investigation was carried out in three subsamples from RESMENA project. (i) Discovery Population for 100 

Expression (DPE): the expression array approach of the study was performed in a subsample of 24 subjects (LR, 101 

n = 14; HR, n = 10); (ii) Discovery Population for Methylation (DPM): for the methylation array a subsample of 102 

47 subjects (LR, n = 31; HR, n= 16) was selected; and (iii) Validation Population (VP): the subsequent 103 

validation of selected gene from both arrays was conducted in a subsample of 47 volunteers, which contained 26 104 

LR and 21 HR.  105 

Ethics  106 

The study was approved by the Research Ethics Committee of the University of Navarra (ref.065/2009). All the 107 

participants gave written informed consent for participation in agreement with the Declaration of Helsinki 108 

(www.clinicaltrials.gov; NTC01087086). The design of this study followed the CONSORT (CONsolidated 109 

Standards Of Reporting Trials) 2010 guidelines [20]. 110 

Anthropometric and Biochemical measurements 111 

Anthropometric measurements were taken in fasting conditions. Body weight was measured to the nearest 0.1 kg 112 

with bioelectric impedance (TANITA SC-330, Tanita Corporation, Tokyo, Japan). Height, waist and hip 113 

circumferences were performed by trained researchers following validated protocols. Body mass index (BMI) 114 

was calculated as the body weight divided by height squared (kg/m
2
). Total body fat mass was measured using 115 

DXA (Lunar iDXAe, software version 6.0; GE Healthcare, Madison, WI, USA).  116 

http://www.clinicaltrials.gov/


Blood samples were collected at baseline and at the end of the trial after fasting overnight. The plasma, serum 117 

and WBCs were separated from whole blood by centrifugation at 3,500 rpm, 5ºC, 15 min (Model 5804R, 118 

Eppendorf AG, Hamburg, Germany), and were stored at -80ºC. Serum total cholesterol (TC), high-density 119 

lipoprotein cholesterol (HDL-C), triglycerides (TG) and glucose concentrations were measured by a Pentra C-120 

200 autoanalyser (Horiba ABX, Madrid, Spain) with specific kits. Low-density lipoprotein cholesterol (LDL-c) 121 

concentration was calculated using the Friedewald equation: LDL-c = TC- HDL-c – TG/5 [21]. Serum insulin 122 

was measured with an enzyme-linked immunosorbent assay (ELISA) kit (Mercodia, Uppsala, Sweeden) in a 123 

Triturus autoanalyser (Grifols SA, Barcelona, Spain). Insulin resistance was estimated with the homeostasis 124 

model assessment (HOMA-IR) as [fasting insulin (µIU/mL) x fasting glucose (mM)] / 22.5. 125 

Genome-wide mRNA expression analysis 126 

Total RNA was extracted from WBC by using TRIzol Reagent (Life Technologies, Carlsbad, CA). A total of 1 127 

µg of RNA from each sample was amplified and hybridized to a HumanHT-12 v4 Expression BeadChip kit 128 

(Illumina Inc., San Diego, CA, USA) containing annotated 31,000 genes with more than 47,000 probes. Illumina 129 

GenomeStudio v2011.1 software was used to extract the data. 130 

Genome-wide DNA methylation analysis 131 

Genomic DNA was isolated from WBC with the MasterPureTM DNA Purification kit (Epicentre 132 

Biotechnologies, Madison, WI, USA). Array-based DNA methylation analyses were performed with the 133 

Infinium Human Methylation 450K BeadChip kit (Illumina). Bisulfite-treated DNA was amplified, hybridized to 134 

HumanMethylation450 BeadChips (Ilumina) and scanned using the Illumina iScanSQ platform. Illumina 135 

GenomeStudio methylation module software (v 1.9.0) was used to extract the intensity of the images. β-values 136 

(β-value = M/(U + M, where M is the raw ‘methylated’ and U is ‘unmethylated’ signal) were computed. 137 

Subsequently, β-values were corrected for type I and II bias using peak-based correction. Data was normalized 138 

using categorical Subset Quantile Normalization method through the pipeline described by Toulemain and Tost 139 

[22]. All the process was explained in detail previously [23]. 140 

mRNA expression analysis by quantitative real-time PCR 141 

For the individual gene expression study, 2 µg of RNA from a total of 47 samples was reverse-transcribed using 142 

MultiScribeTM Reverse Transcriptase kit following the manufacturer’s instruction (Thermo Fisher Scientific 143 

Inc., Waltham, MA, USA). CD44 gene was selected for confirmation of the mRNA expression array data. 144 

Complementary DNA (cDNA) was amplified with the predesigned Taqman primers for GAPDH 145 



(Hs02758991_g1) and CD44 (Hs01075861_m1). CD44 mRNA levels were normalized to the endogenous 146 

control GAPDH. The comparative 2
-ΔΔCT

 method was used for quantification of relative expression. Real-time 147 

PCR was performed using an ABI Prism 7900HT Sequence Detection System (Applied Biosystems, Foster City, 148 

CA, USA) 149 

DNA methylation analysis by MALDI-TOF mass spectrometry 150 

Specific gene methylation was quantified using Ma MassARRAY
®
 EpiTYPER

TM
 ssARRAY EpiTYPER 151 

(Sequenom, San Diego, CA, USA). Genomic DNA was sodium bisulfite transformed by EpiTect Bisulfite Kit 152 

(Qiagen, Valencia, CA, USA). Polymerase chain reaction (PCR) primers covering 5 CpG sites (CpGs) of the 153 

CD44 gene (including one from the microarray study) were designed by Epidesigner software (Sequenom). The 154 

primers used were: 5’-ggggtgaagtaatggatagtaattagg-3’ and 5’-accctaaaaaaccttatatattaa-3’. The complete 155 

methodology was previously described by Milagro et al., 2011 [24]. 156 

Enzyme-linked immunosorbent assay (ELISA)  157 

Plasma samples were collected at the beginning of the treatment and stored at -80 ºC for protein analysis. Protein 158 

concentration of CD44 was measured with standard ELISA kits (R&D Systems Europe, Ltd., Abingdon, UK) 159 

according to manufacturer’s protocols. Absorbance was measured at 450 nm using a Multiskan microplate reader 160 

(Thermo Fisher Scientific Inc., Waltham, MA, USA).  161 

Statistical analysis 162 

Quantitative variables were expressed as means and confidence intervals and qualitative variables as numbers. 163 

The LIMMA package [25] for the R statistical software was used to compute a one-way ANOVA test for the 164 

statistical differences between DNA methylation values and diet response categories (HR vs LR), adjusted by 165 

age, sex, baseline weight and array chips [26]. For the methylation analysis, a significant threshold of p < 0.05 166 

and 5 % of methylation variation between groups was used, whereas for the expression study false discovery rate 167 

(FDR) cut-off of 0.05, B-statistic ≥ 0 and a logarithmic fold change (logFC) > ± 0.58 were accepted. Pearson’s 168 

correlation coefficient was calculated to analyse the associations between the methylation levels of candidate 169 

CpGs measured by methylation array and MALDI-TOF mass spectrometry, association between expression level 170 

of CD44 gene identified in microarray and qRT-PCR and the association between expression and protein levels. 171 

The associations are always two-tailed expect when noted otherwise. Student t-test was used to compare 172 

anthropometric, biochemical, expression, methylation and protein differences between HR and LR. A p-value 173 



less than 0.05 was considered significant if not otherwise specified. Statistics were performed using SPSS v.15 174 

(SPSS Inc., Chicago, IL, USA) and Prism 5.0 (GraphPad Software, San Diego, CA, USA). 175 

Results 176 

Anthropometric characteristics of the study populations 177 

Clinical characteristics of the subjects of DPE, DPM and VP at the beginning of the intervention are shown in 178 

Table 1. HR group of the DPE lost 10.5 ± 1.1 % of initial body weight while LR lost 5.9 ± 0.9 %. As designed, 179 

the difference of weight loss between the two groups was very significant (p < 0.001). In the DPM subsample, 180 

the HR lost 10 ± 1.7 % of body weight and the LR lost 5.2 ± 1.6 % (p < 0.001). In the VP, the HR lost 9.5 ± 0.9 181 

% whereas LR lost only 5.7 ± 0.8 % of body weight (p < 0.001). 182 

Changes in WBC gene expression and methylation patterns between LR and HR subjects and integrated 183 

analysis of the data 184 

A subset of 24 subjects (14 LR and 10 HR subjects) with available RNA and DNA of high quality and clinically 185 

representative of both groups was selected for array studies. The applied workflow is described in Fig. 1. For the 186 

microarray analysis, a total of 908 genes were differentially expressed between both groups with a FDR < 0.05. 187 

Among these, 156 transcripts presented a logFC  ± 0.58 and a B ≥ 0, twenty of which were down-regulated in 188 

LR and up-regulated in HR and 136 up-regulated in LR and down-regulated in HR (Online Resource 1).  189 

From the genome-wide DNA methylation study, a total of 2,102 CpGs in 1,785 genes differentially methylated 190 

between LR and HR, after the adjustment for age, gender and baseline weight, with an absolute methylation 191 

variation above 5 % and raw p-value < 0.05 were identify. Nine hundred and fifty two CpGs were 192 

hypomethylated and 1,150 hypermethylated in the LR group compared to the HR group (Online Resource 2). 193 

However, none of these CpGs remained statistically significant after a Benjamini-Hochberg correction for 194 

multiple comparisons. 195 

Since DNA methylation may regulate gene expression, it was tested whether the identified diet response-196 

associated CpGs methylation changes correlated with expression of respective annotated genes. According to the 197 

data obtained from the mRNA expression and DNA methylation array, there were 4 genes differentially 198 

methylated and expressed between LR and HR (Fig. 2). Among them, 3 genes were up-regulated and 199 

hypomethylated in LR (CD44, ITPR1 and MTSS1) and one gene (FBXW5) was down-regulated and 200 

hypomethylated in LR (Table 2). 201 



Functions of genes in obesity, weight loss and inflammation 202 

To further understand the biological relevance of the identified genes, a literature search was performed to 203 

investigate the potential involvement of CD44, ITPR1, MTSS1 and FBXW5 in obesity, MetS, and inflammation 204 

and also as biomarker. The literature search was carried out using each gene name and the following terms; 205 

obesity, insulin resistance, inflammation, weight loss or biomarker (neither cancer nor tumour). The results 206 

showed that CD44 had been described in 2,998 studies associated with obesity, MetS or inflammation, and also 207 

as biomarker (Fig. 3a). In contrast, MTSS1 and ITPR1 only appeared in 3 and 33 studies, respectively (data not 208 

shown). No results were found concerning the FBXW5 gene (data not shown).  209 

Validation of expression and methylation changes of CD44 in human WBC 210 

Due to the biological relevance of CD44 gene in obesity, weight loss and inflammation, this gene was selected to 211 

validate the expression and methylation changes found between LR and HR in arrays analysis. qRT-PCR and 212 

MassARRAY
®
 EpiTYPER

TM
 were used to technically validate and biologically replicate the results obtained in 213 

CD44 gene. The expression validation was performed on WBC from 24 of the subjects in the original microarray 214 

analysis, and a significant correlation was obtained between qRT-PCR and microarray expression data (R=0.479, 215 

p = 0.020) (Fig. 3b). For the DNA methylation 32 subjects from the methylation array analysis were selected. 216 

The region analysed of CD44 contained the same CpG selected in the methylation array (CpG5) and two 217 

additional CpGs (CpG1 and CpG4). DNA methylation levels of CpG5 measured by MassARRAY
®

 218 

EpiTYPER
TM

 showed a significant correlation (R=0.382, p = 0.031) with the DNA methylation levels quantified 219 

by microarray (Fig. 3e). In addition, CpG5 methylation levels in the microarray also significantly correlated with 220 

those involving CpG1 (R = 0.562, p < 0.001) and CpG4 (R = 0.412, p = 0.018) (Fig. 3c-d).  The biological 221 

replication was performed on WBC from VP (n=47, 31 LR and 16 HR). CD44 gene expression was significantly 222 

higher in LR than in HR (p < 0.05) (Fig. 4a). Moreover, lower methylation levels were observed in LR in 223 

comparison to HR for the three CpGs, although only CpG4 and CpG5 reached statistical significance (p < 0.05) 224 

as graphically depicted (Fig. 4b). Gene expression and methylation in VP followed opposite direction, in 225 

accordance to the results of the arrays, showing that LR subjects presented higher expression and lower 226 

methylation of CD44 comparing to HR individuals. Finally, although CD44 protein levels in plasma were not 227 

significantly different between LR and HR (Data not shown), a significant association was found between 228 

protein and expression data (p < 0.05) (Fig. 4c).  229 

230 



Discussion 231 

 Obesity features by an excessive fat accumulation and may contribute to the development of the other 232 

characteristics of MetS including dyslipemia, insulin resistance or hypertension [27]. Thus, weight loss might be 233 

a powerful strategy to prevent MetS risk factors from progressing to disease status. Nevertheless, because of 234 

interindividual variability in the response to body weight loss interventions, recent research using genome-wide 235 

array technologies are trying to understand the variability in individual’s responses to specific dietary treatments. 236 

The present research demonstrated differential transcription and methylation profiles between subjects who 237 

respond successfully or were resistant to an energy restriction-based weight loss program. Moreover, the 238 

integrated analysis of mRNA expression and DNA methylation arrays identified CD44 gene as a novel important 239 

regulator of the personalized response to the diet. 240 

From the 156 differentially expressed genes between HR and LR identified with the Illumina HumanHT-12 v4 241 

array, most of them were down-regulated in HR. These results suggested that gene expression levels may be 242 

important to understand the response to specific diet, and is in agreement with a previous study performed in 243 

obese young boys, where expression levels of several genes at baseline helped to predict the changes in BMI 244 

after a nutritional intervention [28]. However, few studies have associated baseline genome-wide expression 245 

profile with weight loss outcome in adult obese subjects. Interestingly, Mutch et al. (2007) reported that adipose 246 

gene expression profiling prior to the consumption of a low-fat diet was able to differentiate responders from 247 

non-responders to the treatment, while Arnemise et al (2017) demonstrated that adipose gene expression 248 

combined with clinical variables allowed to distinguish weight and glycemic responders from non-responders to 249 

a low-calorie diet. Other studies have found no differences in the baseline transcriptomic profiling of 250 

subcutaneous adipose tissue between LR and HR [29]. However, several studies using methylation array-based 251 

technologies have been successful in the identification of novel markers of age-related diseases or obesity [30, 252 

31]. In the present study, we described 2,102 CpGs that were differentially methylated between LR and HR 253 

before the energy-restriction diet. Similarly, other authors have reported that methylation levels of different 254 

genomic regions in different cell types are associated with individual response to a weight loss nutritional 255 

intervention [24, 29, 32].   256 

DNA methylation is considered as a gene expression regulatory mechanism [33]. In this sense, methylation 257 

changes have been associated with mRNA expression alteration in age, diabetes, embryonic development, or 258 

cancer [34, 35]. Regarding the main objective of the current investigation, the identification of novel genes for 259 

distinguishing personal response by the integrated analysis of expression and DNA methylation data, the 260 



combination of both high-throughput technologies pointed out four genes that presented differential expression 261 

and methylation profiles between LR and HR at baseline.  262 

DNA methylation has been associated with transcriptional repression, but emerging data showed that the effect 263 

of DNA methylation depends of the genomic location [33]. Our results revealed that hypomethylated CpG 264 

regions corresponding to CD44, ITPR1 and MTSS1 exhibited up-regulation of gene expression, and in contrast, 265 

hypomethylated CpGs of FBXW5 exhibited down-regulation of gene expression in LR comparing HR. Of these 266 

four genes, a literature survey indicated that only CD44 and ITPR1 were implicated in obesity or weight loss. In 267 

addition, a previous study of our group identified an association between methylation of CD44 promoter and 268 

changes in waist circumference, BMI and fat mass after a weight loss treatment [36]. These findings suggest that 269 

this gene could be implicated in weight loss regulation, and we selected CD44 as a candidate gene to further 270 

validation. qRT-PCR results in the VP showed higher CD44 expression in LR versus HR. Moreover, the 271 

MassARRAY
®
 EpiTYPER

TM
 technique allowed us to study neighbouring CpGs to the CpG selected by the 272 

array, covering more than 300 bp. Interestingly, CpG4 and CpG5 presented lower methylation levels in LR than 273 

in HR. Finally, gene expression is often directly associated with protein levels [37] and our results demonstrated 274 

a positive association between CD44 mRNA expression in WBC and protein levels of CD44 shed from cell 275 

surfaces in plasma samples. The role of LR in this trend seems stronger than HR. Although CD44 gene encodes 276 

an immune-cell surface receptor [38], few studies have evidenced that serum CD44 is associated with a protein 277 

release from human cells [38, 39]. Nevertheless, the population size could have been a limitation to find 278 

significant changes in protein levels between groups. 279 

 The expression of CD44 has been related to adipose tissue macrophage accumulation and liver steatosis in 280 

morbid obesity, with a dramatic expression decrease as a result of massive weight loss [40]. In addition, CD44 is 281 

implicated in the development of adipose tissue inflammation and insulin resistance [39], having been suggested 282 

as a biomarker for insulin resistance and a possible therapeutic target for T2D [38]. In contrast to our research, 283 

these studies were performed in adipose tissue biopsies. The choice of using WBC instead of other metabolic 284 

relevant tissues was based because blood is relatively easily to obtain in humans and is a non-invasive source of 285 

mRNA and DNA. In addition, recent studies have demonstrated that DNA methylation changes in blood reflect 286 

DNA methylation changes in pancreatic islets, and that DNA methylation levels in leukocytes mirror 287 

subcutaneous adipose tissue methylation pattern, which support the use of circulating cells to study epigenetic 288 

alterations in primary tissues [30]. In this context, the CD44 methylation and expression profile found in the 289 

present study might reflect the profile in other metabolism-related tissue. Based on these evidences and our 290 



current data, we hypothesise that CD44 is an important gene involved in the amplification of the inflammatory 291 

process in obese subjects, and the higher expression of the gene before an energy-restricted diet may impair the 292 

effectiveness of weight loss dietary interventions.  293 

As a limitation, despite that relevant statistical outcomes were found, type 1 and type 2 errors cannot be 294 

discarded. On the other hand, the use of false discovery rate (FDR) tests in gene expression analysis minimizes 295 

the risk to highlight genes that appear differentially expressed between LR and HR by chance. However, in the 296 

methylation array results, no CpG remained statistically significant after applying FDR; in order to minimize 297 

type 1 error, the lowest p values were selected for the analysis.  298 

One of the strengths of the present work is the use of a two steps strategy, validating the results obtained in the 299 

DPs in a second, different one called VP for both measurements (DNA methylation and gene 300 

expression).  Another remarkable point is the concordance observed between DNA methylation and mRNA 301 

levels, which suggests a putative mechanistic role of the epigenetic mechanism on the regulation of gene 302 

expression. 303 

In summary, DNA methylation has been suggested as a powerful tool for diagnosis and prognosis. It is 304 

noteworthy that the integration of genome-wide array data can be a useful strategy to identify novel genes that 305 

might be considered as predictors of the response to specific nutritional interventions. In addition, we 306 

demonstrated for the first time that the expression and DNA methylation of the immune-cell receptor gene, 307 

CD44, has a different profile between LR and HR at baseline, suggesting a putative role of CD44 in body weight 308 

regulation.  309 
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 432 

Figure captions 433 

Fig. 1 Schematic diagram of the study design and integrative analysis of methylation and expression arrays.  434 

Fig. 2 Venn diagram of statistically significant genes differentially expressed and methylated according to the 435 

diet response. A total of 4 genes were statistically significant in both transcription and methylation analyses. 436 

Four genes were significant in both arrays, 3 of them presented methylation and expression changes in opposite 437 

direction and only one of them presented changes in the same direction. 438 



Fig. 3 Graphic illustration of the literature search results of the association between CD44 and obesity, weight 439 

loss, inflammation, or biomarker. PubMed was searched for papers containing the gene name and the terms (a). 440 

Positive association between CD44 expression levels by qRT-PCR and ILMN_1803429 (CD44) expression by 441 

microarray (n = 24) (b), and between DNA methylation data of several CD44 CpG sites located in CD44 442 

measured by MassARRAY
®
 EpiTYPER

TM
 (CpG1 (c) CpG4 (d) and CpG5 (e))with the CpG site (cg08688659, 443 

corresponding to CpG5) from the methylation array (n = 32) (c-e). Data was analysed by Pearson’s test, p < 444 

0.05. 445 

Fig. 4 Differences of CD44 mRNA expression levels between LR and HR subjects (a).  Differences of DNA 446 

methylation levels of three CpG sites located in CD44 between LR and HR (b). The CD44 mRNA expression 447 

was found to be correlated with protein expression (c). Results are expressed as means ± SD (LR, n = 31; HR, n 448 

= 16). Unpaired t Student’s test was used to compare LR with HR. * p < 0.05. Linear relationship between 449 

protein and mRNA expression was tested using Pearson’s correlation coefficient (R), p < 0.05, one-tailed test.  450 



Characteristics 
Discovery Population for Expression 

Discovery Population for 

Methylation 
Validation Population 

LR HR LR HR LR HR 

No. of subjects 14 10 31 16 26 21 

Age (y) 48.4 ± 3.5 49.6 ± 4.0 46.5 ± 9.7 52.1 ± 9.2 48.3 ± 2.9 51.7 ± 3.8 

Sex (M/F) 8/6 5/5 18/13 7/9 14/12 12/9 

Weight (kg) 105.3 ± 12.2 98.4 ± 9.6 106.5 ± 18.5 94.3 ± 14.1* 102.4 ± 8.2 94.8 ± 6.0 

Weight loss (%) 5,9 ± 0.9 10.5 ± 1.1*** 5.2 ± 1.6 10.0 ± 1.7*** 5.7 ± 0.8 9.5 ± 0.9*** 

BMI (kg/m
2
) 37.0 ± 2.1 34.9 ± 3.0 36.9 ± 3.4 34.8 ± 4.3 36.1 ± 1.9 33.8 ± 1.5 

Body fat mass (%) 40.5 ± 5.5 38.8 ± 8.6 39.6 ± 6.2 37.8 ± 8.6 39.9 ± 6.3 37.0 ± 7.0 

Glucose (mg/dL) 135.6 ± 23.4 113.1 ± 14.6 126.9 ± 38.2 112.1 ± 19.7 124.2 ± 15.2 118.0 ± 12.8 

Insulin (mUI) 17.3 ± 4.2 12.7 ± 4.3 17.2 ± 10.5 11.6 ± 6.3 16.9 ± 3.9 12.4 ± 2.7 

HOMA-IR 5.6 ± 1.3 3.6 ± 1.3 5.6 ± 3.7 3.2 ± 1.9* 5.3 ± 1.4 3.8 ± 1.1 

Total cholesterol (mg/dL) 214.9 ± 16.5 221.2 ± 16.5 211.7 ± 47.8 232.2 ± 52.8 222.5 ± 15.8 227.7 ± 12 

HDL (mg/dL) 40.8 ± 4.7 43.2 ± 3.2 41.7 ± 8.5 46.1 ± 12.4 43.7 ± 4.5 43.7 ± 2.9 

LDL (mg/dL) 129.9 ± 15.6 139.0 ± 12.2 129.9 ± 38.2 149.4 ± 50.8 135.4 ± 14.1 143.4 ± 11.4 

Triglycerides (mg/dL) 221.4 ± 60.5 195.2 ± 72.9 200.7 ± 119.5 183.9 ± 106.0 216.8 ± 47.8 202.7 ± 52.1 

Data presented as mean ± SEM. Differences between variables were compared using Student's t-test;*p < 0.05; *** p < 0.001. Abreviations: DPE, discovery population 

for expression; DPM, discovery population for methylation; VP, validation population; LR, low responder; HR, high responder; BMI, body mass index; HOMA-IR, 

homeostasis model assessment-insulir resistance; HDL, high-density lipoprotein; LDL, low-density lipoprotein. 

Table 1. Characteristics of study subjects of the discovery populations and validation population, and divided according to weight loss (LR < 8 % of 

initial weight; HR > 8 % of initial weight) at the beginning of the study. 



Table 2. Significant differentially expressed and methylated loci between LR and HR. 

Gene name Probe set logFC
a
 p value

b
 FDR

c
 LR vs HR 

CD44 cg08688659 0.105 0.008 0.999 LR < HR 

ILMN_1803429 0.640 < 0.001 0.028 LR > HR 

FBXW5 cg14357259 0.078 0.047 0.999 LR > HR 

ILMN_1701375 -0.740 < 0.001 0.029 LR < HR 

ITPR1 cg18689402 0.159 0.042 0.999 LR < HR 

ILMN_1789505 0.912 <0.001 0.022 LR > HR 

MTSS1 cg03102442 0.055 0.009 0.999 LR < HR 

ILMN_2073289 0.702 <0.001 0.022 LR > HR 

ANOVA test was applied for the differences analysis. FC, fold change; FDR, false discovery 

rate; LR, low responder; HR, high responder. 

a  
the LR was the reference group for FC calculation. 

b 
adjusted by gender, age and baseline weight 

c
 after Benjamini-Hochberg correction 
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Fig. 1 Schematic diagram of the study design and integrative analysis of methylation and expression arrays. 

Fig. 2 Venn diagram of statistically significant genes differentially expressed and methylated according to the 

diet response. A total of 4 genes were statistically significant in both transcription and methylation analyses. Four 

genes were significant in both arrays, 3 of them presented methylation and expression changes in opposite 

direction and only one of them presented changes in the same direction. 
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a

Fig. 3 Graphic illustration of the literature search results of the association between CD44 and 

obesity, weight loss, inflammation, or biomarker. PubMed was searched for papers containing 

the gene name and the terms (a). Positive association between CD44 expression levels by qRT-

PCR and ILMN_1803429 (CD44) expression by microarray (n = 24) (b), and between DNA 

methylation data of several CD44 CpG sites located in CD44 measured by MassARRAY
®

 

EpiTYPER
TM

 (CpG1 (c) CpG4 (d) and CpG5 (e))with the CpG site (cg08688659, corresponding 

to CpG5) from the methylation array (n = 32) (c-e). Data was analysed by Pearson’s test, p < 

0.05. 



464 
Fig. 4 Differences of CD44 mRNA expression levels between LR and HR subjects (a).  Differences of 

DNA methylation levels of three CpG sites located in CD44 between LR and HR (b). The CD44 mRNA 

expression was found to be correlated with protein expression (c). Results are expressed as means ± SD 

(LR, n = 31; HR, n = 16). Unpaired t Student’s test was used to compare LR with HR. * p < 0.05. Linear 

relationship between protein and mRNA expression was tested using Pearson’s correlation coefficient (R), 

p < 0.05, one-tailed test.  

a b

c

R = 0.330

p = 0.046
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Supplementary data  Table 1. 

Identify genes differently expressed between low responders and high responders (n=24) with FDR < 

0.05. Illumina ID: Probe name from the Illumina database; LogFC: logarithm of fold change; Average 

Expression Average expression value for that gene; t: Moderated t-statistic; Unadjusted P Value: P-

value of moderated t-statistic; FDR: False discovery rate, adjusted p-value for multiple testing; B 

value: The log odds that the mRNA is differentially expressed; LR vs HR: low responders > or < 

expression than high responders. 

 

Supplementary data  Table 2. 

CpG sites differently methylated between low responders and high responders (n=47) with 

methylation variation above 5 % and raw p value < 0.05. Probe set: Unique CpG locus identifier from 

the Illumina CG database; UCSC RefGene: Gene accession number (UCSC); LogFC: logarithm of 

fold change; Average Methylation: Average methylation value for that CpG site; t: Moderated t-

statistic; P.Value: P-value of moderated t-statistic; adjusted P.Value: Adjusted p-value for multiple 

testing; B value: The log odds that the CpG site is differentially methylated; Chr: number of 

chromosome where is located the CpG; Localization: coordinates - genome build 37; LR vs HR: low 

responders > or < methylation than high responders. 
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Illumina ID Gene Name logFC 
Average 

Expression 
t 

Unadjusted 

P value 
FDR B value LR vs HR 

ILMN_1780368 GPR18 0,78 7,33 6,52 1,80E-06 0,0175 5,04 LR>HR 

ILMN_1677824 RAB4A 0,91 6,05 6,07 4,90E-06 0,0175 4,15 LR>HR 

ILMN_2297997 LIPT1 0,61 6,14 6,02 5,50E-06 0,0175 4,05 LR>HR 

ILMN_1704472 EID2 0,93 6,37 5,90 7,20E-06 0,0195 3,80 LR>HR 

ILMN_1809850 RCN3 -0,87 6,37 -5,85 8,10E-06 0,0195 3,70 LR<HR 

ILMN_1676423 CCNC 0,82 6,16 5,68 1,21E-05 0,0223 3,34 LR>HR 

ILMN_1685260 DNM1L 0,64 6,46 5,59 1,47E-05 0,0223 3,16 LR>HR 

ILMN_1681628 ZNF277 0,78 7,85 5,53 1,69E-05 0,0223 3,04 LR>HR 

ILMN_1857915 LOC401397 0,92 8,12 5,29 2,97E-05 0,0223 2,53 LR>HR 

ILMN_1718907 TSHZ1 0,81 6,67 5,28 3,04E-05 0,0223 2,51 LR>HR 

ILMN_2073289 MTSS1 0,70 8,13 5,26 3,20E-05 0,0223 2,46 LR>HR 

ILMN_3235065 ZNHIT6 0,70 6,89 5,25 3,30E-05 0,0223 2,44 LR>HR 

ILMN_1736940 HPRT1 0,77 7,98 5,22 3,50E-05 0,0223 2,38 LR>HR 

ILMN_1813685 RAB7L1 0,80 8,02 5,21 3,58E-05 0,0223 2,36 LR>HR 

ILMN_1691570 METTL5 0,84 7,92 5,21 3,62E-05 0,0223 2,35 LR>HR 

ILMN_1662129 RCN2 0,67 7,71 5,20 3,68E-05 0,0223 2,34 LR>HR 

ILMN_2088410 PSMG2 0,64 9,39 5,20 3,70E-05 0,0223 2,33 LR>HR 

ILMN_2373831 BTN3A3 0,62 7,74 5,16 4,01E-05 0,0223 2,26 LR>HR 

ILMN_1657632 ZMYM6 0,72 9,01 5,15 4,11E-05 0,0223 2,24 LR>HR 

ILMN_1671554 LPIN1 1,05 8,48 5,10 4,70E-05 0,0223 2,11 LR>HR 

ILMN_1737988 PRNP 0,73 9,27 5,09 4,74E-05 0,0223 2,11 LR>HR 

ILMN_1747078 HYLS1 0,71 6,18 5,04 5,35E-05 0,0223 2,00 LR>HR 

ILMN_1757336 LRCH3 0,71 6,03 5,03 5,44E-05 0,0223 1,98 LR>HR 

ILMN_2059294 RTCD1 0,87 6,77 5,03 5,46E-05 0,0223 1,98 LR>HR 

ILMN_1772743 PIGK 0,60 6,70 5,00 5,95E-05 0,0223 1,90 LR>HR 
 

        

Supplementary Table 1. 

Note: and 5 pages more. 
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Probe set Gene name UCSC RefGene 
Average 

methylation 
logFC t P value 

Adjusted 

P value 

B 

value 
Chr 

Localizatio

n 

LR vs 

HR 

cg19846991 MYO9A 
NM_006901;NM_14520

4;NM_001166340 
37,47 0,06 -5,60 1,81E-06 0,68279 4,12 15 72411513 LR < HR 

cg26572973 GPT NM_005309 76,79 0,12 -5,35 4,14E-06 0,68279 3,30 8 145728501 LR < HR 

cg13372635 RNASEL NM_021133 24,61 -0,10 5,29 4,99E-06 0,68279 3,11 1 182557217 LR > HR 

cg13780303 TOMM22 NM_020243 68,66 0,17 -5,01 1,21E-05 0,92577 2,24 22 39078941 LR < HR 

cg08608086 POLS NM_006999 91,70 0,07 -4,92 1,61E-05 0,92577 1,96 5 6755235 LR < HR 

cg16719099 MIR505 NR_030230 84,36 0,09 -4,65 3,75E-05 0,99998 1,13 X 139007085 LR < HR 

cg20218571 PQLC1 
NM_001146345;NM_00

1146343;NM_025078 
75,00 0,48 -4,34 9,83E-05 0,99998 0,18 18 77678514 LR < HR 

cg02960500 NTM NM_001048209 85,93 0,07 -4,30 1,11E-04 0,99998 0,06 11 131469924 LR < HR 

cg14739500 EHMT2 
NM_006709;NM_02525

6 
75,56 -0,08 4,25 1,29E-04 0,99998 -0,08 6 31855598 LR > HR 

cg16280667 CXCR5 
NM_001716;NM_00171

6 
83,91 -0,07 4,24 1,33E-04 0,99998 -0,12 11 118754593 LR > HR 

cg13179549 KRT16 NM_005557 59,40 0,07 -4,17 1,64E-04 0,99998 -0,32 17 39769175 LR < HR 

cg14370752 DNHD1 
NM_144666;NM_17358

9 
78,67 0,06 -4,15 1,73E-04 0,99998 -0,37 11 6518438 LR < HR 

cg05483199 
LOC1001329

63 
NM_001162936 20,80 -0,13 4,10 2,00E-04 0,99998 -0,51 X 154056033 LR > HR 

cg18107006 HNRPLL 
NM_001142650;NM_13

8394 
20,22 0,07 -4,08 2,17E-04 0,99998 -0,59 2 38831166 LR < HR 

cg15565576 IL17REL NM_001001694 76,83 0,09 -4,03 2,46E-04 0,99998 -0,71 22 50451108 LR < HR 

cg22198044 SH3BP2 

NM_003023;NM_00114

5855;NM_001145856;N

M_001122681 

34,40 0,16 -3,99 2,85E-04 0,99998 -0,86 4 2819614 LR < HR 

cg20318662 FAM110C NM_001077710 24,98 -0,07 3,98 2,87E-04 0,99998 -0,86 2 47452 LR > HR 

Supplementary Table 2. 

Note: and 102 pages more. 
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A B S T R A C T

Folate deficiency has been putatively implicated in the onset of diverse metabolic
abnormalities, including insulin resistance, by altering epigenetic processes on key
regulatory genes. The calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is
involved in the regulation of critical metabolic processes such as adiposity and glucose
homeostasis. This study hypothesized associations between low folate intakes and lower
methylation levels of the CAMKK2 gene, with the presence ofmetabolic alterations in subjects
with obesity. A cross-sectional ancillary study was conducted in obese subjects (n = 47) from
the RESMENA study (Spain). Fat mass was measured by dual-energy x-ray absorptiometry.
Dietary intake and metabolic profile were assessed by validated methods. DNA methylation
and gene expression in peripheral white blood cells were analyzed bymicroarray approaches.
A total of 51 cytosine-phosphate-guanine sites were associated with folate intake (false
discovery rate values < 0.0001), including one located in the 5′ untranslated region of the
CAMKK2 gene (Illumina ID, cg16942632), which was selected and separately analyzed.
Subjects with total folate intake lower than 300 μg/d showed more fat mass (especially trunk
fat), as well as statistically higher levels of glucose, insulin, homeostatic model assessment–
insulin resistance (HOMA-IR) index, cortisol, and plasminogen activator inhibitor-1 than
those consuming at least or more than 300 μg/d. Of note, folate deficiency was related to
lower CAMKK2 methylation. Interestingly, CAMKK2 methylation negatively correlated with
the HOMA-IR index. Furthermore, CAMKK2 expression directly correlated with HOMA-IR
values. In summary, this study suggests associations between low folate intakes, lower
CAMKK2 gene methylation, and insulin resistance in obese individuals.

© 2017 Elsevier Inc. All rights reserved.
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intakes of fiber and vegetables and serum values of glucose,
insulin, cortisol, PAI-1, and HOMA-IR and TyG index were
found.

The associations between folate intake and methylation 
and expression patterns of the CAMKK2 gene are plotted in 
Fig. 1. By using a linear regression model, folate intake 
explained about 23% of the variation of CAMKK2 methylation 
in cg16942632 (r2 = 0.231, P = .002). Interestingly, low folate 
intake was significantly associated with lower methylation of 
CAMKK2 as compared with high folate consumption (45.7% ± 
15.1% vs 58.1% ± 12.3%, respectively; P = .012), as reported 
(Fig. 1A). Moreover, CAMKK2 methylation negatively 
correlated with HOMA-IR index (Fig. 1B) and also with CAMKK2 
expression (Fig. 1C). Remarkably, a positive and significant 
correlation was found between CAMKK2 expression and 
HOMA-IR index (Fig. 1D). No statistically significant 
associations between other important dietary factors 
(including fiber and specific food groups) and methylation 
or expression levels of the CAMKK2 gene were observed 
(data not shown). Likewise, no significant correlations 
between CAMKK2 methylation/expression and other 
metabolic markers were found.

4. Discussion

The prevalence of micronutrient deficiencies, including folate
deprivation, varies across populations and also constitutes
an important health burden among countries in nutrition
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transition, which present a high prevalence of overweight and 
obesity and a moderate prevalence of undernutrition in some 
population subgroups [42]. In the current study, about half of 
the analyzed sample had low intakes of folate according to 
the Spanish reference intake values [29], which could be 
hypothetically related to the characteristically unhealthy 
dietary pattern associated with overweight and obesity [43]. 
In previous studies, obesity has been consistently associated 
with reduced serum folate, in parallel with decreased folate 
intakes [44]. In addition, observational studies have found 
lower folate serum concentrations in overweight and obese 
individuals compared with normal-weight controls [45,46]. 
Likewise, population-data analyses showed that obese or 
overweight adults were more likely to have low folate serum 
levels [47]. Furthermore, folate deficiency is a common 
nutritional feature among subjects with extreme obesity 
before and after undergoing bariatric surgery [48,49]. Para-
doxically, obesity is positively associated with red blood cell 
folate despite lower dietary intakes and serum concentra-
tions, suggesting a tissue distribution effect of obesity on 
folate status [44].

Herein, subjects with insufficient folate intake presented 
greater body adiposity compared with those consuming high 
folate. In agreement with this finding, it has been reported that 
serum concentrations of folate were inversely associated with 
BMI, trunk fat mass, and total body fat mass in Mexican 
American children [50]. Also, significant associations have been 
described between decreased serum folate and increased BMI,
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ABSTRACT 13 

DNA methylation has been suggested as one regulatory mechanism behind some inflammatory 14 

processes. The physiological actions of methyl donors, such as folic acid, choline, and vitamin B12 on 15 

inflammatory-related diseases have been associated to an involvement in the synthesis of the universal 16 

methyl-donor S-adenosyl methionine (SAM). The aim of this study was to evaluate the effects of folic 17 

acid, choline, and vitamin B12 on preventing the lipopolysaccharide (LPS)-induced inflammatory 18 

response in human THP-1 monocyte/macrophage cells. Folic acid and a mix of methyl donors reduced 19 

interleukin 1 beta (IL1B) and tumor necrosis factor (TNF) expression and protein secretion by such 20 

cells. Moreover, the methyl donor mix also reduced Cluster of differentiation 40 (CD40) expression, 21 

but increased serpin family E member 1 (SERPINE1) gene expression. All the methyl donors 22 

increased methylation levels in the CpGs located in IL1B, SERPINE1, and interleukin 18 (IL18) genes. 23 

However, they did not modify TNF methylation. ChIP analysis showed no changes in the binding 24 

affinity of NF-κB to IL1B and TNF promoters region after the treatment with folic acid and the methyl 25 

donors’ mix. The findings of this study suggest that folic acid might be a factor for controlling chronic 26 

inflammation in inflammatory-related diseases. 27 

 28 



INTRODUCTION 29 

Inflammation has been traditionally defined as the short-term adaptive response of the body to fight 30 

against injuries on cells and tissues caused by pathogens or biological and chemical stimuli [1]. 31 

Although acute inflammation is a crucial component for maintaining body homeostasis, when persists 32 

longer (chronic inflammation) these processes are involved in the development of several clinical 33 

manifestations and diseases. For example, chronic inflammation is linked with osteoarthritis, 34 

autoimmune and degenerative diseases, type 2 diabetes, atherosclerosis and/or obesity [2]. 35 

A variety of interacting mechanisms, molecules, mediators and cells participate in the inflammatory 36 

outcome [3]. An important feature of the inflammatory process is the migration and recruitment of 37 

monocytes from bloodstream to inflamed regions [4]. Chemokines produced in the inflamed region 38 

orchestrate the recruitment of monocytes into these sites, where they differentiate into macrophages 39 

and secrete cytokines to mediate the inflammatory response [5]. This is the case of macrophage 40 

infiltration and activation in liver and adipose tissue in non-alcoholic fatty liver disease and visceral 41 

obesity [6, 7]. Monocytes must be able to phenotypically continuously adapt their response to both 42 

external and internal environmental signals [8]. In this sense, epigenetics, defined as heritable changes 43 

in gene expression without changes in genomic DNA, has been suggested as the group of mechanisms 44 

that may alter transcriptomic patterns of these cells in function of the requirements [9]. DNA 45 

methylation is the most studied epigenetic mechanism and consists in the addition of a methyl group in 46 

the 5’ position of cytosine next to a guanine nucleotide [10]. Several studies have described that 47 

epigenetic mechanisms are involved in the pathogenesis of most chronic inflammatory diseases  by  48 

regulating important steps such as macrophage infiltration or cytokine secretion [11][12]. For instance, 49 

typically inflammatory molecules like interleukin (IL)-6, IL-4, IL-8, IL-1β or INF-γ have been 50 

described to be differently methylated in several chronic inflammatory diseases [9][11]. 51 

One of the advantages of epigenetics phenomena is the plasticity that enables modifying the 52 

epigenome pattern by the environment factors, including the diet [13]. Actually, that a variety of 53 

nutrients, such as fatty acids, polyphenols and methyl-donors, may modify DNA methylation pattern, 54 



either at the global scale or at specific sites [14][15–17]. Methionine, folate, betaine, choline, vitamin 55 

B2, B6 and B12 are considered methyl-donor precursor compounds present in the diet [18]. These 56 

compounds participate in the methionine pathway for the synthesis of S-adenosyl methionine (SAM), 57 

which is the universal methyl-donor for DNA methylation reactions. In this context, low availability of 58 

these compounds is usually accompanied by a reduction of global DNA methylation [13]. A variety of 59 

inflammation-related pathologies are linked to methyl-donor deficiency, and several studies have 60 

described the anti-inflammatory effect of these compounds. For example, folic acid deficiency has 61 

been related to hyperhomocysteinemia, hypertension, diabetes, and stroke [19], and the 62 

supplementation with this compound might improve disease outcome by reducing the inflammatory 63 

response [20, 21]. Furthermore, choline deficiency has been associated with the development of fatty 64 

liver and with worse liver fibrosis outcomes in patients with non-alcoholic steatohepatitis (NASH) as 65 

described elsewhere [22]. Nevertheless, NASH patients that were choline deficient exhibited 66 

amelioration of steatohepatitis after choline supplementation [23].  Finally, vitamin B12 deficiency has 67 

been associated with pro-inflammatory cytokines and low-grade systemic inflammation [24], and the 68 

development of hyperhomocysteinamemia, obesity, hypertension, and insulin resistance (Li, Gueant-69 

Rodriguez, & Quilliot, 2017). However, the effects of these compounds in the inflammatory response 70 

of macrophages and the role of DNA methylation in this process are seldom studied. For this reason, 71 

the aim of this study was to investigate the effects of methyl donors, both individually and in 72 

combination, on the prevention of LPS-induced inflammatory response in human THP-1 73 

monocyte/macrophage cells by assessing methylation pattern modifications. For this purpose, 74 

monocytes were incubated with folic acid, choline, vitamin B12 or a methyl donors’ mix that consisted 75 

in a combination of folic acid, choline and vitamin B12 and, then, the monocytes were differentiated 76 

into macrophages and an inflammatory response was induced with LPS.  77 

 78 

 79 

 80 



MATERIAL AND METHODS 81 

Reagents 82 

Folic acid, vitamin B12 and choline chloride were supplied from Sigma-Aldrich (MO, USA). Phorbol 83 

12-myristate 13-acetate (TPA) from Sigma-Aldrich was used for differentiating THP-1 monocytes 84 

into macrophage-like cells, whereas lipopolysaccharide (LPS) from E. coli K12 strain (Invitrogen, CA, 85 

USA) was applied for activating macrophages. Thiazolyl Blue Tetrazolium Bromide (MTT) (Sigma-86 

Aldrich) was required in order to investigate the toxic effects of methyl donors on THP-1 cells.   87 

Cell culture and treatments 88 

Human monocyte THP-1 cells were purchased from American Type Cell Culture (ATCC
®
 TIB-202

TM
, 89 

VA, USA). Cells were maintained at 37ºC and 5 % CO2 in RMPI-1640 medium (GIBCO) modified to 90 

contain 2 mM L-glutamine, 1 mM sodium pyruvate, 4.5 g/l glucose and 1.5 g/l sodium bicarbonate, 91 

and supplemented with 10 % fetal bovine serum (GIBCO), 100 U/ml penicillin, and 100 µg/ml 92 

streptomycin.  93 

THP-1 cells were treated with folic acid (11.3 µM) dissolved in NaOH 1 M, choline chloride (105 94 

µM), vitamin B12 (18.5 nM) and a mix of methyl donors that consisted in a combination of folic acid, 95 

choline chloride and vitamin B12 in the concentrations previously indicated. The concentrations of the 96 

treatments were chosen multiplying ten times the basal concentration present in RPMI-1640 medium 97 

for each compound. After 24 h, cells were differentiated into macrophages by incubation with 25 98 

ng/ml TPA for 48 h, and then were activated by incubation with 100 ng/ml LPS for 24 hours. Finally, 99 

RNA and DNA were extracted, and supernatants were collected for ELISA analysis.  100 

Cell viability analysis 101 

For viability assay, THP-1 cells were pretreated with the compounds at the selected concentrations 102 

during 24 h as described above in a 96-well plate. After the treatments, 20 µl MTT (5 mg/ml) was 103 

added to each well and plates were incubated for 2 h at 37 ºC. Formazan crystal formation was 104 

solubilised in 100 µL/well DMF-glacial acetic acid-SDS solution consisting in 40 % DMF, 2 % glacial 105 



acetic acid and 16 % w/v sodium SDS. Formazan production was quantified by absorbance at 570 nm 106 

using a microplate reader (Multiskan Spectrum, Thermo Electron Corporation, Finland). The results 107 

were expressed as relative cell viability (%). 108 

Analysis of mRNA expression by quantitative real-time PCR  109 

Total RNA was extracted from cells with TRizol
®
 reagent (Invitrogen). RNA quality and 110 

concentrations were measured with Nanodrop Spectrophotometer ND1000 (Thermo Fisher Scientific, 111 

MA, USA). About 1 µg of total RNA was reverse-transcribed into cDNA by MultiScribe
TM

 Reverse 112 

Transcriptase kit following the manufacturer’s instruction (Thermo Fisher Scientific, MA, USA). 113 

Real-time PCR was performed using ABI Prism 7900HT Sequence Detection System (Applied 114 

Biosystems, CA, USA). Predesigned TaqMan primers and probes for IL1B (Hs01555410_m1), TNF 115 

(Hs00174128_m1), IL18 (Hs01038788_m1), SERPINE1 (Hs01126606_m1), CD40 (Hs01002913_g1) 116 

and TLR4 (Hs00152939_m1) genes, and Taqman Universal Master Mix (Applied Biosystem). The 117 

levels of these mRNAs were normalized to the level of GAPDH (Hs02758991_g1) mRNA expression. 118 

Relative expression was determined by using the comparative 2
-ΔΔCt

 method. 119 

 120 

Cytokine secretion analysis by Enzyme-linked immunosorbent assay (ELISA)  121 

Culture supernatants were collected after the treatments and stored at -80 ºC for cytokine analysis. 122 

Protein concentrations of IL-1β, TNF-α, PAI1 and CD40 were measured with standard ELISA kits 123 

(R&D Systems Europe, UK) according to manufacturer’s protocols. Absorbance was measured at 450 124 

nm using a microplate reader (Multiskan Spectrum, Thermo Electron Corporation, Finland).   125 

DNA methylation analysis by MALDI-TOF mass spectrometry 126 

DNA was isolated from cells using MasterPure
TM

 DNA Purification Kit (Illumina, WI, USA) 127 

according to manufacturer’s guidelines. Genomic DNA was sodium bisulfite-converted using the 128 

EpitTect Bisulfite Kit (Qiagen, CA, USA). DNA methylation quantification was performed by 129 

MassARRAY EpiTYPER technology (Sequenom Inc., CA, USA). This method uses matrix-assisted 130 



laser desorption ionization time-of-flight (MALDITOF) mass spectrometry in combination with RNA 131 

base-specific cleavage (MassCLEAVE). Four amplicons covering 32 CpG sites were selected. 132 

EpiDesigner software (Sequenom; http://www.epidesigner.com/start3.html) was used for designing 133 

PCR primers for the amplicons of interest concerning IL1B (chr2: 112,837,566-112,837,895), TNF 134 

(chr6: 31,575,209-31,575,481), SERPINE1 (chr7: 101,127,068-101,127,411) and IL18 (chr11: 135 

112,163,853-112,164,105). The designed primers are shown in supplementary table 1 and the 136 

complete amplicon sequences are shown in supplementary figure 1. The complete methodology was 137 

previously explained [26]. 138 

Chromatin Immunoprecipitation (ChIP) Assay 139 

ChiP assay was performed with the ChIP-IT
TM

 Express Enzymatic Kit (Active Motif, CA, USA) 140 

following the manufacturer’s instruction. Briefly, THP-1 cells were cultured for 24 hours with methyl 141 

donors, and then were differentiated with TPA (25 ng/µl) for 48 hours and activated with LPS (100 142 

ng/µl) during 24 hours. The cell medium was discarded and 36.5 % formaldehyde was added directly 143 

to the cell surface for 10 min for the crosslink between proteins and DNA. Cross-linking was stopped 144 

by the addition of glycine for 5 min at room temperature and cells were scraped to collect them. Then, 145 

cells were incubated with lysis buffer for 30 min at 4 ºC and the DNA was fragmented via enzyme-146 

based digestion for 10 min at 37 ºC. Chromatin was immunoprecipitated using rabbit polyclonal 147 

antibody to NF-κB (ab7970, Abcam, MA, USA). After immunoprecipitation, crosslinking of protein-148 

DNA complexes was reversed and DNA was ready for analysis. Real time quantitative PCR was 149 

performed using primers for IL1B: sense 5’-agcaacaaagctgccactta-3’ and antisense 5’-150 

tgacgtgctgtgtgaatttg-3’, and TNF: sense 5’-ggagaatgtccagggctatg-3’ and antisense 5’-151 

tcctggaggctctttcactc-3’. 152 

Transcription factor-binding site analysis 153 

In order to identify the putative transcription factor binding site in the CpG sites of IL-1β gene, a 154 

bioinformatic analysis was performed through LASAGNA-Search 2.0 by using TRANSFAC matrices 155 

and aligned models [27]. 156 



Statistical analysis 157 

Normality was assessed by Kolmogorov-Smirnov and Shapiro-Wilk tests. For the statistical analysis 158 

of the results, one-way ANOVA followed by Dunnett’s test for multiple comparisons between groups, 159 

and unpaired Student’s t test for the direct comparisons between two groups, were used. Differences 160 

were considered significant at p value < 0.05. Statistics were performed using Prism 5.0 (GraphPad 161 

Software, CA, USA). 162 

RESULTS 163 

Methyl donors’ treatment did not affect cell viability 164 

To exclude the possibility that changes of the levels of the inflammatory genes were due to toxicity of 165 

methyl donors, cell viability was measured by MTT assay after the incubation with folic acid at 11.3 166 

µM, choline at 105 µM, vitamin B12 at 18.5 nM, and methyl donor’s mix. The selected concentrations 167 

were within the range proposed by previously studies (Cianciulli, Salvatore, Porro, Trotta, & Panaro, 168 

2016b; Feng, Zhou, Xia, & Ma, 2011b; Jiang et al., 2016). Cell viability was not significantly affected 169 

by methyl donors at these concentrations (Supplementary Figure 2).  170 

Comparative effects of methyl donors on genes associated with the inflammatory response in 171 

THP-1 macrophages activated with LPS  172 

The treatment of THP-1 cells with the different compounds before the differentiation with TPA and 173 

activation with LPS altered the expression of most of the inflammation-related genes compared to the 174 

control treatment (Figure 1). Folic acid and methyl donors’ mix reduced IL1B (P<0.05 for folic acid; 175 

P < 0.01 for methyl donors’ mix) and TNF (P<0.05 for folic acid; P<0.001 for methyl donors’ mix) 176 

mRNA expression. Folic acid treatment also reduced TLR4 (P<0.05), but increased SERPINE1 177 

(P<0.05) gene expression. Moreover, methyl donors’ mix incubation reduced the levels of CD40 178 

(P<0.05) but increased SERPINE1 (P<0.05). However, no statistically significant changes were 179 

observed after choline and vitamin B12 incubation. 180 



The pretreatment with folic acid and methyl donors’ mix reduced IL-1β and TNF-α secretion of 181 

LPS-activated macrophages  182 

We next evaluated the effects of folic acid, choline, vitamin B12 and methyl donors’ mix on the 183 

secretion of proinflammatory cytokines in the macrophages activated with LPS. The incubation with 184 

folic acid and methyl donors’ mix reduced the secretion of IL-1β (P<0.01) and TNF-α (P<0.01 for 185 

folic acid, and P<0.05 for methyl donors’ mix), but not CD40 and PAI-1. On the other hand, no 186 

changes were observed with the other methyl donors (Figure 2).  187 

Incubation with methyl donors increased DNA methylation in the inflammatory genes  188 

The regions under study of IL1B, SERPINE1 and IL18 displayed an overall gain of methylation when 189 

LPS-activated macrophages were treated with the different methyl donors. This hypermethylation was 190 

significant after the incubation with folic acid. As shown in table 1, folic acid increased significantly 191 

(P<0.05) the methylation levels of CpG_1 (190 %), CpG_5 (680 %) and CpG_6 (200 %) of IL1B, 192 

CpG_1 (750 %), CpG_2 (88 %), CpG_3.4 (136 %), CpG_7 (1003 %) and CpG_9 (88 %) of 193 

SERPINE1, and CpG_4 (53 %) and CpG_5 (27 %) of IL18 compared with the methylation percentage 194 

of the non-treated LPS-activated macrophages. As an exception, no methylation changes were noted in 195 

the analysed region of TNF after the treatment. In the case of choline chloride, vitamin B12 and methyl 196 

donors’ mix incubation, the incubation with these compounds also significantly increased (P<0.05) the 197 

methylation levels of some CpG sites of the genes (Table 1). 198 

NF-κB binding site to IL-1β and TNF-α is not affect after the incubation with folic acid and mix  199 

IL1B and TNF gene expression and secretion decreased after the incubation with folic acid and methyl 200 

donor’s mix (Figure 1-2). In the case of IL1B, DNA methylation levels were increased, but not in the 201 

case of TNF. To determine the effect of DNA methylation in the sequence of proinflammatory genes 202 

in the NF-κB binding to IL1B and TNF promoters a ChIP assay was performed. The analysis showed 203 

no significant changes in NF-κB binding to specific IL1B and TNF promoters region in chromatin 204 

from THP-1 cells treated with folic acid and methyl donors’ mix (Figure 3). 205 



DISCUSSION 206 

In the present study, we demonstrated that some methyl donors, particularly folic acid alone or in 207 

combination with other methyl donors, reduced the inflammatory response in THP-1 activated-208 

macrophages by evidencing the decrease in the expression of proinflammatory genes and the secretion 209 

of cytokines (e.g., IL-1β and TNF-α). 210 

Previous studies in humans have analysed the association between folic acid and inflammation. For 211 

example, a case-control study showed a reduction of cytokines levels after 12 weeks treatment with 212 

folic acid [31]. In addition, folic acid supplementation in patients with high risk of coronary artery 213 

disease also was associated with a reduction in pro-inflammatory cytokines (e.g., MCP-1) in human 214 

monocytes [32]. In the present study, we demonstrated that folic acid and a mix of methyl donors 215 

reduced the expression of proinflammatory genes (e.g TNF-a, IL-1B, CD40, TLR4) in THP-1 216 

monocytes when the monocytes were differentiated into macrophages and activated with LPS. In 217 

agreement with our results, incubation of murine monocyte RAW 264.7 cells with folic acid was 218 

found to reduce the expression of pro-inflammatory genes during LPS activation [33]. Contrariwise, 219 

folic acid deficiency in the same cell line enhanced the pro-inflammatory gene expression [34].  220 

Current data revealed that the folic acid and methyl donor`s mix treatment of THP-1 monocytes not 221 

only reduce pro-inflammatory gene expression, but also decrease the secretion of TNF-α and IL-1β 222 

cytokines from cells when are differentiated to macrophages and activated by LPS. During the 223 

inflammatory response, the monocytes migrated from blood into the surrounding tissue, promoted by 224 

release of chemoattractants from the site of inflammation [4, 35]. During chronic inflammation there 225 

exists an overproduction of TNF-α and IL-1β by macrophages in the inflamed tissue, which amplifies 226 

the inflammatory process and attracts more monocytes to the inflammation area, contributing to tissue 227 

damage and disease [36]. In this context, our results suggest that folic acid and a mix of methyl donors 228 

might contribute to prevent this undesirable effect. Indeed, these methyl compounds could reduce the 229 

inflammatory response of the monocytes that are recruited from blood to surrounding tissues, and the 230 



macrophages derived from these monocytes would produce lower cytokines levels, contributing thus 231 

to reduce inflammation at the final instance.  232 

The intimate mechanisms for the beneficial effect of folic acid or methyl donors on inflammation have 233 

not been elucidated. One of the possible explanations that has been suggested is epigenetics, via DNA 234 

and histone methylation [34]. Folate, choline and vitamin B12 directly participate in the formation of S-235 

adenosyl methionine (SAM) molecule, which is the major donor of methyl groups for DNA 236 

methylation [37]. Several research groups have reported an association between methyl donors’ 237 

consumption, DNA methylation and inflammation [38] [34]. Specifically, an association between 238 

methyl donors’ supplementation and DNA methylation changes in early liver steatosis in rats has been 239 

reported (Cordero, Campion, Milagro, & Martinez, 2013), evidencing the potential use of methyl 240 

donor’s in the amelioration of inflammation. In the current trial, folic acid and methyl donors’ mix 241 

increased the methylation levels of IL1B, SERPINE1 and IL18 in comparison with the non-treated 242 

LPS-stimulated THP-1 cells, and reduces the inflammatory response. 243 

Also, DNA methylation has been associated with transcriptional repression by altering transcription 244 

factor-gene promoter binding affinity or the spatial accessibility of transcription machinery due to 245 

chromatin structure changes ( Zhang & Pradhan, 2014)[41]. In the present study, only IL1B presented 246 

lower gene expression and protein secretion, and hypermethylation after folic acid supplementation. 247 

This result suggests that IL1B gene expression may be modulated by DNA methylation changes 248 

induced by folic acid. However, the methylation changes of SERPINE1 and IL18 were not correlated 249 

with changes in gene expression. The methyl donors’ incubation was for 24 hours and then, the 250 

monocytes were differentiated for 48 hours and activated by LPS for other 24 hours. A recent study of 251 

IL18 expression in after LPS-stimulated murine macrophages showed that the maximum level of 252 

expression of this interleukin was 3-6 hours after the induction, and not changes were showed at 24 253 

hours, suggesting by an earlier enzymatic activation of PARP-1 that induces IL18 expression (Liu et 254 

al., 2012). Moreover, other studies found that IL18 and SERPINE1 expression levels were modified by 255 

DNA methylation [43, 44]. In this context, the time or the concentration of supplements might have 256 

been insufficient to evaluate subtle changes in IL18 and SERPINE1 expression.  Surprisingly, no 257 



changes in DNA methylation levels in the TNF gene after the treatment with methyl donors were 258 

featured. In line with these results, Kolb et al. [34] found that, although folate deficiency in murine 259 

macrophages reduced DNA methyltransferase expression, DNA methylation did not change. In 260 

addition, in murine macrophages, incubation with exogenous SAM attenuated the LPS-stimulated 261 

expression of TNF [45]. 262 

Nuclear factor-κB (NF-κB) regulates the expression of many genes involved in the inflammatory 263 

response and the pro-inflammatory function of NF-κB has been studied widely in macrophages (Liu, 264 

Zhang, Joo, & Sun, 2017). For instance, lead-induced inflammatory response exhibited an increase in 265 

NF-κB expression that was associated with more inflammatory cell infiltration and IL-1B production 266 

[47]. In addition, it is known that NF-κB transcription factor is essential in the processes of LPS-267 

mediated inflammatory response [48] and regulates the expression of cytokines by direct binding to 268 

promoter sequences [49–51]. Interestingly, after a folic acid supplementation the inflammatory 269 

response was reduced with a decrease of cytokine and cell infiltration [47]. In accordance with these 270 

findings, Feng et al. [33] reported that folic acid inhibited TNF-α and IL-1β production by inhibiting 271 

NF-κB pathway, although the direct effects of DNA methylation on NF-κB binding affinity to gene 272 

sequences had not been apparently reported. Furthermore, LPS stimulates the NF-κB pathway and 273 

induces the expression of a number of inflammatory genes, including TNF and IL1B, by binding to 274 

specific DNA elements or κB enhancers [52]. Available data in this research reveals that the DNA 275 

methylation induction of folic acid and methyl donors’ mix in IL1B sequence did not affected the 276 

binding affinity of NF-κB to IL1B promoter. The binding levels of the transcription factor of IL1B 277 

promoter were similar to TNF promoter and to macrophages without methyl donors’ supplementation.  278 

Results of this investigation suggest a direct effect of methyl donors in the methylation of pro-279 

inflammatory genes in a human-derived monocyte/macrophage cell line and the reduction of the 280 

expression and the production of pro-inflammatory cytokines. In addition, although the methyl donors’ 281 

supplementation did not modify TNF promoter methylation, the results evidenced that it reduced TNF-282 

α production induced by LPS. However, binding affinity of NF-κB to pro-inflammatory genes was 283 

unaffected, suggesting a minor role of the transcription factor binding in the transcriptional regulation 284 



of these genes. Taking into account these results, it can be speculated about the molecular mechanisms 285 

under the regulation of these molecules. Thus, the bioinformatic analysis of the selected sequence of 286 

IL1B identified a putative PU.1 (Spi-1) transcription factor binding site, which could be involved in 287 

the regulation of the expression of this gene. It is known that PU.1 is a transcription factor that binds 288 

to GC-regions of genes to activate transcription, hence DNA methylation might impair the binding of 289 

PU.1 to the analysed sequence and downregulate gene transcription. Interestingly, PU.1 transcription 290 

factor is involved in macrophage differentiation and also in the transcriptional control of genes in 291 

mature macrophages [53, 54].  292 

CONCLUSION 293 

The findings of this study suggest that folic acid supplementation could contribute to ameliorate 294 

chronic inflammation, which could be in part mediated by increased DNA methylation in CpG for 295 

inflammatory genes. Nevertheless, the mechanisms where folic acid improves the inflammatory 296 

response are not totally understood concerning the potential anti-inflammatory effect of this molecule 297 

in human macrophages. In any case, folic acid might be a factor for controlling chronic inflammation 298 

in inflammatory-related diseases. 299 
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TABLE LEGENDS 309 

Table 1.  Percentages of CpG methylation in IL-1β, TNF-α, IL-18  and SERPINE1 after the incubation 310 

with treatments, measured by MassARRAY®. Unpaired t Student's test was used to compare each 311 

CpG with its control. * p value < 0.05; ** p value < 0.01; *** p value < 0.001 312 

FIGURE LEGENDS 313 

Figure 1. Comparative effects of folic acid, choline, vitamin B12 and methyl donors’ mix on 314 

inflammatory genes expression. Results are expressed as means ± SD (n=8). Differences between 315 

groups and control were analyzed by one-way ANOVA test for each concentration * p value < 0.05, 316 

** p value < 0.01, *** p value < 0.001 vs control (THP-1 treated with TPA and LPS). 317 

Figure 2. The effect of methyl donors’ treatment on cytokine secretion. A) IL-1B, B) TNF-α, C) 318 

CD40 and D) PAI-1 secretion of THP-1-derived activated macrophages treated with methyl donors’ 319 

mix for 24 hours. Results are expressed as means ± SD (n=7-8). Differences between groups in 320 

relation to control were compared using one-way ANOVA test. * p value < 0.05; ** p value < 0.01. 321 

Figure 3. The relative binding of NF-κB and IL-1β and TNF-α promoter was compared between folic 322 

acid and mehtyl donors’ mix with control (THP-1 differentiated with TPA and LPS activated). Results 323 

are expressed as means ± SD (n=8). Differences between groups in relation to control were compared 324 

using one-way ANOVA test, p value < 0.05.. 325 

SUPPLEMENTARY MATERIAL 326 

Supplementary Table 1. Primer sequences used for MassArray Epityper assay. 327 

Supplementary Figure 1. Genomic localization and nucleotide sequence of CpGs sites covered by 328 

the MassArray Epityper probe for the study of DNA methylation levels of IL-1β, TNF-α, SERPINE1 329 

and IL-18 genes regions.  Number of the left of each sequences represents the positions with respect 330 

the first nucleotide of the mRNA (start of transcription or TSS). Nucleotides in the box are the 331 

sequences selected for each gene. Underlined and highlighted in bold CpGs are the sites that 332 

quantified by EpiTYPER. Transcription Start Site (TSS). Coding DNA Sequence (CDS). 333 



Supplementary Figure 2. Relative cell viability after the treatments was measured by MTT assay. 334 

THP-1 cells were incubated with folic acid (11.3 µM), choline (105 µM), vitamin B12 (18.5 nM) and 335 

methyl donors’ mix. Data are shown as the means ± SD (n=6). Differences between groups in relation 336 

to control were compared using one-way ANOVA test, p value < 0.05. 337 



Table 1.  Percentages of CpG methylation in IL-1β, TNF-α, IL-18 and SERPINE1 after the 338 

incubation with treatments, measured by MassARRAY®. Unpaired t Student's test was used to 339 

compare each CpG with its control. * p value < 0.05; ** p value < 0.01; *** p value < 0.001340 

  
Control Folic acid Choline Vitamin B12 

Methyl donors' 

mix 

IL-1β                               

 CpG_1 6.88 ± 3.97 15.5 ± 6.14* 11.4 ± 1.55* 9.38 ± 0.95 14.0 ± 3.11* 

 CpG_2 94.9 ± 3.14 96.2 ± 1.66 94.8 ± 2.06 9.76 ± 0.85 96.9 ± 0.85 

 CpG_3 2.88 ± 2.09 1.75 ± 1.26 5.75 ± 1.77 3.75 ± 3.89 3.12 ± 3.75 

 CpG_4 2.75 ± 2.06 1.88 ± 1.79 1.25 ± 1.19 1.75 ± 0.96 3.75 ± 1.55 

 CpG_5 2.12 ± 2.49 6.50 ± 4.06* 1.25 ± 0.64 3.25 ± 1.55 10.0 ± 1.13 

 CpG_6 0.75 ± 0.50 7.12 ± 6.14* 9.50 ± 0.58*** 9.25 ± 2.33*** 0.88 ± 0.48 

                                

TNF-α                               

 CpG_1 98.2 ± 1.32 96.1 ± 2.78 98.0 ± 1.47 95.2 ± 2.72 95.8 ± 3.07 

 CpG_2 67.8 ± 3.95 64.8 ± 7.59 65.8 ± 4.48 69.9 ± 1.93 63.4 ± 6.46 

 CpG_3 48.1 ± 12.6 48.6 ± 8.53 51.2 ± 10.3 47.9 ± 4.71 45.0 ± 4.65 

 CpG_4.5.6 19.9 ± 6.76 15.2 ± 4.41 17.4 ± 3.09 19.8 ± 0.87 17.8 ± 1.79 

 CpG_8 33.9 ± 3.49 29.6 ± 4.37 31.8 ± 3.93 34.2 ± 2.53 34.0 ± 3.24 

                                

IL-18                               

 CpG_1 12.5 ± 17.4 2.0 ± 0.5 2.12 ± 0.85* 1.25 ± 1.32 2.5 ± 2.0 

 CpG_2 6.88 ± 1.55 6.0 ± 1.22 7.38 ± 2.06* 9.50 ± 1.0 10.1 ± 2.25 

 CpG_3 0.67 ± 0.29 2.0 ± 0.82 0.62 ± 0.25 1.38 ± 0.75 0.88 ± 0.75 

 CpG_4 11.0 ± 2.04 8.38 ± 4.09* 7.75 ± 2.22 8.0 ± 1.91 7.25 ± 1.85 

 CpG_5 19.0 ± 3.19 13.2 ± 2.10* 15.8 ± 2.90 16.6 ± 1.11 15.0 ± 2.16 

                                

SERPINE1                               

 CpG_1 2.62 ±  0.63 22.0 ± 13.7** 10.8 ± 14.2 17.0 ± 16.1* 56.2 ± 5.14 

 CpG_2 33.5 ± 3.39 63.0 ± 12.5*** 50.8 ± 7.09** 65.0 ± 5.40*** 45.4 ± 8.68* 

 CpG_3.4 38.5 ± 9.81 91.1 ± 8.23** 79.5 ± 7.99*** 85.2 ± 10.9*** 62.6 ± 24.0* 

 CpG_6 100 ± 0.00 89.4 ± 4.09 90.9 ± 11.3 87.1 ± 10.2 96.6 ± 5.49 

 CpG_7 2.88 ± 1.60 32.1 ± 15.4** 13.9 ± 7.97* 28.2 ± 23.1* 15.8 ± 15.8* 

 CpG_8 95.1 ± 2.62 91.5 ± 6.77 92.6 ± 6.74 93.1 ± 2.66 94.9 ± 2.06 

 CpG_9 33.5 ± 3.39 63.0 ± 12.5** 50.8 ± 7.09** 65.0 ± 5.40*** 45.4 ± 8.68 

 CpG_10 97.2 ± 2.59 95.0 ± 3.03 96.6 ± 1.60 88.5 ± 19.7 96.9 ± 2.46 

 CpG_11 97.5 ± 2.91 98.2 ± 2.36 97.1 ± 2.69 98.1 ± 0.75 98.5 ± 2.68 

 CpG_12 94.0 ± 7.22 95.0 ± 2.42 94.2. ± 5.52 96.0 ± 3.58 92.4 ± 6.26 

                                

                                



341 

342 

Figure 1. Comparative effects of folic acid, choline, vitamin B12 and methyl donors’ mix on 

inflammatory genes expression. Results are expressed as means ± SD (n=8). Differences 

between groups and control were analyzed by one-way ANOVA test for each concentration * p 

value < 0.05, ** p value < 0.01, *** p value < 0.001 vs control (THP-1 treated with TPA and 

LPS). 



343 

Figure 2. The effect of methyl donors’ treatment on cytokine secretion. A) IL-1B, B) TNF-α, C) CD40 and D) 

PAI-1 secretion of THP-1-derived activated macrophages treated with methyl donors’ mix for 24 hours. Results 

are expressed as means ± SD (n=7-8). Differences between groups in relation to control were compared using one-

way ANOVA test. * p value < 0.05; ** p value < 0.01. 

A B

C D



344 

Figure 3. The relative binding of NF-κB and IL-1β and TNF-α promoter was compared between folic acid and 

mehtyl donors’ mix with control (THP-1 differentiated with TPA and LPS activated). Results are expressed as 

means ± SD (n=8). Differences between groups in relation to control were compared using one-way ANOVA test, p 

value < 0.05.. 
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Supplementary table 1. Primer sequences used for MassArray Epityper assay. 

Gene Primer Sequence Length (pb) 
CpG 

covered 

IL-1β 
left 5'-gtgtttgtagttttagttgttggg-3' 

331 6 
right 3'-tctcttaataataccaaccaaaaattatca-5' 

TNF-α 
left 5'-tttggtttttaaaagaaatggaggt-3' 

273 8 
right 3'-tccttaataaaaaaacccataaactca-5' 

SERPINE1 
left 5'-tttggtataaaaggaggtagtggtt-3' 

343 12 
right 3'-actctcctacaatcacccctaaaac-5' 

IL18 
left 5'-tttgttgagttttttgtttttttgg-3' 

251 6 
right 5'-cctctaattaccataactaactttcca-3' 
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1. Epigenetic markers in pediatric obesity (case-control study)

Obesity is defined as an excessive fat accumulation resulting from a dysregulation between energy 

intake and expenditure (Chatzigeorgiou et al., 2014). Obesity is highly prevalent worldwide and is 

considered the pandemic of the current century, where genetics and lifestyle factors are involved 

(González-Muniesa et al., 2017). Most importantly, the prevalence has dramatically increased among 

children in the last years (Abdeen et al., 2017). Therefore, treating obesity in childhood is critical to 

prevent adult obesity and obesity-related complications. In this context, epigenetics is one of the 

factors that can be involved in the increased prevalence of obesity and accompanying comorbidities, 

being influenced by some of the dietary and lifestyle factors that are commonly associated with 

obesity risk (Milagro et al., 2013). In addition, obesity and its comorbidities (hyperglycemia, 

hyperlipidemia, hypertension, inflammation…) can also modify the DNA methylation levels 

(Demerath et al., 2015). 

In this sense, the research in children populations enables us to study the development of obesity at the 

first stages of the process, in a population who does not usually present obesity-related complications. 

Although some candidate gene-specific methylation studies have been carried out in children, very 

few EWAS analyses in pediatric cohorts have been published (reviewed by Rzehak et al., 2017). 

Trying to shed more light on this issue, the first objective of this work investigates the putative 

associations between DNA methylation profiles and childhood obesity. Thus, a genome-wide DNA 

methylation analysis identified 734 sites differently methylated in obese children when compared to 

lean ones. As other authors have previously reported (Faienza et al, 2016), the present study revealed 

that epigenetic modifications at different stages of early-life may be linked to the onset of obesity. In 

addition, most of the CpGs were located in the gene body region, and children with obesity presented 

higher methylation levels in these sites but lower methylation in promoter loci. In contrast with these 

results, lower methylation in the gene body regions in children with obese phenotype (Rhee et al., 

2017) and higher methylation in gene promoters (de Mello et al., 2014) have been previously 

described. Interestingly, DNA methylation fluctuations in significant sites occurred in CpG-rich 

regions, and increased with obesity. One of the strongest associations was found between PTPRS gene 
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methylation and obesity. A higher BMI z-score correlated with lower methylation levels of PTPRS. 

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family and 

regulates a variety of cellular processes such as cell division, growth, differentiation, and oncogenic 

transformation (Denu & Dixon, 1998). Studies in animals have evidenced that this gene is highly 

expressed during mammalian embryonic development and regulates hematopoietic stem cell (Elchebly 

et al., 1999; Quarmyne et al., 2015). The methylation machinery is very dynamic during the 

embryogenesis period and numerous studies have described that some epigenetic alterations that occur 

during this stage remain in adulthood (Li et al., 2010). A recent investigation in mice described that 

exposure to HFD during pregnancy was associated with genome-wide DNA methylation alterations 

and long-term gene expression changes in the liver, and the development of MetS in the offspring 

(Seki et al., 2017). 

Pathway analysis results indicated that the genes whose CpGs presented significant methylation 

differences between obese and non-obese children were involved in important biological processes 

such as oxidative stress, which has been associated with obesity, diabetes and other metabolic 

disorders (Gharib et al., 2016), and circadian rhythm signalling. Specifically, the methylation status of 

the circadian genes vasoactive intestinal peptide receptor 2 (VIPR2), glutamate ionotropic receptor 

NMDA type subunit 2D (GRIN2D), pituitary adenylate cyclase-activating polypeptide type I receptor 

(ADCYAP1R1) and PER3 was associated with BMI z-score. Moreover, the current research confirmed 

a negative correlation between PER3 methylation and childhood obesity, concluding that children with 

higher methylation levels of this gene exhibited lower degree of obesity. PER3 is one of the three PER 

family genes in humans, which encodes important components of the circadian rhythm machinery that 

have been associated with locomotor activity, behaviour, and metabolism. Interestingly, PER3 

expression levels in PBMCs have been previously related to visceral adiposity (Kim et al., 2017). 

These findings suggest a relationship between obesity in children and the methylation pattern of 

PTPRS and PER3 genes. It is noteworthy that obese children are predisposed to suffer obesity in 

adulthood and to develop severe comorbidities (Lipsky et al., 2017). There is also increasing evidence 

that DNA methylation alterations during childhood are determinant in the development of obesity in 

adulthood (Wahl et al., 2016). However, the results of the current study are not able to demonstrate if 
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the differences in DNA methylation between obese and non-obese children are a cause or a 

consequence of obesity. To correctly answer this question, it would be necessary to study the 

methylation pattern of the same individuals before and after developing obesity. For example, a recent 

genome-wide DNA methylation analysis from 478 children in cord blood identified novel CpG loci 

associated with adiposity outcomes at 3 and 8 years old (Kresovich et al., 2017). In this context, it may 

be particularly interesting to measure the methylation levels in DNA from cord blood or placenta. In 

addition, studies in growth-restricted neonates (Hillman et al., 2015; Côté et al., 2016) and children of 

women suffering from gestational diabetes (Finer et al., 2015), have been able to identify genome-

wide DNA methylation variations that may have a mechanistic role in metabolic disease programming 

through interaction of the pregnancy environment with gene function. 

As pointed out by previous results, epigenetic mechanisms affecting genes of the circadian clock 

system, which participates in the regulation of energy homeostasis and metabolism, seem to play a 

relevant role in the pathogenesis of obesity and MetS (Lopez-Minguez et al., 2016). These data 

support previous investigations, which reported that the methylation of the circadian-related genes 

CLOCK, PER2 and BMAL1 was associated with BMI, body fat, WC, HOMA, and MetS features in 

adult overweight and obese subjects (Milagro et al., 2012). In a similar way, CRY1 hypermethylation 

has been found in adipose tissue of healthy subjects after an acute total sleep deprivation and was 

associated with metabolic dysregulation (Cedernaes et al., 2015), confirming that disruptions in the 

circadian rhythm can alter the epigenetic and transcriptional profile of core clock genes in key 

metabolic tissues. These findings underline the importance of epigenetic mechanisms, particularly 

DNA methylation, in circadian clock regulation in relation to the control of metabolic processes in 

peripheral tissues, body weight and adiposity. 

2. Epigenetic markers in weight loss (intervention studies)

Obese children are predisposed to become obese in adulthood. Moreover, the subjects who maintain 

obese phenotype over time present higher risk for developing severe comorbidities such as MetS, 

inflammation or T2D in the future. Thus, a number of strategies have been investigated not only to 

induce a negative energy balance and weight loss (Biddle et al., 2017), but also to improve the health 
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status of the subject. Nevertheless, individual responses to body weight loss interventions may vary 

widely (Bouchard et al., 2010). For this reason, numerous studies have aimed to identify novel 

predictors of this variability that may be the basis for a precision management of obesity and its 

comorbidities (Rudkowska et al., 2015; Tremblay et al., 2015; Marcotte et al., 2016). In this context, 

previous publications from our group have demonstrated that epigenetic markers are associated with 

adiposity, metabolism, inflammation, appetite and weight loss (Milagro et al., 2011; Cordero et al., 

2013a; Goni et al., 2014; Carraro et al., 2016; Ramos-Lopez et al., 2018). With the final objective of 

identifying new biomarkers that could be useful in the personalization of the weight loss strategies, an 

aim of the present research has been to deepen into the association of DNA methylation marks in 

white blood cells, analyzed by different techniques, and body weight loss after different dietary 

interventions. 

Given that circadian clock system is involved in energy metabolism and weight control at different 

periods of life , the study of circadian system genes is of great interest (Garaulet et al., 2010). In this 

sense, we investigated the association between the methylation levels of BMAL1, CLOCK and NR1D1 

genes and the outcomes of a weight-loss nutritional intervention. The epigenome may be altered by 

environmental factors, including dietary intake (Milagro et al., 2013). Indeed, different dietary 

compounds, such as methyl donors (Cordero et al., 2013b), FAs (Karimi et al., 2017), and polyphenols 

(Boqué et al., 2013; Remely et al., 2015), may modify epigenetic marks. For this reason, this work 

also focused on the association between diet composition (nutrients and calorie intake) and the DNA 

methylation levels of the core clock genes, specifically BMAL1 and NR1D1. The weight loss 

intervention was based on a restricted Mediterranean dietary pattern, and previous studies have found 

that Mediterranean diet-based interventions were able to modify epigenetic marks in blood cells 

(Lopez-Legarrea et al., 2013; Arpón et al., 2018). In the present study, higher energy and carbohydrate 

intakes were associated with higher methylation levels in the CpG 5 to 9 region of BMAL1. 

Interestingly, these findings suggest that energy content and the type of macronutrients might 

modulate the synchronization between individual clock and biological functions. Interestingly, 

previous investigations have demonstrated the association between several nutrients and the circadian 

clock rhythms by altering the expression of clock genes (Froy, 2007; Garaulet et al., 2009). Also, 
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several polymorphisms in clock genes have been reported to be associated with differential 

effectiveness of weight-loss interventions depending on nutrient composition (Garaulet et al., 2011; 

Garcia-Rios et al., 2014; Dashti et al., 2015). 

On the other hand, the genome methylation levels have been associated with weight loss outcomes 

after a low calorie diet in different populations (Cordero et al., 2011b; Crujeiras et al., 2013; Milagro 

et al., 2011). In relation to methylation of clock genes, our group has previously demonstrated an 

association between the methylation status of some clock genes (CLOCK and PER2) and some 

parameters related to MetS (Milagro et al., 2012). An important result of the current research was to 

feature an association between the baseline methylation profile of BMAL1 and the changes in the 

serum lipid profile induced by the weight loss treatment. Moreover, positive correlations were found 

between changes in methylation levels in the CpG 5 to 9 region of BMAL1 due to the intervention and 

changes in serum lipids. These results allow to hypothesize about a possible causality between DNA 

methylation and lipid metabolism. BMAL1 encodes a transcription factor that creates a complex with 

CLOCK (the CLOCK-BMAL1 heterodimer) and plays a key role as one of the positive elements in 

the mammalian transcription and translation regulation (Froy, 2007). BMAL1 has been identified as a 

candidate gene for the development of hypertension, infertility, diabetes, and other glucose 

metabolism alterations (Pappa et al., 2013; Richards et al., 2014). In addition, BMAL1 gene activity 

has been related to impairments in adipogenesis, lipogenesis and other lipid metabolism processes 

(Froy, 2012). Moreover, the mRNA levels of this gene are increased during hyperlipidemic and 

hyperglycaemic periods in obesity and may regulate other genes involved in metabolic processes 

(Tahira et al., 2011). These results support our finding that the methylation changes of BMAL1 were 

associated with the habitual energy and carbohydrate intake, and blood lipid levels. It is noteworthy 

that these results provide evidence that an energy-restricted intervention based on the Mediterranean 

diet is able to modify the methylation status of BMAL1 gene in white blood cells. It should be 

interesting to carry out studies in other tissues (i.e., liver, adipose tissue, skeletal muscle, pancreas...) 

to confirm if these epigenetic changes induced by the diet could affect the expression of genes and the 

function of these important metabolic organs. Unfortunately, we did not have samples from these 

tissues. 
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In the last years, microarray technology and EWAS have allowed the discovery of candidate genes for 

explaining the inter-individual differences in the response to weight loss strategies (Wahl et al., 2016). 

Accordingly to the previous association reported on DNA methylation changes within weight loss 

intervention, and using the “omics” technologies, we also analysed the differential transcription and 

DNA methylation profiles of the RESMENA cohort in relation to weight loss response. The 

transcriptomic analysis pointed out 156 differentially expressed transcripts between subjects who 

responded successfully to the diet (high responders, HR) and subjects who responded poorly (low 

responders, LR). These results are consistent with previous studies in blood cells where expression 

levels of several genes at baseline helped to predict changes in BMI and weight after a nutritional 

intervention (Rendo-Urteaga et al., 2015; Armenise et al., 2017). Interestingly, in the RESMENA 

cohort, the methylation array analysis found 2,102 CpGs that were differentially methylated before the 

energy-restriction diet between LR and HR. Although neither the treatments nor the characteristics of 

the populations were similar to the RESMENA study, we did not find genes coincident when 

comparing these different studies. 

On the other hand, this is not the first study using methylation-array based tools for the identification 

of novel markers of age-related diseases or obesity (Gómez-Úriz et al., 2015)  Other studies have used 

alternative technologies, such as pyrosequencing (Aumueller et al., 2015) or global DNA methylation 

and hydroxymethylation (Nicoletti et al., 2016) for the same purpose. Similar to our study, the 

methylation levels of different genomic regions have been assessed in relation to the individual 

response to different weight loss nutritional interventions (Bouchard et al., 2010; Milagro et al., 2011; 

Moleres et al., 2013). DNA methylation has been associated with transcriptional regulation; while 

DNA methylation in gene promoters has been usually associated with transcriptional repression, body 

gene methylation is more often associated with gene expression activation (Zhang & Pradhan, 2014). 

LR subjects exhibited DNA hypomethylation and over-expression of CD44, ITPR1 and MTSS1 genes, 

and, in contrast, FBXW5 was hypomethylated and under-expressed. Specifically, two CpGs located in 

CD44 presented lower methylation and higher expression levels in LR comparing with HR. This result 

could be related with a previous study that described an association between methylation of CD44, 
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which encodes an immune-cell surface receptor (Kodama et al., 2012), and changes in WC, BMI and 

fat mass after a weight loss treatment (Milagro et al., 2011). 

The excessive fat accumulation and chronic low-grade inflammation characteristic of obesity are an 

underlying principle in the development of numerous obesity comorbidities and MetS, including 

dyslipidemia, IR, and hypertension (Guh et al., 2009). Physiologically, adipose tissue hosts resident 

leukocytes (mostly macrophages) that participate in the response to nutritional signals. The 

macrophage recruitment in visceral adipose tissue is necessary for controlling the flow of lipids and 

inhibiting lipolysis (Dali-Youcef et al., 2013). During obesity, excess fat accumulation and cholesterol 

dysregulation may induce adipocytes to produce pro-inflammatory molecules and cytokines (such as 

NOS2, TNF-α, MCP-1, VCAM-1, ICAM-1, and interleukins IL-12, IL-6 and IL-1β) which further 

propagate inflammation (Kirwan et al., 2017). In this sense, the expression of CD44 has been 

associated with macrophage accumulation in morbid obesity and liver steatosis, whereas its expression 

decreases after a massive weight loss (Bertola et al., 2009). In addition, CD44 is implicated in the 

development of inflammation in adipose tissue and IR (Liu et al., 2015), having been suggested as a 

biomarker for IR and putative therapeutic target for T2D (Kodama et al., 2012). Regarding these 

results and our current data available, it can be speculated that CD44 could have an important role in 

the inflammatory process in obese subjects, and the DNA hypermethylation and therefore lower 

expression of CD44 at baseline may improve the response to an energy-restricted diet. 

3. Effect of methyl donors on epigenetic marks and inflammation

The dietary strategy followed by the RESMENA study was based on the Mediterranean diet. Previous 

studies of our group have associated Mediterranean dietary patterns with lower prevalence and 

incidence of MetS and amelioration of obesity-related inflammation, and can be a useful tool for 

obesity management (de la Iglesia et al., 2014). The term “Mediterranean diet” is applied to a 

spectrum of diverse dietary patterns that contains extra virgin olive oil as a major source of fat, but 

also includes high consumption of vegetables, fruits, legumes, cereals, and fish (Galland, 2010). 

Mediterranean diet represents an important source of methyl donors, like folate and vitamin B12, which 

are essential cofactors in the methionine/homocysteine cycle. However, the increasing consumption of 
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HFDs and western dietary patterns explains a reduction in the methyl donors intake in Mediterranean 

countries (Samaniego-Vaesken et al., 2017). In this context, the prevalence of micronutrient deficiency 

caused by unbalanced diets, including folate deprivation, constitutes an important aspect in the high 

prevalence of overweight and obesity in the population (Hwalla et al., 2017). For example, different 

observational studies have previously associated low folate intake with overweight and obesity 

(Tungtrongchitr et al., 2003; Mahabir et al., 2008; J. K. Bird et al., 2015). In the current trial, half of 

the studied RESMENA sample presented low consumption of folate according to the Spanish 

reference intake tables (“Ingestas Dietéticas de Referencia (IDR) para la Población Española” 2010). 

Interestingly, as in previous studies, individuals with lower folate intake presented higher body 

adiposity compared with those who consumed high folate. 

In agreement with these results concerning folate intake, negative associations between serum folate 

concentrations and BMI and fat mass have been previously reported in both pediatric (Gunanti et al., 

2014) and adult (Mahabir et al., 2008; Bradbury et al., 2014; Bird et al., 2015) populations. Moreover, 

the subjects with low folate levels exhibited metabolic alterations characterized by higher levels of 

glucose, insulin, HOMA-IR, and TG. These outcomes suggest that folate deficiency is also associated 

with metabolic disturbances. Indeed, previous studies in humans revealed that IR in the offspring was 

associated with maternal folate intake (Krishnaveni et al., 2014). However, a study based on NHANES 

data paradoxically found a positive association between red blood cell folate and BMI that was 

opposed to the negative association between serum folate and BMI (Bird et al., 2015). Thus, future 

research is needed to understand how obesity differentially alters serum and red blood cell folate 

status. 

Since folate participates as a substrate in one-carbon cycle, where SAM donates a methyl group for 

DNA methylation, it has been suggested that folate acts in the pathophysiology of obesity and MetS 

through the regulation of the expression of specific genes by altering DNA methylation patterns (Fu et 

al., 2017). In agreement with this hypothesis, we have found an association between inadequate folate 

intake and lower methylation of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) 

gene. Furthermore, CAMKK2 hypomethylation was associated with HOMA-IR index, whereas higher 

CAMKK2 gene expression correlated with IR. These findings suggest that epigenetic modifications in 
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CAMKK2 due to methyl donor intake may have a metabolic impact by modifying CAMKK2 

expression. CAMKK2 encodes for a kinase that is involved in appetite and weight loss (Anderson et 

al., 2008). Moreover, previous experimental studies have reported a relationship between CAMKK2 

and folate status in the prevention of cardiac dysfunction in a model of IR and adiposity (Anderson et 

al., 2008, 2012; Racioppi & Means, 2012; Roe et al., 2013). Taken together, our data show that low 

folate intake is associated with IR in obese subjects through CAMKK2 hypomethylation. 

On the other hand, inflammation has emerged as an important factor in the pathophysiology of obesity 

(Engin, 2017). The characteristic chronic low-grade inflammation within the metabolic tissues is 

known as metabolic inflammation, or “meta-inflammation” (Lyons et al., 2016). This meta-

inflammation is linked with the development of IR in obese subjects (Solas et al., 2017). An increasing 

number of investigations have evidenced that some nutrients and bioactive compounds, including 

carbohydrates, flavonoids, FAs, and vitamins, may be implicated in the regulation of inflammation, 

increasing or reducing the inflammatory response (Galland, 2010). In this context, deficiency of folate 

and other methyl-donors (i.e choline, methionine, betaine, vitamin B12) has been related to a variety of 

inflammation-related manifestations. For example, low methyl-donor intake has been associated with 

hypertension, NASH, IR, and MetS (Liew, 2016; Li et al., 2017). In rats fed an obesogenic diet, it is 

well known that methyl donor deficiency produces steatohepatitis (Bison et al., 2016). On the other 

hand, a study showed that the supplementation of choline, in subjects with deficient choline levels and 

hepatic steatosis, ameliorated liver disease (Buchman et al., 1995). For example, folic acid attenuated 

the hypoxia-induced inflammatory response of THP-1 cells through inhibition of the PI3K/Akt/HIF-1α 

pathway (Huang et al., 2016). Also, folic acid supplementation has been associated with a decrease of 

cytokine secretion in a model of lead acetate-induced hepatotoxicity in rats (Abd allah & Badary, 

2017). Finally, dietary supplementation with methyl donors prevents NAFLD in rats (Cordero et al., 

2013b). 

According to the previous findings and our own results associating lower intake of folate with higher 

adiposity in the RESMENA study, we have tested the possible anti-inflammatory effects of methyl 

donors, especially folic acid alone or in combination with other methyl donors, in an in vitro model of 

LPS-activated THP-1 macrophages, and analysed whether epigenetic mechanisms were involved in 
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the effect. THP-1 is a human leukemia monocytic cell line that has been widely used to study 

monocyte and macrophage functions, mechanisms, signaling pathways, and nutrient effects (Chanput 

et al., 2014). 

Previous studies have described that folic acid supplementation reduced cytokine levels in overweight 

subjects (Solini, Santini, & Ferrannini, 2006) and also decreased the risk of coronary artery disease by 

decreasing cytokines secretion (Wang et al., 2005). In the present study, we found that the incubation 

of LPS-activated macrophages with folic acid and a mix of methyl donors was associated with a 

reduction in the expression of several pro-inflammatory genes such as TNF, IL1B, CD40, and TLR4. 

Similar to our results, the incubation of murine monocytes with folic acid was found to reduce the 

expression of pro-inflammatory genes (Feng et al., 2011), whereas folic acid deficiency increased the 

expression of inflammatory mediators like IL-1β, IL-6, TNF-α, and MCP-1 at the RNA and protein 

level in the mouse monocyte-macrophage lineage RAW 264.7 (Kolb & Petrie, 2013). During chronic 

inflammation, macrophages overproduce TNF-α and IL-1β in the inflamed tissue for attracting more 

monocytes to damaged tissue and amplify inflammatory response (Calder et al., 2009). Current data 

revealed that folic acid and a mix of methyl donors also decrease the secretion of TNF-α and IL-1β by 

LPS-activated THP-1 macrophages. In this context, our results suggest that these methyl compounds 

could reduce the inflammatory response of the monocytes that are recruited from blood to surrounding 

inflamed tissues, and the macrophages derived from these monocytes would secrete less cytokines, 

contributing thus to reduce inflammation at the final instance and to improve the metabolic profile and 

delay the development of metabolic complications. 

Furthermore, choline and vitamin B12 are involved in the conversion of homocysteine to methionine 

and the synthesis of SAM, which is the major donor of methyl groups for many substrates such as 

DNA, RNA, histones and co-regulators of nuclear receptors that play a key role in epigenetic 

mechanisms (Anderson et al., 2012). In the present research, folic acid and a mix of methyl donors 

increased the methylation levels of the proinflammatory genes IL1B, SERPINE1 and IL18 in LPS-

activated macrophages in comparison with the non-activated ones. Several research groups have 

associated the intake of methyl donors with DNA methylation changes in inflammation-related 

diseases. For example, research in rats have reported that methyl donor consumption modified DNA 
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methylation in early liver steatosis, envisaging a potential use of these compounds in the improvement 

of inflammation (Cordero et al., 2011b; Cordero et al., 2013a; 2013b). 

Since there is scientific evidence that transcriptional regulation by DNA methylation is the result of 

the alteration of transcription factor-gene promoter binding affinity or the spatial accessibility of 

transcriptional machinery (Zhang, 2015), a focus to investigate the effect of DNA methylation on the 

binding affinity of the NF-κB transcription factor to IL1B and TNF binding sites was aimed. NF-κB 

has been extensively studied in macrophages due to its regulatory function on the expression of many 

inflammatory genes (Liu et al., 2017). For instance, NF-κB transcription factor is essential in the LPS-

mediated inflammatory response by increasing monocyte infiltration and IL-1β production (Abd allah 

& Badary, 2017), and modulates cytokine expression by direct binding to the promoters of their genes 

(Hiscott et al., 1993). Data of the present research reveals that the increase of DNA methylation by 

folic acid and a mix of methyl donors in IL1B gene did not affect the binding affinity of NF-κB to 

IL1B binding site. In accordance with this finding, a previous study reported that folic acid inhibited 

TNF-α and IL-1β production by inhibiting NF-κB pathway, whereas the direct effect of DNA 

methylation on binding affinity to gene promoters has not been elucidated (Feng et al., 2011). 

In our model, LPS-induced inflammation ameliorated by the supplementation of folic acid and a mix 

of methyl donors. Although binding affinity of NF-κB to IL1B gene remained unaffected, it can be 

speculated about the molecular mechanisms regulated by this molecule that can be involved in the 

control of the expression of IL1B. The bioinformatic analysis of the selected sequence of the gene 

identified a putative PU.1 (Spi-1) transcription factor binding site. Interestingly, the PU.1 transcription 

factor is involved in macrophage differentiation and in the control of the expression of genes in mature 

macrophages (Yuan et al., 2012). 

4. Strengths and limitations

This research has successfully identified novel DNA methylation signatures for obesity and metabolic 

disorders and for the response to an energy-restricted diet. In addition, it has found interesting 

association between the diet (particularly energy and carbohydrate intake) and the methylation levels 

of core clock genes. Finally, this research provides a descriptive picture of the impact of methyl 
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donors on the inflammatory response.

 One of the main strengths of the present research is the robust design of the Women cohort and the 

RESMENA study. Given their prospective nature, they allowed us to analyze DNA methylation and 

other variables at two points. Moreover, the randomized design of the clinical trial is other strength of 

the RESMENA study as this design is the best to assess the effectiveness of the interventions. 

However, the studies carried out in pediatric population, such as the GENOI study, have the advantage 

that they are not affected by pernicious lifestyle practices. The use of “omics” approach has 

demonstrated to be useful for identifying DNA methylation patterns related to different phenotypes 

and populations, and to categorize individuals into different clusters depending on the nutrient pattern 

or success of a given dietary strategy. Integrative “omics” analyses that involve the integration of 

methylome and transcriptome data greatly improve our understanding of the biological mechanisms. 

Indeed, the combination of high-throughput technologies (arrays) and further validation in larger 

populations (by MassARRAY
®
 EpiTYPER or pyrosequencing, and qRT-PCR) has proven to be a 

useful strategy to achieve the goal. The major limitation of this research is that no clear causality could 

be given between DNA methylation patterns and obesity and related phenotypes due to the studies 

design. For this reason, this project opens new questions that need to be addressed in further studies, 

and some limitations must be declared. For example, although we have performed some in vitro 

studies trying to deepen into the molecular mechanisms implicated in the onset of the diet-induced 

epigenetic changes, more mechanistic studies must be performed in order to explain some of the 

findings. 

One shortcoming of the current research is the sample type of some analyses. On the one hand, DNA 

methylation and expression analyses were performed in white blood cells, rather than in metabolically 

relevant tissues, since blood is relatively easy to obtain and is a non-invasive source for RNA and 

DNA. Although blood is not a metabolically relevant tissue for the study of obesity and metabolic 

abnormalities, recent investigations have demonstrated that blood-based biomarkers reflect the DNA 

methylation changes in key metabolic tissues, as is the case of pancreatic islets (Bacos et al., 2016) 

and adipose tissue (Crujeiras et al., 2017), which supports the use of blood cells to study epigenetic 

alterations related to metabolic disorders. On the other hand, in the in vitro study, THP-1 cell model 
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was chosen to study the effects of methyl donor supplementation on the inflammatory response. THP-

1 monocytic cell line was isolated from peripheral blood and has been widely used to study immune 

responses due to the possibility to differentiate into macrophage-like cells. However, a number of 

investigations have compared the similarity between THP-1 cells and human PBMCs and, although in 

most cases both types presented relative equal response patterns, some differences have been reported 

concerning gene expression and cytokine secretion. 

 We are aware that epigenetics is not the only factor contributing to natural human variation. Apart 

from DNA methylation, many other factors are implicated in differential response to dietary and 

metabolic environments, including genetics, gut microbiota, perinatal factors, family socio-economic 

status, and other life style characteristics. Particularly, factors that are involved in the perinatal period 

have been shown to alter the DNA methylation levels and future health outcomes (prenatal smoke 

exposure, preterm newborns, gestational diabetes, birth length and weight, maternal diet and physical 

exercise, maternal weight gain and adiposity,...). In this regard, DNA methylation has been reported to 

be a sensitive biomarker and potential therapeutic target (Crujeiras et al., 2017; Day et al., 2017). 

However, the mentioned factors should be considered in further studies.  

Sample availability is another limitation of the present research. Given that we have no RNA samples 

from the individuals that participated in the GENOI and Women cohorts, we could not establish any 

direct relation between DNA methylation and gene expression. Therefore, in the present trial we could 

only hypothesize about the underlying biological processes. For example, bioinformatics analysis 

identified several transcription factor binding sites as putatively involved in the regulation of the 

expression of BMAL1, PER3 and PTPRS. Interestingly, the identified transcription factors, such as 

glucocorticoid receptors, GATA-1/-6 and MZF1, are involved in adipogenesis (Tong et al., 2000), 

lipid metabolism (Watts et al., 2005) and inflammation (Powell et al., 2013). However, because of the 

lack of protein samples, we could not confirm the involved mechanisms behind the observed 

associations between DNA methylation profiles and phenotypes. In addition, CD44 methylation levels 

were not measured at the end of the intervention, being not possible to analyse whether the dietary 

treatment had an effect on CD44 gene methylation levels. Moreover, the lack of measures of 

blood/plasma folate concentrations in the subjects from the RESMENA study did not allow studying 
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the associations between folate intake and blood folate concentrations, and between folate levels and 

DNA methylation and expression. 

Another limitation is related to the relative small samples size of some of the cohorts, which might 

limit the statistical power to detect differences in DNA methylation and expression of genes across the 

obesity and related disorders phenotypes and gene-diet interactions. The lack of large sample sizes 

could lead to increase the risk of type II errors (no detect real differences). Moreover, comparable 

experimental trials (focused on epigenetic biomarkers) with a balance in number of subjects and 

reasonable statistical power (> 80 %) have been performed to diminish type II error (Hermsdorff et al., 

2013; Carraro et al., 2016). In addition, the array data were controlled by multiple comparisons 

correction by applying the Benjamini-Hochberg method, to avoid type I errors (accepting something 

that is not real). In order to minimize type I error, the lowest p values were selected for the analyses. 

Lastly, another limitation is related with the use of questionnaires to collect weighed food records in 

the RESMENA study. Although it is true that dietary recalls and food composition tables may have 

some inconsistencies (Shim et al., 2014), food frequency questionnaires are relatively simple, cost-

effective, and time-efficient (Shim et al., 2014). For this reason, they are widely used in similar 

nutritional studies. 

The use of one cross-sectional study and two intervention trials enable us to identify putative 

epigenetics biomarkers for pediatric obesity and the success of different weight-loss interventions. 

Due to the limitation of each study we could not deepen into the molecular mechanisms involved in 

these epigenetic outcomes. For these reasons, further studies in larger and more diverse populations 

are needed for validating the observed associations between DNA methylation and phenotypes, before 

implementing epigenetic biomarkers for clinical diagnosis and personalized weight loss treatment 

decisions. 

5. Corollary

The results of the current research have demonstrated that epigenetic factors could modulate 

susceptibility to obesity and related metabolic disorders. Specifically, hypomethylation of PTPRS and 

PER3 genes were associated with higher adiposity in children. In addition, the pathways analysis 



General discussion 

137 

highlighted the relevance of circadian rhythm signalling in childhood obesity, but also suggested that 

some circadian genes (VIPR2, GRIN2D, ADCYAP1R1, and PER3) could play an important role via 

methylation-dependent mechanisms. In this context, a higher intake of energy and carbohydrates was 

associated with higher methylation levels of BMAL1 clock gene in an adult population. This 

association supports an interaction between circadian and food intake systems through an epigenetic 

mechanism. It is noteworthy to highlight that changes in the methylation pattern of BMAL1 as a 

consequence of the dietary intervention were associated with blood lipid markers. Indeed, the current 

data support the hypothesis that methylation of clock genes could be involved in the control of 

adiposity and lipid metabolism, but also that dietary interventions are able to modify the methylation 

pattern of genes intervening in important metabolic pathways such as the circadian clock and 

inflammation. 

The integration of genome-wide array data has been shown to be a powerful tool for identifying novel 

biomarkers that predict the response to specific nutritional interventions. This is the case of the 

methylation and expression of CD44, which has been identified as a potential diagnostic tool to 

personalize the dietary treatment of obesity. Furthermore, our research also contributes to better 

understand not only the role of DNA methylation in obesity and body weight loss, but also how some 

micronutrients (i.e., methyl donors) can influence mechanisms associated with obesity and metabolic 

disorders via epigenetic modifications. For example, low folate intake was apparently associated with 

lower CAMKK2 gene methylation and IR in obese individuals. In addition, in vitro studies in human 

monocyte/macrophage cells suggested potential anti-inflammatory effects of folic acid, alone and in 

combination with choline and vitamin B12 that could be in part mediated by DNA methylation 

mechanisms. 

In summary, the findings of the present work confirm that the genes regulating circadian rhythm and 

inflammation are involved in the pathophysiology of obesity and in the individual response to weight 

loss treatments. “Omics” technologies are powerful tools for identifying new biomarkers related to 

metabolic alterations such as obesity, insulin resistance and inflammation. In the current work, we 

have demonstrated that epigenetics is implicated in the interindividual susceptibility to obesity and the 

response to dietary interventions. Moreover, these epigenetic mechanisms are dependent on dietary 
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factors, including energy and macronutrient intake, but also micronutrients and bioactive compounds 

such as folate and other methyl donors. In this context, our data confirm that the study of the 

epigenetic profile is a good strategy to find biomarkers that help to personalize the prevention and 

treatment of obesity and its related pathologies. The results of the present research work add new 

insights into the application of epigenome-based precision nutrition in the management of obesity and 

inflammatory related diseases. However, further studies must consider other factors that are also 

implicated in differential response to dietary and metabolic environments, including genetics, gut 

microbiota, and other life style characteristics. 
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Conclusions 

1. Several CpGs in the PTPRS and PER3 genes were identified as higher methylated in obese

children in comparison with non-obese, suggesting a role for DNA methylation in these genes in 

childhood obesity development. 

2. The methylation levels of BMAL1 and other core clock genes were modified by a weight loss

intervention and were associated with changes in serum lipid levels. These results evidenced that 

DNA methylation of clock genes is dependent on the diet composition and can be used as a 

biomarker of the lipid profile response to the diet. 

3. The expression and DNA methylation of the immune-cell receptor gene CD44 can be used as a

predictor of the success to specific weight-loss interventions, revealing that this gene may have a 

putative role in body weight regulation. 

4. Subjects within the RESMENA study with lower folate intake showed more fat mass, higher

serum levels of glucose, insulin, cortisol, and PAI-1, and lower CAMKK2 methylation than those 

with higher folate intake. Interestingly, CAMKK2 methylation was negatively associated with 

HOMA-IR index whereas CAMKK2 expression positively correlated with HOMA-IR, which 

suggests that CAMKK2 methylation could be an epigenetic mechanism underlying low folic acid 

consumption-mediated insulin resistance in obese subjects. 

5. Folic acid alone or mixed with other methyl donors (choline and vitamin B12), when administered

before the differentiation of THP-1 monocytes, reduced the inflammatory response when further

differentiated into macrophages and activated by LPS. Folate addition reduced the expression of 

pro-inflammatory genes and the secretion of IL-1β and TNF-α in comparison with the non-treated 

LPS-stimulated THP-1 cells, which was accompanied by an increased methylation on CpGs 

concerning IL1B, SERPINE1 and IL18. 
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ABSTRACT Chronic inflammation is involved in the
onset and development of many diseases, including
obesity, atherosclerosis, type 2 diabetes, osteoarthritis,
autoimmune and degenerative diseases, asthma, perio-
dontitis, and cirrhosis. The inflammation process is
mediated by chemokines, cytokines, and different in-
flammatory cells. Although the molecules and mecha-
nisms that regulate this primary defense mechanism are
not fully understood, recent findings offer a putative
role of noncoding RNAs, especially microRNAs (miR-
NAs), in the progression and management of the in-
flammatory response. These noncoding RNAs are
crucial for the stability and maintenance of gene ex-
pression patterns that characterize some cell types, tis-
sues, and biologic responses. Several miRNAs, such as
miR-126, miR-132, miR-146, miR-155, andmiR-221, have
emerged as important transcriptional regulators of some
inflammation-related mediators. Additionally, little is
known about the involvement of long noncoding RNAs,
long intergenic noncoding RNAs, and circular RNAs in
inflammation-mediated processes and the homeostatic
imbalance associated with metabolic disorders. These
noncoding RNAs are emerging as biomarkers with di-
agnosis value, in prognosis protocols, or in the person-
alized treatment of inflammation-related alterations. In
this context, this review summarizes findings in the field,
highlighting those noncoding RNAs that regulate in-
flammation, with emphasis on recognized mediators
such as TNF-a, IL-1, IL-6, IL-18, intercellular adhesion
molecule 1, VCAM-1, and plasminogen activator in-
hibitor 1. The down-regulation or antagonism of the
noncoding RNAs and the administration of exogenous
miRNAs could be, in the near future, a promising ther-
apeutic strategy in the treatment of inflammation-related
diseases.—Marques-Rocha, J. L., Samblas, M., Milagro,
F. I., Bressan, J., Martı́nez, J. A., Marti, A. Noncoding

RNAs, cytokines, and inflammation-related diseases.
FASEB J. 29, 3595–3611 (2015). www.fasebj.org

Key Words: circular RNA • lincRNA • microRNA • lncRNA •

obesity

INFLAMMATION IS A COMPLEX PROTECTIVE process that requires
a cross-talk between different types of immune cells to
remove or neutralize harmful stimuli (1). In the classic
view, the inflammatory process is inducedby an invasion of
foreign pathogens of biologic origin or by tissue damage.
Neutrophils, dendritic cells, and macrophages express al-
most all types of TLRs participating in the transmission of
a signal from the plasma membrane through a multistep
cascade to responsive transcription factors.Membersof the
TLR family have emerged as the primary evolutionarily
conserved sensors of pathogen-associated molecular pat-
terns (1). Binding of the TLRs to their respective ligands
initiates a wide spectrum of responses, from phagocytosis
to production of a variety of cytokines, which in turn shape
and enhance the inflammatory and adaptive immune
responses. Typical transcription factors that activate in-
flammatory mediators are NF-kB (2), activator protein 1
(3), signal transducer and activator of transcription
(STAT) (4), CCAATenhancer binding protein (C/EBP)
(5), and Ets-like gene 1 (6). The interactions between
transcription factors that compete for binding sites in the
promoter regions of specific target genes are highly
complex. Usually the multistep signaling leads to
a prompt transcription of genes resulting in accumula-
tion of specificmRNAs coding for TNF-a, IL-1, IL-6, IL-8,
monocyte chemotactic protein 1 (MCP-1), and other
cytokines involved in inflammation (7).

Some cytokines may elicit a broad inflammatory re-
sponse, while others act on specific cell types. The acti-
vation, proliferation, and recruitment phenomena of
specific differentiated immune cells are involved in resolv-
ing thenonhomeostatic state[forareview, seeShi(8)].Thus,
macrophages stimulate the inflammatory responses ofAbbreviations: ADAM17, ADAM (A disintegrin and metal-

loproteinase) metallopeptidase domain 17; AKT/GSK, pro-
tein kinase B/glycogen synthase kinase; BMI, body mass
index; C/EBP, CCAAT enhancer binding protein; circRNA,
circular RNA; COX-2, cyclooxygenase 2; CRP, C-reactive
protein; ICAM-1, intercellular adhesion molecule 1; IL-1R,
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Cambios en la metilación de los genes clock, bmal1 y nr1d1 en células blancas de mujeres obesas 

sometidas a un tratamiento de pérdida de peso 

Mirian Samblas 1,2, Purificación Gómez-Abellán 3, Marta Garaulet 3, J. Alfredo Martínez 1,2,4, Fermín I. 

Milagro1,2,4

1
 
Departamento de Ciencias de la Alimentación y Fisiología. Universidad de Navarra. Pamplona, España. 

2 Centre for Nutrition Research, University of Navarra, Pamplona, Spain  

3
 
Departamento de Fisiología, Facultad de Biología. Universidad de Murcia. Murcia, España. 

4 
 
CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III. Madrid, España

. 

Objetivos: Evaluar, en células blancas, los porcentajes de metilación de tres regiones génicas de los genes 

CLOCK, BMAL1 y NR1D1 (relacionados con la regulación del ritmo circadiano), antes y después de un 

tratamiento de pérdida de peso basado en la Dieta Mediterránea, y analizar las diferencias de metilación entre 

buenos y malos respondedores al tratamiento. 

Método: La población estudiada fue de 61 mujeres que asistieron voluntariamente a cinco clínicas de nutrición 

de Murcia (España) con el fin de perder peso mediante un tratamiento dietético y de comportamiento basado en 

el principio de la dieta mediterránea y técnicas de comportamiento y cognitivos (Método Garaulet). El ADN se 

aisló a partir de células blancas totales obtenidas antes y después del tratamiento, se trató con bisulfito sódico y, 

mediante la técnica de MassArray (Sequenom), se analizaron los porcentajes de metilación en los tres genes. 

Además, la población fue estratificada en dos grupos: buenos respondedores (n=25; aquellos que bajaron de peso 

de manera continuada a lo largo de 30 semanas) y malos respondedores (n=36; el resto). 

Resultados: El tratamiento redujo los valores de IMC (kg/m2), insulina, colesterol total, HDL y LDL. Además, 

la pérdida de peso indujo modificaciones en la metilación de diversos CpGs de los genes CLOCK, BMAL1 y 

NR1D1. No se encontraron diferencias significativas en los valores de metilación inicial de buenos y malos 

respondedores. Sin embargo, en buenos respondedores se observó una correlación negativa entre la metilación 

de un CpG del gen CLOCK y la grasa corporal inicial, y entre un CpG del gen BMAL1 y la pérdida total de peso 

y el IMC. 

Conclusiones: La pérdida de peso indujo modificaciones en la metilación de diversos CpGs de los genes 

CLOCK, BMAL1 y NR1D1. No se encontraron diferencias en los niveles de metilación inicial entre los buenos 

y los malos respondedores. 
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Integrative studies for the identification of transcriptomic and epigenetic biomarkers within a weight-loss 
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Objective: Identification of candidate biomarkers that distinguish individual response for a weight loss dietary 

treatment by using the integrative analysis of mRNA expression and DNA methylation arrays. 

Methods: The study consisted on a randomized sample of 33 obese people (mean BMI = 35.8 ± 4.7 kg/m2) who 

participated in the Metabolic Syndrome Reduction in Navarra (RESMENA) retrospective trial. They were 

classified as low (n=23) or high responders (n=10) depending on their weight loss (>8% of basal weight). 

Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples obtained at the beginning and at 

endpoint. Extracted DNA was sodium-bisulfite converted and fragmented by controlled enzyme digestion 

previous hybridization to probes of Infinium Human Methylation450 BeadChip kit (Illumina Inc.). RNA was 

isolated from white blood cells by TRIzol Reagent for microarray analysis, which was performed with the 

Illumina Human HT-12 v4 gene expression BeadChip.  

Results: For the methylation analysis, a significance threshold of p<0.05 and 5% of methylation variation were 

used, whereas for the expression study a FDR<0.05 and a fold change>1.5 were accepted. 2,102 CpG sites in 

1,785 genes showed differential methylation between low and high responders. In the expression analysis, 156 

transcripts were differentially expressed between both groups, 20 of which were downregulated and 136 

upregulated in low responders. The integrative analysis of both methylation and expression data identified four 

genes (CD44, FBXW5, MTSS1 and ITPR1) that appeared differentially methylated and expressed in low 

responders in comparison with high responders. 

Conclusion: In summary, DNA methylation has been suggested as a powerful tool for diagnosis and prognosis. 

The combination of a high-throughput DNA methylation and expression microarray dataset can be a useful 

strategy to identify novel genes that might be considered as predictors of the dietary response. Future studies are 

needed for the validation of these genes as outcome indicators within a weight loss program. 
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Folic acid and others methyl donors attenuate LPS-induced inflammatory response in human 

macrophages 
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2 Centre for Nutrition Research. University of Navarra. Spain. 

3 CIBERobn, Biomedical Research Centre in Physiopathology of Obesity and Nutrition. Carlos III Institute. 

Spain. 

 

Background and objectives: Methyl donors participate in the epigenetics mechanisms by modulating the 

methylation levels of DNA and proteins. Moreover, methylating compounds trigger essential roles in 

metabolism and cellular homeostasis. Dietary supplementation with folic acid and other methyl donors has been 

reported to elicit beneficial effects on obesity-related manifestations and cardiovascular diseases. The aim of this 

study was to investigate the effects of methyl donors on the inflammatory process in the context of obesity. 

Methods: The samples were obtained from 97 obese subjects (mean BMI=35.8±4.7 kg/m
2
) that participated in 

the Metabolic Syndrome Reduction in Navarra (RESMENA) controlled trial. Methyl donor levels and 

inflammatory markers were quantified in plasma. Expression of inflammatory genes was measured in white 

blood cells. THP-1 cells (human monocytes) were differentiated into macrophages with 25 ng/ml of phorbol 12-

myristate 13-acetate (TPA) and stimulated with 100 µg/ml of lipopolysaccharide (LPS), followed by incubation 

with 11 µM folic acid or a mix of methyl donors (folic acid 11 µM, choline 100 µM, vitamin B12 18 nM) for 

24h.  

Results: Inverse correlations were found between plasma folic acid and vitamin B12 concentrations, with TNFα 

and SERPINE1 expression in white blood cells, as well as circulating PAI-1 levels. Incubation of THP-1 

activated macrophages with folic acid or a mix of methyl donors inhibited significantly IL1B, TNFα, SERPINE1 

and TLR4 gene expression. Moreover, methyl donors decreased IL1B protein levels.  

Conclusions: This study reveals a negative association between methyl donor levels in blood and important 

inflammatory markers. Moreover, the addition of folic acid or a mix of methyl donors to human macrophages 

activated with LPS reduced inflammatory gene expression, suggesting a role of methyl donors in the 

inflammatory process. 
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Identification of novel transcriptomic and epigenetic biomarkers using genome-wide analyses within a 

weight-loss program 

Mirian Samblas 1,2, Maria Luisa Mansego, Maria Angeles Zulet 1,2,3, J. Alfredo Martínez 1,2,3, Fermín I. 

Milagro 1,2,3 

1 Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain. 

2 Centre for Nutrition Research, University of Navarra, Pamplona, Spain. 

3 CIBERobn, Biomedical Research Centre in Physiopathology of Obesity and Nutrition, Carlos III Institute, 

Madrid, Spain. 

The aim of the study was to identify candidate biomarkers that distinguish individual response to a weight loss 

dietary treatment by using the integrative analysis of gene expression and DNA methylation arrays. A 

randomized subsample of 24 obese people (BMI=35.8 kg/m2) participating in the RESMENA controlled trial, 

were classified as low (LR; n=12) or high responders (HR; n=12) depending on their weight loss (>8% of basal 

weight). PBMCs were isolated from blood samples. Genome-wide DNA methylation analyses were performed 

by Infinium Human Methylation450 BeadChip kit. Expression microarray analysis was performed with Human 

HT-12 v4 expression BeadChip. Gene expression results were subsequently validated by qRT-PCR. The 

integrative analysis of both methylation and expression data identified four genes (CD44, FBXW5, MTSS1 and 

ITPR1) that were differentially methylated and expressed in HR in comparison with LR. Expression of these 

genes was lower in HR than in LR. In summary, the combination of high-throughput DNA methylation and 

expression microarray datasets can be a useful strategy to identify novel genes that might be considered as 

predictors of the dietary response and used in personalized nutrition. Nevertheless, additional studies are needed 

to replicate DNA methylation of these genes, whereas validation in larger populations is advisable. 
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Low folic acid intake is associated with SIK1 hypomethylation and insulin resistance in obese subjects 
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Background and objectives: Folic acid is involved in the regulation of many biological processes including 

DNA methylation via the one-carbon metabolism pathway. Furthermore, folic acid deficiency has been 

putatively implicated in the onset of diverse metabolic diseases, including insulin resistance, by altering DNA 

methylation patterns on key regulatory genes. The aim of this study was to investigate the association between 

folic acid intake and metabolic features, with emphasis on gene-specific DNA methylation patterns. 

Methods: A cross-sectional ancillary study was conducted in obese subjects (n=47) from the RESMENA study 

(Spain). Fat mass was measured by dual-energy X-ray absorptiometry (DXA). Dietary intake and the metabolic 

profile were assessed by standardized methods. DNA methylation in peripheral white blood cells was analyzed 

by microarray (Infinium Human Methylation 450K BeadChips). 

Results: Subjects with a folic acid intake lower than 300 μg/day showed more fat mass (especially trunk fat), as 

well as higher levels of glucose, insulin, HOMA-IR index, cortisol and PAI-1 than those consuming at least or 

more than 300 μg/day. Noteworthy, low folic acid was related to salt inducible kinase 1 (SIK1) gene 

hypomethylation. Moreover, methylation levels of SIK1, a direct CREB target gene involved in glucose 

metabolism negatively correlated with HOMA-IR index. 

Conclusions: These results suggest that SIK1 hypomethylation could be an epigenetic mechanism underlying 

low folic acid-induced insulin resistance in obese subjects. 

Keywords: Folic acid, epigenetics, DNA methylation, obesity, insulin resistance 



186 

21
th

 International Congress of Nutrition (IUNS) (2017)

Role of microRNAs mir-155 and let-7B on inflammation in THP-1 cells: effects of pro- and anti-

inflammatory fatty acids 

Jose Luiz Marques Rocha 1, Marcos García-Lacarte 2,3, Mirian Samblas 2,3, Josefina Bressan 1, J. Alfredo 

Martínez 2,3,4, Fermín I. Milagro 2,3,4 

1 Departmen of Integrated Education of Health. Federal University of Espirito Santo, Brazil. 

2 Department of Nutrition, Food Science and Physiology. University of Navarra. Spain. 

3 Centre for Nutrition Research. University of Navarra. Spain. 

4 CIBERobn, Biomedical Research Centre in Physiopathology of Obesity and Nutrition. Carlos III Institute. 

Spain. 

Background and objectives: Our group has previously shown that a Mediterranean-based nutritional 

intervention is able to induce changes in the expression of Let-7b and miR-155-3p in white blood cells of 

individuals with metabolic syndrome. In addition, a low consumption of lipids and saturated fat has been 

associated with higher expression of Let-7b. However, to our knowledge there are no evidences about the role of 

anti- and pro- inflammatory fatty acids (FAs) on the expression of these microRNAs. In this sense, the main 

objective of the current study was to investigate the regulatory roles of miR-155-3p and Let-7b on the expression 

of inflammation-related genes in monocytes, macrophages and LPS-activated macrophages (AcM). Moreover, 

we explored the regulatory role of pro- and anti- inflammatory fatty acids on the expression of these miRNAs in 

the three cell types. 

 Methods: Human acute monocytic leukemia cells (THP-1) were differentiated into macrophages and activated 

with LPS for 24 hours. Monocytes, macrophages and AcM were transfected with miR-Let-7b-5p and miR-155-

3p mimics or a negative control. The expression of the miRNAs and selected genes involved in inflammatory 

pathways (TNF, IL6, SERPINE1 and TLR4) was measured by qRT-PCR. The three cell types were also 

incubated with palmitic, oleic, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids.  

Results: miR-155-3p mimic increased the expression of IL6 in the three cell types. In the same way, SERPINE1 

was upregulated in monocytes and macrophages. However, TLR4 was downregulated in miR-155-3p-transfected 

monocytes and macrophages. Let-7b mimic downregulated TNF/IL6 in monocytes and SERPINE1 in AcM. 

However, TNF, IL6 and SERPINE1 were upregulated in macrophages. Oleic acid was able to increase the 

expression of miR-155 in monocytes when compared with DHA but not when compared with non-treated cells. 

On the other side, oleic acid increased the expression of Let-7b in macrophages and AcM.  

Conclusions: Overall, these findings suggest a pro-inflammatory role for miR-155-3p and an anti-inflammatory 

role for Let-7b in THP-1 cells. However, these effects depended on the cell type. Moreover, some of the 

beneficial properties of oleic acid in non-activated and LPS-activated macrophages might be mediated by 

increasing Let-7b expression.  

Keywords: TNF, SERPINE1, monocyte, macrophage, oleic acid 
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